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↭ → - nodes
↭ ↑ - edges (directed or undirected)

!

Graph

In

/vertices

links
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Definition
A graph is an ordered pair comprised of a set of vertices (or nodes), and
a set of edges (or links).

↭ a graph G = (V, E)

↭ vertex set V = {v1, . . . , vn}

↭ edge set E ↓ [V]2 (all !-element subsets of V)

!

doodge
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v1 v2

v3 v4

v5

G = (V, E)

↭ V = {v1, v2, v3, v4, v5}

↭ [V]2 =
{{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4},

{v2, v5}, {v3, v4}, {v3, v5}, {v4, v5}}

↭ E = {{v1, v2}, {v1, v3}, {v2, v4}, {v3, v4}, {v2, v5}}

%

No arrows

on edges
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v1 v2

v3 v4

v5

G = (V, E)

more terminology...

↭ adjacent nodes : v1 ↔ v2 ↗ {v1, v2} ↘ E ↗ v1v2 ↘ E

↭ incident nodes : vi ↘ V is incident to edge ej ↘ E , i.e., ej = {vi, vk} ↘ E

for some vk ↘ V

↭ neighborhood of a node: N (vi) = Nvi = {vj ↘ V : {vi, vj} ↘ E}

%
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N(Vz) = Ey , V43
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Example: graphs can model social interactions

&
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v1 v2

v3 v4

G = (V, E)

↭ V = {v1, v2, v3, v4, v5}

↭ E = {(v1, v2), (v3, v2), (v3, v4)}

→ edges are ordered pairs with a tail (initial) and head (terminal) node
→ edges are said to have an orientation

↭ can define (in)- and (out)-Neighborhoods

”

2

=V /Viv



4.%-3(.$ -#’23/

w21

w23

w43

v1 v2

v3 v4

G = (V, E)

↭ weights can be assigned to each edge (directed or undirected)
↭ W : E ↑ R

→ i.e.,W((v3, v4)) = w43

→ can collect weights into a diagonal matrix

W =





. . .
wji

. . .




↑ R|E|→|E|

’

b=(v,2)

·

e
number
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Definition
A (simple) path is a sequence of
distinct vertices such that
consecutive vertices are adjacent.

Example: path from v1 to v7

P (v1, v7) = v1v9v2v10v7

↭ path length is the number of
edges traversed

↭ paths are not unique!
→ shortest path

v3

v10

v7

v2

v6

v5 v8

v9

v1

v4

(

&
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Definition
A (simple) path is a sequence of
distinct vertices such that
consecutive vertices are adjacent.

Example: path from v1 to v7

P (v1, v7) = v1v9v2v10v7

Example: Shortest Path Problem

Given a graph with two nodes
identified as the start node
and the terminal node, find the
shortest length path between
them.

v3

v10

v7

v2

v6

v5 v8

v9

v1

v4

↭ Waze and other navigation
software

↭ optimization over graphs
(Network Optimization) (
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Definition
A walk (of length k) is a non-empty
alternating sequence v0e0v1e1 · · · ek1vk of
vertices and edges in G such that
ei = {vi, vi+1} for all i < k. If v0 = vk, the
walk is closed.

Example: possible walk from v4 to v6

v4e45v5e56v6 (length:2)

or

v4e45v5e58v8e81v1e81v8e58v5e56v6 (length:6)

v3

v10

v7

v2

v6

v5 v8

v9

v1

v4

)
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↭ ( bridges problem led to
the development of
graph theory

Is there a walk through the city of
Königsberg that crosses each bridge
once and only once?

