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Abstract 

Graph-theoretic Methods for the Analysis and Synthesis of Networked Dynamic 
Systems 

Daniel Zelazo 

Chair of the Supervisory Committee: 
Professor Mehran Mesbahi 
Aeronautics & Astronautics 

This dissertation aims to develop a graph-centric framework for the analysis and synthe-

sis of certain classes of large-scale systems, namely those with linear dynamic subsystems 

that interact with other subsystems via an interconnection topology. Four canonical mod-

els for networked dynamic systems (NDS) are derived as the analytic foundation for this 

work. The role of heterogeneity of the agent dynamics comprising the system is also made 

explicit. An essential construct used to describe these systems is a new algebraic represen-

tation for a graph that we term the edge Laplacian. Equipped with models that explicitly 

describe the role of the underlying connection topology, we consider the controllability, 

observability, and performance of the NDS models in terms of the structural properties of 

the connection graph. Motivated by the analysis results, we also provide various synthesis 

procedures, including optimal topology design, local inner-loop control for each agent in 

an NDS, and decentralized control laws for the entire NDS. 
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Chapter 1 

INTRODUCTION 

The analysis and synthesis of large-scale systems poses a range of challenges due to the 

number of their subsystems and the complexity of their interactions. In the meantime, the 

importance of these systems has become increasingly prevalent in science and engineering, 

especially in the realm of multi-agent systems such as the coordination of autonomous ve-

hicles, as well as localization and sensor fusion, energy networks, and distributed compu-

tation [2,3,11,13,21,26,55,57]. One aspect of the complexity of large-scale systems is that 

their subsystems, which we occasionally refer to as 'agents,' may not be described by the 

same set of input-output dynamics. The difference between the dynamics of distinct sub-

systems may be the result of manufacturing inconsistencies or intentional differences due 

to varying requirements for each subsystem in the ensemble. An important component to 

the analysis of these systems, therefore, is to understand how heterogeneity in the subsys-

tem dynamics affects the behavior and performance of the entire system. Another facet of 

this complexity relates to the interconnections of the different subsystems. The underlying 

interconnection topology of a large-scale system may be determined by the governing dy-

namic equations of each subsystem, e.g., when the interconnection is a function of some 

state of each subsystem, or it may be designed as part of the engineering process. In both 

cases, the interconnection topology has a profound impact on the overall system in terms 

of its stability, controllability, observability, and performance. Hence, it becomes crucial to 

understand and explicitly parameterize the role of the interconnection topology for both 

the analysis and synthesis of large-scale systems. 

As a result of this research, a graph-theoretic approach has been identified as a promis-

ing way to study this class of systems. Graph theory is a mature branch of mathematics 

used to study, in a rigorous manner, the relations between objects from a certain collec-

tion [22, 32]. The main advantages of graph theory in a dynamical system setting are the 
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various algebraic representations that graphs admit. Matrix representations of graphs can 

easily, if not elegantly, be incorporated into a dynamical system as an additional parameter 

to describe interactions between agents. 

For linear and time-invariant (LTI) multi-agent systems, it may seem natural to embed 

the connection topology into the quadruple of system matrices (A, B, C, D) using the afore-

mentioned representations for graphs. Such a representation of a multi-agent system can 

be used to study systems-theoretic properties in the traditional way. However, a more en-

lightening approach is to make the connection topology, which we denote as Q, explicit in 

the system description. This refinement leads us to consider the quintuple (A,B,C,D,Q), 

and consequently all systems theoretic properties should be described based on this repre-

sentation. This approach can lead to a graph-based intuition on such systems. 

Perhaps the most studied illustration of this approach is the Laplacian Dynamics, also 

known as the consensus or agreement protocol [54,59,65]. In consensus problems, it is the 

goal of a network of dynamic systems to reach agreement on a certain quantity of interest 

(for example, the heading of a team of UAVs). This model has proven useful in a broad 

range of fields including social networks, flocking, formation control, and distributed com-

putation [13,64,77,78]. In its simplest form, the consensus problem assumes a finite group 

of dynamic units, each connected to a fixed number of other units in the ensemble. The 

interconnection of these units can be represented using a graph, and the dynamics of each 

agent is assumed to be of the single integrator type. Each unit's control is then assumed to 

be the sum of differences between its own state and its neighbors state, as defined by the 

connection graph. The dynamic evolution of the entire system can be aptly captured by 

the autonomous system 

x(t) = -L{G)x{t), (1.1) 

where L(Q) represents the graph Laplacian matrix for the connection graph [32]. The 

power of this model is in its simplicity, allowing for the development of strong connections 

between classical systems properties, such as the rate of convergence, with spectral prop-

erties of the graph. The implications of this model have been explored under more sophis-

ticated scenarios, including switching topologies, random graphs, and state-dependant 
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graphs, to mention a few [35,38,53,59]. 

While the main thrust of research related to consensus type problems has been the 

stability and convergence properties of the system, there has been some important work 

relating other system theoretic properties to the connection graph. The work in [26] relates 

classic notions from Nyquist stability theory to the connection graph when consensus is 

used as a feedback mechanism for a group of homogeneous agents. In [63], the consensus 

model was augmented to include a control input, and the notion of controllability was 

related to symmetry properties of the graph. A graph-centric observability analysis for a 

consensus based distributed estimation algorithm was presented in [40]. 

Although the consensus protocol has garnered much attention in the community, it 

does not represent the breadth of networked dynamic systems. Another important class 

of systems are relative sensing networks (RSN), such as those used for formation keeping 

[14, 48]. A compelling application of this class of systems is in the arena of space explo-

ration. Spacecraft constellations for studying, for example, the structure of the heliopause, 

stereographic imaging and tomography for space physics, and space borne optical interfer-

ometry for probing the origins of the cosmos and identifying Earth-like planets (e.g., TPF, 

MAXIM), must rely on relative sensing to achieve their mission objectives [21,29,48]. The 

work in [73, 74] uses an incidence matrix representation of a graph to describe a relative 

formation in the context of formation control, but the connection between systems theory 

and graph theory could be pushed further. A more formal connection between concepts in 

graph theory and RSN was given in [70], specifically relating controller reconfiguration to 

spanning trees in the connection topology. 

Sensor fusion and localization is yet another example of an NDS. An important compo-

nent of sensor fusion is the ability to decide the communication structure for each sensing 

node in a distributed array. The work presented in [43] highlighted the importance of cer-

tain graph structures, such as fc-regular graphs, for the design of sensor networks. A sig-

nificant contribution related to RSNs and estimation over these networks was presented in 

[10]. Graph-theoretic concepts such as graph lattices and resistances were explicitly related 

to the corresponding estimation problem. 

There is a wealth of research related to the aforementioned problems in addition to 
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other applications and system models [8, 9, 13, 20, 46]. However, one common lacking 

theme is a true notion of system performance, as understood in systems theory, with the 

properties of the connection topology. The maturation of this field of research depends on 

the ability to analyze these systems beyond the notions of just stability and convergence. 

A theory that explicitly characterizes precise performance metrics (such as H2 or Hoc per-

formance) in terms of the connection graph would lead to a richer intuition between these 

fields. Additionally, synthesis of these networks would be permitted to be designed with 

strict requirements on their performance, rather than constructed from heuristics. 

In another direction, optimization theory is a branch of mathematics that has become 

increasingly important in the context of the synthesis of controllers and estimators for dy-

namic systems [17,19,24, 68, 71]. Classical control design methods, such as root-locus or 

Nyquist diagrams, although providing a deep analytic connection between the notions of 

stability and system performance, are more of an engineering art than an exact science. 

The marriage of optimization theory and control design formalized the meaning of what 

the "best" controller should be. Although not as intuitive as the classical methods, much 

progress has been made in the justification of optimal control in the context of dynamical 

systems properties. In this venue, numerically tractable solution methods for solving these 

optimal control problems have been developed. For example, advances in robust control 

theory and Tioo control are largely due to the maturation of semi-definite programming 

[24, 71]. 

Optimization theory also has a close and storied connection to graph theory. The most 

famous of which is the paper by Leonhard Euler on the Seven Bridges of Konisgsberg, 

written in 1736 (Figure 1.1). The city of Konisgsberg, once part of Prussia, is located on the 

Pregel River, and had two islands that were connected to each other and the mainland by 

a network of seven bridges. The problem Euler solved was to determine if it was possible 

to walk a route that used every bridge exactly once. The answer is decidedly no, and the 

solution methods provided the foundations of many graph theoretical concepts; see, for 

example, [66]. 

The marriage of graph theory and optimization theory is fully realized in the broad 

area of network and combinatorial optimization [47, 66]. Classic problems such as max-
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Figure 1.1: The seven bridges of Konisgsberg; deciding if a path exists that uses each bridge 
once is an example of optimization over graphs [1]. 

flow/min-cut, shortest path, and matching problems represent an elegant connection be-

tween concepts in optimization and graph theory. One unique feature of these problems is 

the ability to interpret mathematical concepts such as duality and feasibility in the context 

of graphical objects. 

In the literature related to NDS, optimization has taken only a secondary role. As men-

tioned earlier, much of the prior work has concentrated on properties of stability and con-

vergence of networked systems. The algebraic connectivity of a graph [28], for example, is 

related to the second smallest eigenvalue of the graph Laplacian. Semi-definite charac-

terizations for the optimization of this value were derived in [16], and applied in various 

applications related to consensus and formation keeping [45, 55, 80]. In many instances, 

heuristic methods are used to avoid the computational difficulties of combinatorial opti-

mization. For example, the work in [31] provides guidelines for adding a set of edges to 

produce the greatest impact in the algebraic connectivity. However, the lack of a strong 

analytic connection between concepts in graph theory and systems theory has resulted in 

a corresponding void in applying results from combinatorial optimization in this setting. 

There is a large untapped resource in combinatorial optimization that provide various use-
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Figure 1.2: NDS is at the intersection of three broad subjects. 

ful semi-definite approximation algorithms for certain graph theoretic properties [72]. For 

example, a semi-definite relaxation for finding the maximal stable set of a graph, which is 

a J\fV hard problem, is given in [50, 51]. 

It seems natural, therefore, that the broad areas of dynamical systems and control, op-

timization theory, and graph theory, should all intersect and define a new class of prob-

lems. It is precisely this intersection where networked dynamic systems lie, as shown in 

Figure 1.2, that defines the focus of this research. This intersection addresses both the prob-

lems of analysis of NDS and synthesis of controllers and estimators for such systems. This 

research aims to address these issues, and its fundamental contributions are: 

1. Development of canonical models for studying networked dynamic systems. 

2. A Graph-centric characterization of system-theoretic properties (e.g., observability, 

performance). 

3. Synthesis techniques for topology and controller design. 
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The organization of this work is as follows. Chapter §2 reviews some fundamental 

concepts and notations in systems theory, graph theory, and optimization. In §3, a new 

algebraic representation of a graph, which we term the edge Laplacian, will be presented. 

The edge Laplacian turns out to be a central tool for the description of certain NDS mod-

els, which we fully develop in §4. This section describes in detail four canonical models 

for networked dynamic systems. It also introduces the notion of heterogeneity in the de-

scription of the dynamics of each agent in the ensemble. The analysis of the different NDS 

models, including discussions on observability, controllability, and system performance, is 

presented in §5. These results motivate synthesis procedures for topology design, inner-

loop control design, as well as decentralized outer-loop control, all of which are presented 

in §6. Finally, §7 offers some concluding remarks in addition to potential extensions of this 

work. 
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Chapter 2 

PRELIMINARIES 

This chapter introduces notational conventions and a brief review of relevant concepts 

in the areas of dynamical systems and control theory, graph theory, and optimization the-

ory. The set of real numbers is denoted by R, whereas JR." x m denotes the space oinxm real 

matrices. Similarly, C is the set of complex numbers. The matrix-theoretic notation used 

in the work is as follows: for a matrix A, 71(A) and N(A) denote, respectively, its range 

space and null space. The eigenvalues of a square matrix A are denoted A, (A), whereas 

the singular values of an arbitrary sized matrix are denoted Ci(A). Diagonal matrices will 

be written as D = diag{di,...,dn}, with d, denoting the i-th entry on the diagonal; this 

notation is also used for describing block-diagonal matrices, as in A = diag{Ai, ...,An}. 

The notation [A]ij refers to the z'/'-th entry of A. A matrix and/or a vector that consists of all 

zero entries will be denoted by 0; whereas, '0' will simply denote the scalar zero. Similarly, 

the vector 1 denotes the vector of all ones, and J = 11T. The z'-th element of a vector x is 

denoted *,-. The element-wise absolute value of a vector x and, respectively, a matrix A, 

is denoted \x\ and \A\. The transpose of a vector, and respectively, a matrix is denoted xT 

and AT; the complex conjugate of x and A is written x* and A*. The Euclidean norm of a 

vector x G R" is denoted as \\x\\; the p-norm of x is defined as 

' ; (2.1) 

for p = oo, 11x11oo = max, {|xt\\}. The p-norm of a matrix is induced by the equivalent vector 

p-norm, 

\\A\\P = max\\Ax\\p; (2.2) 
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for p = 2, \\A\\ = max,- {ai(A)}1. The Frobenius norm of a matrix is defined as 

||A||f = (trace{^TA})1/2. (2.3) 

A symmetric matrix A 6 R"x" has the property A — AT. It is called positive-definite 

(positive semi-definite) if all its eigenvalues are positive (non-negative); this is notated as 

A > 0 (A > 0). Equivalently, the matrix A is positive-definite if xTAx > 0 for all x. The 

notation A > B (A > B) means the matrix (A — B) is positive-definite (positive semi-

definite). The notation g(n) = 0(f(n)) signifies that the function g(n) is bounded from 

above by some constant multiple of f(n) for large enough values of n. The cardinality of a 

set of discrete elements X = {i\, . . . ,/„} is denoted \L\ = n. 

We also make use of normed infinite-diinensional spaces. In particular, the space 0{ (0, oo) 

consists of all n-dimensional functions such that 
1/2 

(f\(tyu(t)dtj < oo. 

We will at times abbreviate this space as simply £-2- The normed spaces are induced by an 

inner-product, which we define for Cz as 
/•OO 

(x(t),y(t)) = / x(tyV(t)dt. (2.4) 
Jo 

The norms of signals in £2 are therefore written as || x(t) || £2 = ((x(t),x(t))) .TheFourier 

transform of a function maps a signal in u(t) E £2 to the frequency domain tz{j^), and is 

defined as 

/

oo 
u(t)e~'u,tdt. (2.5) 

-00 

Plancherel's theorem is an important result showing equality between the inner-products 

on £2 and /^(/TR) [24]. This leads to the following statement on the norms, known as 

Parseval's theorem, 

I|rt0'^)llz2 = (J^u{jco)*u{jco)dco\ (2.6) 

The subscript "2! is dropped in the case of the matrix and vector 2-norms. 
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2.1 Dynamic Systems and Control 

This section offers a short summary of some relevant results from dynamic systems and 

control theory [4, 19, 24, 42]. We consider a linear and time-invariant (LTI) system with 

states x(t) E Rn, controls u(t) e Rm", exogenous disturbances w(t) ¤ R"1'*, performance 

outputs z(f) ¤ RPz, measured outputs y(t) ¤ Rp*, and initial conditions x(t0) e R". The 

LTI system, which we denote by the operator E, has the following state-space realization: 

(2.7) 

x(t) = Ax(t) + Bu(t) + Twit) 

z(t) = Czx{t) + Dzuu(t) + Dzww(t) 

y(t) = ax{t) + Dyuu(t), + Dyww(t) 
k x(t0) = x0 

The linear system (2.7) is asymptotically stable if all the eigenvalues of A, also referred to as 

the poles of E, are in the open left-half plane of C2. Equivalently, we say that E is stable if 

the state-matrix A is Hurwitz. 

The system E also has an input-output representation referred to as the transfer-function 

and denoted as E. The transfer-function of (2.7) is given as 

E : 
Huz(s) Hwz(s) 

Huv(s) Hwy{s) 
(2.8) 

where, Ht,z(s) = Cz(sl - AYlB + Dzu (the other elements of (2.8) are similarly defined). 

The transfer-function of E represents a minimal description of the system2; that is E is 

the input-output map for a completely controllable and observable system. The controllabil-

ity and observability properties of a stable system can be studied using the gramians of the 

system, 

Xc f 
Jo 

eAtBBTeA?tdt (2.9) 

Y0 = \™ eAT\O)T0eMdt 
Jo 

(2.10) 

2After all pole-zero cancelations. 
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The gramian can also be computed by solving a set of linear equations, through the fol-

lowing Lyapunov equations, as 

AXC + XCAT + BBT = 0, (2.11) 

ATY0 + Y0A + (a)Ta = 0. (2.12) 

In both cases, the gramians are symmetric positive semi-definite matrices. When the gramian 

Xc (Y0) is positive definite, the system is controllable (observable). If this condition is not 

met, then each 0 eigenvalue of the gramian Xc (Y0) corresponds to an uncontrollable (un-

observable) mode in the system. 

In the case where the state matrix is not stable, there are other tests, such as the PHB 

test, that can be used to determine if the system is controllable or observable [42]. The 

advantage of the gramian is the ability to infer the relative degree of controllability or 

observability of the different modes in the system. This is accomplished by comparing the 

singular values of the gramian using the singular value decomposition (SVD) [36], 

XC = VZCVT, Y0 = WL0UT. (2.13) 

We denote, respectively, the largest and smallest singular values of Xc (Y0) as ^(Xc) and 

<r(Xc) (<T(Y0) and (T_(Y0)). For example, a quantitative way to compare the relative observ-

ability of different modes in the system can be inferred from the SVD of the observability 

gramian as 

\\y{t)\\c2 = \\Yl/2x(t0)\\. 

Of primary interest is the design of a feedback control law of the form 

u(t) = Ky{t), (2.14) 

where K is itself a dynamic system that has the following state-space realization: 

xk(t) = Akxk(t) + Bky(t) 
K (2.15) 

u(t) = Ckxk(t) + Dky(t) 

where xk(t) e R"1 is the internal state of the controller, and y{t) and u(t) are respectively, 

the output and input of the system E. The interconnection between the system E and the 
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w(t) 
U(t) I fa 

K 

1/W 

Figure 2.1: A controlled dynamic system. 

controller K can be described with a block diagram, as in Figure 2.1. We sometimes use the 

short-hand notation for a state-space realization of a system as 

K := 
Afc 

_ Q 

Bjt " 

Dfc _ 

The controller should be designed such that the system in Figure 2.1 is internally stable 

and a certain level of performance is achieved. The notion of performance can be quanti-

fied in numerous ways, and we will generally consider performance metrics that take the 

following form: 

/ \v (2.16) 

where Tw^z represents the closed-loop map from the exogenous input w(t) to the perfor-

mance output z(t), and || • \\p denotes the system p-norm of the argument. 

As an example, when p = 2, minimization of the performance metric (2.16) is the 

TC2 optimal control problem (which is equivalent to the classic Linear Quadratic Gaussian 

problem). Similarly, when p = oo, the problem becomes an Tioo optimal control problem. 

It should be noted that additional performance metrics, such as robustness and regional 

pole placement, can be formulated in the same way through appropriate modification of 

the plant. 

The 7^2-norm of a system can be calculated using the controllability and observability 

gramians of the system. For example, the H2 norm of S from the input channel w(t) to the 
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output channel y(t) is written as 

||E|[2 = y/tiace(TTY0T) (2.17) 

= v / t r a c e ( a X c ( a ) T ) . (2.18) 

The 7ioo-norm of a system is an induced £2 norm, and is defined as 

||£(/o>)||oo = sup ||L(;a;)L7(;a;)||A; (2.19) 
II u(/«) 11/̂ =1 

this description allows us to state the sub-multiplicative property of the Tico norm, 

\\H{ju)P{jco)U < HHC/^lloollPO'a;)^. 

Alternatively, the norm can be computed from the frequency dependant singular values of 

£ as 

||L||co = sup a(±(jcv)). (2.20) 
CO 

2.2 Graph Theory 

A review of relevant concepts from graph theory is presented here [15, 32]. An undirected 

(simple) graph Q is specified by a vertex set V = {1,2, . . . ,n} and an edge set £ whose 

elements characterize the incidence relation between distinct pairs of V. Two vertices i 

and ;' are called adjacent (or neighbors) when {/,/'} G £; we denote this by writing i ~ ;'. 

An orientation of an undirected graph Q is the assignment of directions to its edges, i.e., 

an edge e^ is an ordered pair (/,/') such that i and ; are, respectively, the initial and the 

terminal nodes of e^. Similarly, we define two edges e^, g/ £ £ to be positively (negatively) 

adjacent if they share a node and point in opposite (same) directions relative to this shared 

node. We denote the positive and negative adjacency of edges as e^ ~ + e\ and e^ ~~ e\, 

respectively. By convention, an edge is not considered adjacent to itself. A subgraph of Q is 

a graph whose vertex and edge sets are subsets of those of Q. 

