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Introduction to Graph Theory




ABSTRACTION USING GRAPHS

#1(t) = fi(@1(t), wa(t), t)
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ABSTRACTION USING GRAPHS
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> o-nodes / veprteeS
» — - edges (directed or undirected)
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ABSTRACTION USING GRAPHS

£1(1) = hi@(t),w(®).1)

|7

#2(t) = olea(t), wa(t). 1)

Definition

A graph is an ordered pair comprised of a set of vertices (or nodes), and
a set of edges (or links).

AOJ(
> agraph g = (V,Eg “\(b&
> vertexsetV = {v1,...,v,}

> edge set £ C [V]? (all 2-element subsets of V)



UNDIRECTED GRAPHS

No adx WSS
DA ec\ges v ) )

g=WV¢)

> V= {v1,v2,03,04,05}

> V2 = {{v1,va}, {v1,v3}, {v1,va}, {v1, 05}, {va,v3}, {va, v4},
{’U2705}7{U3>U4}7{v37v5}7{v47v5}}

> &= {{v1,va}, {v1,v3},{va,va}, {v3, 04}, {v2,v5}}



UNDIRECTED GRAPHS
“r ®

more terminology...

> adjacent nodes: vy ~ vy & {v1, 02} € E S vivg €E

» incident nodes:v; € Visincident to edgee; € &, i.e,, ej = {v;,vx} € €
for some v, € V

» neighborhood of a node: N'(v;) =N, = {v; €V : {v;,v;} € £}

.N’(VZ?) :EVI /V‘IS



UNDIRECTED GRAPHS

Example: graphs can model social interactions




> V = {Ul,UQ,U37'U4,U5}

> &= {(v1,v2), (v3,v2), (v3,v4)}
o edges are ordered pairs with a tail (initial) and head (terminal) node
o edges are said to have an orientation

» can define (in)- and (out)-Neighborhoods



WEIGHTED GRAPHS

G=V¢&)

» weights can be assigned to each edge (directed or undirected)
W E—-R ‘/4“4\«\.9\/
o i.e., W((vg,m)) = W43
o can collect weights into a diagonal matrix

W = Wii ER‘E‘X“E‘



PATHS AND WALKS

Definition

A (simple) path is a sequence of
distinct vertices such that
consecutive vertices are adjacent.

Example: path from v; to v
P(v1,v7) = v1v9v201007

> path length is the number of
edges traversed

» paths are not unique!
o shortest path




PATHS AND WALKS

Definition

A

(simple) path is a sequence of

distinct vertices such that

consecutive vertices are adjacent.

Example: path from v; to v

P(v1,v7) = 01090201007

Example: Shortest Path Problem

r

Given a graph with two nodes
identified as the start node
and the terminal node, find the
shortest length path between
them.

-0y

» Waze and other navigation
software

> optimization over graphs
(Network Optimization) 7



PATHS AND WALKS

Definition

A walk (of length k) is a non-empty

alternating sequence vpequiey - - - ep1vg Of

vertices and edges in G such that

e; = {vi,vi41} forall i < k. If vg = vy, the @
walk is closed.

Example: possible walk from v4 to vg @

(>2)

()
V4€45V5€56V6 (length:2) @ @(
or @ @

V4€45V5€58U8€81V1 €31 Vses8V5 €566 (length:6)



SEVEN BRIDGES OF KONIGSBERG

» 7 bridges problem led to Is there a walk through the city of
the development of Konigsberg that crosses each bridge
graph theory once and only once?



CONNECTIVITY OF GRAPHS

Undirected Graphs Directed Graphs

an undirected graph is if adirected graphis

for every pair of vertices, there if for every pair of
exists a path connecting them vertices, there exists a directed

path connecting them



CONNECTIVITY OF GRAPHS

Undirected Graphs Directed Graphs
a graph is if it is not a directed graph is
(weakly) connected if the graph obtained by

replacing each directed edge with
an undirected edge is connected

[ |

10



NODE DEGREE

Undirected Graphs Directed Graphs
» degree of a vertex v; € Vis the » in-degree of a vertex v; € Vis
cardinality of its neighbor set the cardinality of its in-neighbor
set
dy, = [V(vi)] dyt = V7" (v;)]
@ @ > out-degree of a vertexv; € Vis

the cardinality of its

dy, =1 out-neighbor set

dy, =2

@ @ dout |Vout (?) )‘

v;

O—
i =0
di’n =2

@ @ dout =92

1"



SUBGRAPHS

Graphs are a set-theoretic object!