*

↑

.
⑧
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Undirected Graphs

Connected Graph
an undirected graph is connected if
for every pair of vertices, there
exists a path connecting them

v1 v2

v3 v4

Directed Graphs

Strongly Connected Graph
a directed graph is strongly
connected if for every pair of
vertices, there exists a directed
path connecting them

v1 v2

v3 v4

$#

.
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Undirected Graphs

Disconnected Graph
a graph is disconnected if it is not
(weakly) connected

v1 v2

v3 v4

Directed Graphs

Weakly Connected Graph
a directed graph is weakly
connected if the graph obtained by
replacing each directed edge with
an undirected edge is connected

v1 v2

v3 v4

$#

-
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Undirected Graphs
↭ degree of a vertex vi ↘ V is the
cardinality of its neighbor set

dvi = |V(vi)|

v1 v2

v3 v4

dv1 = 1
dv3 = 2

Directed Graphs
↭ in-degree of a vertex vi ↘ V is
the cardinality of its in-neighbor
set

dinvi = |V
in(vi)|

↭ out-degree of a vertex vi ↘ V is
the cardinality of its
out-neighbor set

doutvi = |V
out(vi)|

v1 v2

v3 v4

dinv1 = 0

dinv2 = 2

doutv3 = 2

$$
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Graphs are a set-theoretic object!

G = (V, E)

V = {v1, . . . , v8}

Subgraph
G
→ = (V →, E →) ≃ G

⇐ V
→
↓ V and E

→
↓ E

V
→ = {v1, v2, v4, v6, v8}

E
→ = {{v1, v2}, {v2, v4}, {v6, v8}}

v1

v2

v3

v4

v5

v6

v7

v8

$!
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Graphs are a set-theoretic object!

G = (V, E)

V = {v1, . . . , v8}

Subgraph
G
→ = (V →, E →) ≃ G

⇐ V
→
↓ V and E

→
↓ E

V
→ = {v1, v2, v4, v6, v8}

E
→ = {{v1, v2}, {v2, v4}, {v6, v8}}

v1

v2

v3

v4

v5

v6

v7

v8

$!
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Graphs are a set-theoretic object!

v1

v2

v3

v4

v5

v6

v7

v8

Generate a subgraph that
is induced by a set of
nodes
S = {v1, v3, v4, v5}

v1

v3

v4

v5

GS = (S, ES) ↓ G

ES = {{vi, vj} ↘ E | vi, vj ↘ S}

$%

~
Y
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Graphs are a set-theoretic object!

v1

v2

v3

v4

v5

v6

v7

v8

Generate a subgraph that
is induced by a set of
nodes
S = {v1, v3, v4, v5}

v1

v3

v4

v5

v2

v6

v7

GS = (S, ES) ↓ G

ES = {{vi, vj} ↘ E | vi, vj ↘ S}

Boundary of a subgraph
ωGS = (ωS, EωS)

ωS = {vi ↘ V | vi /↘ S, ⇒vj ↘ S s.t.{vi, vj} ↘ E} =

{v2, v7, v7}

EωS = {{vi, vj} ↘ E | vi, vj ↘ ωS} $%
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Graphs are a set-theoretic object!

v1

v2

v3

v4

v5

v6

v7

v8

Generate a subgraph that
is induced by a set of
nodes
S = {v1, v3, v4, v5}

v1

v3

v4

v5

v2

v6

v7

GS = (S, ES) ↓ G

ES = {{vi, vj} ↘ E | vi, vj ↘ S}

Closure of a subgraph
clGS = GS↑ωS

$%
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Trees and Cycles
A cycle is a connected graph where
each node has degree !

v1

v2

v3

v4

v5

C5

A tree is a connected graph
containing no cycles (acyclic)

v1

v2

v3

v4

v5

$&

· ·

09

"Subgraph"

e
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Trees and Cycles
A graph contains cycles if there is a
subgraph that is a cycle

v1

v2

v3

v4

v5

A spanning tree of a connected
graph is a subgraph that is a tree

v1

v2

v3

v4

v5

$”
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Forests

v1

v2

v3

v4

v5

v6

v7

v8

A spanning forest is a maximal
acyclic subgraph

v1

v2

v3

v4

v5

v6

v7

v8

$’

a components

-
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Connected Components

v1

v2

v3

v4

v5

v6

v7

v8

G1

G2

v9 G3

A connected component is a
connected subgraph of G

G = G1 ⇑ G2 ⇑ G3

G has % connected components

$(

"Singleton"

G = (r
, URUV ,

E
,UEUEs)
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Star Graph

v1

v2

v3

v4

v5

v0S6

Complete Graph

v1

v2

v3

v4

v5

K6

k-Regular Graph

v1

v2

v3

v4

v5

v5

%-regular

Path Graph

v1v2v3v4v5

P5

$)

are I
3-regular

·

-
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Wheel Graph

v1

v2

v3

v4

v5

v0

Bipartite Graph

v1

v2

v3

u4

u5

u6

u7

Peterson Graph

Payley Graph

$*

Y
! i

...
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so many named graphs!

