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Abstract
This thesis investigates the formation control problem, which aims to drive a multi-
agent system to achieve a desired spatial configuration. A control scheme called
bearing-only formation control is proposed to solve this problem. This controller
has attracted research interest because it requires and applies only bearing mea-
surements between agents, rather than using distance measurements.

One limitation of bearing-only formation control is the sensing condition as-
sumed. Early works extensively studied this controller assuming undirected sensing
between agents, which is regarded as an unrealistic condition. More recent efforts
have focused on the problem with directed sensing, where agent 8 can sense agent
9 but not necessarily vice versa. Recent research showed that the bearing-only for-
mation control law also works with a specific class of directed sensing graphs called
leader-first-follower (LFF) graphs generated from a bearing-based Henneberg con-
struction. This was a major step forward from the previous assumption of undirected
graphs to a limited class of directed graphs. Building on this, the goal of this work
is to extend the results to more general conditions on the directed sensing graphs
for which bearing-only formation control succeeds.

To achieve this, we first analyze a multi-agent system with one movable agent
controlled by the bearing-only formation controller. The goal is to determine whether
this movable agent will converge to a desired position satisfying all specified target
bearings, for different numbers of outgoing edges (agents it can sense). The main
challenge is finding equilibrium points of this nonlinear system. Our approach fo-
cuses on analyzing a related linear problem and establishing connections to equilibria
of the nonlinear system. After determining the system equilibria, we also provide
stability analysis showing that the movable agent converges to the desired position.
This result then allows us to extend the class of graphs that solve the problem to
LFF graphs where the follower agents can have more than 2 outgoing sensing edges.
We provide stability and convergence analysis for this case. We also explore a further
expansion of the class of graphs and conjecture that a sufficient condition for solving
the more general formation control problem is that there must exist a subgraph that
is a LFF graph. This conjecture is verified with simulation studies. Eventually, we
conclude the general conditions for the directed graphs with which the bearing-only
formation control works, which is the main contribution of this research.
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Abbreviations and Notations

R : Set of real numbers
R<×= : Real matrix of dimension < × =

1=, 0= : =-dimensional vector with all entries 1 or 0
�= : =-dimensional identity matrix
‖ · ‖ : Euclidean norm
⊗ : Kronecker product
MAS : Multi-agent system
BOFC : Bearing-only formation control
(HC)LFF : Leader first-follower graph (generated from Henneberg construction)
(A)GAS : (Almost) Global asymptotically stable
BR : Bearing rigid
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1 Introduction

Multi-agent system (MAS) has garnered substantial attention and research efforts
in the control and robotics communities. A multi-agent system is defined to be
a system composed of multiple autonomous agents interacting with each other to
achieve common or individual goals. The agents are required to be capable of
perceiving and acting upon the environment of the system. The unmanned aerial
vehicles, software entities, robots and humans can be chosen as the agents.

Application of MAS can be found in different fields, for example in traffic and
transportation [1], power engineering [2, 3], and chaos analysis [4]. The applica-
tion as well as the theoretical improvement in controlling MAS is still a widely
open question and the subject of active research. Formation control refers to the
coordinated behavior exhibited by a group of autonomous entities, such as robots,
drones, or vehicles, to achieve a desired geometric configuration or pattern. In for-
mation control, agents or entities cooperate and adjust their positions relative. This
coordination can be accomplished through numerous communication and control
strategies, allowing the agents to align or maintain specific geometric relationships,
such as maintaining a fixed distance or bearing angle.

Formation control has obtained significant attention across a wide range of fields,
including robotics [5], autonomous systems, aerial and ground vehicle networks [6],
and swarm robotics [7]. The study of formation control involves developing algo-
rithms, control strategies, and communication protocols to enable the formation
members to realize or maintain the desired formations. These formations can range
from simple geometric shapes, such as circles or lines, to more complex configura-
tions.

The information that agents communicate with each other is crucial for devel-
oping algorithms in formation control. The characterization of formation control
schemes based on the sensing capability and the interaction topology leads to the
problem of what variables can be sensed and what variables are actively controlled
by MAS to achieve a desired formation. The types of formation control are specified
by the variables which is required to be satisfied in the desired formation, such as
the position-constrained formation control [8], the displacement-constrained forma-
tion control [9], distance-constrained formation control [10] and bearing-constrained
formation control [11], which aims to control the system to some configurations
fulfilling the displacement, distance or bearing constraints.

Meanwhile, the requirement of sensed variables are essentially connected to the
interaction topology. Information can be obtained by local sensors or provided over
a communication link to other agents or a centralized control unit. The local sensor
usually provides the relative bearing or distance information with respect to other
agents. Range sensors are able to receive relative distance information to objects
around them. Visual sensors such as cameras are capable to collect the bearing
information which is expressed as unit vectors. Limitation due to the effective
working space exists on both range sensors and visual sensors. The limitations could
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lead a sensing network not necessarily static or undirected. Note that undirected
refers to the case where an agent can sense its neighbor but not the other way
round. The global information for the agents are also available through a centralized
control unit. It is unfeasible for the MAS reach some configurations defined in
global framework with the relative information only. Specifically, if all the position
information of individual agents can be sensed and controlled, the MAS can move
to the desired positions without interaction. In the case that the positions of part of
agents can be sensed, while only relative distance can be obtained for other agents,
the interaction between these two types of agents should be essentially working to
achieve the target formation. In short, the types of controlled variables specify
the best possible desired formation that can be achieved by agents, which in turn
prescribes the requirement on the interaction topology of the agents.

1.1 Literature Review
In this section, we will review the existing works dealing with bearing-only forma-

tion control to cover the basic foundation and motivation of our work. Then, we will
also discuss the development on bearing rigidity theory, which acts an important
role in bearing-constrained formation control problem.

Bearing-only formation control.

In formation control, the core problem is to design the distributed control strat-
egy for each agent such that the agents achieve and maintain a desired spatial
arrangement or target formation. The distance-constrained formation control [12,
13, 14] takes the prominent role in early studies of formation control. Here, the
target formations are specified using inter-agent distances. Most of the distance-
constrained formation control [15, 16] requires relative position measurements be-
tween the agents. The bearing-constrained formation control [11, 17] has attracted
more attention recently since the bearing measurement is often cheaper and more
accessible than the position measurement. In the bearing-constrained formation
control, the control algorithm is based on the bearing measurement and the target
formation is defined by the inter-agent bearings.