Gg=W¢)
VZ{Ul,...,Ug}

12



SUBGRAPHS

Graphs are a set-theoretic object!

Gg=W¢)
VZ{Ul,...,Ug}

Gg=0W,&)cg '-
=V CVand& Cé&
V' = {v1,v2,v4, 06,08}

& = {{v1,va}, {v2,v4}, {ve, vs}}

12



SUBGRAPHS

Graphs are a set-theoretic object!

vl

Q /
gs=(5,&)C g

@ @ Es ={{vi,vj} € Efvi,v; €S vy

A\
Generate a subgraph that vy Y /)'.
is induced by a set of O_/KO;
nodes Ve
S = {vy,v3, 04,05} ]

13



SUBGRAPHS

Graphs are a set-theoretic object!

<\
o

Gs =(S,6s)C G

Generate a subgraph that ¢, — {{vi,v;} € €| vi,v; € S}

is induced by a set of Boundary of a subgraph

nodes 9Gs = (08, Eas)

S = {v1,vs,v4,v5} 0S8 ={v; eV|v; ¢S, Iv; € Sstfv;,v;} €E} =
{v2,v7,v7}

535 = {{’Ui,”l}j} € 5 | ”Ui,l}j € 88} 3



SUBGRAPHS

Graphs are a set-theoretic object!
v d
Q /
)
()

Gs=(5,6s)C¢G
Generate a subgraph that ¢, — {{vi,v;} € €| vi,v; € S}
is induced by a set of Closure of a subgraph

nodes

S = {’017’03, U4, 'U5}

clGs = Gsuas

13



SPECIAL GRAPH CLASSES

Trees and Cycles Q\ O
A cycle is a connected graph where A tree is a connected graph
each node has degree 2 containing no cycles (acyclic)

S swloglagh”

14



SPECIAL GRAPH CLASSES

Trees and Cycles

A graph contains cycles if thereisa A spanning tree of a connected
subgraph that is a cycle graph is a subgraph that is a tree

15



SPECIAL GRAPH CLASSES

Forests . . .
a C.OMPOAQ/\'TS A spanning forest is @ maximal

acyclic subgraph




SPECIAL GRAPH CLASSES

Connected Components

A connected component is a
connected subgraph of G

G=G,UGyUQGs

G has 3 connected components

& =(Vuyu g, E,UELU%)




SPECIAL GRAPH CLASSES

Star Graph k-Regular Graph

) (o)
A%yfe d* qb .Ie’

Qe OQJQ,
o)
é;’ 3T3§dm€

3-regular

Path Graph

Py
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Peterson Graph

Wheel Graph

Payley Graph

Bipartite Graph

19



SPECIAL GRAPH CLASSES

so many named graphs!

Balaban 10-cage Balaban 11-cago Bidakis cubo Brinkmann graph
Buttety graph Chvital graph Dlamond graph Dirergraph

&

Elingham-Horton 76- Enera graph Frankin graph Frucht graph
araph

Golomb graph Grtzsch graph Harrios graph Harrios-Wong graph

Hoffman oraph Hot graph Horton graph Kitol graph

Bl graph

Elingham-Horton 54-

Goldner-Harary graph

Horschel oraph

Marksirom graph

20



GRAPHS AND MATRICES

All square matrices have a (directed) graph representation!

3&1‘“6\3
33 1 1 0
0 0 0 0 10
M=12 1 0 0 1|«
x5 00 0 0 O
01 0 0 O

For a matrix M € R"*x"

G(M) = (V(M),E(M))

V()| =n

e=(v,v;) €EM) < [M];; #0

21
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Definition
A matrix M € R™*" is said to be irreducible if there does not exist a
permutation matrix P and an integer r such that

B C

PTMP =
0 D

)

with B € R™", C € R"™**~7, and D € R*—"*n—",

a )
« d

22



WHEN GRAPH THEORY AND LINEAR ALGEBRA MEET

A matrix M € R™*" is said to be if there does not exist a
permutation matrix P and an integer r such that