Graphs admit a set of convenient matrix representations. For example, the |V| x \£\ 

incidence matrix, E(Q), for an oriented graph Q is a {0, ±l}-matrix with rows and columns 
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£> 

(a) Si (b) g2 

Figure 2.2: Two directed graphs on 4 nodes. 

indexed by vertices and edges of Q, respectively, such that 

[E(G))ik = 

+1 if i is the initial node of edge e^ 

—1 if z is the terminal node of edge ey 

0 otherwise 

Figure 2.2 depicts an example of two oriented graphs and their respective incidence matri-

ces are given as 

E(Gi) 

1 1 1 

- 1 0 0 

0 - 1 0 

0 0 - 1 

, £(&) = 

1 1 1 0 0 0 

- 1 0 0 1 - 1 0 

0 - 1 0 - 1 0 1 

0 0 - 1 0 1 - 1 

• (2-21) 

From the definition of the incidence matrix it follows that the null space of its transpose, 

Af(E(G)T), contains span {1}. 

The rank of the incidence matrix depends only on | V| and the number of its connected 

components. 

Theorem 2.2.1 ([32]). LetQ = (V,£) be a graph withe connected components. ThenrankE(G) = 

I V | - c. 

The degree of a vertex i, denoted d„ is the cardinality of the set of vertices adjacent to 

it. The degree matrix of G, A(£), is a diagonal matrix with the degree of vertex i at its (i, i) 



16 

position. The adjacency matrix of Q is a symmetric j V j x | V | matrix defined as, 

l if {i,j}eS 
0 otherwise. 

A sequence of r + 1 distinct and consecutively adjacent vertices, starting from vertex i 

and ending at vertex /, is called a path of length r (form i to ;'); when / = /, we call this 

path a cycle. We call a graph connected if there exists a path between any pair of vertices. A 

connected graph without cycles is referred to as a tree. Equivalently, a tree is a connected 

graph on | V | vertices with | V | — 1 edges. 

A connected graph Q can be written as the union of two edge-disjoint subgraphs on the 

same vertex set as Q = Qx U Qc, where Gx is a spanning tree subgraph and Qc contains the 

remaining edges that necessarily complete the cycles in Q. Similarly, the columns of the 

incidence matrix for the graph Q can always be permuted such that E(G) is written as 

E(G) E(gr) E(gc) (2.22) 

For the duration of this work we assume the incidence matrix to always be partitioned 

according to (2.22). 

The cycle edges can be constructed from linear combinations of the tree edges via a 

linear transformation [66, 70], as 

where 

E(GT)TC
T(G) = E{Gc), 

rr{G) = (EiG^E^y1 E(GT)TE(GC) 

(2.23) 

(2.24) 

Using (2.23) we obtain the following alternative representation of the incidence matrix of 

the graph 

E(G) = E(Gr) [ I TT(G) \ = E(GT)R(G); 

the rows of the matrix 

(2.25) 

R(G) = I Tc
r(G) (2.26) 
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r i T 

are viewed as the basis for the cut space of Q [32]. The matrix —T^.(Q) I , on the other 

hand, forms a basis for the/Zoo; space. 

The matrix R(G) has a close connection with a number of structural properties of the 

underlying network. For example, the number of spanning trees in a graph, T{G), can be 

determined from the cut space basis [32], as 
x{9) = det[R(g)R(gf]. (2.27) 

The null space of the incidence matrix can be characterized in terms of the indepen-

dent cycles of the graph. We elaborate on this connection between graphical and algebraic 

properties of a graph with the following definitions and theorem. 

Definition 2.2.1. Given an incidence matrix E{Q)for a directed graph, a signed path vector is a 

vector z G R'f' corresponding to a path such that the ith element ofz takes the value '+T if edge i 

is traversed positively, '-V if traversed negatively, and '0' if the edge is not used in the path. 

Lemma 2.2.2. Given a path with distinct initial and terminal nodes described by a signed path 

vector z in a graph Q, the vector y ¤ ]Rlv' is defined asy = E{Q)z and the ith element ofy takes 

the value '+V if node i is the initial node of the path, '-2' if it is the terminal node of the path, and 

'0' otherwise. 

Proof. We can rewrite E(Q)z as E{Q) diag(z) 1. The ij-th. entry of the matrix E(Q) diag(z) 

will be —1 if edge ; is used by the path to leave node i, +1 if edge ; is used by the path 

to enter node i, and zero otherwise. If node i is an intermediate node in the path (neither 

the initial nor the terminal node), then the path must enter and leave the node an equal 

number of times, resulting in the i-th row-sum of E(G) diag(z) to be zero. On the other 

hand, if node i is the initial node, the path must eventually leave the node without ever 

returning to it, resulting in the i-th row-sum to be equal to 1. Similarly, if i is the terminal 

node, the path must eventually enter the node without ever leaving it, resulting in the i-th 

row-sum to be equal to —1. 

• 
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Theorem 2.2.3 ([32]). Given a connected graph Q with, arbitrary orientation assigned, the null 

space ofE(G) is spanned by all the linearly independent signed path vectors corresponding to the 

cycles in E(Q). 

Proof. For any node used in a cycle, the path must enter and exit that node an equal number 

of times. Using the same argument as in the proof of Lemma 2.2.2, it follows that E (G)z = 0 

when z is the signed path vector for a cycle. 

• 
The graph Laplacian of an oriented graph is defined as 

L(G) := E(Q) E(G)T; (2.28) 

however, the graph Laplacian is independent of a particular orientation of the graph as 

L{G) = A(G) - A(G). (2.29) 

The graph Laplacian of G is a rank deficient positive semi-definite matrix. The real spec-

trum of L(G) can thereby be ordered as 

0 = Ai(L(G)) < \2(L(G)) < ... < A|V|(L(a)). 

We will use the shorthand notation A,(<?) to refer to the f-th ordered eigenvalue of L(G). 

A direct consequence of Theorem 2.2.1 is that the multiplicity of the zero eigenvalue of the 

graph Laplacian is equal to the number of connected components of the graph [32]. More-

over, the second smallest eigenvalue of L(G), ^z{G), also known as algebraic connectivity, 

turns out to be a judicious measure of graph connectivity [27]. 

Two graphs, G\ and Gi, are said to be cospectral if the spectrum of A(Gi) is the same 

as the spectrum of A(Gi)- Similarly, two graphs, G\ and Gi, are said to be cospectral with 

respect to the graph Laplacian if the spectrum of L{G\) is the same as the spectrum of L((?2)-

Note that two graphs that are isomorphic are always cospectral with respect to the graph 

Laplacian, but the converse is not true. That is, two graphs that are cospectral with respect 

to the Laplacian need not be isomorphic. 

In order to apply the framework developed in this work to specific graphs, we will 

work with the complete graph and its generalization in terms of A:-regular graphs, which 
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(a) Xio Graph (b) Qo Graph (c) A 4-regular Graph 

(d) Sio Graph (e) PJO Graph 

Figure 2.3: Example of regular graphs and trees. 

are defined as follows. The complete graph on n nodes, Kn, is the graph where all possible 

pairs of vertices are adjacent, or equivalently, if the degree of all vertices is n — 1. Figure 

2.3(a) depicts Kw, the complete graph on 10 nodes. When every node in a graph with n 

nodes has the same degree k < n — 1, it is called a fc-regular graph. The fc-regular graph on 

n nodes for k — 2 is called the cycle graph, Cn. Figures 2.3(b) and 2.3(c) show, respectively, 

the cycle graph C\Q and a 4-regular graph. The star graph, S„, is a tree graph with one node 

having degree n — 1 and all others have degree 1, as in Figure 2.3(d). Similarly, the path 

graph, Pn, is a tree with two nodes of degree 1, and the other n — 2 nodes with degree 2, 

shown in Figure 2.3(e). 

The line graph of Q, denoted as ££(Q), is the graph where the edges of Q correspond to 

the nodes of J?(Q), and two edges in J£(Q) are adjacent if they share a node in Q. Figure 

2.4 shows an example of a graph and its undirected line graph. 

For the duration of this work, we will make explicit the dependance of the various 

algebraic representations on the underlying graph Q. However, in instances where the 

context is clear, we will drop the explicit dependence to reduce notational clutter (e.g., 

R{Q) will be replaced simply by JR). 
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Figure 2.4: A graph on the vertex set {1,2,3,4,5} and its undirected line graph on the set 
{l',2',3',4',5',6'}. 

2.3 Optimization Theory 

We make use of concepts from convex optimization, with an emphasis on semi-definite 

programming (SDP) [18,66]. A real-valued function / : R" •-»• R is called convex, if for any 

two points x, y E R" and any 0 < A < 1, one has 

/(Ax + (1-A)y) < A/(x) + ( l -A) / (y ) . (2.30) 

If / and g are convex functions, then so is their sum. 

SDPs are concerned with the optimization of a linear objective function over the space 

of positive semi-definite matrices. The general form of an SDP is written as 

min cTx (2.31) 
X 

m 
subject to F(x) = F0 + £ x,-F/ > 0, (2.32) 

»=i 

where x e Rw is the optimization variable, c G Rm, and F(x) is an affine map from Rm to 

the space of symmetric n x n matrices. Recall the notation F(x) > 0 means that F(x) is a 

positive semi-definite matrix. The constraint (2.32) is referred to as a linear matrix inequality 

(LMI). An attractive feature of SDPs are the efficient polynomial-time algorithms used to 

solve them, such as interior-point methods [18]. 

The Hi optimal state-feedback controller for the system E (2.7) can be formulated as an 
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SDP [24] as 

min trace [Wl w,x,z L J 

s.t. A B 
X 

Z 

(2.33) 

+ X Z1 
AT 

BT 
+ rrT < o 

X (CZX + DZUZ)T 

(CZX + DZUZ) W 
> 0 ; 

the control can be reconstructed as K = ZX x. 

At times we also consider a mixed-integer SDP (MISDP), which is a variation of (2.31) 

that has an additional constraint Xj G {0,1} [51, 72]. MISDPs arise in many combinatorial 

optimization problems. These problems pose a computational challenge due to the loss 

of convexity of the constraint set. A common solution is to consider the convex relaxation 

of the integer constraint, 0 < x,- < 1. Alternatively, efficient algorithms can be found for 

special instances of these problems, which we discuss later in §6.1 [47,51]. 

2.4 Matrix Kronecker and Hadamard Products 

We make extensive use of the matrix Kronecker product. The Kronecker product of matri-

ces A E M"xm and B G Wxq is given as 

A®B 

auB aimB 

a„\B ••• anmB 

(2.34) 

where a,j denotes the z/-th entry of the matrix A. 

Theorem 2.4.1 ([37]). Let A ¤ Rmx" and B e Wxi each have a singular value decomposition of 

A — UA^AVA and B = UgZg y j . The singular value decomposition of the Kronecker product of 

A and B is 

A®B = (UA® UB)(LA ® £ B ) ( V J ® V%). (2.35) 



22 

An immediate consequence of Theorem 2.4.1 is the following result on the matrix 2-

norm, 

\A®B\\ = \\A\\\\B\ (2.36) 

We also make extensive use of the following Kronecker product matrix multiplication 

property, 

(A®B){C®D) = (AC®BD), 

where the matrices are all of commensurate dimension. 

The Hadamard product of two matrices A, B ¤ Rnxm is given as 

(2.37) 

AoB = 

anb l i <*lmhm 

(2.38) 

Listed below are some useful properties of the Hadamard product. 

Theorem 2.4.2 (Schur's Theorems [41]). Given matrices A and B of commensurate dimension, 

1. If A and B are positive semidefinite, then AoB is positive semidefinite. 

2. If A and B are positive semidefinite, then 

(minau J \min(B) < Amin(A oB)< Amax(A oB)< (maxa« J Amax(B). (2.39) 

3. If B is positive definite and if A is positive semidefinite with all its main diagonal entries 

positive, then AoB is positive definite. 

4. If A is positive semidefinite, then \\A o B\\ < (max,-«,-,) ||B||. 

5. ||AoB|| < ||A||||8| 
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Chapter 3 

THE EDGE LAPLACIAN 

An important contribution of this work is the development of a new algebraic repre-

sentation for graphs that we term the Edge Laplacian [83, 87]. The edge Laplacian can be 

considered as an edge variant of the graph Laplacian (2.28). It is worth mentioning that 

edge interpretations of certain algebraic graph structures have been discussed in the litera-

ture. For example, the notion of edge adjacency in the context of the structure of molecular 

graphs was presented in [25]. Other edge-variants, including the one presented here, has 

also been implicitly realized in the literature relating to formation control and sensor fu-

sion [23, 56, 75]. One goal of this chapter, therefore, is to formalize and define the edge 

Laplacian in a strictly graph-theoretic context. As we will show in this chapter, the edge 

Laplacian leads to a more explicit characterization of the role that certain sub-graphs play 

in relation to its algebraic properties. 

The edge Laplacian is defined as 

U(G) := E(G)T£(G). (3.1) 

The structure of the edge Laplacian is closely related to the adjacency matrix of the undi-

rected line graph of G, ^f(G), as 

A(J?(G)) = \Le(G)-2I\. (3.2) 

Theorem 3.0.3. Let Le(G) and E(Q) denote, respectively, the edge Laplacian and the incidence 

matrix of the graph Q. Then 

N(Le{G))=N{E{G)). (3.3) 

Proof. Let x ¤ Af(E); then Le(G)x = E(G)TE(G)x = 0 and it follows that M{E{G)) C 

M(Le). On the other hand when x e N{Le{G)), E{G)TE{G)x = 0 and xTE(G)TE(G)x = 

\\E(G)x\\2 = 0. Thus x e Af(E(G)). 
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• 
We can alternatively define the edge Laplacian in an analogous way to the graph Lapla-

cian identity (2.29). In this venue, let us define the edge adjacency matrix as, 

:MO) kl 

+1 et ~ + e\ 

—1 e^ ~~ e\ 

0 otherwise. 

The edge degree matrix, Ae(Q), is a diagonal matrix with the number of nodes connected 

to each edge. As we do not allow self-loops, we have that Ae(G) = 21. Thus, the edge 

Laplacian can be equivalently defined as 

Le{Q) := 21 - Ae{G). (3.4) 

This alternative definition can be used to further deepen the connection between the edge 

Laplacian of G and its line graph ^(G)- We note that the (i,i) element of A^(G) corre-

sponds to the degree of each node in the line graph of Q. 

For a disconnected graph with c components the edge Laplacian can be partitioned into 

a block diagonal matrix. 

Lemma 3.0.4. Consider a graph with c connected components Gifor i = 1, . . . , c such that Q = 

G\ U • • • U Gc- The edge Laplacian for Q can be written as 

Le(G) 
Le(Gi) 

Le(Gc) 

(3.5) 

E(£i) E(Gc) 

n 
Proof. The incidence matrix for G can be partitioned as E(G) 

The result then follows from (3.1). 

3.1 Similarity between the Graph and Edge Laplacians 

The connection between the edge and graph Laplacians can be made explicit through the 

introduction of an appropriate similarity transformation. Furthermore, we find similarity 
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transformations that relate the Laplacians for connected graphs with cycles to graphs on 

spanning trees. 

Theorem 3.1.1. The graph Laplacianfor a connected graph L{Q) containing cycles is similar to 

Le(gr)R(G)R(g)T 0 

0 0 

where QT is a spanning tree subgraph ofQ and the matrix R{Q) is defined via (2.25). 

Proof. We define the transformation 

E(Gr)T 

(1/ |V|)1T_ 

where E(Qr) is the incidence matrix of Qx. Applying the transformation as 
E(gT)TE(gT) 

sv(g)= E{gT){E{gr)TE{gr))^ i , s^g)-1 (3.6) 

sv(g)~1L(g)sv(g) = 
o 

R(g)R(gy I 0 

Le{gr)R{g)R(gy o 
0 0 

leads to the desired result. 

(3.7) 

• 
The transformation (3.7) provides a transparent way to separate the zero eigenvalue of 

the Laplacian for a connected graph while preserving algebraic properties of the graph via 

the edge Laplacian. When the graph has no cycles Theorem 3.6 shows that the non-zero 

eigenvalues of the graph Laplacian are identical to the eigenvalues of the edge Laplacian. 

It is also worth mentioning that this result holds for any choice of a spanning tree subgraph 

gr- An important feature to note is while the graph Laplacian is a symmetric matrix, the 

matrix Le(gT)R(g)R(g) is in general not (except when there are no cycles). 

Theorem 3.1.2. The edge Laplacianfor a graph with cycles, Le(g) is similar to the matrix 

Le(gT)R(g)R(g)T o 
0 0 

where gr is a spanning tree subgraph of g, the matrix R(g) is defined via (2.25), and the block-

matrix of zeros is square with dimension equal to the number of independent cycles in the graph. 
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Se(G)= R(g)T ve(g) , se(g) l _ (3.8) 

Proof. Define the transformation matrix 

r (R(g)R(G)TylR(g) 
ve(g)T 

where the matrix Ve(g) is the matrix representation of the orthonormal basis for the null 

space of Le(g). As shown by Theorem 2.2.3, the columns of Ve(g) span the cycle space of 

the underlying graph. Applying the transformation matrix Se(g) as 

se(gy1Le(g)se(g) = se(gy1R(g)TLe(gT)R(g)se(g) 
Le(gr)R(g)R(g)T o 

0 0 

leads to the desired result. • 
Theorem 3.1.2 shows that the eigenvalues of Le(gr)R(g)R(g)T corresponds to the non-

zero eigenvalues of Le(g). We also note that the block matrix of zeros is square of size 

equal to the dimension of the kernel of Le(g), providing an additional proof for Theorem 

2.2.3. The above results can now be combined to characterize a similarity transformation 

between the graph and edge Laplacians. 

Theorem 3.1.3. The edge Laplacianfor a graph, Le(g), is similar to the bordered graph Laplacian 

L(G) 0 

0 0 

where the block-matrix of zeros is square with dimension equal to the number of independent cycles 

in the graph minus one. 

Proof. We define the transformation 

s(G) = se(Q)Sv(gy\ (3.9) 

where 

sv(g) sv{g) o 
o i 

and I is the identity matrix of the size of dimension of Af(Le(g)) minus one. • 
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Le(gT)RRJ 

L(G) _t » Le(G) 

Figure 3.1: Transformations between the node and edge Laplacians. 

Theorem 3.1.3 highlights an important transformation between the graph and edge 

Laplacians. In both representations, the algebraic structure of the graph is retained while 

emphasizing the role of spanning trees. Note that when Q = Qx (no cycles), then R = I 

and we see a direct connection between the graph and edge Laplacians. Furthermore, for a 

spanning tree Qx, the edge Laplacian is guaranteed to be invertible as all its eigenvalues are 

strictly positive. Figure 3.1 shows a graphical representation of the relationship between 

the edge and graph Laplacians. 

3.2 Star, Path, and Regular Graphs 

For certain graphs, the edge Laplacian can have special structure that will be useful for our 

analysis in the sequel. We present here structural properties ior Le{Q), Le{Q)~l, and R(G) 

for the graphs Pn, Sn, Cn, and Kn. 

Proposition 3.2.1. 

R(C„) = I - 1 and (R{Cn)R{Cn) 1 + ] (3.10) 

Proof. For the cycle graph, the only spanning tree subgraph is the path, Pn. Without loss 

of generality, we assume P„ is labeled such that e, = (u,-, 0;+i) 6 £{Pn) for / = 1 , . . . , n — 1. 

Then the cycle edge must have the form en = (vn, v\), and TT(Cn) = —1. • 

Proposition 3.2.2. Consider the graph Kn with node setV = {l,...,n} and the graphs S,- on the 

node set V = {2 , . . . , n) C V such that E(S\) = { (VJ, Vj) : Vj, Vj ¤ V and j = i + 1, . . . , n}. 
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R(K„) I E(S2) E(S„_i) (3.11) 

Proof. First, note that the graph S,- has i — 2 singleton nodes (i.e., nodes with no incident 

edges). It suffices to show that the columns of E (S,-) are contained in the columns of 

T£(Kn). Without loss of generality, we chose the spanning tree subgraph to be the star Sn 

with center node v\ and all edges of the form e, = {v\, V{+\) for i = 1, . . . , I,n — 1. Define 

the index sets Tr = {1, . . . , n — 1} and Xc = {n, . . . , n(n — l ) / 2 } . Then all the cycle edges 

must have the form e^ = (vi,Vj) for all i, j ^ 1, i < j and o~(k) e lc (o~(k) = k + n, k = 

1 n ( n - 3 ) / 2 + l). 