Various control strategies have been developed in the field of bearing-constrained
formation control. Some of the strategies made use of position measurement or dis-
tance measurement [18, 19], while other works utilized the bearing measurement to
estimate the relative distance or positions [20]. A linear bearing-based control law
[17] was proposed using bearing rigidity theory. It is a natural solution of formation
control which stabilizes static target formations in arbitrary dimensions with undi-
rected sensing. Many works then focus on developing the bearing-based formation
control. In [21], the bearing-based formation control is applied to the maneuvering
case where the leaders have nonzero constant velocities. It also contributes to the lo-
calization problem for bearing-based network [22]. The work [23] and [24] investigate
bearing persistence problem which give certain conditions for when bearing-based
formation control works with directed sensing.
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One of the common properties of the control schemes mentioned in last para-
graph is the requirement for different types of measurements. Due to the advantage
of bearing measurements, most of the research efforts investigated control laws em-
ploying only bearing measurements. In the beginning, some works have addressed
such control strategy considering a limited number of agents [25]. After then, the
work [26] presented a control framework for a group of UAVs bound with the 3D
bearing formation formally defined. The same author further investigated the re-
lationship between scalability, minimality and rigidity, and proposed a distributed
bearing-only control strategy stabilizing the bearing formation in [27].

Along with the development of bearing rigidity theory, the bearing-only for-
mation control (BOFC) studied in this thesis was proposed in [11]. This control
scheme is designed for agents modelled with single integrator dynamics. The com-
munication between the agents is descried by an undirected sensing graph. The
bearing measurements in the control system are defined in a global reference frame
of arbitrary dimensions. The desired bearing formation composed of the undirected
sensing graph and a desired bearing vector is required to be infinitesimally bearing
rigid. They showed that the centroid and scale of the framework is invariant dur-
ing the full motion. A target framework satisfying the desired bearing formation
can be uniquely determined up to the initial centroid and scale. Most importantly,
the bearing-only formation control can exponentially drive the MAS to the target
framework from almost every initial condition.

It should be emphasised that the undirected sensing demanded in [11] is an unre-
alistic restriction. The work [28] demonstrates an instance that the sensing condition
is more likely directed because of the limited field of view for bearing sensors. The
research of bearing-only formation control with directed sensing graphs was firstly
explored in [29]. They revealed that the directed sensing would bring asymmetry
into the control system, with which the centroid and scale of the framework is no
longer invariant. The analysis of convergence given for the undirected sensing case
is also not feasible. With these challenges, they suggested a specific class of directed
graph called the leader first follower graph generated from bearing-based Henneberg
construction. With such directed sensing graphs, the resulting control strategy is
shown to have a nonlinear cascade structure which is leveraged for the stability
analysis, showing the system can asymptotically converge to the correct shape.

Bearing Rigidity Theory.

The bearing rigidity (or parallel rigidity) theory is a fundamental concept in
the research of formation control, which deals with the rigid structures and their
underlying geometric properties. In various engineering and scientific disciplines,
understanding the rigidity of structures is of paramount importance. Rigidity refers
to the property of a structure to maintain its shape and resist deformation under
external forces. The bearing rigidity theorem provides a theoretical framework to de-
termine whether a given structure, composed of interconnected elements, can retain
its shape when subjected to different bearing measurements or angular constraints.
The bearing rigidity theorem establishes conditions under which a structure can be
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uniquely determined or reconstructed based solely on the relative angles or bearings
between its constituent elements.

Bearing rigidity theory in two-dimensional space (also termed parallel rigidity)
is explored in [30]. In [31], a formal characterization is stated for SE(2) frameworks.
Then, the theory has been extended to an arbitrary dimensional space for undi-
rected graphs in [11]. The generically bearing rigidity in [32] demonstrates that the
underlying graph acts a more important role than the configuration. The work [33]
provides an approach on SE(3) framework with directed graphs. Nonetheless, the
bearing rigidity theory for directed graphs are still widely open.

1.2 Thesis Contribution
This thesis considers the bearing-only formation control problem with directed

sensing. The previous work [29] showed that the bearing-only formation control
drives the MAS to target formation if the directed sensing condition is a leader-
first-follower graph generated from Henneberg construction, which is a special class
of directed graphs. In this work, we aim to extend the directed sensing graphs to
be more general.

The contribution begins with a simple system consisting of a movable agent
and several fixed agents. The goal is to determine whether this movable agent will
converge to a desired position satisfying all specified target bearings, for different
numbers of outgoing edges (agents it can sense). As we will see further in this
thesis, finding equilibrium points of the nonlinear system is the pivot of the work.
Instead of looking for the equilibrium of nonlinear system, we focus on a related
linear system and establish connections to equilibrium of the nonlinear system. The
equilibrium of linear system is determined mainly by the null space analysis. Lastly,
the stability is checked by Lyapunov functions.

The main contribution is the expansion of directed graphs. In the primary
expansion, we add edges which keep the cascade structure in control system. By the
stability theorem of cascade system, we are able to analyze the convergence of the
control system step by step. In the procedure, the result of the simple system can be
applied. Then, a further expansion of the class of graphs is proposed. A sufficient
condition for solving the more general formation control problem is that there must
exist a subgraph that is a LFF graph. The equilibrium of the nonlinear system
related with the further expanded sensing graph is determined with the similar trick
as the simple system. A conjecture on the stability of the equilibrium is proposed
and verified with simulation results.

1.3 Thesis Organization
The thesis is organized as follows. In Chapter 2, we present a background on

graph theory, bearing rigidity theory and the bearing-only formation control with
undirected sensing and specific directed sensing. In Chapter 3, we firstly motivate
the graph expansion with a few numerical simulations. A simple system is analyzed
to built the basis of determining the equilibrium of nonlinear control system. After
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then, we suggest some classes of graphs generalized from the HCLFF graph and
show how the bearing-only formation control works with the corresponding directed
sensing. In Chapter 4, the conclusion and direction for future works is given.
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2 Preliminaries

In this section, some basic definitions and theorems on graph theory and stability
theory will be reviewed. On the other hand, we will also introduce the primary
control strategy in this thesis, the bearing-only formation controller.

2.1 Graphs and the Theory of Rigidity
Graph theory is the study of graphs, which are mathematical structures modelling

the relation between objects. In a graph, objects are always expressed as nodes
and the relationships are translated as edges. In this section, we will first give the
notations and definitions used to describe graphs [34], and then introduce the theory
of bearing rigidity [11], a central concept used in bearing formation control.

Graph Theory.

In mathematics, graphs are mathematical structures used to model pairwise
relations between objects. Generally, a graph, denoted G = (V, E), consists of a
non-empty finite set V called the vertex set, and a finite set E of pairs of distinct
elements in V, called edge set. The elements in vertex set V = {E1, · · · , E=} are
called the vertices (or nodes) of the graph G. The size of the vertex set |V| = =

coincides with the number of vertices.