B C
0 D

PTMP =

)

with B € R™", C € R"™**~7, and D € R*—"*n—",

What is a permutation matrix? Example:

. -
A P is a square matrix or P=10
order n such that each row and column contains 0

one element equal to 1, with remaining elements

OD[\D)—‘ICDHO

. . 1 0 0 1
equal to o. Furthermore, permutation matrices 0 0 1 3
satisfy the property P7 = P~ 01 0 N )

| —— A e B e



WHEN GRAPH THEORY AND LINEAR ALGEBRA MEET

Definition

A matrix M € R™*" is said to be irreducible if there does not exist a
permutation matrix P and an integer r such that

B C

PTMP = ,
0 D

with B € R™", C € R"™**~7, and D € R*—"*n—",

Which matrix is irreducible? "0 1.\”0 ol _|' 2
T J -
M = [1 2] or
3 4

] o | |_
what is the permutation matrix? Z\ ] < |t 1
0 ¢ 1 0 0 Q




IRREDUCIBILITY AND STRONG CONNECTEDNESS

Theorem
Let M € R™*". The following statements are equivalent:

i) M isirreducible.
i) The digraph associated with M, G(M), is strongly connected.

23



M is Ttcedue, = GTEM_& is SC.
© Rssame GUM3 05 ast SC.

=> 4 o ket om puic of nodes
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IRREDUCIBILITY AND STRONG CONNECTEDNESS

Q(u,v)

23
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STRUCTURED LINEAR SYSTEMS

Structured Linear Systems

A structured linear system is a description of a dynamic system that
considers only the interaction and influence between system states,
control, and outputs independent on any realization of parameter values.

P 0 0 1 0 Ip 0
1 0 0 0 0 Ll 1o 0
I = —m, _K? F
) Rmp’fp b 0 e Rniﬁc of o] * T
i m ) (mp+me) K3 ) — K
! —)p 0 _0 mely, . Rpyomely, 0 0 Riyymely,
_El o ome i 2
- - {1 0 0 0f |0
........................................................ y= 01 0 0f|p
0

24



STRUCTURED LINEAR SYSTEMS

Structured Linear Systems

A structured linear system is a description of a dynamic system that
considers only the interaction and influence between system states,
control, and outputs independent on any realization of parameter values.

> Express dynamics as a
matrix

b

» Define the digraph
associated with M

A B
c 0

X
F

M

V= {F,p,]iﬁ,é,yhyz}




STRUCTURAL CONTROLLABILITY

the strucure of a system

» system states and controls are either related (non-zero entry in
state-space) or not (0-entry)

» values of parameters are neglected

SeY AN SN
o O O O
* X O O
* o O F
O O O
* x O O

Definition

A system (A, B) is structurally controllable if there exists a system
structurally equivalent to (A, B) which is controllable in the usual sense.

25



STRUCTURAL CONTROLLABILITY

Theorem [Lin '74]
The following statements for a structured system (A, B) are equivalent:

i) (A, B) is structurally controllable

i) Inthe graph G(A, B), there exists a disjoint union of cacti that covers
all the state vertices.

a cactus graph with 3 buds

26



STRUCTURAL CONTROLLABILITY

the graph of the system contains a cactus! the system is structurally
controllable!

27



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Degree Matrix: A(G) € RIVIxIVI
A diagonal matrix with the degree of
each node on the diagonal

d(‘UZ‘)7 1= ]
0, otherwise

[A(G)]i; = {

2.0 000
02000
AG) =10 0 2 0 0
000 30
0000 1

28



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Adjacency Matrix: A(G) € RIVI*IVI
A symmetric matrix encoding the

adjacency relationship of nodes in
the graph
1, in~j
AG))i; =
4Gk {O, otherwise
00 1 1 0
00 1 1 0
AG)=1]1 1 0 0 0
11 0 0 1
00 0 1 0

28



NUMBER OF WALKS LEMMA

Lemma

Let G be a graph with adjacency matrix A(G). The number of walks from
node v; to v, of length r is [A(G)"];;.