!#
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All square matrices have a (directed) graph representation!

M =





3 3 1 1 0

0 0 0 0 10

2 1 0 0 1

0 0 0 0 0

0 1 0 0 0




↗

v1

v2

v3

v4

v5

For a matrix M ↘ Rn↓n

G(M) = (V(M), E(M))

|V(M)| = n

e = (vi, vj) ↘ E(M) ↗ [M ]ij ⇓= 0

!$

31s weight
T
- -

-

3

5x5

-
-

-

O or *
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Definition
A matrix M ↘ Rn↓n is said to be irreducible if there does not exist a
permutation matrix P and an integer r such that

PTMP =

[
B C

0 D

]
,

with B ↘ Rr↓r, C ↘ Rr↓n↔r, and D ↘ Rn↔r↓n↔r.

!!

[ii]() =[]

[b]
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Definition
A matrix M ↘ Rn↓n is said to be irreducible if there does not exist a
permutation matrix P and an integer r such that

PTMP =

[
B C

0 D

]
,

with B ↘ Rr↓r, C ↘ Rr↓n↔r, and D ↘ Rn↔r↓n↔r.

What is a permutation matrix?

Definition
A permutation matrix P is a square matrix or
order n such that each row and column contains
one element equal to $, with remaining elements
equal to #. Furthermore, permutation matrices
satisfy the property PT = P↔1.

Example:

P =




1 0 0

0 0 1

0 1 0








1 0 0

0 0 1

0 1 0








1

2

3



 =




1

3

2





!!
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Definition
A matrix M ↘ Rn↓n is said to be irreducible if there does not exist a
permutation matrix P and an integer r such that

PTMP =

[
B C

0 D

]
,

with B ↘ Rr↓r, C ↘ Rr↓n↔r, and D ↘ Rn↔r↓n↔r.

Which matrix is irreducible?

M =

[
1 2

3 4

]
or M =

[
0 0

1 2

]

what is the permutation matrix?
!!

-

]
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Theorem
Let M ↘ Rn↓n. The following statements are equivalent:

i) M is irreducible.
ii) The digraph associated with M , G(M), is strongly connected.

!%



M is is seducible => G[M] is S.C.

· Assume G[MJ is not S. C.

=7 at least one pair of nodes
with no directed path between them

=> say these is nectedpath from

node v to is



t 8·
=> R(r) w(u) =⑪

iii) Q(u
,
v) = V(MJ) (R(U) UW(H)

↑
set Minus
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D. Zelazo Networked Dynamic Systems (086722): Homework #1

We will prove here that a square matrix M is irreducible if and only if G(M) is strongly connected. First,
we will show the direction ); we will prove this via contradiction.

M is irreducible ) G(M) is strongly connected
First, assume that G(M) = (V(M), E(M)) is not strongly connected. This implies that there must exist
at least one pair of nodes u, v 2 V(M) such that there does not exist a directed path from v to u. This
observation will allow us to define 3 special subsets of the node-set V(M), defined as follows. Let,

W (u) = {s 2 V(M) | there exists a directed path from s to u} [ {u},

R(v) = {s 2 V(M) | there exists a directed path from v to s} [ {v},

Q(u, v) = V(M) \ (W (u) [ R(v)).

v

W (u)

R(v)

Q(u, v)

Figure 1: A sketch of the graph used for the proof.

Page 6 of 17

!”

·

·

)



PMP = M

·-D



!”#$%”$#&’ ()*&+# !,!”&-!

Structured Linear Systems
A structured linear system is a description of a dynamic system that
considers only the interaction and influence between system states,
control, and outputs independent on any realization of parameter values.