A graph can be classified as undirected or directed. In the undirected graph, the
edge set E are composed of edges without orientation. The undirected edge denoted
as 48 9 = {E8, E 9 } connects the agent E8 and E 9 , implying these two agents are in the
neighbourhood of each other, which is notated as E8 ∈ N9 , E 9 ∈ N8. In directed
graphs, the edge set E is consisted of edges with orientations. The notation for a
directed edge is 48 9 = (E8, E 9 ) indicates that the edge starts from agent E8 and end at
agent E 9 . The appearance of the directed edge 48 9 indicates that agent E 9 is in the
neighbourhood of agent E8 (i.e., E 9 ∈ N8). Overall, the size of the edge set |E | = <

coincides with the number of edges. For a graph G = (V, E), either undirected or
directed, a label can be assigned to each edge. If the edge 48 9 ∈ E is labeled as the
:th edge in the edge set, we may denote 48 9 as 4: .

An example of an undirected graph and a directed graph is shown in Figure 1.

412

423

434

414 413

E1 E2

E3E4

(a) An undirected graph.

412

423

434

414
413

431

E1 E2

E3E4

(b) A directed graph.

Figure 1: Example of a directed and undirected graph.
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Both graphs share the same vertex set V = {E1, E2, E3, E4}. The edge set for the
undirected graph is

E10 = {{E1, E2}, {E2, E3}, {E3, E4}, {E1, E4}, {E1, E3}} = {412, 423, 434, 414, 413}.

In comparison, the edge set for the directed graph is composed of directed edges

E11 = {(E1, E2), (E2, E3), (E3, E4), (E1, E4), (E1, E3), (E3, E1)} = {412, 423, 434, 414, 413, 431}.

Graphs may also be represented by appropriately defined matrices. Of interest to
this work is the incidence matrix and out incidence matrix.

The incidence matrix of a graph, encoding the relation between edges and ver-
tices, denoted as � (G) ∈ R<×=, is defined as

� (G):8 =


1, node 8 is positive end of edge 4:

−1, node 8 is negative end of edge 4:

0, otherwise.
(1)

A positive end is where the edge starts and the negative end is the terminal.
For undirected graphs with undirected edges, the orientation should be assigned
arbitrarily. By construction, the incidence matrix has exactly one 1 and −1 in each
row. Thus, the all ones vector 1= is always in the null space of � (G). Similarly, the
out-incidence matrix, denoted as �>DC (G) ∈ R<×=, is defined by directed graphs:

�>DC (G):8 =
{

1, node 8 is positive end of edge 4:

0, otherwise.
. (2)

Reconsider the example of directed graph (Fig. 1b). The order of edges is set as

{412, 423, 434, 441, 413, 431} → {41, 42, 43, 44, 45, 46},

then the incidence matrix and out-incidence matrix of the graph can be expressed
as

� =



1 −1 0 0
0 1 −1 0
0 0 1 −1
1 0 0 −1
1 0 −1 0
−1 0 1 0


, �>DC =



1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
0 0 1 0


. (3)

Frameworks and Formations.

The central work of rigidity theory is to determine the flexibility or rigidity of a
structure, which is mathematically described with a framework. So in this section,
we firstly review the construction of a framework.
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A framework in Rd, denoted as (G, ?), consists of a graph G = (V, E) and a
configuration ? = [?)1 , · · · , ?)= ]) ∈ Rd=. The framework (G, ?) is actually formed
by mapping the vertex E8 ∈ V to the position ?8 ∈ Rd. In a framework (G, ?), the
displacement vector between ?8 and ? 9 is defined as I8 9 = ? 9 − ?8 while its norm
38 9 = ‖I8 9 ‖ is denoted as the distance. The relative bearing vector 68 9 ∈ Rd is defined
as the unit vector with the direction from ?8 to ? 9 , which can be expressed as:

68 9 =
I8 9

‖I8 9 ‖
=

? 9 − ?8

‖? 9 − ?8‖
. (4)

The displacement measurement I8 9 , distance measurement 38 9 and bearing mea-
surement 68 9 shows different relations between ?8 and ? 9 . For all E8, E 9 ∈ V, we
call the measurement between agents as an inter-agent measurement. In addition,
if (E8, E 9 ) ∈ E, or equivalently, E 9 ∈ N8, we call the measurement from E8 to E 9 as an
inter-neighbour measurement. For any inter-neighbour measurement I8 9 , 38 9 , or 68 9 ,
it can be related to the edge 48 9 . Recall that the edge 48 9 can also expressed by 4:
according to its order. In the same way, the notation I: , 3: , or 6: is given to the
inter-neighbour measurement corresponding to the edge 4: .

When a framework (G, ?) is constructed, the inter-neighbour bearing measure-
ment can be generated by the bearing function �� : Rd= → Rd<,

�� (?) = [6)1 , · · · , 6)<]) . (5)

We denote the stacked vector of inter-neighbour bearing measurements as 6 = �� (?).
Similar to a framework, the bearing formation, (G, 6), is defined by mapping the
edges in graph E to the bearing measurements 6.

Definition 1. A bearing vector 6 is realizable with underlying graph G in Rd, if
there exists a configuration ? ∈ Rd= satisfying all the bearing measurements in 6,
i.e., ? ∈ �−1

�
(6).

A bearing formation (G, 6) can also be defined directly without any specific
configuration ?. The key point is to ensure that the bearing vector 6 is realizable
with the graph G.

Recall the example of directed graph as Figure 1b. As shown in Figure 2, a
framework (G, ?) in R2 is constructed by mapping the vertices to the configuration

? =


?1
?2
?3
?4

 =



0
0
2
0
2
−2
0
−2


.
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412

423

434

414
413

431

?1 ?2

?3?4

G

H

Figure 2: An example of framework with directed underlying graph.

With the framework (G, ?), we can calculate the inter-agent displacement, dis-
tance and bearing measurements, such as I12 = ?2 − ?1 = [2, 0]) , 313 = ‖?3 − ?1‖ =
2
√

2, 614 =
?4−?1

‖?4−?1‖ = [0,−1]) . In the same way, we can determine the bearing vector:

6 =



612
623
634
614
613
631


= [(1, 0), (0,−1), (−1, 0), (0,−1), (

√
2/2,−

√
2/2), (−

√
2/2,

√
2/2)]) .

Then, we call the bearing formation (G, 6) as the corresponding bearing formation of
the framework (G, ?). All the inter-neighbour bearing measurements can be found
in the bearing vector 6. The bearing measurement 624 can also be obtained by the
framework, and it is an inter-agent bearing measurements.

After introducing the construction of framework, we bring in bearing rigidity
theory which further determines the property of the framework.

Theory of Bearing Rigidity.

The rigidity theory focuses on the rigidity or flexibility of a framework. The
primary problem that the rigidity theory studies is whether there exists a continu-
ous deformation from a given configuration to another such that edge lengths are
preserved. With the distance constrained, it is also called distance rigidity theory.
The comprehensive story of distance rigidity theory is presented in the book [35]. In
comparison, the bearing rigidity theory studies a similar problem that if there ex-
ists a continuous deformation preserving the bearing or direction of edges. In other
words, the bearing rigidity theory determines the problem whether a framework can
be uniquely determined up to a translation and a scaling factor given the bearings
measurement of each edge in the framework.