Consider the cycle edge e = (v{, vj) for Vj, Vj ¤ V. This edge can be written as a linear 

combination of the tree edges e;_i and e;_i; the cycle has length three and the signed path 

vector has value '+V for edge e,-_i and edge e, and ' - 1 ' for edge ey_i. In terms of the columns 

of E(S„), it is a linear combination of column i — 1 and / — 1. If we consider all cycle 

edges that are of the form (vi,Vj) for ; = i + 1 , . . . ,n, it follows that each edge can be 

constructed from the columns of corresponding to the tree edges e,_i and e^\. There will 

be a total of n — i columns, each with a value of '+Y in the i-th row and ' - 1 ' in the ;-th 

row; corresponding precisely to the graph S,. This procedure is employed for each node 

Vj, i > 1 to produce (3.11). • 

Proposition 3.2.3. The edge Laplacian for the path graph, P„, is the tri-diagonal matrix 

Le(Pn) 

2 

-1 

- 1 

2 - 1 

- 1 2 

- 1 

- 1 

2 

(3-12) 

Proof. The structure of (3.12) follows from the edge adjacency definition of the edge Lapla-

cian (3.4). This structure also assumes an ordering of nodes and edges such that node i is 

always connected to node i + 1 by edge e;. • 
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Proposition 3.2.4. The inverse of the edge Laplacian for the path graph Pn is determined by ob-

serving that 

_ min(i, j){n — max(/, /)) 
MPn))-1 

u] n 

Proposition 3.2.5. The edge Laplacian for the cycle graph Cn is given as 

2 - 1 - 1 

- 1 2 - 1 

(3.13) 

Le(C„) = 

- 1 2 - 1 

- 1 2 

(3.14) 

where unmarked entries are taken to be zero. 

Proof. The structure assumes the spanning tree subgraph to be the path, QT = P„. The 

cycle edge, therefore, connects the first and last nodes together. From Proposition 3.10, 

R(Cn) = I - 1 , and R(Cn)TLe(Pn)R(Cn) leads to the desired result. • 
The structure of Le{Cn), it turns out, is identical to the graph Laplacian, L(C„). Recall 

that the graph Laplacian for a connected graph (in this case, C„) has precisely one eigen-

value at the origin. At the same time, from Theorem 2.2.3 we conclude that Le(Cn) also has 

one eigenvalue at the origin. 

Theorem 3.2.1. For cycle graphs Cn, 

Le(Cn) = L(Cn). (3.15) 

Proof. The graph Laplacian can be written as 

L(Cn) E{Pn)R(Cn)R(Cn)TE(Pn)T 

L(Pn) + E(Pn)]E(Pn)T = Le(Cn). 

We have assumed the path graph to be of the form (i?;, o,+1) for i = 1, . . . , n — 1. The 

remaining equalities are straightforward to verify. • 



30 

Proposition 3.2.6. For the cycle graph Cn with QT = Pn, 

R(Cny (R(C„)R(CB)r)_1 = (3.16) 

which implies that R{Cn)R{Cn)T = I + J. It 
D 

Proof. For the cycle graph, R(Cn) =1—1 

then follows that (R(C„)R(CH)r)-1 = I - (l/n)J. 

Proposition 3.2.7. The edge Laplacian for the star graph Sn is specified as 

Le(S„) = I + J. (3.17) 

Proof. The structure of (3.17) follows from the edge adjacency definition of the edge Lapla-

cian (3.4) by noting that every edge is adjacent to each other in the star graph. This structure 

also assumes each edge is positively adjacent to each other edge. • 

Proposition 3.2.8. The inverse of the edge Laplacian for the path graph Sn is 

(LeiSn))"1 = J - l j . (3.18) 

Proof The proof follows directly from Proposition 3.2.7. • 

Proposition 3.2.9. The matrix 

R(C„)T(R(Cn)R(C„)T)~1(^(P»))~1(«(Cn)R(C„)r)"1i?(C„) 

is similar to 
r (Le(Pn)R(Cn)R(Cn)TYl 0 

0 

Proof. Defining the transformation matrix 

0 
(3.19) 

M = 
Le(Pn)R(Cn) 

, M " 1 
RiCnfiRiCnMCnrr^LeiPn))-1 $1 

and applying it as 

MR(C„)T(R(C„)R(C„)T)-1(Le(P„))-1(R(C„)R(C„)T)-1R(C„)M-1 

(L,(P„)R(C„)R(C„)r)-1 0 

0 

yields the desired result. • 
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We note that the eigenvalues of the matrix (3.19) is (1/A,(C„)) for i = 2,..., n, i.e., these 

eigenvalues are the inverse of the non-zero eigenvalues of the graph Laplacian for the cycle 

graph. 
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Chapter 4 

CANONICAL MODELS OF NETWORKED DYNAMIC SYSTEMS 

In this chapter we develop a set of general linear time-invariant models for networked 

dynamic systems with an emphasis on the means by which the underlying connection 

topology enters into the system [81]. As alluded to in the introduction, we develop models 

which explicitly highlights how the underlying connection topology interacts with each 

agent in the ensemble. 

4.1 Homogeneous and Heterogenous Dynamic Systems 

Fundamental to all NDS is the notion of a "local" and "global" dynamic system layer. The 

local layer corresponds to the dynamics of each individual agent in the ensemble. This 

layer captures both the dynamic behavior of each agent in addition to local performance 

criteria that may or may not be related to certain global or team objectives. For example, 

the formation control for a team of unmanned vehicles may require each agent to perform 

a local control and estimation in order to accept higher level navigation commands relating 

to the team objective. 

In this direction, we identify two broad classes of NDS: 1) homogeneous, and 2) hetero-

geneous. For both cases, we will work with a group of n dynamic systems, referred to as 

agents, each modeled as a linear and time-invariant system of the form 

£/ : r 
Xi(t) = AjXi(t) + BiUj(t) + T{iOi(t) 

Zi(t) = qxi(t) + Dfui(t) + DfwWi(t) , (4.1) 

(0 = Cfjc-(t) + Df°Wi(t) 

where each agent is indexed by the sub-script i. Here, X{(t) ¤ K"' represents the state, 

tij(t) ¤ R'"' the control, Wj(t) ¤ Rr' an exogenous input (e.g., disturbances and noises), 

Zj(t) E RPi the controlled variable, and y,-(f) G R&' the locally measured output. 
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We denote the transfer-function representation of E; as E„ 

* Us) 
Hs) 

with 

Hfu(s) = Cf(sI-Ai)-1Bi + Dfu
fHr(s)=Cf(sI-Ai)~1Ti + Dfw, 

Hfu(s) = C] (si - AiY^^is) = C»(sl - A^Ti + Df; (4.3) 

we shall assume a minimal realization for each agent with no feed-forward terms of the 

control to the measure outputs. 

When working with homogeneous NDS, the subscript is dropped, as each agent is 

described by the same set of linear state-space dynamics (e.g., E; = E; for all /,;'). It should 

be noted that in a heterogeneous system, the dimension of each agent need not be the same; 

however, without loss of generality, we assume each agent to have the same dimension. 

The parallel interconnection of all the agents has a state-space description 

I x(t) = Ax(t) + Bu(t) + Tw(t), 

z(t) = Czx(t) + Dzuu(t) + Dzww(t), (4.4) 

y ( 0 = cyx(t) + Dyww(t), 
with x(t), u(t), w(t), z(t), and y(t) denoting, respectively, the concatenated state vec-

tor, control vector, exogenous input vector, controlled vector, and output vector of all the 

agents in the NDS. The bold faced matrices represent the block diagonal aggregation of 

each agent's state-space matrices, e.g., A = diag{Ai,..., An} . 

Given the above model for each agent and motivated by the diverse applications of 

multi-agent systems, we can begin to incorporate the role of the interconnection topology 

Q. To begin, we first define four canonical classes of NDS models. Such a classification is 

useful for analysis purposes; we will also show in the sequel that under certain conditions 

they are, in a sense, equivalent. 

ti 

Hfu{s) Hfw(s) 

H?U(s) HT(s) 

Ui(s) 
Wi{s) 

Ui(s) 

Wi(s) 

(4.2) 
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Figure 4.1: NDS coupled at the output; the feedback connection represents an upper frac-
tional transformation [24]. 

4.2 NDS Coupled at the Output 

In this class of NDS, the underlying network topology couples each agent through their 

outputs. Systems relying on relative sensing to achieve global objectives such as formation 

flying fall under this classification [29,48, 73, 82, 84, 85, 86]. The block diagram in Figure 

4.1 shows how the connection topology interacts with each agent. Here we have shown 

disturbances entering each agent and the global output of the entire system. An important 

feature of these types of systems is the underlying connection topology does not affect, in 

the open-loop, the dynamic behavior of each agent. 

Motivated by applications that rely on relative sensing, we now derive a mathematical 

model to capture the global layer of this type of NDS. The sensed output of the system 

is the vector yg(t) containing relative state information of each agent and its neighbors. 

The incidence matrix of a graph naturally captures differences and will be the algebraic 

construct used to define the relative outputs. For example, the output sensed between 

agent i and agent;' would be of the form y,- (t) — yj (t). This can be compactly written using 

the incidence matrix for the entire system as 

yg(t) = (E(G)T®I)y(t). (4.5) 

Here, Q is the graph the describes the connection topology; the node set is given as V 
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When considering the analysis of the global layer, we are interested in studying the 

map from the agent's exogenous inputs, w(t), to the sensed output of the NDS, yg(t). 

Therefore, for the homogeneous NDS, the system £ in (4.4) is augmented to include the 

sensed output 

yg(t) 

For the heterogeneous case, the sensed output is 

ygii) = (E(Q)T ® i)Ox(t). 

(4.6) 

(4.7) 

Remark 4.2.1. For relative sensing, the observation matrix Cy used in (4.6) and (4.7) may in fact 

be different from the local observation of each agent, as described in (4.1). 

In the context of NDS coupled at the output, we denote by T,hom(G) the homogeneous 

system (4.4) with the additional sensed output (4.6). The heterogeneous system will be 

denoted by E^(G) and corresponds to the system (4.4) with the additional sensed output 

(4.7). 

Similarly, the transfer function representation can be written as 

(I„®Hzu(s)) (I„®Hzw(s)) 

t*om{G) = (In &&"{?)) (In® WW) , (4.8) 
_ (E(g)T®wu(s)) (E(G)T®Hyw(s)) 

and 

H2M(s) Hzw(s) 

thet(G) = ny"(s) ww(s) , (4.9) 

(E(G)T®I)HVU(S) (E(G)T®i)nvw(s) 

where, as in the state space model, bold faced transfer functions denotes the block diagonal 

aggregation of each agent's corresponding transfer function, as 

H2"(s) = diag{Hf(s) Hf(s)}. 

For notational simplicity, we denote TJf^G a^j Tjf£Ts as the map from the exogenous 

inputs to the NDS sensed output for homogeneous and heterogeneous systems respec-

tively. 
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Figure 4.2: NDS coupled at the input; the feedback connection represents an upper frac-
tional transformation [24]. 

4.3 NDS Coupled at the Input 

In this class of NDS, the underlying network topology enters at the system input. The 

block diagram in Figure 4.2 shows a networked input being distributed to each agent via 

an interconnection topology. Large physically coupled systems where actuation affects 

multiple components might be modeled in this way. In fact, this class of NDS may even 

be considered the "dual" of the output coupled NDS presented above. The agents are 

therefore coupled via the inputs. To maintain a close connection with the NDS coupled at 

the output model, we will assume the network input, ug (t), is distributed to each agent via 

the incidence matrix. The control applied to each agent, therefore, is the net contribution 

of the control applied to all the edges incident to that agent. When the underlying graph 

is directed and connected, each agent's control can be written as 

«.-(0 = E MOk,-,/) - E M O W 
(hj)e£ (j,i)e£ 

(4.10) 

where [\ig(0] (/,/) denotes the component of the input vector corresponding to the directed 

edge (i,j). This can be compactly written using the incidence matrix and Kronecker prod-

ucts to obtain a complete model for NDS coupled at the input. 

For the homogeneous case, we have 

u(0 = (E(0)®B)U0(O, (4.11) 
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and for the heterogeneous case 

u(0 = B(E(g)®I)ug(t). (4.12) 

The parallel interconnected system (4.4) can be modified to include the network input us-

ing (4.11) and (4.12) as 

(E(Q)®B)ug(t) + (Itt®T)vr(t), 

(In®Dzu)u(t) + (In <g> D™)w(t), (4.13) 

(In <8> Dy)w(i), 

B(E(g)®I)ug{t) + Tw(0, 

Dz"u(0 + DznV(£), (4-14) 

4.4 NDS Coupled at the State 

This class of NDS is perhaps one of the most studied in the systems and control commu-

nity. In this type of NDS, the underlying topology couples each agent at the state level, 

resulting in an important connection between the dynamic evolution of each agent and 

the underlying topology. The block diagram in Figure 4.3 shows the connection topology 

entering a dynamic system at the state level. 

The most general way to model such systems is to simply denote the dependence of 

the state-matrix on the network with the notation A(Q). For our purposes, however, we 

will focus on a special instance of this system, known as the agreement or consensus pro-

tocol [54,58,65]. Consequently, we will only focus on homogeneous systems for this case. 

The consensus model is built upon a general setup consisting of a group of n identical 

single integrator units, 

±i(t) = Ui{t), i = \,...,n, (4.15) 

each connected to a fixed number of other units in the ensemble, determined by the inter-

connection topology Q. The interaction or coupling between units' dynamics is realized 

Shorn (G) : 

and 

x(t) 

z(t) 

. y(0 

S): 

= (In ® A)x(t) + 

= (In®Cz)x(t) + 

= (/„ ® a)x(t) + 

f x(t) = Ax(t) + 
I x(t) = Czx(t) + 
1 y(t) = Cx(t) + 
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Figure 4.3: NDS coupled at the state; the feedback connection between the plant matrices 
and the integrator represents an upper fractional transformation [24], whereas the feedback 
connection between the integrator and the graph represents a relation such as (1-1). 

through the control input u,-(t) in (4.15), assumed to be the sum of the differences between 

states of an agent and its neighbors, i.e., 

i~j 
(4.16) 

Expressing the dynamic evolution of the resulting system in a compact matrix form one 

has 

x(t) = -L(g)x(t), (4.17) 

where L(Q) is the graph Laplacian. This model can be extended to include exogenous 

inputs and controlled variables, which will be discussed in the sequel. Variations of this 

model have been extensively treated, including random networks [35,76], switching topolo-

gies [49], noisy networks [80], and non-linear extensions [39]. 

4.4.1 Edge Agreement 

In this section we derive an edge variant of the agreement protocol (4.17) using the edge 

Laplacian introduced in §3 [83, 87, 88]. One of the goals of this section is to develop an 
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input-output description of the consensus protocol in order to derive the Hi and H^ per-

formance of the system which we will delve into in §5. In this direction, we first revisit the 

traditional agreement protocol with the addition of noises entering both the process and 

measurement stages of the model. We then describe a transformation of the system into 

the edge domain. 

In consensus problems, the agreement set A C R", defined in [60], is the subspace 

span{l}. Let us also define S(t) as the projection of states x(t) onto the subspace or-

thogonal to the agreement subspace. This subspace will be denoted by l x ; in [60] it is 

referred to as the disagreement subspace. In then follows that 5{i) = x(t) — a l , where 

« = (l/n)E,-x,-(0). 

Proposition 4.4.1 ([60]). TheLaplacian dynamics (4.17) converges to the agreement subspace from 

an arbitrary initial condition if and only if the underlying graph is connected. 

We now consider a general scenario where noise is introduced at both the process and 

measurement levels of the consensus protocol. The single integrator dynamics are modi-

fied to include the process noise for each agent as 

xt(t) = Ui(t) + Wi(t); (4.18) 

we assume that W{(t) is a zero-mean Gaussian noise with covariance E[w(t)w(t)T] = a^I. 

Similarly, the measurement is assumed to be corrupted by noise as 

y(t) = E(g)Tx(t)+v(t); (4.19) 

here, v(t) E W ' is also a zero-mean Gaussian noise with covariance E[v(t)v(t)T] = o^I. 

Equations (4.18) and (4.19) can be considered as the open-loop consensus model. We de-

note this open-loop system as 

f x{t) = u(t) + w(t) 
Zoi •• { • (4-20) 

{ y(t) = E(g)Tx(t) + v(t) 

When the output-feedback control u(t) = —E{Q)y(t) is applied, the system leads to a 

generalized consensus protocol with noise. The noisy consensus model will be referred to 
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Figure 4.4: Open-loop consensus system with output feedback. 

as the E model specified by 

x(t) = -L(G)x(t) + 

z[t) = E(G)Tx(t) 

~E(G) 
w(t) 

v{t) (4.21) 

In (4.21), the variable z(t) is introduced as a monitored performance signal. The open-loop 

system is shown in Figure 4.4 with the consensus output-feedback law. 

Remark 4.4.1. The derivation of the open-loop consensus model (4.20) assumes that relative mea-

surements are sensed. Applications utilizing such a model includes formation flying where relative 

position is sensed via a camera system or proximity type sensors. An alternative model description 

might consider the state information being communicated rather than sensed. The measurement 

noise would consequently be associated with each state, rather than the difference between states. 

With an appropriate normalization of the noise signals in this scenario, the original model (4.21) 

can thereby be recovered. 

This problem has a natural "edge interpretation" that we now examine. In this direc-

tion, we introduce the coordinate transformation Svxe(t) = x(i), where Sv is defined in 

(3.6). Applying this transformation to the consensus system with noise (4.21) yields 

E e : t 
*e{t) = 

Z(t) = 

MGT)R(G)R(G)T 0 

0 0 

R(G)T 0 1 xe(t) 

Xe(t) + 
E(GrV 

l - t iT 

MGT)R(G) 

0 

w{t) 

V(t) 
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The benefit of such a transformation is in view of the preservation of the algebraic struc-

ture of the underlying connection topology through the edge Laplacian. Furthermore, we 
r i T 

note that the new state xe(t) can be partitioned as xj(t) = x^(t) x\(t) , where xT(t) 

represents the relative state information across the edges of a spanning tree of Q, and x%(t) 

is the mode in the 1 subspace; the x%(t) mode can be interpreted as the "inertial state" for 

the entire formation. In fact, we note that this transformation separates the system into its 

controllable and observable parts; that is, the x\{i) mode is an unobservable mode of the 

system. 

We can now consider a minimal realization of the system containing only the states 

xT(t) for analysis. We refer to this as the ET system specified by, 
'xr(t) = -Le(Qr)R{g)R(g)Txr(t) + awE(gT)Tw{t)-avLe(GT)R(Q)v(t) 

L T : { (4.22) 
z(t) = R(G)Txr(t) 

The signals w(t) and v(t) are the normalized process and measurement noise signals. The 

performance variable, z(t), contains information on the tree states in addition to the cycle 

states. Here we recall that the cycle states are linear combinations of the tree states and we 

note that z(t) actually contains redundant information. This is highlighted by recognizing 

that the tree states converging to the origin forces the cycle states to do the same. Conse-

quently, we will consider the system with cycles as well as a system containing only the 

tree states at the output, which we denote as LT, 

' x{t) = -Le(gT)R(g)R(Q)Txr(t) + awE(gT)Tw(t)-<TvLe(gT)R(g)v(t) 
£ T : < (4.23) 

z(t) = xr(t) 

This distinction will subsequently be employed to quantify the effect of cycles on the 

system performance. In the noise-free case, (4.22) reduces to the edge variant of the au-

tonomous system, 

' xT(t) = -Le(gT)R(g)R(g)TxT(t) 

^ z(o = R(g)TxT(t) 

both systems (4.22) and (4.24)) are referred to as the edge agreement protocol. 

The first simple, yet important observation, relates to the meaning of agreement in the 

context of the edge states, leading to an edge interpretation of Proposition 4.4.1. 
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Proposition 4.4.2. The edge agreement problem (4.24) converges to the origin for arbitrary graphs. 

Proof. If the graph Q is connected, then we note that the agreement state is equivalent 

to having xr(t) = 0, as xe(t) = S^xft) for x{i) ¤ A In the edge setting, the agree-

ment set Ae, maps to the origin. The projection of the edge states onto this set, denoted as 

5e(t), is consequently the norm of the edge states; it also satisfies ^ ( O l t a = 11 (̂011^2 — 

\\E(Q) || ||<5(f) ||£2 with respect to the distance to the agreement subspace. 

For a disconnected graph Q with c connected components, we can conclude using the 

results of Lemma 3.0.4 and §3.1 that each component of the edge agreement system will 

converge to the origin. • 

From Proposition 4.4.1, the node dynamics over a connected graph converges to the 

agreement subspace, which implies that the corresponding edge dynamics converges to 

the origin. An important consequence of this result is edge agreement will not always 

correspond to the node agreement; having all the relative states converge to the origin will 

not guarantee that each node state has the same value. This merely emphasizes the need 

to work with connected graphs. Analogous to the node agreement, in the edge agreement 

setting, the evolution of an edge state depends on its current state and the states of its 

adjacent edges, i.e., those that share a node with it. 