Rm

mp, Ip

mc

ω

F

p





ṗ

ω̇

p̈

ω̈




=





0 0 1 0

0 0 0 1

0 →mpg
mc

→K2
1

Rmmc
0

0 (mp+mc)g
mcIp

K2
1

RmmcIp
0









p

ω

ṗ

ω̇




+





0

0
K1

Rmmc
→K1

RmmcIp




F

y =

[
1 0 0 0

0 1 0 0

]




p

ω

ṗ

ω̇





!”
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Structured Linear Systems
A structured linear system is a description of a dynamic system that
considers only the interaction and influence between system states,
control, and outputs independent on any realization of parameter values.

↭ Express dynamics as a
matrix

[
ẋ

y

]
=

[
A B

C 0

]

︸ ︷︷ ︸
M

[
x

F

]

↭ Define the digraph
associated with M

V = {F, p, ṗ, ω, ω̇, y1, y2}

F

ω̇

ṗ

p

ω

y1

y2

!”

·

State
desivis
output
->

↑
input
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the strucure of a system

↭ system states and controls are either related (non-zero entry in
state-space) or not (0-entry)

↭ values of parameters are neglected





ṗ

ω̇

p̈

ω̈




=





0 0 ε 0

0 0 0 ε

0 ε ε 0

0 ε ε 0









p

ω

ṗ

ω̇




+





0

0

ε

ε




F

Definition
A system (A, B) is structurally controllable if there exists a system
structurally equivalent to (A, B) which is controllable in the usual sense.

!#
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Theorem [Lin ’!”]
The following statements for a structured system (A, B) are equivalent:

i) (A, B) is structurally controllable
ii) In the graph G(A, B), there exists a disjoint union of cacti that covers

all the state vertices.

a cactus graph with $ buds

!%
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F

ω̇

ṗ

p

ω

y1

y2
F ṗ p

ω̇

ω

the graph of the system contains a cactus! the system is structurally
controllable!

!&
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

Degree Matrix: !(G) → R|V|↑|V|

A diagonal matrix with the degree of
each node on the diagonal

[!(G)]ij =

{
d(vi), i = j

0, otherwise

!(G) =





2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 1





!’
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

Adjacency Matrix: A(G) → R|V|↑|V|

A symmetric matrix encoding the
adjacency relationship of nodes in
the graph

[A(G)]ij =

{
1, i ↑ j

0, otherwise

A(G) =





0 0 1 1 0

0 0 1 1 0

1 1 0 0 0

1 1 0 0 1

0 0 0 1 0





!’
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Lemma
Let G be a graph with adjacency matrix A(G). The number of walks from
node vi to vj of length r is [A(G)r]ij .

Proof :
Homework

!(
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Corollary
Let G be an undirected graph with e edges, t triangles, and adjacency
matrix A(G). Then

i) tr A(G) = 0

ii) tr A(G)2 = 2e

iii) tr A(G)3 = 6t

$)
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

assign an arbitrary orientation to
each edge

Incidence Matrix: E(G) → R|V|↑|E|

A matrix encoding the incidence
relation between nodes and edges

[E(G)]ij =






1, vi is tail of edge ej

↓1, vi is head of edge ej

0, otherwise

E(G) =





↓1 1 0 0 0

0 0 ↓1 ↓1 0

0 ↓1 0 1 0

1 0 1 0 1

0 0 0 0 ↓1





$*
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

e2

e1 e3

e4

e5

v1 v2

v3

v4

v5

assign an arbitrary orientation to
each edge

Incidence Matrix: E(G) → R|V|↑|E|

A matrix encoding the incidence
relation between nodes and edges

[E(G)]ij =






1, vi is tail of edge ej

↓1, vi is head of edge ej

0, otherwise

E(G) =





↓1 1 0 0 0

0 0 ↓1 ↓1 0

0 ↓1 0 1 0

1 0 1 0 1

0 0 0 0 ↓1





$*
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Theorem
Let G be a graph with n vertices, c connected components, and an
arbitrary orientation assigned to each edge. Then rank E(G) = n ↓ c.

Proof :

↭ G has c connected components: G = ↔
c
i=1Gi

↭ with appropriate relabelling of nodes/edges, can write

E(G) =





E(G1)
. . .