The theory of bearing rigidity is extensively developed in [11]. Here, we will
introduce the main definitions and theorem of bearing rigidity. This problem can
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be equivalently stated as whether two frameworks with the same inter-neighbor
bearings have the same shape. Consider two frameworks (G, ?) and (G, ?′) map
the same graph G to different configurations ? and ?′ in R3. The notation 68 9 and
6′
8 9

represents the bearing vector between node 8 and 9 in frameworks (G, ?) and
(G, ?′) respectively. These two frameworks are defined to be bearing equivalent if
all the inter-neighbour bearing measurements are parallel. Furthermore, if all the
inter-agent bearing measurements are parallel, then they are bearing congruent to
each other.

Mathematically, we can figure out whether two vectors are parallel with the
orthogonal projection matrix operator. For any non-zero vector G ∈ Rd (d ≥ 2),
define %(G) : Rd → Rd×d as

%(G) = �d −
G

‖G‖
G)

‖G‖ . (6)

For notational simplicity, we denote %G = %(G). The matrix %G geometrically projects
any vector onto the orthogonal compliment of G. There are some useful properties
which can be easily verified such as %)

G = %G, %2
G = %G, %G < 0 and the most important

one,
%GG = 0, or equivalently Null(%G) = span{G}. (7)

A figure illustrating the geometric properties of the projection matrix is given in
Figure 3.

In bearing rigidity theory, the projection matrix is mostly applied to identify
whether two bearing vectors are parallel.

Consider two bearing measurement 6, 6′ ∈ Rd (d ≥ 2). These two bearing vectors
are parallel if and only if %66

′ = 0.

Then, bearing equivalence and congruence can be mathematically defined with
the projection matrix.

Definition 2 ([11]). The frameworks (G, ?) and (G, ?′) are bearing equivalent if
%68 96

′
8 9
= 0, for all (8, 9) ∈ E.

Definition 3 ([11]). The frameworks (G, ?) and (G, ?′) are bearing congruent if
%68 96

′
8 9
= 0, for all 8, 9 ∈ V.

The bearing congruent frameworks are always bearing equivalent since the con-
dition for bearing equivalence is included in the condition for bearing congruence.
The definition of globally bearing rigid follow from these concepts.

68 9
68:

%68 968:

Figure 3: Vector 68: operated by the projection matrix of vector 68 9 .
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?1 ?2

?3?4

(a) A framework (G, ?).

?1 ?2

?3?4

(b) A framework bearing equivalent to
(G, ?) in 4a.

?1 ?2

?3?4

(c) A framework bearing congruent to (G, ?)
in 4a.

?1 ?2

?3?4

(d) A globally bearing rigid framework.

Figure 4: Frameworks for illustrating globally bearing rigidity.

Definition 4 ([11]). The framework (G, ?) is globally bearing rigid (GBR) if an
arbitrary framework which is bearing equivalent to (G, ?) is bearing congruent to
(G, ?).

In other words, if the framework is globally bearing rigid, any continuous defor-
mation preserving the inter-neighbour bearing will not alter any inter-agent bearing.

Consider the framework 4a, both framework 4b and framework 4c are bearing
equivalent to it, but only framework 4c is bearing congruent. It can be concluded
that framework 4a is not globally bearing rigid, since there exists a bearing equiva-
lent but not bearing congruent framework 4b.

For a better knowledge of the bearing rigidity theory, we aim to work out the
continuous deformation preserving the inter-neighbour bearing measurement, which
is the primary problem of rigidity theory. Recall that the bearing vector of inter-
neighbour bearing measurement g for the framework (G, p) can be obtained by the
bearing function g = �� (p). Let X? be a variation of the configuration p, we are
interested in a deformation of the framework by X? such that the bearing vector
remains constant to first order. That is, we are looking for vectors X? such that

�� (p + X?) ≈ �� (p) = g.

We denote such variations as the infinitesimal bearing motions.

In this direction, consider the Taylor series expansion of the bearing function ��

at p with small perturbation X?,

�� (p + X?) = �� (p) +
m��

m?
X? + h.o.t..

The higher order terms can be neglected since X? is small. It can be observed that
the bearing vector g is maintained, therefore, if

m��

m?
X? = 0.
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Thus, the Jacobian of the bearing function m��

m?
plays an important role, and we

define it as the bearing rigidity matrix '� =
m��

m?
∈ Rd<×d=. The bearing rigidity

matrix can be expressed explicitly by the projection matrix of bearing measurement
%6, the distance measurement 3 and the extended incidence matrix �̃ = � ⊗ �d as

'� (?) = diag
(
%6

3

)
�̃, (8)

where diag
(
%6

3

)
= diag

(
%61
31

,
%62
32

, · · · , %6<

3<

)
.

The infinitesimal bearing motion can be determined by the null space of bearing
rigidity matrix.

Corollary 1. The dimension of Null('�) is at least = + 1 and span{1= ⊗ �d, ?} ⊆
Null('�).

Proof. It has be shown before that �1= = 0 and %6:6: = 0, which implies that
�̃ (1= ⊗ �d) = 0 and diag

(
%6

3

)
�̃? = diag(%6)6 = 0. Thus, it is sufficient conclude

that span{1= ⊗ �d, ?} ⊆ Null('�). �

Consider the infinitesimal bearing motion X? ∈ span{1= ⊗ �d}. Every agent
shares the same position variation (i.e., X?8 = X? 9 ,∀E8, E 9 ∈ V). Thus, the variation
in space span{1= ⊗ �d} is called the motion of translation. In the similar manner, the
infinitesimal bearing motion X? ∈ span{?} is classified as motion of scaling since the
deformed framework (G, ? + X?) can be seemed as an enlargement or diminution of
the origin framework. The translations and scaling infinitesimal motions are called
the trivial infinitesimal bearing motions.

Definition 5 ([11]). A framework is infinitesimally bearing rigid (IBR) if all the
infinitesimal bearing motions of the framework are trivial.

It has been showed that the infinitesimally bearing rigidity always implies glob-
ally bearing rigidity [11, Theorem 5]. Moreover, the infinitesimally or globally bear-
ing rigidity of framework (G, ?) also indicates the infinitesimally or globally bearing
rigidity of formation (G, 6) generated from 6 = �� (?).

In Figure 5, we give two examples of frameworks (vertices and edges) with 4 nodes
and their infinitesimal bearing motions (arrows). These two frameworks are related
to the same configuration ? in R2, while the underlying graphs are different. The
motions corresponding to red and blue arrows are translation and scaling motion,
which are the trivial infinitesimal bearing motions. The motions expressed with
orange arrows are non-trivial infinitesimal bearing motions. The bearing formation
5a is not infinitesimal bearing rigid since non-trivial motion exists. The bearing
formation 5b is infinitesimal bearing rigid since all the infinitesimal bearing motions
are trivial. With the following theorem, the property of infinitesimally bearing
rigidity is attached to the property of bearing rigidity matrix '�.
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?1 ?2

?3?4

(a) A not infinitesimally bearing rigid frame-
work.