Proof:

Homework

29



ADJACENCY MATRIX RESULTS

Let G be an undirected graph with e edges, ¢ triangles, and adjacency
matrix A(G). Then

tr A(G) =0
tr A(G)? = 2e
tr A(G)3 = 6t

30



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Incidence Matrix: £(G) € RIVIxI¢]
vs A matrix encoding the incidence
relation between nodes and edges

@ GZD @ 1, v istail of edgee;

[E(G)]ij = { —1, v, is head of edge e,
0, otherwise
& 1 1 0 0

0

0 0 -1 -1 0
EG=|0 -1 0 1 0
1 0 1 0 1

0 0 0 0

-1
31



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Incidence Matrix: £(G) € RIVIxI¢]
A matrix encoding the incidence
relation between nodes and edges

é 1, v istail of edgee;

/@ [E(G)]ij = { —1, v, is head of edge e,
‘ v 0, otherwise
() 11 0 0 o

assign an arbitrary orientation to 0 0 -1 -1 0
each edge EG=]0 -1 0 1 0
1 0 1 0 1
0 0 0 0

-1
31



INCIDENCE MATRIX

Theorem

Let G be a graph with n vertices, ¢ connected components, and an
arbitrary orientation assigned to each edge. Then rank £(G) = n — c.

32



INCIDENCE MATRIX

Theorem

Let G be a graph with n vertices, ¢ connected components, and an
arbitrary orientation assigned to each edge. Then rank £(G) = n — c.

Proof:

32



INCIDENCE MATRIX

Theorem

Let G be a graph with n vertices, ¢ connected components, and an
arbitrary orientation assigned to each edge. Then rank £(G) = n — c.

Proof:

» G has c connected components: G = U_, G;

32



INCIDENCE MATRIX

Theorem

Let G be a graph with n vertices, ¢ connected components, and an
arbitrary orientation assigned to each edge. Then rank £(G) = n — c.

Proof:

» G has c connected components: G = U_, G;
» with appropriate relabelling of nodes/edges, can write

E(G1)
EG) =

32



INCIDENCE MATRIX

Theorem

Let G be a graph with n vertices, ¢ connected components, and an
arbitrary orientation assigned to each edge. Then rank £(G) = n — c.

Proof:

» G has c connected components: G = U_, G;
» with appropriate relabelling of nodes/edges, can write

E(G1)
EG) =
E(G.)

> let H = (V, &) be a connected graph. Show that rank F(H) = [V| — 1

32



RELATIVE SENSING NETWORKS

Interferometry is a technique used for imaging in deep space. Rather than
using 1 large (and expensive!) telescope, a team of smaller (and cheaper!)
sensors can achieve the same goal. This requires high accuracy and
precision of relative spacing between satellites.

= f(xq,u;)

For the sensing graph G = (V, &),
each edge ¢; = (v;,v;) € € encodes
the relative measurement z; — z;

y=E@G) "z
33



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Combinatorial Graph Laplacian: L(G) € RIVI*IVI
A symmetric matrix

R d(vi); 7:.]
[L(g)}’u - {17 {Z,]} ce

34



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Combinatorial Graph Laplacian: L(G) € RIVI*IVI
Constructions

» using incidence matrix, construction is
independent of the edge orientation!

34



ALGEBRAIC GRAPH THEORY

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

Combinatorial Graph Laplacian: L(G) € RIVIxIVI
» rank L(G) = [V| — 1 < G is connected

> G is connected, then 0 is a simple
eigenvalue and L(G)1 =0

> [(G) is a positive semi-definite matrix
2T L(G)x > 0Vx € RV

> ordered eigenvalues
0=XA(G) < \a(G) < < Ay(9)

» Algebraic Connectivity (Fiedler Eigenvalue) :
A2(G)

34



GRAPH LAPLACIAN

Theorem
For a graph g, the following statements are equivalent:

i) Gis connected
i) Aa2(G) > 0.

35



MATRIX-TREE THEOREM

Theorem
Let 7(G) be the number of spanning trees in G. Then

7(G) = det L(G) ij)-

» Fora matrix M € R"*", M;;, € R"""*"~1 is obtained by deleting the
1th row and jth column of M

1 2 3 4
S 1 2 4
7 L Y 9 10 12
_ by =
9 10 11 12 (23)
| 13 14 16
13 14 15 16

> det M(;;) is called the ij-minor of M

36



MATRIX-TREE THEOREM

Theorem
Let 7(G) be the number of spanning trees in G. Then

X

M EEE
LN X XK
NANS ZNA