Much of the literature related to consensus problems focuses on the convergence rate of 

the system; a property dictated by the second smallest eigenvalue of the graph Laplacian. 

The input-output description of the consensus problem developed in this section allows 

for a more general notion of performance for these systems. 

4.4.2 Edge Laplacian and Nonlinear Agreement 

In this section, we explore a non-linear variation of the agreement protocol based on the 

edge perspective. This includes viewing the protocol in the context of Lyapunov theory-

as opposed to the machinery of LaSalle's invariance [44]. We then proceed to examine 

the nonlinear extensions of the agreement problem via the passivity framework [5]. Our 

contribution in this section is to streamline the analysis of the nonlinear consensus-type 

problems using the edge Laplacian. To begin our analysis, consider the noise-free version 
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o <H R1 R 

Le{Qr) LeXGr) 

(a) (b) 
Figure 4.5: Viewing edge agreement over a spanning tree as a strictly output passive sys-
tem. 

of the edge agreement problem (4.22), 

J xT(t) = -Le(gr)R(g)R(g)TxT(t) 
LT : < . (4.25) 

[ z(f) = R(g)Txr(t) 
Of course, an underlying assumption of this edge variant of the consensus problem is the 

linearity of the interaction rule. A natural generalization of this model is to introduce 

non-linear passive elements in the general setup. As we move from a linear to non-linear 

model, we explore how passivity theory, in conjunction with the edge Laplacian, can be 

used to analyze this extension. First, we recall that passivity pertains to nonlinear system 

of the form 

z(t) = f(z(t),u(t)), y(t)=z(t), (4.26) 

where / is locally Lipschitz and /(0,0) = 0; then (4.26) is passive if there exists a contin-

uously differentiable positive semidefinite function V, referred to as the storage function, 

such that 

u(t)Ty(t) > V(t) (4.27) 

for all t. If V in (4.27) can be replaced by V + ip(z) for some positive definite function ip, 

then we call the system strictly passive; in our case, since the output of the system is its 

state, (4.26) could also be referred to as output strictly passive. 

Theorem 4.4.2 ([44]). Suppose that (4.26) is output strictly passive with a radially unbounded 

storage function. Then the origin is globally asymptotically stable. 
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To demonstrate the utility of this passivity theorem in the context of agreement proto-

col, consider the interconnection of Figure 4.5(a), with an integrator in the forward path 

and the edge Laplacian of a spanning tree, in the feedback path, depicting the edge agree-

ment (4.25). Note that z(t) in this case denotes the vector of edge states xr(t). Then, with 

respect to the quadratic storage function V(x) = (l/2)x(t)Tx(t), one has 

u(t)Ty(t) = u(t)Tz(t) = -z(t)TLe(gr)z(t) + u{t)Tz(t) + z(tf Le(QT)z(t) 

= V + z(t)TLe(gr)z(t), 

implying that the system is strictly (output) passive with a storage function that is radi-

ally unbounded. This observation, in turn, makes the convergence analysis for the edge 

agreement over a spanning tree fall in the range of applicability of Theorem 4.4.2. Hence, 

z(t) —> 0 as t —>oc> and convergence to the agreement subspace of the "node" states fol-

lows, providing an alternative proof for Proposition 4.4.2. 

The connection between the agreement protocol and Theorem 4.4.2 can be used to ex-

tend the basic setup of the agreement protocol in various directions, one of which is the 

following. 

Corollary 4.4.3. Suppose that for a network of interconnected agents the edge states evolve accord-

ingtoxr(t) = -f(G,xr(t)) where f : Q x Rm - • Rm for which xr(t)T'f(Q,xT(t)) > Oforall 

xT(t) •£ o when Q is connected. Then the corresponding node states converge to the agreement 

subspace. 

The above corollary suggests that many passivity-type results from nonlinear systems 

theory can now be applied to the agreement protocol in its edge context. 

Corollary 4.4.4. Consider the feedback connection shown in Fig. 4.6, where the time-invariant 

passive system G\ : z(t) = f(z(t), u\(t)),yi(t) = z(t) has a storage function V and the time 

invariant memory-less function G2 is such that u\(t)y2(t) > U2(t)(p(u2(t)) for some function <p. 

Then the origin of the closed loop system (with u(t) = 0) is asymptotically stable ifvT(t)(p(v(t)) > 

0forallv(t) ^ 0 . 

To illustrate the ramification of Corollary 4.4.4, suppose that following the integrator 

block in Figure 4.5, there exists a nonlinear operator ip such that for some positive-definite 



46 

^ '" . J 
2/2 

Gi 

G2 

yi 

«2 

Figure 4.6: The feedback configuration for Theorem 4.4.4. 

functional V(z), one has ip(z) — W ( z ) . Then 

V(t) = W T z( i ) = ip(z)Tz(t), (4.28) 

Le(<?) is similar to 

implying that the forward path of the feedback configuration shown in Figure 4.7(a) is 

passive with a storage function V and the function tp(v) in Theorem 4.4.4 can be chosen 

as \i{G)v. Hence, the asymptotic stability of the origin with respect to the edge states 

xr(t) can be implied by invoking Theorem 4.4.4. The more general case of this result for a 

connected network is also immediate using Theorem 3.1.2, by observing that that 

Le(gr)R(g)R(gy o 
0 0 

where Q is an arbitrary connected graph. This relationship suggests the loop transfor-

mation depicted in Fig. 4.7, keeping in mind that passivity of the forward path does not 

change under post- and pre-multiplication by matrices R(G)T and R(G), and the linear-

ity of the integrator operator allows an operator reordering; Theorem 4.4.4 can now be 

invoked under this more general setting. 

An example that demonstrates the utility of the above observation for multi-agent sys-

tems pertains to the Kuramoto model of n-coupled oscillators interacting over the network 

G as [39] 

1,2,. .. ,71. (4.29) 

In (4.29) the constant k denotes the coupling strength between the oscillators, which for the 

purpose of this section is assumed to be non-negative. The nonlinear interaction rule (4.29) 

can compactly be represented as 

k. e(t) = --E(G)sm(E(G)Te(t))f (4.30) 
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Figure 4.7: Loop transformation between feedback connection with edge Laplacian over 
arbitrary connected graphs shown in (a) to one over spanning trees, shown in (b). 

where 0(t) := [ 6\ (f), Qi{i), ...,0„(t) ]T. As in §4.4.1, we can apply the state-transformation 

S9e(t) = 6(t), where S is defined in (3.6), leading to 

Le(Gr)R(G) 
0 

which monitors the relative phases between the oscillators. Recall that the transformed 

state can be expressed as 9e(t) = 6T(t)T 0j / where 6r(t) represents the relative phase 

between each oscillator over a spanning tree, and 6i(t) is the phase in the "inertial" mode. 

The zeros introduced by the transformation results in a reduced model, 

6T(t) = -he(Qr)R(G) sin (R(S)T0T(O). 

Now, when the difference between the angles of the neighboring oscillators is in the inter-

val [—7r/2,7r/2], one can consider V(6T(t)) = 1 — cos(R(G)T6T(t)) as a candidate storage 

function for the Kuramoto model. In this case, V(6r(t)) > Owhen0T(f) e [-n/2r7i/2}\{0}, 

V(0) = 0, and ip(0T(t)) = sm(RT0x(t)). Since when 6(h) e [-n/2,n/2\ for some h, it 

follows that 6(t) e [—TC/2, n/2] for all f > t\, we conclude that for the Kuramoto model 

over a connected graph, the synchronization state is asymptotically stable.1 

JBy synchronization we refer to the case when Q\ = 02 •• 0n m o d In. 
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Figure 4.8: NDS coupled at the state, input, and output; the feedback connection between 
the plant matrices and the integrator represents an upper fractional transformation [24], 
whereas the feedback connection between the integrator and the graph represents a rela-
tion such as (1.1). 

4.5 NDS Coupled by Combinations of State, Input, and Output 

A natural extension of the above models is to consider systems that have a network cou-

pling the agents at all component levels. Figure 4.8 shows a dynamic system where there 

are different connection topologies at the input, output, and state level. Clearly, this type 

of model represents the most complex and intricate connection between the dynamic prop-

erties and interconnection topology of a system. It is worth noting that although this type 

of system can be exhaustively studied on its own, we only present it here for completeness 

and as a vehicle to illustrate how each of the previous types can be interrelated. 
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Chapter 5 

ANALYSIS AND GRAPH-THEORETIC PERFORMANCE BOUNDS 

The development of the NDS models in §4 allows us to examine systems-theoretic 

properties and performance bounds for networked system from a graph-theoretic perspec-

tive. The objective of this chapter, therefore, is to develop explicit connections between 

control-theoretic concepts such as observability, controllability, and performance in terms 

of the underlying interconnection graph. We first discuss the observability properties of 

NDS coupled at the output, and then proceed to highlight how duality streamlines the 

controllability analysis of NDS coupled at the input. We then focus on characterizing the 

7̂ 2 and Tioo performance of NDS coupled at the output and at the state via constructs from 

algebraic graph theory. 

5.1 Observability and Controllability of NDS 

Studying the observability and controllability properties of a linear system can provide 

qualitative as well as quantitative insights into the design of the corresponding controllers 

and estimators. In the context of NDS, we also consider how the underlying topology 

affects these properties in addition to examining the effects of homogeneity and hetero-

geneity of the agent dynamics comprising the NDS [81, 82]. In this direction, we consider 

simplified versions of the models presented in §4. 

For the observability analysis, we consider the following simplified model of an NDS 

coupled at the output, 

x(t) = Ax(t) 
W W . (5.1) 

Analogously, the following simplified model for an NDS coupled at the input will be used 

to study the controllability properties, 

*(0 = Ax(f) + B(E(0) ® l)ug(t); (5.2) 
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for both systems, we will examine the homogeneous and heterogeneous realizations. 

Our observability and controllability analysis relies on observability and controllability 

gramians for networked systems, as presented in §2.1. For this analysis, we will assume 

that each agent is stable, e.g., A,- is Hurwitz, the pair (Ai, Cy
{) is observable, and (Ait B,) is 

a controllable pair. 

5.2.2 Observability ofNDS Coupled at the Output 

A natural question for this analysis is whether the initial condition of each agent in an NDS 

coupled at the output can be inferred from their relative states. The answer to this question can 

have profound implications for the design of estimators for such systems. 

Homogeneous Case 

For homogeneous NDSs, the observability gramian can be written as 

/•oo 

Y0 = L(Q)® I eAi{0)TOeMdt = L{G)®Y0, (5.3) 
Jo 

where Y0 is the gramian for an individual agent in the NDS. 

Theorem 5.1.1. The homogeneous NDS coupled at the output in (5.1) is unobservable. 

Proof. Using the gramian expression in (5.3) and Theorem 2.4.1 we conclude that Y0 has 

precisely n eigenvalues at the origin, leading to an unobservable system. • 

The unobservable modes of (5.1), in fact, correspond to the inertial position of the entire 

formation; these modes lie in the subspace span{l <g> J}. This can be shown explicitly by 

considering the state transformation (Sv <8> I)x(t) = x(t), where Sv is defined in (3.6); 

x(t) = (I®A)x(t) 

yg(t) = ([R(G)T o]®cy)x(t) . (5.4) 
{R(g)T®cy) o}x(t) 

The system in (5.4) is obtained using the identity (2.37) and recalling for homogeneous 

NDS, A = J ® A and C = I ® C 
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The importance of this result is that when each agent has identical dynamics, relative 

measurements alone are insufficient to reconstruct their inertial states. If in addition to the 

relative output, an additional inertial measurement is available, say one that corresponds 

to the inertial position of a single agent, then the observability of the system can be recov-

ered. 

An interesting consequence of this result highlights how the underlying connection 

topology influences the relative degree of observability of the observable modes. We de-

note and index each singular value of Y0 as a„ and using the results of Theorem 2.4.1 we 

can express the non-zero singular values of Y0 as \j{G)(Ti for ;' = 2,...,n and all i. The 

eigenvalues of the graph Laplacian, therefore, can amplify or attenuate the relative degree 

of observability of the system. For example, the complete graph as in Figure 2.3(a), has 

Ai(Q) = hj(G) = n for i,j > 2. In this case, the connection topology does not favor any 

particular modes of the system as each is scaled by the same amount. Conversely, when the 

graph is disconnected with two connected components, then \z{G) = 0 and n additional 

unobservable modes are introduced into the system. 

Heterogeneous Case 

In the heterogeneous case, the observability gramian of (5.1) has a non-trivial form. We 

define the observability operator for an individual agent as Y,(x) = C\eAiix, and its adjoint 

as T;(y(f)) = fS°eA'>t(C-[)Ty(t)dt [24]. The observability gramian of (5.1) can be written 

as 

Y0 = diag{Y*}(L(£)®I)diag{Y} = (L(G) ® I) ° Y*Y, (5.5) 

where Y Yi ••• Y„ 
This expression is derived by first noting that 

CyeAt = £(ef.er ® cf «*''), 

where e, e R" is the i-th unit coordinate basis vector for R". It can also be verified that 

1(6) = tt'tfW'fr 
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Using these results, the expression for the observability gramian can be further simplified 

to 

Y° = EEr^L(^)e;ef®(^(Cf)TCW)^ 

Each agent is assumed to be stable and minimal, so we have that Y, : R" i-» £™ [0' °°) 

and the adjoint Y,* : £^[0,00) h-» R". We also note that the composition of Y* with its 

adjoint, as in Y?Y„ is precisely equal to the observability gramian of agent i, Yl
0. More 

generally, Y/y = Y? Y;- can be calculated by solving the Sylvester equation 

AfYi/ + YiyA;-+(Cf)rCJ, = 0. (5.6) 

Theorem 5.1.2. The heterogeneous NDS coupled at the output in (5.1) is unobservable if and only 

if the following conditions are met: 

1. there exists an eigenvalue, u*, o/A that is common to each A-u and 

2. one has C^qi = Cy-qjfor all i,j with A-^ = u*qifor all i. 

Proof. For the necessary condition, recall that a linear system with state matrix A and ob-

servation matrix C is unobservable if and only if there exists a non-zero vector q such that 

Aq = Xq and Cq = 0 (known as the PHB test [42]). For the system in (5.1), the PHB test can 

be used to conclude that unobservability implies that conditions 1 and 2 must be satisfied. 

For sufficiency, assume that there exists u* that is an eigenvalue for each A-t. We can then 
r i T 

construct an eigenvector for A as q = qj • • • qT
n , with A\q-t = u*q\. By condition 2, 

we have that Cq = 1 <g> r, where r = Qqi ^ 0 for all i. Using properties of the Kronecker 

product we then have 
(E(g)T®I)aq = (E(g)T®I)(l®r) = (E(£)Tl®r) = 0. (5.7) 

This shows the system is unobservable with q the corresponding unobservable mode. • 

Theorem 5.1.2 shows that a heterogeneous NDS becomes unobservable only when the 

outputs of each agent associated with a certain initial condition direction becomes indis-

tinguishable. For general heterogeneous NDS- therefore- the system is 'expected' to be 
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observable. This is a rather non-trivial result, as it suggests that the inertial position of 

each agent can be reconstructed solely from relative measurements. 

As in the homogeneous case, the underlying connection topology can have a profound 

affect on the relative degree of observability of the system. The form of (5.5) is appealing 

in how it separates the role of the network from each agent, although a precise characteri-

zation of the eigenvalues of (5.5) is non-trivial. Using the results of Theorem 2.4.2, bounds 

on those values can obtained. 

Corollary 5.1.3. The smallest and largest eigenvalues of the observability gramian (5.5) are bounded 

as 

d£(Y*Y) < a(y0) < a{\0) < dW(Y*Y), (5.8) 

where £(Y0) and <7(Y0) correspond, respectively, to the smallest and largest singular values of\0, 

and 

d = min \L{Q) ® /„].,., d = max \L(Q) <8> /„],-,•; 
i i 

the quantities d and d correspond, respectively, to the minimum and maximum degree vertices of 

the underlying graph. 

We note that the bounds (5.8) become tight when the agents have homogeneous dynam-

ics. Such observations point to interesting connections between the degree of each agent in 

the ensemble and the relative observability of the modes of the system. This theme will be 

revisited when we study the H2 performance of heterogeneous NDS coupled at the output. 

The gramian expression (5.5) can alternatively be represented as a node weighted Lapla-

cian. Consider scalar weights qi on each node collected together into a vector q and the 

diagonal matrix Q = diagjcji, ...,q„}. The node weighted Laplacian can be defined as 

1(G) = QL(Q)Q = L(G)oqqT. (5.9) 

This can be generalized to n x n-block matrix weights, Q„ and (5.9) can be equivalently 

written as 

Ln(G) = Q{L{G)®I)QT, (5.10) 

where Q = diag{Qi,..., Q„}. 
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(a) Symmetric Ellipsoid (b) Stretched Ellipsoid 

Figure 5.1: Visualization of observability gramian ellipsoids for a "symmetric" system and 
"stretched" system. 

Using (5.10) leads to a new interpretation of the expression in (5.5). Each node in the 

graph is weighted by the observability operator of the agent assigned to that node. 

Y0 = diag{Y*}(L(£)®I)diag{Y}. (5.11) 

Index of Homogeneity and Heterogeneity 

The previous section only provides a "yes" or "no" answer to the question of observability 

in a NDS coupled at the output. As discussed in §2.1, the singular values of the observ-

ability gramian can be used to give a quantitative comparison of the relative observability 

between different modes of the system. In the context of a single agent, the symmetry of 

the observability ellipsoid could be considered as a description of the homogeneity of that 

agents' initial condition to output map. As an example, the ellipsoid in Figure 5.1(a) is 

symmetric, which corresponds to the output energy being independent of the direction of 

the initial condition of the system. On the other hand, the ellipsoid in Figure 5.1(b) shows 

the output energy is strongly dependent on the direction of the initial condition. The shape 

of the ellipsoid, of course, corresponds to the relative magnitude of the singular values of 

the observability gramian. 

This notion can be extended for NDS coupled at the output to answer the following 

questions: 
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1. How does the structure of the underlying network topology affect the relative ob-

servability of the NDS? 

2. How does the placement of agents in the network affect the relative observability of 

the NDS? 

More fundamentally, these questions suggest that certain topologies in a homogeneous 

system might be "more homogeneous" then others. Similarly, placing heterogeneous agents 

in different locations in the connection graph might also result in a "more heterogeneous" 

NDS. This would correspond to a symmetry, or lack thereof, of the observability ellipsoid 

of the NDS. 

This section aims to develop an index of homogeneity for the homogeneous case, and an 

index of heterogeneity for the heterogeneous case that can be used to answer these questions. 

It is natural that these measures should relate to the observability gramian of the NDS. 

In the homogeneous case, as indicated by (5.3), we recognize that the network topol-

ogy has a direct affect on the observability gramian. Furthermore, the statement of Theo-

rem 2.4.1 shows that the eigenvalues of Y0 are the eigenvalues of Y0 scaled by the eigenval-

ues of the graph Laplacian, L (Q). The index of homogeneity should capture the affect of the 

network on the overall observability properties. Using the symmetry analogy developed 

earlier, a more homogeneous NDS should correspond to a more symmetric observability 

gramian. 

This leads us to the following definition for the index of homogeneity, denoted as 

Proposition 5.1.1. Let 

,<*-»)) = (£§) f$. <M2> 
Using this index for characterizing the relative observability properties of the homoge-

neous NDS leads to some interesting observations. First, note that whenever the graph is 

disconnected, p(T.)wm (Q)) — 0. This corresponds to the intuitive result that a disconnected 
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Figure 5.2: Visualization of observability gramian ellipsoids for an NDS. 

graph should somehow be "less homogeneous" than a connected one. In terms of this spe-

cific index, the homogeneity of the NDS is lower bounded by 0, and is indistinguishable 

from any disconnected graph on n nodes. 

This index is also upper-bounded by £(Y0)/cf(Y0). This upper-bound is achieved when-

ever the underlying graph is complete. The complete graph is the only graph where 

hi(G) = An(<7). We also note the set of graphs that are cospectral with respect to the graph 

Laplacian will all result in the same index of homogeneity. This property could prove to 

be useful if reconfiguration of the connection topology is required. 

The motivation for choosing such a function has a more intuitive explanation relating 

to the symmetry arguments of the observability gramian. The term containing the ratio 

of the smallest and largest singular values of Y„ corresponds loosely to a measure of the 

eccentricity of the gramian ellipsoid. The closer this ratio is to the value 1, the more sym-

metric the ellipsoid is. Conversely, as this ratio approaches 0, the ellipsoid becomes more 

elongated (along one plane). As we have assumed a minimal realization for the system 

dynamics, we are guaranteed that this ratio will always be strictly positive. 