?1 ?2

?3?4

(b) An infinitesimally bearing rigid frame-
work.

Figure 5: Illustrating examples for infinitesimal bearing motion and infinitesimally
bearing rigidity.

Theorem 1 ([11]). For any undirected framework (G, ?), the following statements
are equivalent:

i) (G, ?) is infinitesimally bearing rigid;

ii) (G, ?) can be uniquely determined up to a translation and a scaling factor by
the inter-neighbor bearings;

iii) Rank('�) = d= − d − 1;

iv) Null('�) = span{1 ⊗ �d, ?}.

The statement (iv) indicates the statement (i) and (ii) directly according to the
previous introduction. With the dimension of Null('�) equalling to d + 1, the rank
of '� should be d= − d − 1.

Until now we demonstrated that bearing rigidity is a property of framework. In
the following we aim to show that the bearing rigidity of a framework is a generic
property which is critically determined by the underlying graph rather than the
configuration.

Definition 6 ([32]). A graph G is generically bearing rigid (GBR) in Rd, if there
exists at least one configuration ? in Rd such that (G, ?) is bearing rigid.

From the definition, if a graph is not generically bearing rigid, there does not
exist any configuration such that the framework is bearing rigid. On the other hand,
generically bearing rigid graphs possess the following property.

Lemma 1 ([32]). If G is generically bearing rigid in Rd, then (G, ?) is global bearing
rigid for almost all configuration ? in Rd, in the sense that the set of ? where (G, ?)
is not bearing rigid is of measure zero.
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Here, some examples of frameworks in R2 are given to illustrate the generically
bearing rigidity. The underlying graph for Figure 6a is not generically bearing rigid.
Thus, there exists no mapping in R2 leading to a global bearing rigid framework.
The underlying graph G for Figure 6b and 6c is the same. This graph is generically
bearing rigid in R2 since framework 6b is bearing rigid. For almost all the configu-
ration ? in R2, the framework (G, ?) should be bearing rigid, while the framework
6c shows the special case which belongs to a set of measure zero.

A generically bearing rigid graph is essential to form a globally bearing rigid
framework. In this section, we will present the definition of the Laman Graphs
and Henneberg construction which helps to construct the generically bearing rigid
graphs.

Definition 7 ([32]). A graph G = (V, E) is Laman if |E | = 2|V| − 3 and every
subgraph with : > 2 vertices spans at most 2: − 3 edges.

Theorem 2 ([32]). A graph G is generically bearing rigid if and only if the graph
contains a Laman spanning graph.

A Laman graph with four vertices is given as Figure 7a. The graph 7b is com-
posed of a Laman graph and an additional edge. Both graph 7a and graph 7a are
generically bearing rigid. It is generally difficult to tell whether a graph is Laman
or not from the definition as it is a combinatorial property. Thus, the Henneberg
construction [32] is introduced as a way to build Laman graphs.

Definition 8. The Henneberg construction starts from the most elemental Laman
graph with a pair of vertices E1 and E2 and an edge (E1, E2). The graph G = (V, E)
can be enlarged by performing one of the following two operations:

1) Vertex addition: connect a new vertex E8 to G to any two existing vertices
E 9 , E: ∈ V. The extended graph G′ can be expressed by V′ = V ⋃{E8} and
E′ = E ⋃{48 9 , 48: }.

2) Edge splitting: Suppose three vertices E 9 , E: , E; ∈ V and 4 9 : ∈ E. A new vertex
E8 can be connected to E 9 , E: , E; by deleting edge 4 9 : . The extended graph G′

can be expressed by V′ = V ⋃{E8} and E′ = E ⋃{48 9 , 48: , 48;} \ {4 9 : }.

?1 ?2

?3

(a) A Framework that is not
bearing rigid.

?1 ?2

?3

(b) A bearing rigid frame-
work indicates its underlying
graph is generically bearing
rigid.

?1 ?2 ?3

(c) A generically bearing
rigid graph in a non-generic
position leads to a not bear-
ing rigid framework.

Figure 6: Illustrating frameworks for generically bearing rigidity.
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E1 E2

E3 E4

E5 E6

(a) A Laman graph.

E1 E2

E3 E4

E5 E6

(b) A graph containing a Laman graph.

Figure 7: Illustrating examples of Laman graphs.

E1 E2

(a) Starting graph.

E1 E2

E3

(b) Vertex addition.

E1 E2

E3 E4

(c) Edge splitting.

Figure 8: Illustrating examples for Henneberg construction.

The graph built with Henneberg construction is always a Laman graph. Associ-
ated with Theorem 2, any graph G built by adding edges to a graph with Henneberg
construction is generically bearing rigid in Rd, which leads the framework (G, ?) to
be bearing rigid for almost all configuration ? ∈ Rd.

Figure 8 exhibits the procedure of Henneberg construction. It starts with two
vertices and an edge between them. The node E3 is added by vertex addition and
the node E4 is appended by edge splitting with deleting 423. The graph can continue
to be enlarged by repeating these two operations.

The introduction of bearing rigidity theory is completed so far. As a conclusion,
the bearing rigidity theory shows the requirement to uniquely define a structure or
the shape of a framework by bearing constraints.
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2.2 Bearing-Only Formation Control on Undirected Graphs
Formation control is a concept rooted in multi-agent system and control theory,

focusing on guiding multiple agents to achieve and maintain a desired geometric
pattern. In bearing formation control, the geometric pattern is based on bearing
measurements. The bearing-only formation control (BOFC) law was firstly proposed
in [11]. In this section, we will mathematically formulate the bearing formation
control problem and then demonstrate how the bearing-only formation control law
solves the problem.

Problem Formulation. The bearing formation control problem is to design a
distributed control protocol which drives a multi-agent system to some desired con-
dition. Firstly, we use a graph G = (V, E) called the sensing graph to describe
sensing or the capability of communication between agents in the MAS. We focus
on the undirected sensing graph in this section, implying that the communication
between two agents are symmetric, i.e., if 48 9 ∈ E then 4 98 ∈ E. The agents are
modeled using single integrator dynamics,

¤?8 = D8, 8 = 1, . . . , =, (9)

where D8 ∈ Rd is the control. The target geometric pattern for the bearing formation
control problem is specified by a target bearing formation (G, g). The underlying
graph of the target bearing formation should be identical to the sensing graph of
the MAS. The target bearing vector g should also satisfy a feasibility condition, as
shown in the following assumption.