E(Gc)





↭ let H = (V, E) be a connected graph. Show that rank E(H) = |V| ↓ 1

$!
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Theorem
Let G be a graph with n vertices, c connected components, and an
arbitrary orientation assigned to each edge. Then rank E(G) = n ↓ c.

Proof :

↭ G has c connected components: G = ↔
c
i=1Gi

↭ with appropriate relabelling of nodes/edges, can write

E(G) =





E(G1)
. . .

E(Gc)





↭ let H = (V, E) be a connected graph. Show that rank E(H) = |V| ↓ 1

$!
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Theorem
Let G be a graph with n vertices, c connected components, and an
arbitrary orientation assigned to each edge. Then rank E(G) = n ↓ c.

Proof :

↭ G has c connected components: G = ↔
c
i=1Gi

↭ with appropriate relabelling of nodes/edges, can write

E(G) =





E(G1)
. . .

E(Gc)





↭ let H = (V, E) be a connected graph. Show that rank E(H) = |V| ↓ 1

$!
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Theorem
Let G be a graph with n vertices, c connected components, and an
arbitrary orientation assigned to each edge. Then rank E(G) = n ↓ c.

Proof :

↭ G has c connected components: G = ↔
c
i=1Gi

↭ with appropriate relabelling of nodes/edges, can write

E(G) =





E(G1)
. . .

E(Gc)





↭ let H = (V, E) be a connected graph. Show that rank E(H) = |V| ↓ 1
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
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Interferometry is a technique used for imaging in deep space. Rather than
using * large (and expensive!) telescope, a team of smaller (and cheaper!)
sensors can achieve the same goal. This requires high accuracy and
precision of relative spacing between satellites.

ẋ = f(xi, ui)

y =





...
xi ↓ xj

...





For the sensing graph G = (V, E),
each edge ei = (vi, vj) → E encodes
the relative measurement xi ↓ xj

y = E(G)Tx
$$
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

Combinatorial Graph Laplacian: L(G) → R|V|↑|V|

A symmetric matrix

[L(G)]ij =

{
d(vi), i = j

↓1, {i, j} → E

L(G) =





2 0 ↓1 ↓1 0

0 2 ↓1 ↓1 0

↓1 ↓1 2 0 0

↓1 ↓1 0 3 ↓1

0 0 0 ↓1 1





$”
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Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

Combinatorial Graph Laplacian: L(G) → R|V|↑|V|

Constructions

L(G) = !(G) ↓ A(G)

= E(G)E(G)T

↭ using incidence matrix, construction is
independent of the edge orientation!

$”



+(0&/#+)% 0#+12 ”2&.#,

Graphs and their properties can be studied using matrices and con-
structs from linear algebra

v1 v2

v3

v4

v5

Combinatorial Graph Laplacian: L(G) → R|V|↑|V|

↭ rank L(G) = |V| ↓ 1 ↗ G is connected
↭ G is connected, then 0 is a simple
eigenvalue and L(G) = 0

↭ L(G) is a positive semi-definite matrix

xTL(G)x ↘ 0 ≃x → R|V|

↭ ordered eigenvalues

0 = ϑ1(G) ⇐ ϑ2(G) ⇐ · · · ⇐ ϑ|V|(G)

↭ Algebraic Connectivity (Fiedler Eigenvalue) :
ϑ2(G)

$”
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Theorem
For a graph G, the following statements are equivalent:

i) G is connected
ii) ϑ2(G) > 0.

$#
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Theorem
Let ϖ(G) be the number of spanning trees in G. Then

ϖ(G) = det L(G)(ij).

↭ For a matrix M → Rn↑n, M(ij) → Rn→1↑n→1 is obtained by deleting the
ith row and jth column of M

M =





1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16




⇒ M(23) =




1 2 4

9 10 12

13 14 16





↭ det M(ij) is called the ij-minor of M

$%
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Theorem
Let ϖ(G) be the number of spanning trees in G. Then

ϖ(G) = det L(G)(ij).

L(G) =





3 ↓1 ↓1 ↓1

↓1 3 ↓1 ↓1

↓1 ↓1 3 ↓1

↓1 ↓1 ↓1 3




ϖ(G) = 16

$%