In this direction, consider the observability gramian of the parallel interconnection of 

n homogeneous agents, as in (4.4). The gramian can be written as Y0 = I„ <g> Y0. In the n 

agent case, the ellipsoid of agent / is oriented orthogonally to the ellipsoid of agent;'. 
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As an example, consider the gramian for a 4-agent homogeneous system, each with 2 

states. The gramian for each agent is the same, and its 2-d projection is plotted for each 

pair of state variables in Figure 5.2. When the system is coupled by a network, say a path 

graph, the ellipsoid becomes scaled and rotated. This is visualized by the dotted lines 

in Figure 5.2. We immediately notice that one ellipsoid is scaled by the 0 eigenvalue of 

graph Laplacian. Using Theorem 2.4.1, we see that £;(Y0) = hi{G)z{Yo) and ^(Y,,) = 

A« (G) ̂ (Y0) are respectively, the minimum and maximum non-zero singular values of Y0. 

We thus have the following relationship: 

0 < X2{G)a{Y0) < A„(G)a(Y0). (5.13) 

In the homogeneous case, Y0 represents a fixed property of the system, determined by 

the agent dynamics. Thus, in terms of the symmetry argument, a more homogeneous NDS 

should preserve as closely as possible the shape of the gramian. Scaling the eigenvalues of 

Y0 by A„ (Q)a(Y0) is effectively normalizing the observability gramian singular values to 1. 

In the heterogeneous case, we wish not only to characterize how the topology affects the 

observability properties, but also how the placement of agents within that topology affects 

the observability of the NDS as well. Contrary to the homogeneous case, the interplay 

between the graph Laplacian eigenvalues and the eigenvalues of the NDS gramian is less 

straightforward. A nice property of the index of homogeneity is that it can be computed 

by studying- independently- the spectral properties of the graph and the observability 

properties of the homogeneous agents. Finding an analogous approach for the index of 

heterogeneity reduces to understanding the spectral properties of (5.5) or (5.11). 

An index of heterogeneity can be developed using the numerical evaluation of the 

gramian. The index of heterogeneity will be denoted as p(JLhet(G)). One choice for this 

index is 

p(Zhet(G)) = ( min a-i(y0)) cf(Y0), (5.14) 

where Y0 is given in (5.11). 

Although not as transparent as the index of homogeneity, some useful observations can 

be made about this choice of index. It can be seen that the index is upper-bounded by 1, 
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Homogeneity 

Figure 5.3: Index of Heterogeneity 

which corresponds to an upper-bound on the homogeneity of the NDS. It is interesting 

to note that this upper-bound can be achieved by a homogeneous NDS with a complete 

graph topology, and with the agent gramian ellipsoid being completely symmetric. 

In fact, if all the agents in the NDS are homogeneous, then the index of heterogeneity 

reduces to (5.12). It might be natural to assume that the observed properties of (5.12) also 

apply to the heterogeneous case. Unfortunately, this is not the case, and is best illustrated 

with a simple example. 

We consider a heterogeneous NDS with 4 agents and three different topologies; the 

star graph S4, the path graph P4, and the complete graph K4. Note that there are only four 

unique node assignments for the star graph, twelve unique assignments for the path graph, 

and one for the complete graph. For each permutation of the agent's position, the index of 

heterogeneity was calculated and plotted in Figure 5.3. As indicated in the above discus-

sion, larger values of p (Lhet(Q)) correspond to the NDS being "more homogeneous". The 

important point to notice in the figure is that the topology alone is not sufficient to deter-

mine which systems are more homogeneous. Furthermore, it can be seen that the complete 

graph does not correspond to the most homogeneous system. 

5.2.2 Controllability of NDS Coupled at the Input 

In this section, we consider whether from any initial condition, each agent can be driven to an 

arbitrary final state when the input is distributed to each agent through a network. 
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Homogeneous Case 

For homogeneous NDS, the controllability gramian can be written by inspection as 

f°° T 
Xc = L(G) 0 / eAtBBTeA ldt = UQ) ® Xc, (5.15) 

Jo 
where Xc is the controllability gramian for an individual agent in the NDS. 

Theorem 5.1.4. The lwmogeneous NDS coupled at the input (5.2) is uncontrollable. 

Proof. The gramian (5.15) has precisely n eigenvalues at the origin, leading to an uncon-

trollable system. • 

Here, the dual nature of the NDS coupled at the output and input becomes immedi-

ately apparent. As in the former case, the uncontrollable mode corresponds to the inertial 

position of the entire ensemble, lying in the subspace span{l <g> J}. We also note that the 

relative degree of controllability can be inferred from the gramian, but this analysis is omit-

ted as it mirrors that of the observability analysis for NDS coupled at the output. 

Heterogeneous Case 

For the heterogeneous case, we arrive at the following result. 

Theorem 5.1.5. The heterogeneous NDS coupled at the input (5.2) is uncontrollable if and only if 

the following conditions are met: 

1. there exists an eigenvalue, u*,ofA that is common to each Aj, and 

2. one has qjBj = qjBjfor all i,j with qfAt = ji*qj for all i. 

The proof of Theorem 5.1.5 follows the same procedure as for Theorem 5.1.4, and is 

omitted. The conclusion, as expected, shows that heterogeneity in the dynamics of each 

agent can lead to a fully controllable system. 

The dual structure between the NDS coupled at the input and coupled at the output 

should now be clear. A simple exercise will show that the controllability gramian for (5.2) 

has a similar form to the observability gramian (5.5), with the role of Y* replaced with the 
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controllability operator. It becomes apparent that the degree of each agent in the ensemble 

can have a profound affect on the overall controllability properties of the system. 

5.2 Graph-Theoretic Bounds on NDS Performance 

In this section we explore a graph-theoretic characterization of the Tiz and H^ performance 

of the different NDS models [83,84,85,86]. The main goal is to again make explicit the role 

of the underlying connection topology on the system performance norms. We will assume 

throughout this section that the underlying connection graph Q is connected. For analysis, 

we also assume each agent is stable. 

5.2.1 Performance of NDS Coupled at the Output 

For NDS coupled at the output, it is important to consider how disturbances entering the 

dynamics of each agent propagates through the network to the sensed output. In this anal-

ysis, we assume that each agent is driven by an external disturbance.A simplified version 

of the agent dynamics is given as 

= AiXi(t) + TMt) 

The corresponding model for the NDS coupled at the output takes the form 

2W0) 
x(t) = Ax(t) + Tw(t) 
y(0 = Cx(t) (5-17) 

yg(t) = (E(Gf®i)cyx(t). 

Hi Performance 

The sensed output of an NDS coupled at the output can be used to achieve a variety of 

objectives, including localization- for which the observability results of §5.1 apply- and 

formation control. It is important, therefore, to examine how noise entering the dynamics 

of each agent in the NDS propagates through the network to the sensed output. A natural 

measure for quantifying this property is the Hi system norm. This section, therefore, aims 
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to explicitly characterize the affect of the network on the H2 performance of the system. 

For this analysis we assume the external disturbances to be a white Gaussian noise. 

Theorem 5.2.1. The H2 norm of the homogeneous NDS coupled at the output (5.17) is given by 

V£°\\2 = I|E(0)IIF||£||2. (5-18) 

Proof. The Hi norm can be written directly from (5.3) as 

C ^ = ^/trace((J„ ® YY{L{G) ® Y0)(In ® r)) . 

Using the properties of the Kronecker product defined in §2 and the definition of the Frobe-

nius norm (2.3), leads to the expression in (5.18). • 

The expression in (5.18) gives an explicit characterization of how the network affects the 

system performance. For homogeneous systems, we find that the TC2 performance changes 

with the addition or removal of an edge. Recall that the Frobenius norm of a matrix can be 

expressed in terms of the 2-norm of each column, as 

(n \ 1 / * 

where m; is the zth column of the matrix M. As each column of £(<?) represents an edge in 

G, the Frobenius norm can be expressed in terms of the number of edges in the graph, \E\, 

as 

I|E(0)IIF = (2\e\) 1/2 (5.19) 

This highlights the importance of the number of edges as opposed to the actual structure of 

the graph (e.g., a star graph or A:-regular graph). This makes intuitive sense, as more edges 

would correspond to additional amplification of the disturbances entering the system. 

If we consider only connected graphs, we arrive at the following corollaries providing 

lower and upper bounds on the TL2 norm of the system. 

Corollary 5.2.2. The Hi norm of the homogeneous NDS coupled at the output (5.17) for an arbi-

trary connected graph Q is lower bounded by an NDS where Q is a spanning tree, as 

horn >2||L||§(n-l); (5.20) 
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the lower bound is attained with equality whenever the underlying graph is a spanning tree. 

It is clear from the definition of the Frobenius norm that the choice of tree is irrelevant 

(e.g., a star or a path). 

Corollary 5.2.3. The Hz norm of the homogeneous NDS coupled at the output (5.17) for an arbi-

trary connected graph Q is upper bounded by an NDS where Q — K„, the complete graph, as 

< 2 | | L | | i n ( n - l ) ; (5.21) 

the upper bound is attained with equality whenever the underlying graph is complete. 

For the heterogeneous case we rely on (2.18) to derive the %2 norm. The connection 

topology only couples agents at the output leading to a block diagonal description for 

the controllability gramian, with each block corresponding to each agent's controllability 

gramian. 

horn 

Theorem 5.2.4. The Hi norm of the heterogeneous NDS coupled at the output (5.17) is given as 
1/2 

(5.22) nrwi—>Q 
1het 

where d, is the degree of the i-th agent in the graph. 

Proof. The norm expression in (5.22) can be derived using (2.18) as, 

(trace{(E(£)T <8> I)G"Xc(CV)T(E(g) <g> 1)})1'\ (5-23) rnWt-*G 
1het 

1/2 

where Xc denotes the block diagonal aggregation of each agent's controllability gramian. 

First, we make the following observation, 

t r a c e { 0 % ( C ) r } = £ « ! . 

Using the cyclic property of the trace operator [89] and exploiting the block diagonal 

structure of the argument leads to the following identity simplification, 

tr*ce{axc(a)T((A(G)-A(g))®I)} = X>ace{cfXJ(Cf)T(df®I)} 
i 

This leads to the desired result. • 



63 

A further examination of (5.22) reveals that it can be written as the Frobenius norm of 

a node-weighted incidence matrix, 

2 = I I Q E ( S ) | | F , (5.25) 

where Q = diag{||Ei ||2,. • •, ||L„ | | 2 } . 

When each agent has the same dynamics, (5.25) reduces to the expression in (5.18). This 

characterization paints a clear picture of how the placement of an agent within a certain 

topology affects the overall system gain. In order to minimize the gain, it is beneficial to 

keep systems with high norm in locations with minimum degree. 

For certain graph structures, a more explicit characterization of the Hz performance can 

be derived, leading to the following corollaries. 

Corollary 5.2.5. The Hi norm of the heterogeneous NDS coupled at the output (5.17) when the 

underlying connection graph is k-regular is 

\ 1/2 

*E mwi) . (5-26) 

where every node has degree k. 

Note that having regularity in the connection topology introduces homogeneity into the 

heterogeneous NDS. As in the homogeneous case, the placement of an agent in the network 

will not affect the overall performance. The system norm for this topology becomes a 

scaled version of the parallel connection of the n sub-systems. 

Hoo Performance 

Given the transfer function representation of the homogenous NDS in (4.8), we can write 

the map from the disturbances to the networked output as 

Yg(s) = ( £ ( £ ) r ® H ^ ) u ( s ) . (5.27) 

Theorem 5.2.6. The Hoo norm of the homogeneous RSN (4.13) is given as 

|E(0) II II^Heo. (5-28) 

1het 

lhet 

horn 
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Proof. The norm expression follows directly from the definition in (2.20) and (2.36). • 

The expression in (5.28) gives an explicit characterization of how the network affects 

the overall £2 gain of the system. In fact, we see that it is proportional to the matrix 2-

norm of the incidence matrix. Examining the singular values of E(Q), therefore, can lead 

to an understanding of how the topology affects the system norm. First, we note that 

||£(£)|| = \/||L(<7)|| = k]/2. Therefore, we can examine the largest eigenvalue of the 

graph Laplacian. 

An important observation is that certain graph structures will naturally lead to a smaller 

"Hoo norm. If we restrict our topology to spanning trees we can state stronger results. 

Corollary 5.2.7. When the underlying topology is a spanning tree, the path graph is the topology 

resulting in the smallest Hoo norm for (4.13). 

Proof. In [62] it was shown that the path graph has the smallest spectral norm for the graph 

Laplacian among all spanning trees. • 

Corollary 5.2.8. When the underlying topology is a spanning tree, the star graph is the topology 

resulting in the largest Hoo norm for (4.13). 

Proof. In [34] it was shown that the star graph has the largest spectral norm for the graph 

Laplacian among all spanning trees. • 

Contrary to the results of §5.2.1, we find that the structure of the graph plays a sig-

nificant role in the system performance. Recall that the Hi norm for homogeneous RSN 

reduced to a property related to the number of edges in the graph. In the Hoo case, the 

spectral norm of the graph Laplacian becomes the central quantity. 

We follow a similar procedure for the heterogeneous case. Using the transfer function 

representation of the heterogeneous RSN in (4.9) we can write the map from the distur-

bances to the networked output as 

YQ{S) = (E(Q)T®I)WW{S)U{S). (5.29) 

Calculating the Hoo norm involves finding the singular values of the transfer function 

TZ?G = (E(Q)T ® i) Hyu,(s). (5.30) 
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In general, an analytic expression for the singular values of the system in (5.30) is diffi-

cult to obtain. However, it is possible to generate bounds on the system-norm, leading to 

the following result. 

Theorem 5.2.9. The Hoo norm of the homogeneous RSN (4.14) is bounded as 

H a l l o o < \\E(g)TQ\\ < | |E(S) r | |max | |HHU (5.31) 

where Q = diag{\\HVw\\00 Unfile*.}. 

Proof. The upper-bound immediately arises from the sub-multiplicative property of the 

matrix 2-norm as ||E(£)TQ|| < ||E(<?)r||||Q||- Since Q is a diagonal matrix we conclude 

that ||Q|| = max, HH^Hoo- To show the lower-bound we follow the following chain of 

inequalities as 

Wl^Wl = sup (E(g)T®I)H^(ja,)U(jcv) \ 

sup (u{ico),(E{G)T®I)Hyw{jco)Ww{ito)\E(Q)®I)U{jco)\ 
mi")\\t2=i 

< sup (u(jco),(E(g)TQ2E(g)®I)U(jco)) = \\QE(g)\\, (5.32) 
\\U(jw)\\t2=l 

where the last inequality follows from the property that the positive-definite ordering 

Ww(ju))Ww{iu))* < Q2 0 I holds for all w> • 

Corollary 5.2.10. When each agent in (4.14) is a single-input single-output (SISO) system, the 

norm bound in (5.31) is tight. 

An interesting implication of the norm bounds developed in the proof relates the £2 

gain of a heterogeneous RSN to that of a homogeneous RSN. Consider an ordering of each 

agent in a heterogeneous RSN by the value of the Hoo norm of each agent, 

||Hg;)|U<---<||flJJ)|U (5-33) 

]We also invoke the property that for a linear operator £ with state-space realization (0,0,0,D), ||£||oo = 
IIDII. 
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where k : {1,. . . ,n) (-»• {l,...,n} maps the old index to the norm-ordered index. The 

Hoo norm of the heterogeneous system Tj^*^ can be bounded from above and below by 

homogeneous systems as 

HE^IIHH^ilco < \\TirG\U < liE^llllH^lloo. 

This inequality suggests that in addition to the structure of the underlying topology, one 

can consider the dynamic difference between agents as an important factor in the perfor-

mance of the system. 

5.2.2 Performance ofNDS Coupled at the State 

In this section we consider the performance of the edge agreement protocol derived in 

§4.4.1. Examining the Hi and Tien performance of the edge agreement can be employed to 

reason how disturbances entering the edges of the network result in asymptotic deviation 

of each node's state from the consensus state. 

Hz Performance 

For this analysis we consider the models (4.22) and (4.23). The Hz norm of ET and ET can 

be calculated using the controllability gramian as, 

||LT||i = trace[RTX*R], and ||ET||| = trace[X*], (5.34) 

where R is defined in (2.26) and X* is the positive-definite solution to the Lyapunov equa-

tion 

-Le(gr)RRTX - XRRTLe(Gr) + oiLe(gr) + oiLe(gr)RRTLe{gr) = 0. (5.35) 

The structure of (5.35) suggests that the solution will be dependent on certain properties of 

the graph. In fact, the solution can found by inspection by first noting that 

o?Mgr) + o%Le(gr)RRTLe(gr) = ie{gx) (cl{Le{gT))-x + aiRRr) Le(gr). 

The solution to (5.35) is therefore 

X* = IfaR^r' + otLeigr)), (5.36) 
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and we arrive at the following result. 

Theorem 5.2.11. The H2 norm of the system LT (4.22) is 

IIErlll = ^ ( n - l ) + <£|£|. (5.37) 

On fte otter hand, tlie Hz norm of the £T system (4.23) is 

||ST||| = ^tracepRVl+c^n-l). (5.38) 

Proof. The proof follows from (5.36) and noting that trace[LC(C/T)] = 2(n — 1), or twice the 

number of edges in a spanning tree. • 

We observe that 11ET11 \ is a linear function of the number of edges in the graph. This has 

a clear practical relevance, as it indicates that the addition of each edge corresponds to an 

amplification of the noise in the consensus-type network. Let us consider the implications 

of the graph-theoretic characterization of the Hi norm for two classes of graphs. 

(a) Spanning Trees: The first case resulting in a simplification of (5.37) arises when Q is 

a spanning tree. In this case R = I and (5.38) simplifies to 
T2 

llfirlll = ( » - l ) ( ^ + <*). (5.39) 

A direct consequence of this result is that all spanning trees result in the same H2 

system performance. That is, the choice of spanning tree (e.g., a path or a star) does 

not affect this performance metric. As expected, in this scenario ||ST Hi = II^T III-

(b) A>Regular Graphs: Regular graphs also lead to a simplification of (5.38). In general, 

any connected fc-regular graph will contain cycles resulting in a non-trivial expres-

sion for matrix product RRT. The H2 norm is therefore intimately related to the cut 

space of the graph. 

Denote the eigenvalues of RRT by \i{ and note that 

n - l -i -| n - l n - l 
trace 
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where r{Q) is the number of spanning trees in Q, defined in (2.27). The quantity 

Tijll }lj is recognized as a first minor of the matrix RRT. 

Corollary 5.2.12. The cycle graph Cn has n spanning trees and hence 

trace [(K(CB)R(Cff)T)-1l = &-*£. (5.41) 
L i n 

Thereby, the H2 norm of the £T system when the underlying graph is the cycle graph Cn is 

given as 
IE II2 
| ^ T | | 2 = („_1)(^zi)+0;). (5.42) 

Proof. From Proposition 3.2.1 it is straightforward to verify (5.41). Combined with 

(5.37) yields the desired result. • 

Corollary 5.2.13. The complete graph K„ has nn~~2 spanning trees, and therefore 

(WWf] - 2 f c ^ = 2(2-l2. ^ 
Thereby, the 7i2 norm of the ET system when the underlying graph is the complete graph Kn 

is given as 

trace 

l^rlli (n-!)(&+of). (5.44) 

Proof. From Proposition 3.2.2 it is straightforward to verify (5.43). Combined with 

(5.37) yields the desired result. • 

Figure 5.4 depicts the sorted values of trace (RRT) for 500 randomly generated 

regular graphs of degree five. As this figure shows, although the degree of each node 

remains constant, the actual cycle structure of each graph instance varies, effecting 

the resulting H2 norm of the corresponding consensus-type input-output system. 

Using the above analysis, we now proceed to characterize how the cycle structure of 

the graph effects the H2 performance for the corresponding consensus-type system. In 

fact, examining the ratio 
l|Sr(g)ll_ 
IMST)!!! 
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' 0 50 100 150 200 250 300 350 

Figure5.4: Plot of trace[(R(G)R(Q)T) *] for random 5-regular graphs, sorted by increasing 
magnitude. 

provides an indication of how the cycles increase the H2 norm; recall that Q is in general a 

graph containing cycles and Qr C Q is the spanning tree subgraph. 

For example, consider the cycle graph C„ and assume unit covariance for both the pro-

cess and measurement noise. Then, as the number of nodes increase, the ratio of the two 

Hi norms behaves as 
3 n - l _ 1 

3' 
lim " 2 ^ L " j l | 2 -

:I^(^)H2 lim (5.45) 
l 2 n-*oo 3(n — 1) 

indicating that for large cycles, the Hi performance is a constant fraction of the H2 perfor-

mance for the path graph Pn. 

In the meantime, for the complete graph K„ we have 

||ET(K»)ll2 _ " + 1 
0(»); (5.46) 

\\Zr{Gr)\\l 3 
in this case, we see that the norm is amplified linearly as a function of the number of 

vertices in the graph. It is worth mentioning here that typical performance measures for 

consensus problems, such as A2(^), would favor the complete graph over the cycle graph. 