Assumption 1. For the target bearing formation (G, g), there exists an infinites-
imally bearing rigid framework (G, p) satisfying all the bearing measurement in g
(i.e., g8 9 =

p 9−p8

‖p 9−p8 ‖ ,∀48 9 ∈ E).

Actually, the feasibility assumption can be comprehended as: 8) the sensing
graph G is generically bearing rigid; 88) the target bearing vector g is not in the set
of measure zero leading to the non-bearing rigid frameworks; 888) the bearing vector
g is realizable.

Another common assumption relates to collisions.

Assumption 2. There are no collisions of agents along trajectories of the system.

Then, the general bearing formation control problem can be stated formally.

Problem 1. Given a target bearing formation (G, g) satisfying Assumption 1 and
the initial framework (G, ?(C0)), design a control law for each agent 8 ∈ V modelled
by (9) based on the inter-neighbour bearing measurements {68 9 (C)}(8, 9)∈E, such that

lim
C→∞

6(C) = lim
C→∞

�� (?(C)) = g.
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In this paragraph, we will clarify the notation in bearing formation control. The
set of current measurements is denoted by the italic letters, as I, 3, 6, ?, representing
the current displacement vector, distance vector, bearing vector, and configuration.
The set of target bearing vectors is denoted by the regular letter g, while the mea-
surement related to the target bearing formation is also denoted by regular letters
such as z, d, p.

The Bearing-only Formation Control Law. In this section we consider a
solution to Problem 1 for undirected sensing graphs initially proposed in [11]. The
nonlinear bearing-only control law is given as

D8 = −
∑
9∈N8

%68 9g8 9 ,∀8 ∈ V . (10)

It can be also expressed in matrix form as

D = �̃) diag(%6)g, (11)

where �̃ = � ⊗ �d and diag(%6) = diag(%61 , %62 , · · · , %6<).

Theorem 3 ([11]). The bearing-only formation control law (10) drives the MAS
to a final configuration p satisfying the target formation (G, g) (i.e., �� (p) = g)
exponentially fast from almost any initial configurations ?(C0).

There exist two realizable bearing vectors satisfying the equilibrium condition
¤? = D = �̃) diag(%6)g = 0, which are g and −g. The equilibrium g coincides with the
target formation (G, g) is called the desired equilibrium and the other equilibrium
−g is called the undesired equilibrium. The stability can be verified by the Lyapunov
function + = 1

2 ‖6 − 6∗‖2. The result shows that the desired equilibrium is almost
globally exponentially stable and the undesired equilibrium is unstable. The ’almost’
refers to the entire state-space except the single unstable equilibrium point.

Example 1. In Figure 9, an example of simulation is displayed to show how BOFC
works and drives the agents to the desired bearing formation. In this example, the
target bearing formation is a square in R2 as shown in 9a. The sensing graph

?1

?2?3

?4

(a) The target formation (b) Trajectory: Exerting BOFC on the
undirected sensing graph.

Figure 9: A simulation example showing the performance of BOFC.
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of MAS is the same as the underlying graph, which is generically bearing rigid.
We set the initial position of each agent to be random. The random data taken
in this simulation is ?1(C0) = [0.1190, 0.4984]) , ?2(C0) = [0.9597, 0.3404]) , ?3(C0) =
[0.5853, 0.2238]) , ?4(C0) = [0.7513, 0.2551]) . From the simulated trajectory, it can
be found that the system is brought to a final formation as desired.
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2.3 Bearing-Only Formation Control with Directed Sensing
In last section, we introduced the bearing-only formation control law (11) and

showed that this control law solves the bearing formation control problem (Problem
1) for undirected sensing graphs. In this section, we are going to introduce the
BOFC for MAS with directed graphs, based on the work [29].

Problem Formulation.

Compared with the bearing formation control problem stated in last section, the
main change is that the sensing condition is described by a directed graph G(V, E).
That is, 48 9 ∈ E does not imply that 4 98 ∈ E, and sensing is not symmetric.

The target formation (G, g) is defined after the directed sensing graph G. To
ensure that the shape of the target formation can be uniquely determined, the target
bearing vector g should satisfy the assumption 1.

Other than the sensing graph and target formation, the system is formulated in
the same way including the assumptions. The bearing formation control problem
with directed sensing is stated as following:

Problem 2. Given a target bearing formation (G, g) over a directed graph G sat-
isfying Assumption 1 and the initial framework (G, ?(C0)), design a control law for
each agent 8 ∈ V modelled by (9) based on the inter-neighbour bearing measurements
{68 9 (C)}(8, 9)∈E, such that

lim
C→∞

6(C) = lim
C→∞

�� (?(C)) = g.

It has demonstrated that the bearing-only formation control (10) is a solution
to the bearing formation control problem with undirected sensing (Problem 1). In
this section, we want to slightly modify the controller to fit the directed sensing
condition and find the difference between control systems.

The bearing-only formation control law with directed sensing can be expressed
as

D8 = −
∑
9∈N8

%68 9g8 9 ,∀8 ∈ V . (12)

The directed sensing graph implies that E8 ∈ N9 and E 9 ∈ N8 may not hold simulta-
neously. Thus, the matrix form should be modified as

D = −�̃)
>DC diag(%6)g, (13)

where �̃>DC = �>DC ⊗ �d.

The directed sensing brings asymmetry to the control system, which may change
the convergence of the system. Thus, it can not be determined whether the bearing-
only formation control with directed sensing (12) is the solution to the bearing
formation control problem with directed sensing condition (problem 2).
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The main contribution of [29] was presenting that for a certain class of directed
graphs, the control (13) can solve the directed BOFC problem. In the sequel we
review the structure of this class of graphs.

Leader-First-Follower Graphs.

In [29], it was shown that the MAS can be asymptotically driven to the tar-
get formation if the sensing graph belongs to a special class of graph called the
leader first-follower graph generated from a bearing-based Henneberg construction
(HCLFF). The Henneberg construction for undirected graphs were defined in the
Section 2.1. The operation of construction for directed graphs is quite similar to the
undirected graphs.

Definition 9. The directed Henneberg construction of directed graph starts from
a pair of vertices E1 and E2 and a directed edge 421. The graph G = (V, E) can be
enlarged by performing one of the following two operations:

1) Vertex addition: connect a new vertex E8 to G to any two existing vertices
E 9 , E: ∈ V. The extended graph G′ can be expressed by V′ = V ⋃{E8} and
E′ = E ⋃{48 9 , 48: }.

2) Edge splitting: Suppose three vertices E 9 , E: , E; ∈ V and 4 9 : ∈ E. A new vertex
E8 can be connected to E 9 , E: , E; by deleting edge 4 9 : . The extended graph G′

can be expressed by V′ = V ⋃{E8} and E′ = E ⋃{4 98, 48: , 48;} \ {4 9 : }.

