# **COORDINATION AND CONTROL OF MULTI-AGENT SYSTEMS**

086730

# **Daniel Zelazo**

October 25, 2025

### **ORGANIZATIONAL MATTERS**

# Instructor

```
Daniel Zelazo
```

dzelazo@technion.ac.il

Lady Davis 755

https://connect-lab-technion.github.io/

Office Hours: TBD (or by appointment)

### **Course Schedule**

Wednesdays, 09:30-12:30

Hybrid (Zoom and In-Person)

Ullman 504

Course Website: Moodle (backup https://connect-lab-technion.

github.io/courses/nds2025/NDS2025\_index.html)

#### **GRADING POLICY**

Homeworks: 30%

4-6 assignments

working in groups encouraged

submission individually

solutions must be typed (English; ETEXpreferred but not required)

**Midterm Project**: 25%

Take-home project

One week to complete

To be completed individually (NO collaboration!)

Nominally scheduled for middle of semester

Final Project: 45%

TBD - details to follow

### **COURSE SCHEDULE**

# **Course Introduction** (today)

Unit 1

-Graph Theory

Unit 2

-Consensus Protocols

Unit 3

-Formation Control

Unit 4

- Advanced Topics

#### **SUGGESTED READINGS**

# Course Notes (moodle)



M. Mesbahi and M. Egerstedt, *Graph Theoretic Methods in Multiagent Networks*, Princeton University Press, 2010.



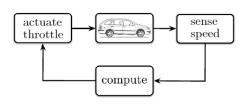
F. Bullo, Lectures on Network Systems, http://motion.me.ucsb.edu/book-lns/

# **NETWORKED DYNAMIC SYSTEMS**

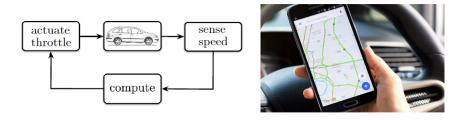




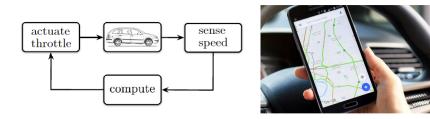







how do we analyze these systems


how do we design these systems







"simple" control systems and optimization methods are "well understood"



"simple" control systems and optimization methods are "well understood"

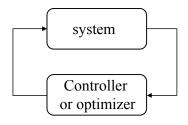
"complexity" can enter in many ways



complex "interactions" between sensing, control, and objectives

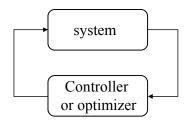


complex "interactions" between sensing, control, and objectives


interactions: physical, logical, functional, and societal



complex "interactions" between control and optimization systems

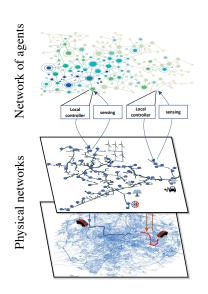

interactions: physical, logical, functional, and societal

#### THE CENTRALIZED CONTROL SYSTEM



Controller: When deviating from a linear SISO system, "complexity" arises

#### THE CENTRALIZED CONTROL SYSTEM




Controller: When deviating from a linear SISO system, "complexity" arises

Computational: most centralized approaches do not scale to large systems

Modeling and stability: more complicated system classes Implementation and analysis: distributed, asynchronous, etc.

#### DISTRIBUTED CONTROL SYSTEM



Large-scale physical systems, engineered multi-agent systems, and their interconnection in cyber-physical systems.

# Key features:

- Complex interactions
  - Concept of "network constraint"
- Concept of network-level stability and performance

# **EXAMPLES IN SCIENCE AND TECHNOLOGY**



Social networks



Self-organization



Robotics networks



Smart power systems



Transportation systems



Pervasive computing

#### **DISTRIBUTED CONTROL SYSTEM**

# Challenges:

```
More complicated systems and controller classes
Interaction through a physical network
    Network "constraints" (engineering, physical)
    "Conflicting" objectives
    Stability, scalability, pervasive measurement of inputs
Interaction through sensing/communication network
    cyber-physical issues (sampled-data, channels, computation,
    etc.)
    interaction through complex network (large, ad hoc,
    time-varving, etc.)
    partial information sets (non-coop. games, etc.)
    limited sensing, communication, & computation capabilities
```

#### **COURSE GOALS**

Modeling of multi-agent systems dynamics interconnections Analysis of multi-agent systems stability and performance steady-state properties Synthesis of multi-agent systems control design interconnection design Applications of multi-agent systems distributed averaging synchronization formation control localization