However, in terms of the Hi performance, we see that there is a penalty to be paid for 

faster convergence offered by the complete graph due to its cycle structure. 

Alternatively, insight is also gained by considering the ratio 

IIMg)lll 
P T C W 



70 

which highlights the effects of including cycles in the performance variable z(t). For the 

cycle graph we have 

suggesting that the effect of including the cycle for performance does not vary significantly 

with the size of the graph. 

For the complete graph, on the other hand, one has 

I|ST(*.)II! » n , . „ „ , 

Wvffi * {)' ( ' 
suggesting that the inclusion of cycles results in Hz performance that increases linearly as 

a function of vertices in the graph. 

Hoo Performance 

We first recall that the Hoo norm for a dynamic system captures how a measurable sig-

nal with finite energy, i.e., a signal in £2, is amplified at the monitored output of the 

system. Moreover this norm, has implications for robustness, disturbance rejection, and 

uncertainty management for dynamic systems. In the context of the agreement protocol, 

therefore, the Hoo system norm can be used to capture how disturbances and finite energy exoge-

nous signals, including reference signals, result in the asymptotic deviation of each node state from 

consensus. In this section, in view of (4.22), we proceed to examine the Woo-norm for the 

agreement protocol using an edge perspective. 

To begin this analysis, we first write the transfer-function representation of (4.22) as 

ET(s) = RT(sI + Le(gr)RRTyl[awE(gr)T -cr„Le(£T)l? ] • (5.49) 

The transfer-function representation for £T(s) is similarly defined from its state-space rep-

resentation. Before we begin our analysis of the transfer-function matrix (5.49), let us pro-

vide a useful result on the ordering properties of the eigenvalues of congruent Hermitian 

matrices. 
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Theorem 5.2.14 ([36]). Let A be a Hermitian matrix and S a nonsingular square matrix. Let the 

eigenvalues of A and SS* be arranged in an increasing order. Then, for each k = 1,... ,n, there 

exists a positive real number 9k such that Ai (SS*) < 9k < A„(SS*) and 

Ak(SAS*) = 9kkk{A). (5.50) 

Recall now that the state matrix — Le(GT)RRT in (4.22) arises from a similarity transfor-

mation with the graph Laplacian, as shown in Theorem 3.6. This allows us to infer that the 

eigenvalues of Le(Qr)RRT are all positive and real, and the state matrix is diagonalizable. 

Therefore, we can diagonalize the system using a modal decomposition with transforma-

tion matrix S to obtain 

XT(t) -A{g)xT(t) + s-1 <rwE(gr)T -crvLe(gT)R(G) 
tv(t) 

, (5-51) 

z(0 = R(g)TsxT(t) 

where A(G) = diag{A2(g),.. .,A„(£)}. 

Consider first a variation of (5.51) where the output equation is simplified to z(t) 

xT(t). The modified system has a transfer matrix representation 

H(s) = (sI + A(a))"1B, 

where for notational simplicity we have defined 

(5.52) 

o-wE{gr)T -avLe(gr)R B:=S~l 

noting that ET(s) = RTSH(s). 

Proposition 5.2.1. For the system matrix H(s) (5.52), one has 

||H(s)||ro = Zr(H(0)). (5.53) 

Proof. From (2.20), we must find the singular values of H(ja>). This is facilitated by exam-

ining the eigenvalues of H(ja>)H*(ja>), 

H(jco)H*(jcu) = {ja)I + A(g)y1BBT(-jwI + A(g)y1 

= (jioA(g)-1 + i)~xA{gyrBBTA{g)-\-jwA{gyx + iy\(5M) 
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Let Q = A(gylBBTA{g)~1 and V(co) = (jcoA{G)~l + I)"1; then (5.54) simplifies to 

H(jto)H*(jco) = V(co)QV*(co). 

We note that the last identity describes H(jco)H* (jco) as a congruence transformation of 

the matrix Q, which is in the form required to use Theorem 5.2.14. The matrix V(co) V* (co) 

has the form 

V(t,)V<„) - ^{Jg^ J^ f lp } (5-55, 
Denote the eigenvalues of V(co)V*(co) as ]ii(co) = ki+\(Q)2 / (co2 4- A,+1(<7)2) to highlight 

their dependency on the frequency co. It is now verified that for any fixed frequency co, 

we have Jt\(u>) < )ii{co) < ... < /<n(a>). Furthermore, for any co > 0, we have ^,(o?) < 1 

for i = 1,2,..., n — 1. We thereby invoke Theorem 5.2.14 to conclude that 0jt(o;) < 1 for 

k = 1,2,... ,n — 1 for all co > 0. At a; = 0, H(Jco)H*(jco) = Q and hence the singular 

values of H(jco) are a strictly decreasing function of co. Therefore, the maximum singular 

value must occur at co = 0 which corresponds to cr(H(0)), concluding the proof. • 

It remains to show that introducing the output equation z(t) = RTSxT(t) does not 

change the frequency at which the supremum in (2.20) occurs. 

Proposition 5.2.2. The Hoo-nortn for the system (5.51) corresponds to the maximum singular 

value of its transfer matrix at co = 0. 

Proof. It suffices to show that ||RTSH(s)!«, = F(RTSH(0)), where H(s) is defined in (5.52). 

The system H(s) has a singular value decomposition H(s) = UY.(s)V*, with. U ¤ ]R"~lx"~1 

and V e R»+I£|x»+I£l. Consider a pure sinusoidal input W(jco) expressed in terms of the 

basis vectors in V as 
n+\E\ 

W(ja>) = £ cci(jco)vir 
i = i 

where V{ is the i-th column of V. We can express the output of H(jco) to the sinusoidal 

input as 

n+\S\ n+\£\ 
Y(jco) = H(jco)W(jco) = H(jco) £ «,•(/<•>)&«• = E ocjdcotoijco)^. 

j=i «=i 
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Similarly, the matrix RTS has a singular value decomposition PMG*, with P ¤ JR"" 1 *"" 1 

and G ¤ R'f ' x ' f ' . As RTS is connected in series with H(s), we can express the output of 

the overall system as 

Z(ja>) = RTSH(jco)W(jco) 
n+\£\ /\£\ \ fi+|f| 

= E «i(/^)0i(/w) Eft-M/P; = E *{(]&)*(]")&' (5-56) 
«=1 v = l / i=l 

where we have expressed each signal as a linear combination of the appropriate basis vec-

tors, and ,̂- is the i-th singular value of RTS. 

For || W(jco) ||^ = 1, the "Woo norm of RTSH(s) is equivalently characterized by finding 

the frequency that maximizes ||Z(/a;)||^. Using (5.56), we express the output norm at a 

given frequency as 

l|z(/«)lfe = E (h-(M*i(/«)l)2ll&lll 
i=\ 

where we used the property that £j£j = 0 for i ^ ;'. 

As we are restricting the input to be on the unit ball, we have that £ |«,(/'a;)|2 = 1. 

From Proposition 5.2.1 we have that \ai(ja))\ < |cr,(0)| for all to > 0. Therefore, it is 

straightforward to verify that the coefficients \cci(jco)(rj(j(o)| are maximized at co = 0. • 

Using the above observations, we now state a general result on the 7ioo-norm of the 

edge agreement system. 

Theorem 5.2.15. The H<x> norms for LT (4.22) and t,r (4.23), are, respectively, 

l|Zr||« = c4(^[RT(RRr)"1(M^))-1(KRT)-1R])-f-c^ (5.57) 

and 

l£r |2 4 ( R R T ) " 1 ( ^ ( ^ T ) ) " 1 ( ^ K T ) - 1 -^^(RR7)-1] . (5.58) 

Proof. From Propositions 5.2.1 and 5.2.2, we can evaluate (5.49) at s = 0 and calculate the 

singular values of the corresponding matrix as 

£T(S) | S = 0 = Rl(LeiG^RR1)-1 \o-„E(gT)T avLe(Gr)R 
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In general, ET(s) is not square, so we determine the singular values by finding the eigen-

values of ET(s)ET(s)*. In this direction, we observe that 

LT(s)LT(s)*|s=0 = oiRT (RRT)_1 (LeiQr))-1 (RRT)^R + a^RT(RRTr1R.(5.59) 

We note that the second term in (5.59) is a projection matrix. Moreover, the matrix 

RT(RRT)~1R has exactly n — 1 eigenvalues at one, and the remaining eigenvalues at zero 

(with multiplicity equal to the number of independent cycles). As R has full row rank, and 

Le(Qr) and RRT are invertible matrices, we have that both terms in (5.59) have the same 

null space. Therefore, the eigenvalues of ET(s)£T(s)* |s=o can be determined from the first 

term in (5.59) which yields the desired result. For the £T system, an analogous proof can 

used by replacing the observation matrix RT with identity. • 

As in §5.2.2, we provide examples on how for certain classes of graphs the expression 

(5.57) can be simplified and interpreted. 

(a) Spanning Trees: When the underlying graph is a spanning tree, we have that R = I, 

and (5.58) reduces to 

l|£rll» = ai{a[(Le(gr))-1])+(^. (5.60) 

In the context of Hoo, we see that the choice of spanning tree is important, as opposed 

to the corresponding scenario for the H.2 norm. In [62] and [34] it was shown that the 

path graph has the smallest largest eigenvalue of the graph Laplacian, and the star 

graph has the greatest largest eigenvalue. As ||ET ||oo is determined by the inverse of 

the edge Laplacian, we conclude that the star graph corresponds to the tree topology 

with minimum Tioo norm, and the path graph with largest norm. As in the ^ -no rm 

case, we have ||£T||co = ||£T||OO. 

(b) ^-Regular Graphs: As shown in §5.2.2, regular graphs admit certain algebraic simpli-

fications that prove useful for system norm calculations for the corresponding agree-

ment protocol. To maintain a parallel analysis with the Hi problem, we examine the 

cycle graph and complete graph as special cases here. 
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Corollary 5.2.16. The H^-norm of the ET system (4.22) when the underlying graph is the 

cycle graph C„ is given as 

IIM~ = A ^ ) + ^ ' (5'61) 

where A2(CM) denotes the second smallest eigenvalue of the cycle graph Laplacian. 

Proof. The proof follows from Theorem 5.2.15 and Proposition 3.2.9. 

• 

Corollary 5.2.17. The W«, norm of the LT system when the underlying graph is the complete 

graph Kn is given as 

HErllL = -+*$• (5-62) 

The Hoo norm of the t,T system when the underlying graph is the complete graph Kn is given 

as 

IMS, = Y +<$- (5-63) 

Proof. The proof follows from propositions 3.2.7,3.2.8, and the fact that RRT = nl — J 

for the complete graph. • 

We conclude this section by noting that for the system £T (4.23), one has 

l|£rl& = («-i) | |£rl l i 
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Chapter 6 

SYNTHESIS OF NETWORKED DYNAMIC SYSTEMS 

In this chapter we explore various scenarios for the synthesis of NDS using the results of 

§5.2 to motivate appropriate graph-centric objective functions. We consider three general 

types of synthesis problems: 

1. Topology design 

2. Inner-loop control design for each agent 

3. Decentralized outer-loop control design 

In each design scenario, we are primarily concerned with minimizing | |T^pe||p; each 

objective function will contain an element related to the sensed output yg(t). 

We will assume for the remainder of this section that the relative output of the RSN 

corresponds to a relative position measurement between each agent as 

yg(t) = E(g)T®[lp o ] = E(g)T®Cp; (6.1) 

we have assumed the states corresponding to the position of each agent are the first p states 

oixi(t). 

6.1 Topology Design 

Here we consider how to design the underlying connection topology and where to place 

agents within that topology. The general synthesis problem can be written as 

min \\JZr°\\p (6.2) 

s.t. Q is connected. 
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Figure 6.1: Topology design; the feedback connection represents an upper fractional trans-
formation [24]. 

Note that the decision to include an edge or not is a combinatorial one. The challenge, 

therefore, is to find numerically tractable algorithms to solve (6.2). We explore in this sec-

tion an optimal Hi topology design for NDS coupled at the output, a robust topology 

design with Hoo performance for NDS coupled at the output, and an optimal Hi sensor 

selection problem for an NDS coupled at the state. 

6.1.1 Hi Optimal Topology Design for NDS Coupled at the Output 

In this section we consider (6.2) for a heterogeneous NDS coupled at the output (an RSN). 

As we are only considering the topology, we use the following heterogeneous state-space 

model for the RSN, 

1het (6.3) 
= Ax(f) + Tw(t) 

= {E(g)T0Cp)x(t) 

Given the RSN (6.3) as shown in Figure 6.1, we wish to design the topology Q such that 

W^heTUp *s mirtirnized. More generally, we aim to find topologies that minimize the effect 

of disturbances entering each agent on the relative sensed output of the entire system. This 

can be considered a problem in combinatorial optimization [47], as the decision to include 

an edge in the graph is binary. Recall from §5.2.1 that in terms of the H2 norm objective, 

an optimal topology should always correspond to a spanning tree. The design problem, 

therefore, is to determine which spanning tree will achieve the smallest Hi norm for the 

RSN (6.3). We assume in this case that each agent has already adopted a feedback controller 
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for its local operation. 

The design of the topology reduces to the design of the incidence matrix, E(Q). This 

problem is combinatorial in nature, as there are only a finite number of graphs that can 

be constructed from a set of n nodes. As the number of agents in the RSN becomes large, 

solving this problem becomes prohibitively hard [47]. However, we find that with an ap-

propriate modification of the problem statement, results from combinatorial optimization 

can be used, leading to a polynomial-time algorithm. 

Specifically, the minimum spanning tree (MST) problem can be adapted to solve (6.2). 

The MST can be efficiently solved using Kruskal's algorithm in C?(|£|log(|V|)) time. The 

algorithm is given below and a proof of its correctness, for example, can be found in [47]. 

Algorithm 1: Kruskal's Algorithm 
Data: A connected undirected graph Q(V,£) and weights w : £ •—• R. 

Result: A spanning tree Qt of minimum weight. 

begin 
Sort the edges such that w(e\) < wfa) < ••• < w(e\s\), where e,- E £ 

S e t & : = £ ( V , 0 ) 
f o r / : = l t o | £ | d o 

if Qt + £; contains no cycle then 
L set Qt := Qt + e{ 

end 

In order to apply the MST to the Hi synthesis problem we must reformulate the original 

problem statement. To begin, we first write the expression for the Hz norm of the system 

in (6.3). 

\ = £d,-trace{CpX(-Cj} 

= tdi\\TrP\\l (6-4) 
i 

where T'u"_>p is the map from the exogenous input entering agent i to its position, Cpx,(t), 

and di is the node degree of agent i (defined in §2.2). We reiterate here that the RSN norm 

lhet 
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description is related to the degree of each node in the network. Using the weighted in-

cidence graph interpretation of the norm, as in (5.25), we see that the gain of each agent, 

IITr^P 111' acts as a weight on the nodes. 

As each agent is assumed to have fixed dynamics, the problem of minimizing the RSN 

H2 norm reduces to finding the degree of each agent while ensuring the resulting topology 

is a spanning tree. This objective is related to properties of the nodes of the graph. To use 

the MST results, we must convert the objective from weights on the nodes to weights on 

the edges. 

To develop this transformation, consider the graph Q = (V, S) with fixed weights qi on 

each node (/ = ! , . . . , n). The node-weighted Frobenius norm of the incidence matrix is 

\\QE(Q)\\l = Edtf, (6.5) 

where Q = diag(<?i, ...,<?„). 

Next, consider the effect of adding an edge i 

norm of the augmented incidence matrix, 

(/,/) to £ in terms of the Frobenius 

Q E(G) e J^dkql) + qf + q) , (6.6) 

where djt represents the degree of node k before adding the new edge £. This shows that 

each edge e = (i,j) contributes (qj + qj) to the overall norm. Therefore, weights on the 

edges can be constructed by adding the node weights corresponding to the nodes adjacent 

to each edge as 

we = |E(S)T|w£ (6.7) 

This result can be used to generate an equivalent norm characterization to the one pre-

sented in (6.4) 

(6.8) rrWt—tQ 
1het 

2 

2 |E(S)T| 
IMl II2 

ll-1" 112 J 

where ||x||i = E/ M 
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Using the above transformation from node weights to edge weights, we arrive at the 

following result. 

Theorem 6.1.1. The connection topology that minimizes the Hz norm of (6.3), can be found using 

Kruskal's MST algorithm with input data Q, and edge weights 

w = \E{Q) 

Proof. The proof follows from (6.4) and the transformation from node weights to edge 

weights described in (6.5)-(6.7). • 

Remark 6.1.2. The choice of the input graph Q may be application specific, and can capture certain 

communication or sensing constraints between agents. For example, one may consider a scenario 

where agents are initially randomly distributed (a geometric random graph) upon deployment and 

can only sense neighboring agents within a specified range. The results of Theorem 6.1.1 can be 

used to determine the optimal spanning tree for that initial configuration. 

Remark 6.1.3. There are many distributed algorithms that solve the MST problem [30, 6]. These 

could be used in place of the centralized version when the optimal spanning tree topology needs to 

be reconfigured. This scenario can arise due to the initialization problem discussed in Remark 6.1.2, 

or in situations when certain agents are disabled, lost, or reallocated for different mission purposes. 

If there are no initial constraints on the input graph for Theorem 6.1.1, then we arrive 

at the following result. 

Corollary 6.1.4. When the input graph in Theorem 6.1.1 is the complete graph, then the star 

graph with center node corresponding to the agent with minimum norm is the (non-unique) optimal 

topology. 

Proof. The degree of the center node in a star graph is n — 1, and all other nodes have 

degree one. Assume the node weights are sorted as q\ < • • • < qn, then the Hi norm of the 

RSN is \\T^G HI = (n - l)qi + £?=2 % ^^Y o t h e r tree c a n b e obtained by removing and 

adding a single edge, while ensuring connectivity. With each such operation, the cost is 

ITT'III 

\Tn 
,Wt->P| 

(6-9) 
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non-decreasing, as any new edge will increase the degree of node i > 1 and by assumption 

<?i < <?,-• • 

Lemma 6.1.4 shows that if there are no restrictions on the initial configuration, the op-

timal topology can be obtained without the MST algorithm. The computational effort re-

quired is only to determine the agent with smallest norm. The non-uniqueness of the star 

graph can occur if certain agents have identical norm, resulting in other possible configu-

ration with an equivalent cost. 

An Example: ANTS 

We now consider an application of the above results to a mission scenario related to the Au-

tonomous NanoTechnology Swarm project, or ANTS, currently under investigation by NASA 

[2]. One component of the ANTS mission involves the deployment of 1,000 pico-satellites 

to the asteroid belt for observational study. The spacecraft are deployed en-route to the 

asteroid belt, and then must organize into smaller teams which will coordinate to search 

for various resources and materials. We consider here one aspect of this mission. 

When the pico-satellites are initially deployed they must be configured into teams. One 

scenario is to consider forming a team with a topology that minimizes the Hz performance 

of the team. Such a performance metric can be justified by considering the various physical 

interpretations of the system Hi norm. For example, the Hi norm can be viewed as the 

energy of the impulse-response function for the system under investigation. Solar wind 

gusts can be approximated as an impulse to the team of satellites, and the H2 norm would 

correspond to a measure of how that gust causes the formation to drift apart. For this exam-

ple, we will consider a system comprised of 75 heterogeneous pico-satellites. Each agent's 

state-space was generated randomly using MATLAB, with a single input and a single out-

put (corresponding to the position, as in Cp defined in (6.1). It is worth mentioning for 

this mission there may be certain pico-satellites that contain different sensors depending 

on their mission objectives. This variation would introduce heterogeneity, but for ease of 

presentation we use random models. Each of the agents are randomly distributed and the 

initial topology is determined by assigning an edge between two agents if their Euclidean 
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(a) Random Geometric Graph with r = 0.20 (b) Optimal spanning tree 

Figure 6.2: Application example of Theorem 6.1.1. 

distance is less than r = 0.20. This could correspond to the relative sensing capabilities 

available on each spacecraft. The initial connection graph is given in Figure 6.2(a), and 

the resulting MST is given in Figure 6.2(b). A key point in this example is to highlight the 

non-triviality of the resulting topology. When designing a topology based on heuristics, 

this result most likely would not be found, especially when dealing with large networks. 

6.1.2 Hoo Robust Topology Design for NDS Coupled at the Output 

In this section we consider a variation of (6.2) whereas we design the nominal weights on 

the edges in the connection graph for an RSN that minimizes the robust performance of 

the system. Motivated by the results of §5.2.1, we find that (6.2) for p = oo reduces to 

the minimization of the spectral norm of the weighted incidence matrix, ||QE(Q) ||, where 

Q was defined in Theorem 5.2.9. Minimization of this objective can be formulated as a 

mixed-integer semi-definite program. For reasonably sized problem instances this can be 

solved using, for example, branch-and-bound algorithms [47]. 