Figure 10 shows the procedure to construct a directed graph by Henneberg con-
struction. Then, in Figure 11, the difference between the undirected graph and
directed graph generated from Henneberg construction can be identified.

The Henneberg construction can now be used to build the so-called leader-first-
follower graphs generated from Henneberg construction, which is defined as follow-
ing.

Definition 10 (LFF Graphs). A directed graph is a leader-first-follower graph gen-
erated from Henneberg construction (HCLFF graph) if

8) there is a vertex with no outgoing edges, denoted as the leader, assigned the
label E1;

E1 E2

(a) Starting graph.

E1 E2

E3

(b) Vertex addition.

E1 E2

E3 E4

(c) Edge splitting.

Figure 10: Illustrating examples for Henneberg construction of directed graphs.
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E1 E2

E3E4

E5E6

(a) An undirected graph generated from
Henneberg construction.

E1 E2

E3E4

E5E6

(b) A directed graph generated from Hen-
neberg construction.

Figure 11: Illustrating examples for Henneberg construction.

88) there is a vertex with only one outgoing edge pointing to the leader, denoted
as the first follower assigned the label E2;

888) every vertex other than the leader and first follower has exactly two outgoing
edges;

8E) for every directed edge 48 9 , the label 8 > 9 .

From the condition (8E) of Definition 10, all the edge starts from an vertex with
larger label and points to a vertex with smaller label. Based on which, we define
the following notation.

Definition 11. For a directed edge 48 9 , if 8 < 9 , it is denoted as a backward edge.
If 8 > 9 , it is denoted as a forward edge.

In other words, all the edges in the HCLFF graph are forward edges. Thus, we
regard that the structure is ordered, which is the main property of HCLFF graph.

Figure 12 is given to shown the orderliness of the HCLFF graph. It can be
verified that all the edges are in the same direction (from right to left).

Recall that in Section 2.1 we introduced that the Henneberg construction helps
to generate the Laman graph, which ensures the generic bearing rigidity of the graph.
This property also holds for the directed construction [29] for the directed graphs
too. For a target bearing formation (G, g), whose underlying graph is a HCLFF

E1 E2 E3 E4 E· · ·

Figure 12: An example of a HCLFF graph.
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graph, the bearing formation (G, g) is IBR if the attached target bearing vector g is
not in a special set of measure zero. Particularly for the HCLFF graph, the bearing
vector g is not in the set of measure zero if the outgoing edges of each agent are not
parallel. Furthermore, the target configuration satisfying the IBR target formation
can be uniquely defined if the underlying graph is HCLFF graph.

Lemma 2 ([29]). If the graph G is HCLFF, then the target framework (G, p) sat-
isfying the IBR target formation (G, g) can be uniquely determined by the leader’s
position ?1(C0) and the distance between the leader and first follower 321(C0). More
specifically, the target position for each agent can be calculated using the following
set of equations (in order),

p1 = ?1(C0)
p2 = p1 − 321(C0)g21

p8 =
©­«
∑
9∈N8

%g8 9
ª®¬
−1 ©­«

∑
9∈N8

%g8 9p 9
ª®¬ , for 8 = 3, · · · , =.

As an explanation, the initial position of the leader and the initial distance be-
tween the leader and first follower determines the translation and scale of the target
framework. Once the target position for the leader and first follower is determined,
the target position for the other agents can be geometrically obtained by their two
outgoing edges.

The Bearing-Only Control Law for Directed Sensing.

Previously, the bearing-only formation control with directed sensing is well de-
fined as (13). We have also displayed the definition and property of the HCLFF
graph. In the work [29], they investigated how the bearing-only formation control
works with the HCLFF graph as the directed sensing.

The main property of the HCLFF graph is the orderliness. It implies that all the
outgoing edges of agent E8 point to the agents with smaller label. In other words,
the agent E8 can only acquire the bearing measurement relative to the agents with
label smaller than 8.

Consequently, the complete bearing-only formation control system can be written
as



¤?1
¤?2
¤?3
...

¤?=


=



D1(?1)
D2(?1, ?2)

D3(?1, ?2, ?3)
...

D= (?1, ?2, ?3, · · · , ?=−1, ?=)


. (14)
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Here, D8 = −∑
9∈N8

%68 9g8 9 is the control for each agent. In Appendix A, the stability
theory of cascade systems is introduced in detail. Obviously, the triangular structure
appears in (14). By the stability theory of cascade system, we are able to decompose
the system and perform the equilibrium and stability analysis one equation at a time.

The convergence of the nonlinear cascade system (14) is given in [29, Thm. 1].

Theorem 4 ([29]). For a multi-agent system on a HCLFF graph, the bearing-only
formation control law (12) asymptotically drives the MAS to the target configuration
p determined by the IBR target formation (G, g) from almost any initial configuration
?(C0).

We will briefly explain the proof of Theorem 4 in the following paragraphs. The
investigation of the cascade system (14) starts with the leader and first follower.
The leader stays at its initial position, which is also the target position ?∗1 = p1 =

?1(C0). The distance between the leader and first follower 321 is invariant. The first
follower moves in a trajectory of a circle with ?1 as the center. Two equilibrium
?∗20 = ?∗1 − 321g21 and ?∗21 = ?∗1 + 321g21 exists.

For the agents other than LFF, they have exactly two outgoing edges. Consider
agent E3 as an example. The relevant dynamic equation is

¤?3 = −%631g31 − %632g32.

The equilibrium of ?3 is a function of ?1 and ?2, which takes the form as

?3 = (%631 + %632)−1 (
%631 ?1 + %632 ?2

)
.

From the previous analysis, we find two groups of equilibrium for LFF. Therefore,
agent E3 has two equilibrium ?∗30 and ?∗31 corresponding to (?∗1, ?∗20) and (?∗1, ?∗21)
separately.

By induction, the other agents are analyzed in the same way as agent E3. The
whole system has two sets of equilibrium stated as ?∗0 and ?∗

1
. The equilibrium ?∗0

is exactly the unique configuration satisfying the target formation (?∗0 = p) and ?∗
1

is symmetric to ?∗0 with respect to ?∗1.

Figure 13 concisely demonstrates the relation between the two equilibrium. In
the work [29], the stability of equilibrium is proved by the stability theorem of
cascade structure. The desired equilibrium ?∗0 is an almost globally asymptotically
stable equilibrium, while the other equilibrium ?∗

1
is unstable.
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?1?∗20 ?∗21

?∗30

?∗31

g21 −g21

g32
g31

−g32
−g31

Figure 13: Illustration graph for the equilibrium ?∗0 and ?∗
1
.

?1?2

?3

?4 ?5

?6

(a) The target bearing forma-
tion.

(b) System trajectories. (c) Bearing error along the
system trajectories.

Figure 14: Simulation: Exerting BOFC on the MAS with target bearing formation
in LFF formation generated from Henneberg construction.