While topology design is an important application, the Hco framework allows us to 

consider the robustness of certain topologies. In this direction, we consider a variation of 

(6.2) that aims to minimize the robust performance of the RSN in (6.3). For such an analysis, 

we adjust the RSN model to allow for uncertainty in the sensing protocol. Specifically, we 
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Figure 6.3: Multiplicative uncertainty for NDS coupled at the output. 

introduce the notion of a weighted edge for the sensed output. This model might be used 

to capture the fidelity of a relative measurement. 

rer^Wo) (6.10) 
x(t) = Ax(t) + Tw(t) 

( yg(t) = {w0E(gf®cp)x(t) ' 

Here, W0 = diag{u?i,..., w\£\} represents the nominal weights on each edge in the graph. 

A weight of zero corresponds to the edge not existing. We will also assume all the weights 

are non-negative {w{ > 0). The model (6.10) relates to (6.3) through the output as T%"g(W0) 

(Wo ®I)Tj^s. 

Using (6.10), we can introduce a structured uncertainty on each edge weight. The un-

certainty set is defined as 

{d i ag^ ! , . . . , ^ , } :<Jf-eR, \Si\<l}. (6.11) 

The true edge weight can thus be written as W = W0 + A, for A e Aw. This can be consid-

ered as an output-multiplicative uncertainty, as shown in Figure 6.3. 

The problem (6.2) can now be restated as the robust optimization problem [12], 

rrun m a x , ^ ||QE{G) (W„ + A) || (6.12) 

s.t. Q is connected in the presence of edge weight uncertainty. 

This problem can be solved as a semi-definite program, the procedure of which is out-

lined in [12]. To apply these results, we must express the objective and constraints of the 
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system as a perturbed LMI, 

F(x,5) = F0(x) + X>F,(x), 
/ 
—i (6.13) 

where each Fi(x) is a symmetric matrix and affine in the variable x. 

First, we scalarize the objective function by introducing a new variable 7 and noting 

that || QE(Q) (W0 + A) || < 7 can be written (via the Schur complement) as the LMI 

jl QE(g)(W0 + A) 

(w0 + /a)E(g)TQ 1 

Defining the matrices S, ¤ R^l*^! and V(y) as 

> 0. (6.14) 

[Sifo 
1 k=l=i 

0 otherwise 

we can express (6.14) in the form (6.13) as 

, V(7) 
yl 0 

0 I 
(6.15) 

i=\ 
> 0. (6.16) 

0 QE{Q)Si 

SiE(G)TQ 0 

Similarly, the robust connectivity constraint can also be expressed in the form (6.13). 

Recall that for a connected graph, XiiQ) > 0, and the eigenvector associated with \\ (Q) — 

0 is the vector of all ones, 1. Defining the matrix P such that IM{P} = span{lx}, we 

obtain1 

V2(w,5) = '£j{wi + 6i)PT{eie])P > 0. (6.17) 

Using (6.16) and (6.17) we define 

yl QE(g)W0 

WoE(0)TQ I 
, Fg(iv)=PTE(g)W0E(g)TP, (6.18) 

F} 
0 QE(g)Si 

SiE(g)TQ 0 
, Ff = P1eiefP. (6.19) 

Here we note that A > 0 means there exists an e such that A - el > 0. 
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The expressions in (6.18) and (6.19) can now be applied to the results in [12] to obtain 

the following SDP, 

(6.20) nun 
w,Si,Tj 

S.t. 

7 

' Si 

H 

F' 
L Vl 

F[ ••• 

Tt 

Si + Tt< 2Fl, i 

0 < Wi 

1 Zw' = 
S wmax, 

= «/ 

F' 

Ti . 

>0,i-

= 1,2 

i = \,...,\e\ 

= 1,2 

where the last constraint constrains the aggregate edge weight sum. 

An Example: Robust Edge Weights 

To illustrate this procedure, we consider an RSN with n = 10 heterogeneous and SISO 

systems (generated randomly in MATLAB). The input graph is the complete graph, Kn, 

allowing the program in (6.20) to select the optimal weights on every possible edge com-

bination. For a = n — 1 and wmax = 2, (6.20) was solved using SeDuMi in Matlab. The 

resulting topology is shown in Figure 6.4. Note that every edge has a positive weight, 

however, only edges with wj > 0.1 were drawn. The thickness of the line indicates a larger 

weight. 

Remark 6.1.5. While the problem formulation presented above is concerned with static edge weight 

uncertainty, the principle can be extended to include dynamic edge weights. For example, each 

relative sensor may be characterized by a frequency dependent weight, Wi(s), and the corresponding 

uncertainty can be considered as an unstructured norm-bounded uncertainty. 

Remark 6.1.6. The SDP (6.20) presents an analytic framework for solving the robust topology 

design problem. However, it should be noted that due to the auxiliary variables defined, the size 

of this problem can grow very large with the number of nodes (for the complete graph on n nodes, 
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Figure 6.4: Optimal topology for robust edge weight design; edges with weights less than 
0.1 are not drawn. 

there are n(n — l ) / 2 edges). While interior-point methods offer polynomial-time algorithms, for 

excessively large problem instances (6.20) might lead to numerical problems. This points to the 

need to consider specialized solution methods or alternative problem formulations. 

6.1.3 H2 Optimal Sensor Placement for NDS Coupled at the State 

We now consider a variation of (6.2) for NDS coupled at the state whereas we would like 

to chose where to place sensors in a distributed system running a consensus algorithm. 

Encouraged by the graph-theoretic characterization of the Hz performance for consensus-

type systems, in this section, we proceed to consider the problem of sensor selection and 

placement for consensus-type systems. Consider, for example, a scenario where there are 

two types of sensors available for the relative measurements in the open-loop consensus 

problem. One sensor is a high-fidelity and high cost, with associated noise covariance of 

0%. The other sensor is a less expensive lower fidelity sensor with covariance of £^ > 0^. 

When synthesizing the topology for the consensus problem, the designer must consider 

the tradeoff between the sensor costs and the overall system performance. 



88 

In this direction, consider the system in (4.22) in the form 

v \x{t) = ~Le(gr)RRTxr(t) + crwE(gT)Tw(t)-Le(gT)TRTv(t) 
2LT : < , (6.21) 

(z(t) = RTxT(t) 
where iv{t) and d{t) are the normalized noise signals, and the matrix T is a diagonal ma-

trix with elements <J{ corresponding to the variance of the sensor on edge /. We note that 

the most general version of this problem considers a finite set of p sensors each with an 

associated variance, 

P ={<%,<%,...,<%}, (6.22) 

where for each element of £ P there is an associated cost c(af). The cost function has the 

property that c{of) > c(of) if of < of. Using (5.34)-(5.35), in order to find the optimal 

placement of these sensors, one can consider the mixed-integer program [47], 

\£\ 
V\\ min Atrace[RTXR] + Tc(a; /) 

x,w l i^\ 
s.t. W = diag{wi,..., a;jf |} , v>i 6 P, J^ w-t < ji, 

i 

-Le(gT)TRRTX - XRRTLe{gr)T + oiLe(gr) + Le(gT)TRWRTLe(gT) = 0, 

where A represents a weighting on the Hi performance of the solution, and \i represents the 

maximum aggregated noise covariance. Note that in general \B\ mini-of < \i < \S\ max,-of. 

The problem V\ is combinatorial in nature, as a binary decision needs to be made as 

to which sensor to use and place in the network. Although V\ can certainly be solved 

by using a mixed-integer programming solvers [47], certain relaxations can be made to 

convexify the resulting problem. Most notably, one approach involves relaxing the discrete 

nature of the set P (6.22) into a box-type constraint as 

P = [£*, W1]. (6.23) 

The cost function can now be written as a continuous map c : P i—> K which is convex and 

a strictly decreasing function. The simplest version of such a function would be the linear 

map 

c(of) = -fSof 
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Figure 6.5: A graph on 10 nodes with optimal sensor selection; crv denotes the sensor vari-
ance. 
for some j6 > 0. This relaxation leads to the following modified program, 

Vi: min A trace [RTXR] - 6 trace [W] x,w r 

s.t. W = diag{a;i,... ,o>|£|}, f2 < W-, < a2, J^u;,- < ji, 
i 

-Le(grfRRTX - XRRTLe(gT)T + afMOr) + Le{gr)TRWRTLe(Gr) = 0. 

An Example: Sensor Selection 

As an example of the applicability of Vz, we considered the sensor selection for the graph 

in Figure 6.5. A random graph on 10 nodes with an edge probability of 0.15 was generated. 

The resulting graph is connected and contains two independent cycles, resulting in a more 

general problem instance. The sensor constraints were P = [0.001 0.1] and ]42 = 0.501. 

Finally, the cost function weights were chosen as j3 = 5 and A = 1. Solving V2 then resulted 

in a non-trivial selection of sensors for each edge. The sensor covariance for each edge is 

labeled in Figure 6.5; we observe that the highest fidelity sensors tend to be concentrated 

around the node of highest degree. Also, the edge with the lowest fidelity sensor is placed 

in "low traffic" areas. 

6.2 Inner-loop Controller Design 

We now consider the problem of designing a local control for each agent such that both 

local performance objectives are achieved in addition to the global objective, ||T^Pe||p-
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Figure 6.6: Inner-loop design; the feedback connections represents lower and upper frac-
tional transformations [24]. 

Therefore, the general synthesis problem has the form 

(6.24) 

s.t. Ki stabilizes £,, i — 1,..., n. 

We note that while llTf^2!^ represents a purely local objective for each agent, the term 

|| 7^"*^ ||p introduces a coupling between all the agents. For p = 2, we present a semi-

definite program that solves (6.24) for NDS coupled at the output with the additional fea-

ture of being solved in a decentralized way. 

6.2.2 Hi Optimal Inner-loop Design for NDS Coupled at the Output 

In this scenario, the connection topology is given and fixed. From a synthesis point of 

view, each agent behaves independently and does not use information from the RSN for 

its control; this can be considered an inner-loop type of control design, as shown in Figure 

6.6. For the duration of this section, we will assume that each agent has full-state feedback 

available for its controller {Cy
t = I). The model we consider is (4.14), with yg(t) replaced 

by (6.1). Note that yg{i) will be treated as an additional controlled variable for the Hi 

synthesis problem. For technical reasons related to Hi synthesis we also have Dz w = 0 
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and D?w = 0. 

The state-feedback optimal H2 control problem for a single agent without considering 

the global RSN objective can be formulated as an SDP [24], as shown in (2.33). From that 

SDP, we have that ||T7"^Z||| = trace(W,). Here, we note that X,- corresponds to the con-

trollability gramian of the closed-loop system for agent i. That is, it is the controllability 

gramian for a realization of the system Tf0>~*z. 

The SDP in (2.33), however, does not incorporate the global RSN performance objective 

into the problem. While each agent can generate a solution to (2.33) independently of each 

other, the addition of the global RSN layer couples the design of each agent's controller. 

The SDP (2.33) can be modified to incorporate the global performance objective, leading to 

the following result. 

Theorem 6.2.1. Given the RSN system described in (4.14), a local state-feedback controller of the 

form Ui(t) = K{Xi(t) that minimizes local performance objectives in addition to the global RSN 

performance objective can be found by solving 

min y, trace fW/1 + trace f V;] 
Wi,Xi,Zj,Vi t-f L J L J 

(6.25) 

s.t. 

At B, 
xi r . i AI 

+ x{zT ; 
Zi\ L J [Bf 

Xi (CfXi + DfZi)7 

(qXi + D^Zi) w{ 

Xi (CpXi) 

+TiTj < 0 

> 0 

CpXi i-Vt 
> 0 

(6.26) 

(6.27) 

(6.28) 

where 

Kt = ZiX;\ 

Proof. Consider the control u(t) = Kx(t) implemented, where K = diag(Xi, . . . ,Kn). The 
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closed-loop system becomes 

x(t) = (A + BK)x(t) + rw(t) 
z(0 1 f CZ + D2MK 1 (6.29) 

= x(t). 
yg(t) \ [E(g)T®cp_ 

To guarantee the stability of the closed loop system, we require that (A + BK) be Hurwitz. 

This is guaranteed by the LMI given in (6.26) by noting the block diagonal structure of the 

matrix, and defining Z, = KjXj. In fact, when the constraint (6.26) is satisfied at equality, 

we note that X,- is the controllability gramian for the system in (6.29). 

The W.2 norm of (6.29) can be calculated as 

l^c/lli = trace < 
C2 + D2"K 

E{gy®cv 

C2 + D2"K 

E{gy®cp 

= trace{(C2 + D2"K)X(C2 + Dz"K)r} +trace{(E(^)r®Cp)X(E(C?)1 cP)T}, 
(6.30) 

where X = diag(Xi,..., Xn). The first term on the right hand side corresponds precisely 

to the Hz norm of the system in (4.4) with the feedback law xx(i) = Kx(t) implemented. 

The second term is the H2 norm of T ^ e . Using the results from §5.2.1 we can express the 

performance as 

\l%r°(2 = trace{(E(g)T®Cp)X(E(g)®Cp)} 

= £d,trace{CpX,Cj}. (6.31) 
i 

The objective is to minimize ||SC/||2/ which can be accomplished by minimizing both 

terms in the right-hand side of (6.30). Using the matrix Schur-complement[36], we note 

that 

diCpXiCT < Vi (6.32) 

is equivalent to 

X,- (CpXif 
> 0. (6.33) 
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picosatellitc 

circular reference orbit 

Figure 6.7: The Hill frame for a circular orbit. 

We now note that if djCpXiC^ < Vit then ditaux{CpXiCf} < tracejV,}. 

A similar derivation is used to arrive at the LMI in (6.27). • 

Remark 6.2.2. The full-state feedback assumption can be relaxed without loss of generality using 

an LMI formulation for the more general output-feedback problem (such as LQG) [71]. The LMI 

(6.27) will consequently be modified, but the LMI corresponding to the global RSN performance 

(6.28) remains the same. 

A striking feature of the SDP (6.25)-(6.28) is its structure. Although the global RSN layer 

couples each agent, we see that the coupling can be removed via the formulation of the H2 

norm. The SDP is therefore separable across each of the agents which has implications for 

the parallelization of the computation and decision-making process. 

An Example: ANTS 

Returning to the ANTS mission scenario presented in §6.1.1, we consider a component of 

the mission that involves collecting data from an asteroid. To accomplish this the pico-

satellite team must rendezvous with an asteroid. For this scenario, we first consider a 

rendezvous problem for each pico-satellite individually. Each satellite is assumed to have 

continuous actuation on each axis. We also introduce disturbances in the form of process 

noise for the actuators and measurement noise for the sensors. The noises are assumed 

to be white Gaussian with cr^ = 0.1 for the process and 0% = 0.01 for the sensors. Con-

trary to the previous example, we will assume homogeneous agent dynamics generated 
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Figure 6.8: Variance of yg (t) for a system with additional network performance constraints 
(solid) and without these constraints (dashed). 

by the Hill's equations which is used to describe the linearized relative dynamics of the 

agents with respect to the circular orbit, visualized in Figure 6.7 [79]. The target aster-

oid is assumed to be in a circular orbit around the Sun with radius of r0 = 3 x 109 km. 

We next generate a random spanning tree graph and the results of Theorem 6.2.1 are ap-

plied to generate a control for each pico-satellite to drive them to the asteroid. We also 

address the issue in Remark 6.2.2 regarding the full-state information. For this example 

we employ LQG for estimation and control while including the additional performance 

constraint for the network. Figure 7.1 depicts the variance of the RSN output yg (t) for the 

system using the network performance constraint and the system without the constraint. 

This shows that the inclusion of the network performance constraint will tend to keep the 

agents closer together even in the presence of noise. 

6.3 Outer-loop Controller Design 

In this section we consider the design of decentralized controllers for networked dynamic 

systems, as represented in Figure 6.9. The structure of the NDS will determine the structure 

of the controller. In fact, the controller itself can be considered an NDS with the same 

underlying connection graph as the original plant. In this direction, we formulate the 

V 

- -\ \ \ x 
\ \ 
" \ V \ \ \ \ \ \ \ v 

\ \ - \ \ \ \ \ \ \ \ \ \ 

^^^— LQG with Network Performance 
- - - LQG without Network Performance 

N 
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Figure 6.9: Outer-loop design; the feedback connections represent lower and upper frac-
tional transformations [24]. 

control problem as 

nun 

s.t. 

Ufa"-**/it 
Wlhet IIP 

K(£) stabilizes E(£). 

(6.34) 

Here, K(Q) is meant to specify that the underlying connection graph is fixed and the con-

troller must embed that structure in its design. 

In a broader context, the problem defined in (6.34) falls under the scope of decentralized 

control theory [69]. One of the main challenges in solving (6.34) is the underlying con-

nection topology constraint makes the problem non-convex. There has been some work 

describing relaxations that lead to convex programs, in addition to conditions when the 

original problem may be solved via convex programming [61, 67]. 

Rather than focus directly on (6.34), this section highlights the intricate relationship 

between the different NDS models via the design of a decentralized stabilizing control law. 

In the context of (6.34), we are looking for a feasible solution K(Q) rather than the optimal 

one. This leads us to consider a simplified model for a decentralized formation control 

problem that emphasizes the dual nature of the NDS coupled at the input and output. At 

the same time we also show these dual systems become transformed into an NDS coupled 
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at the state with an appropriate choice of a decentralized control. 

6.3.2 Decentralized Formation Control for NDS: Dual Systems 

The objective of this section is to highlight the intricate connection between the different 

NDS models via the design of decentralized controllers [88]. In this direction we define 

two complimentary homogeneous NDS models. To emphasize the role of the connection 

topology we restrict our analysis to agents with simple integrator dynamics. 

The first system is comprised of n agents and each agent is able to sense the relative 

state of its neighbor based on a given connection topology; this is the relative sensing 

model presented in §4.2. 

W 0 ) { *(0 = «(') „ _ 
(6.35) 

yg(t) = (E(a)r®i)x(t) 
where x(t) e R3" is the collection of all n agent states, u(t) ¤ R3" is the collection of the 

agent's controls, and yg ¤ R3'fl is the sensed relative output of the system. Here we are 

assuming that the dynamics for each agent are with respect to a common reference frame 

in ]R3. For this system, we interpret a sensing edge to mean that the relative state between 

agent i and /' (if (t,j) ¤ £) is available to both the controls «,(f) and iij(t). 

The second system we examine is an NDS coupled at the input with the same underly-

ing connection topology as Eout (Q), and is given as 

where, as in the previous model, x(t) G R3" is the collection of all the states, ug e R3'f' is 

the networked input that is distributed to each agent via the incidence matrix, and y{t) ¤ 

R3" is the collection of each agent's state. This represents a simplified version of the model 

presented in §4.3. A control edge in this scenario assumes that [ug (t)] ̂  has access to both 

the state X{(t) and Xj(t); we are using the same notation for ug(t) described in §4.3. 

For both models, we would like the NDS to move to a relative reference formation. For 

a fixed and given connection topology Q, we first note that arbitrary formations can not be 
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achieved due to the physical position constraints imposed by the graph. In this direction, 

we define the notion of an admissible relative formation for a given connection topology. 

Definition 6.3.1. A relative reference formation r(t) ¤ K3^^ for a given connected graph G(V,£) 

is considered admissible if for any spanning tree subgraph Qx C G one has 

rc(t) = {Tc
T{G)T®I)rT{t), (6.37) 

where T^{G) is defined in (2.24) and rr(t), rc(t) denote respectively, the component ofr(t) speci-

fying the relative position for edges on the tree and cycles. 

Using this definition, we can specify the controlled variable for both systems as the 

formation error, 

e{t) = -(E(G)T®I)x{t)+r(t) 

= ~(R(G)TE(Gr)T <8 I)x(t) + (R(Gf 0 I)rr(t), (6.38) 

where R(G) is defined in (2.26). The form derived in (6.55) is a direct consequence of 

Definition 6.3.1; it highlights the dependance of the formation error over the cycle edges 

on the error over a spanning tree. 

For both systems we can define the corresponding error dynamics by differentiating 

(6.55) with respect to the dynamic models (6.35) and (6.36). We also assume that the refer-

ence formation is not time-varying, and can be considered a constant reference signal. 

Xout(G) • e{t) = {-E(G)T ® I)u(t) (6.39) 

y tn '{t) = (-mTE(G)®I)ug(t) 
L/„(c,) : . (6.40) 

(-Leg) ® I)ug(t) 
A stabilizing decentralized controller must drive the error to the origin. This can only 

be accomplished, however, if (6.39) and (6.40) are controllable systems. As in §5.1, we can 

derive a graph-theoretic description of each system's controllability properties. 

Proposition 6.3.1. The formation error dynamics (6.39) and (6.40) are controllable if and only if 

the underlying connection topology has no cycles. 
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Figure 6.10: The relative position across a cycle edge (F23) is determined by the relative 
positions across the tree edges (F12 and F13 ). 

Proof. The controllability matrix of (6.39) is recognized as C = -E(Q)T 0 I. If (6.39) is 

controllable, than rank[C] = 3\£|. From Theorem 2.2.1 the maximal rank E(G) can obtain 

is n — 1. Any graph with cycles, however, must have at least n edges, resulting in an 

uncontrollable system. 

For (6.40), the controllability matrix is C = — Le{Q) <g> J. The results of §3 show that each 

independent cycle in Q corresponds to an eigenvalue at the origin for the edge Laplacian. 

Consequently, Le(Q) is full rank only when there are no cycles. • 

Remark 6.3.1. Note that the statement of Proposition 6.3.1 allows for disconnected graphs. If the 

relative reference formation is based on the underlying connection topology then this subtlety is 

acceptable; the formation problem can be addressed over each connected component of tin graph. 

The interpretation of Proposition 6.3.1 follows the same idea used to define an admis-

sible formation. The physical constraint imposed by the underlying connection topology 

does not permit the relative position of each agent to be controlled independently. Just as 

two sides of a triangle can be used to specify the third, the relative positions of the states 

across the tree edges must specify the relative position for the states across the cycle edges, 

visualized in Figure 6.10. While this might seem to be a limitation, we note that any ad-

^13 
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missible relative formation will always ensure that these constraints are respected. This 

concept is demonstrated by recognizing that 

e(t) = 
er(t) 

ec(t) 
= (R(Q)T ® J) ((-E(gr)T ® I)x(t) + rT(t)) 

= (R(g)T®I)(-xr(t) + rr(t)) 

= (R(g)T ® l)eT{t), (6.41) 

where xr(t) corresponds to the relative states on the spanning tree QT. 

As in our work on the analysis of the edge agreement problem in §5.2.2, we can consider 

minimal realizations for (6.39) and (6.40). We will show that for appropriate coordinate 

transformations, the minimal realization corresponds to the error dynamics specified for a 

tree sub-graph of the underlying connection topology. 

Given a spanning tree Qx c Q, and edge set S = ST U £c define the transformation 

matrix as 

(6.42) ln-1 0 

. (TC
T(Q))T l\£c\_ 

and S"1 = h-\ 0 

. -m(G)f l\e 
s = 

Applying the transformation (S <8> l)e{t) — e(i) to both (6.39) and (6.40) leads to 

01 I u(t) ^out{Q) : i(t) = 
HQrV 

0 

U(QT)R(Q) 

o 
® I Ug(t) 

(6.43) 

(6.44) 

This transformation identifies the formation error corresponding to the spanning tree 

Gr as the controllable modes of the system. Furthermore, the first \£c\ columns of the 

transformation matrix S"1 form a basis for the null-space of E(Q); each column consti-

tutes a signed path vector (Definition 2.2.1) for each independent cycle of the graph. This 

highlights again the intricate connection between cycles and system properties. 

We can now consider finding stabilizing control laws for the minimal representations 

of (6.43) and (6.44). Results from §3 on the edge Laplacian motivate a particular form for 
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the control. In this direction, define the control for (6.43) as 

u{t) = (E(gT)®I)er(t), (6.45) 

and for (6.44) 

ug(t) = (R(g)T®l)er(t), (6.46) 

where eT(t) corresponds to the first n — 1 states of the transformed formation error e(t). 

This leads to the closed-loop system for the transformed error dynamics as 

XoutiG) • ir(t) = (-Le(GT)®I)er(t) (6.47) 

E«(0) : Sr(t) = {-Le(gT)R(g)R(g)T0l)eT(t) • (6.48) 

The closed-loop systems in (6.47) and (6.48) correspond precisely to the edge agreement 

problem over a spanning tree and a graph with cycles respectively. Furthermore, the state 

matrices for both (6.47) and (6.48) are Hurwitz guaranteeing that e{i) converges to the 

origin. 

It remains to show that the control used on the minimal and transformed system trans-

lates to a decentralized control for the systems in (6.35) and (6.36), which we derive in the 

following theorem. 

Theorem 6.3.2. For the system (6.35) and a constant admissible relative reference formation r(t), 

a decentralized control of the form 

u(t) = (~L{gT) ® I)x{t) + (E(gT) ® I)rT(t) (6.49) 

drives the formation error e(t) = —E(g)Tx(t) + r(t) to the origin. 

Similarly, for the system (6.36) and a constant admissible relative reference formation r(t) , a 

decentralized control of the form 

ug(t) = -(R(g)TE(gr)T®I)x(t) + (R(g)®I)rr(t), (6.50) 

drives the formation error to the origin. 
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Proof. First, we show that the controls (6.49) and (6.50) do in fact drive the formation error 

to the origin. Applying the control leads to the closed loop systems 

UutHS) : x(t) = (-L(0T)®I)x(O + (E(0T)®I)rT(O, (6-51) 

L!n(£) : x(t) = (-L(g)®I)x(t) + (E(g)R(Q)T®I)rr(t) • (6.52) 

The remainder of this proof will focus on (6.52) noting that the same procedure can be used 

for (6.51). Denote the modal decomposition of the graph Laplacian as L{Q) = UA{Q)Ur, 

with u, corresponding to the /th column of 17. Recall that the eigenvector for Ai(£) = 0 is 

the all ones vector, u\ = 1. Using results from linear systems theory, we can express the 

state-response for (6.52) as 

J=I 
(6.53) 

where 

(pi{t) = Uie-x'W <8> I and U,- = muj ® 1. (6.54) 

Using (6.53) we can examine the steady-state solution of the formation error, 

lime(t) = (-E(gf ® I)x(t) + (R(g)T ® I)rr(t). (6.55) 
t—»oo 

Since A,(^) > 0 for i = 2,..., n we have 

lim <pi(t) = 0, i = 2 , . . . , n. (6.56) 
t—>00 

Using (6.56) and recalling that E(g)TJ = 0 results in 

J j m ( E ( ^ ) T ® 7 ) ( f ; ^ ( 0 ) * ( ' o ) = £(E(e)T®I)(J®I)x(£0) = 0 . (6.57) 

Next, observe that the incidence matrix has a singular value decomposition E(<7) = UMVT, 

where MMT = A. This, in turn, can be used to show that 

E(g)J\t2AZgJUiU>)E{G) = L (6-58) 
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Finally, using (6.56)-(6.58) we conclude that 

lime(t) = 0. 
t—>00 

To conclude the proof we must show that the form of (6.49) and (6.50) indeed corre-

spond to a decentralized solution. This is immediately verified by noting the structure 

graph Laplacian and incidence matrices. • 

Remark 6.3.3. The choice of the control law in (6.45) is not unique. In fact, choosing the control 

u(t) = (E(QT)R(Q)R(Q)T ® I) er(t) would be equally valid, and the resulting closed-loop system 

would be identical to (6.45). While both control laws are stabilizing, we note the latter will result in 

a faster convergence to the formation due to the inclusion of cycles in the control. More generally, 

this suggests that cycles not explicitly defined in the connection graph can be artificially constructed 

through the control, resulting in a faster closed-loop response. 

Perhaps the most striking feature of this analysis is the relationship between the differ-

ent NDS models. Via an appropriate choice of a decentralized control law, both an NDS 

coupled at the output and at the input can be transformed into an NDS coupled at the 

state. More revealing is the observation that the closed loop systems in (6.51) and (6.52) 

are examples of the consensus model derived in §4.4. The analysis results derived for NDS 

models coupled at the state can now be applied to the decentralized relative formation 

control problem to address notions of optimality and performance. The synthesis results 

of this chapter can also lead to insight on topologies that yield good performance in the 

context of reference tracking, in addition to notions of robustness and sensor placement 

for these systems. 

An Example: Formation in the Plane 

We illustrate the results of this section with a simple example. Consider the NDS coupled at 

the output (6.35) with 4 agents and Q = S4. The agents are initially oriented in a horizontal 

line in R2, and the desired formation is a diamond shape. Using the control law defined in 

(6.49), the NDS achieves the desired formation. The trajectories of each agent are shown in 
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Figure 6.11: State trajectory of agents in an NDS forming a diamond; the dashed lines are 
the trajectories from the control (6.49) and the solid lines from the control (6.59). 

Figure 6.11 (dashed lines). We also explore the ramifications of Remark 6.3.3 and consider 

the modified control law 

u{t) = (L(Kn) 0 I)x(t) + (E{Qr) ® I)rT. (6.59) 

To obtain this variation, we replace (6.45) with 

u(t) = (E(gr)R(Kn)R(Kn)T ® I)eT(t), (6.60) 

and follow the procedure outlined in this section. Note that for a star topology, every 

independent cycle can be constructed via 3 connected nodes (see, for example, the proof for 

Proposition 3.2.2). Thus the virtual cycle edges created still respect the sensing constraints 

imposed by the given connection graph. The resulting trajectories (also plotted in Figure 

6.11) exhibit a more direct route to the final state. Figure 6.12 plots the maximum formation 

error for both controllers highlighting the faster convergence due to the inclusion of the 

virtual cycle edges in (6.59). 
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Figure 6.12: Maximum formation error for the control (6.49) (dashed) and (6.59) (solid). 
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Chapter 7 

CONCLUDING REMARKS 

The complexity of large-scale systems requires a systematic approach for their analysis 

and synthesis that blends constructs from system theory on one hand, and graph theory 

on the other. The goal of this work, therefore, was to present a viable framework for study-

ing these systems. By defining four canonical models of networked dynamic systems, we 

proceeded to explicitly describe how the underlying interconnections affect some of the 

system-theoretic properties of the overall system. Furthermore, the generality of the mod-

els developed allowed for a further specification of system complexity via the notion of 

heterogeneity of the agent dynamics. 

One of the recurring themes that arose in the analysis of these systems is the impor-

tance of the node degree of each agent in an NDS. The relative degree of observability 

and controllability of NDS were shown to be intimately related to the degree of the agents 

through the description of the gramians. The Tii performance of these systems was shown 

to be closely related to the number of edges in the system; a property directly attributed 

to the degree of each node. On the other hand, the structure of the graph itself played a 

more central role in the Tit* performance analysis. While the second smallest eigenvalue 

of the graph Laplacian is recognized as an important parameter in consensus systems, our 

analysis pointed to the significance of the largest eigenvalue. 

Perhaps a more subtle point of this work is the implicit relationship between the dif-

ferent NDS models. For certain NDS models, as in NDS coupled at the input and output, 

a natural duality arose in their description. More generally, we noted that via appropriate 

transformations and the inclusion of structured decentralized control laws, distinct types 

of NDS models can be transformed to one another. This suggests, for example, that certain 

models might be more advantageous to use than others when considering analysis and 

synthesis for a particular networked system. This was most clearly demonstrated in the 
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consensus model with exogenous inputs. 

The various synthesis results highlighted an important connection between combina-

torial optimization and topology design for NDS. One of the more salient features of this 

work pertains to the application of the celebrated MST algorithm from combinatorial opti-

mization for designing the interconnection topology for overall optimal Hi performance of 

NDS coupled at the output. While the other synthesis procedures for topology design in-

volved some form of a relaxation that led to numerically tractable algorithms, the common 

theme revolved around optimization of the edge weights of the graph. This points to an 

interesting observation whereas we find the analysis of these systems to be facilitated by 

considering node weights, and synthesis by considering edge weights. More importantly, 

the synthesis results emphasize the need to explore more connections between methods in 

combinatorial optimization and systems theory. 

7.1 Future Directions 

The breadth of work presented here represents only an initial attempt to completely char-

acterize and define networked dynamic systems for both analysis and synthesis purposes. 

Certainly, each chapter of this work can lead to further investigation, both from a theoret-

ical and practical standpoint. In this section, we would like to highlight some potentially 

interesting extensions of this work. 

7.2.1 Duality in NDS 

Perhaps one of the most elegant and powerful constructs that arises in both optimization 

theory and control theory is the concept of duality [7,18,19,33,66]. For example, in control 

theory the notions of controllability and observability can be considered dual properties. 

Given an LTI system with state-space representation 

x(t) = Ax(t) + Bu(t) 

y{t) = Cx(t) 
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Figure 7.1: Duality in control systems and NDS. 

one can construct the corresponding dual system as 

£ p 
x(t) = ATx(t) + CTu(t) 

y{t) = BTx(t) 

It can be verified that Z-p is controllable if and only if £p is observable (and similarly, Ep is 

observable if and only if Ep is controllable). This notion is further extended to the synthesis 

of controllers and estimators for linear systems via the celebrated separation principle, which 

states that the design of an optimal output feedback controller for a stochastic system can 

be designed by considering separately the optimal state-estimator and the optimal state-

feedback control problems [4]. This is abstractly represented in Figure 7.1(a); the design of 

the controller gain K and observer gain L are performed independently, yet their feedback 

interconnection guarantees stability of the entire system. 

Duality is even more prevalent in optimization theory and is elegantly illustrated in 

problems defined in network optimization[66]. For example, the linear optimal flow prob-

lem is a linear program used to determine how much flow can be pushed across a network 
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defined by a graph Q(V, £), with linear costs and box constraints specified for each edge1, 

V : nun £djXj + p} (7.1) 
je£ 

s.t. E{Q)x = y 

Xj > Cj, V; e £. 

This problem has a corresponding dual problem, which is known as the linear optimal 

potential problem, and is defined as 

V : max - Y*(ci°j + <?/) " £ M i (7-2) 
"'" ;e£ /'eV 

s.t. i> = -E{G)TU 

Vj < dj,Vj E S 

Under mild assumptions (pj + qj — —Cjdj) the solution of V and V coincide as a result of 

linear programming duality. 

The interpretation of these dual problems, however, lead to insights on the role that the 

network plays in the optimization. In the optimal flow problem, the optimization variables 

are the flows across each edge. These flows must satisfy a kind of network conservation 

principle, which states that the net flow entering and leaving node i must equal the value yi 

(referred to as the divergence at node i). When examining the dual problem, we can interpret 

the values at each node, u,-, to represent a potential; the potential difference between two 

nodes induces a tension across each edge2. The relationship between network flows and 

potentials can concisely be stated as 

vTx — -uTy = —uTE(Q)x. 

It seems tempting, therefore, to interpret the notions of duality found in linear sys-

tems and network optimization in the context of an NDS. Consider an NDS coupled at the 

output connected in a feedback configuration with a decentralized controller, as shown in 

lrFhis problem, for example, can be used to determine how to optimally transport goods from a warehouse 
to retailer over a transportation network. 
2In electrical networks, for example, the current flowing through a resistor is induced by the voltage poten-

tial across the resistor. 
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Figure 7.2: Undirected graph on 6 nodes. 

Figure 7.1(b). By associating the interpretation of the incidence matrix as a mapping from 

flows to divergences, and potentials to tensions, we are able to assign similar terminology 

to the signals in the block diagram of Figure 7.1(b). For example, the state of each agent in 

an NDS coupled at the output can be viewed as a potential which induces a tension over 

the network, described by the relative measurements yg(t). Similarly, the control signal 

of each agent in the NDS is a result of a flow distributed over the network. In this direc-

tion, the plant P can be viewed abstractly as a transformation from network divergences 

to network potentials, and the controller K as a transformation from network tensions to 

network flows. 

Although this discussion remains abstract, it offers a compelling framework to explore 

deeper connections between network optimization and control theory. One conjecture is 

that the solution of the decentralized control problem for NDS should be intimately re-

lated to the solution of an associated optimal flow problem. Further investigation of this 

relationship will hopefully result in efficient algorithms for the design of decentralized 

controllers in addition to a new description of duality for NDS. 

7.1.2 Centralized and Decentralized NDS 

An important issue that must be addressed within the framework presented here is the 

notion of a centralized versus decentralized view of the NDS. In an NDS coupled at the 

output, for example, the measurement yg(t) can be considered a centralized description of 

the system. Any controller or estimator designed based on the global measurement vector 
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Figure 7.3: Local views of a graph. 

predicates the existence of a central fusion or command center. Although the decentralized 

controller synthesis results of §6.3 are compelling in their unifying description of NDS 

models, they lack the rigor of optimality. 

One approach to this problem is to define the notion of a local graph view for each agent 

in an NDS. Consider the undirected graph in Figure 7.2 representing a communication 

topology for a 6-agent NDS where each agent is permitted to transmit state information 

to its neighbors (a bi-directional communication link). The view of the network from the 

perspective of each agent, therefore, is only the set of edges incident to itself; the agent 

might not be aware of the size or connectivity of the entire system. In this direction, we 

define the |V| x \J\ft\ local undirected incidence matrix, E^Q), where |A/]| is the cardinality of 

the set of nodes adjacent to node i, i.e., 

[HQ)]jk 
+ 1 if(j,i)=eke£ 

0 otherwise 
(7.3) 

As an example, using the graph in Figure 7.2 we can construct 6 local graphs, and 

their corresponding incidence matrices, as in Figure 7.3. Equation (7.4) gives the local 

undirected incidence matrices for the first three nodes, 
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Ei(0) = 

0 

1 

0 

0 

0 

0 

0 " 

0 

0 

0 

0 

1 

E2(G) = 

1 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 1 

E3(S) = 

0 

1 

0 

0 

0 

0 

(7.4) 

This description can be used to describe the measurement available to a particular agent 

in the network. For example, consider the following state-space model, 

£,-: (7.5) 
Xi{t) = AiXi(t) + B(Ui(t) 

yf(t) = &(G)T ® i)Cfx{t) 

where yf(t) represents the information available to agent i from its neighbors, and x(t) is 

the concatenated state vector for the entire NDS. 

A modification of this system reveals a model that is very similar to the relative sensing 

network developed in §4.2. The outputs y,-(f) and yf (t) can be combined as 

m*) ( Pi Ei(G) ® I)Cx(t) (7.6) 

where P, 0 I 0 with the identity matrix in the ith block position, and 

Ei(Q) is the standard incidence matrix for the local directed graph from the view of agent i. 

Although (7,6) includes relative state information, the knowledge of the agent's own state 

can be used to construct the true transmitted state of its neighbors. 

Using this system description for each agent for analysis leads to extensions of the 

results presented earlier. For example, the Hi norm of (7.5) with the output (7.6) has the 

form 
1/2 

|Z,||2 = K 4 + 1 ) | | L , - | | £ + L ; I M | • (7.7) ((di+imwi+LWiWl) 

This kind of analysis can lead to synthesis procedures that operate on centralized clus-

ters. A centralized cluster can be thought of as a sub-network in the NDS that can be 
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treated in a centralized manner. Rather than having one large fusion center in the NDS, 

the above expression suggests that we may be able to use multiple fusion centers across 

different clusters of agents in the NDS. The additive nature of the norm expression sug-

gests that synthesis procedures for control and estimation would decouple cleanly across 

these clusters, resulting in potentially optimal decentralized solutions. 

The results of §6.2 highlighted how the structure of the system performance can lead 

to a naturally separable optimization problem for the design of inner-loop controllers. The 

expression in (7.7) suggests that the design of a decentralized outer-loop control might be 

facilitated by considering sub-problems over centralized clusters. Extensions of the work 

in §6.3, therefore, depends on a continuation of this type of analysis. 

7.1.3 Random, Switching, and State-Dependant Graphs 

The work presented thus far has dealt with deterministic systems. A natural progression is 

to examine NDS where the underlying connection topology is random, switching, or state-

dependant. These extensions are motivated by scenarios where the connection topology 

is itself dynamic. For example, a relative sensing network using a camera-based sensor 

might encounter a different set of agents within its sensing range during the horizon of 

a particular mission. The evolution of the connection graph can therefore be considered 

state-dependent [52]. 

While state-dependant interpretations of NDS seem natural for modeling, it can po-

tentially lead to non-linear representations. One means to approximate this concept is via 

random or switching graphs. For example, if the topology for an NDS coupled at the 

output is unknown, but each edge has a probability p of being present, how would the 

analysis and synthesis results change? Studying such a scenario would lead to stochastic 

versions of all the results presented here. 

7.1.4 Node and Edge Impact and Robustness 

A natural question to consider for a heterogeneous NDS is which group of agents con-

tribute the greatest to the overall performance of the system. Similarly, one might consider 
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which set of communication or sensing links are most important for the entire NDS. The 

implications of these questions relate to problems in network security, infiltration, and 

robustness. In fact, the robustness results of §6.1.2 provide a general framework for con-

sidering these kinds of problems. Robustness measures for linear systems, such as the 

gain and phase margin, provide methods for describing how much uncertainty a system 

can tolerate before performance requirements or stability is lost. A compelling extension 

is to consider a similar measure that focuses on the interconnections and nodes in an NDS. 

Extending the robustness analysis of this work to include dynamic uncertainty in both the 

agent's system representation and the connection graph will invariably lead to a richer 

description and intuition of these systems. 
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