Example 2. Figure 14a shows the target formation, which is an LFF formation
generated from the directed Henneberg construction. In Figure 14b, it can be found
that the leader E1 stays at the initial condition and the first follower E2 moves as
an arc. All the other agents converges to the final configuration satisfying the target
bearing formation. Figure 14c shows that the error between the target bearing vector
and the current bearing vector asymptotically converges to zero.
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3 Bearing Formation Control with Extended LFF
Graphs

As we introduced in the previous chapter, the BOFC on directed graphs was studied
in [29]. The directed graph they analyzed is the LFF structure generated from
Henneberg construction. With such directed graph and appropriate target bearing
measurement (satisfying Assumption 1), the bearing-only formation control protocol
is able to bring the MAS to the target formation from almost any initial condition.
In this research, we are interested in expanding a more general condition on the
directed sensing graph such that the MAS still converges to the target formation.

3.1 Problem Motivation
In this section, we aim to motivate the expansion on the condition of directed sens-

ing along with some illustrative numerical simulations. The graph to be generalized
is the HCLFF graph. In Definition 10, we required four properties for the HCLFF
graph, indicating that HCLFF just represents a restrictive class of directed graphs.
There are many directed graphs not satisfying the properties of HCLFF graph. We
are interested if the formation control problem can still be solved with more general
graphs.

Example 3. Consider the target formation in Figure 15a. Observe that the under-
lying graph is not a HCLFF graph since some of the follower nodes have more than
two outgoing edges. On the other hand, all the edges in light blue show a subgraph
that is a HCLFF graph. The trajectories of the BOFC system (13) with this sens-
ing graph are shown in Figure 15b. It can be seen that the agents converge to the
desired formation shape and the bearing error converge to the zero, indicating that
this sensing graph structure can still solve the formation control problem.

Example 4. Consider the target formation in Figure 16a. Observe that the un-
derlying graph is an extension of the HCLFF graph with all the edges in light blue

?1?2

?3

?4 ?5

?6

(a) The target formation. (b) Trajectory of BOFC with
directed target formation as
15a.

(c) Bearing error along the
system trajectories.

Figure 15: The first trial of graph expansion.
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?1?2

?3

?4 ?5

?6

(a) The target formation. (b) Trajectory of BOFC with
directed target formation as
16a.

(c) Bearing error along the
system trajectories.

Figure 16: The second trial of graph expansion.

showing a subgraph that is a HCLFF graph. Nonetheless, with extra forward edges
(blue edges) and backward edges (orange edges) included in this graph, the orderli-
ness in the graph is broken and there exists more than two outgoing edges for the
agents. The trajectories of the BOFC system (13) with this sensing graph are shown
in Figure 16b. It can be seen that the agents converge to the desired formation
shape and the bearing error converge to the zero, indicating that this sensing graph
structure can still solve the formation control problem.

Example 5. Consider the target formation in Figure 17a. Its underlying graphs
contains a leader and a first follower and the HCLFF graph is not contained as a
subgraph. The trajectory of the BOFC (13) with such target formation is shown
in Figure 17b. We can conclude that the BOFC (13) does not drive the system to
the target formation. From Figure 17c, it can be found the bearing error actually
converges to zero. The main reason is that this target formation does not meet the
requirement of bearing rigidity.

Example 6. Consider the target formation in Figure 18a. The underlying graphs

?1?2

?3

?4 ?5

?6

(a) The target formation. (b) Trajectory of BOFC with
directed target formation as
17a.

(c) Bearing error along the
system trajectories.

Figure 17: The third trial of graph expansion.
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?1?2

?3

?4 ?5

?6

(a) The target formation. (b) Trajectory of BOFC with
directed target formation as
18a.

(c) Bearing error along the
system trajectories.

Figure 18: The forth trial of graph expansion.

contains a leader and a first follower. However, the HCLFF graph can not be found
as a subgraph. The trajectory of the BOFC (13) with this sensing graph and the
bearing error along the trajectory are shown in Figure 18b and Figure 18c. We can
conclude that the BOFC (13) does not solve the formation control problem (Problem
2) with such sensing graph.

3.2 Formulation of Principle Problem
The principle problem investigated in this research is now presented. The multi-

agent control system is built with arbitrary number of agents. The sensing condition
of the system is directed and been described by a directed graph G = (V, E). The
target formation (G, g) composed of the sensing graph G and a target bearing set g
should be IBR (satisfy the Assumption 1). The following problem is the main task
of the thesis.

Problem 3. Given a target bearing formation (G, g) over a directed graph G sat-
isfying Assumption 1 and the initial framework (G, ?(C0)), determine the condition
for the sensing graph G such that the bearing-only formation control law (13) drives
the system to target formation, i.e.,

lim
C→∞

6(C) = lim
C→∞

�� (?(C)) = g.

 

 

 



Bearing-only Formation Control with Directed Sensing 33

3.3 BOFC on System with 1 Follower and Many Leaders (1-to-Many)
One of the most important properties of the LFF formation generated from Hen-

neberg construction is that there are at most two outgoing edges for each agent. In
the last section, we presented some idea of graph extension, in which more outgoing
edges exist for some agents. Before working on a more general setup, we begin with
a single agent with more than two outgoing edges.

In this section, we will define a simple system, in which there is only one agent
able to sense other agents during the motion. The rest of agents in the MAS cannot
obtain any information of measurements. All the agents in MAS are controlled by
bearing-only formation control law, leading that only one agent is moving and other
agents are fixed. Thus, we call this system as a one degree of freedom system (1-to-
many system). With the equilibrium analysis on the simple system, we aim to find
out how the BOFC works on each single agent.

Problem Formulation.

In this section, we will formally define the 1-to-many system. Consider the MAS
with = + 1 agents modeled by a single integrator (9). The first = agents E1, · · · , E=
will all be considered as leaders, and consequently do not move in this setting. We
denote this vertex set for the leaders as V0 = {E1, · · · , E=}. The last agent which
allowed to move is denoted as E2. The complete control system can be expressed as

¤?8 = 0,∀E8 ∈ V0

¤?2 = D2,
(15)

where the control of agent 2 is the bearing-only control used in (12).

The directed sensing graph of the MAS G = (V, E) is shown in Figure 19 and
consists of |V| = |V0 | + 1 = = + 1 agents and |E | = = edges. All = edges start from
agent 2 and point to the = leader agents. Note that |N8 | = 0,∀E8 ∈ V0 and N2 = V0.

After establishing the sensing graph, the next step is to settle the target bear-
ing formation. In the common bearing formation problem (Problem 2), the target
bearing vector g satisfies the Assumption 1. We stick with this assumption in the
1-to-many system.

Assumption 3. For the target bearing formation (G, g), there exists a configuration
p satisfying all the bearing measurement in g (i.e., g8 9 =

p 9−p8

‖p 9−p8 ‖ ,∀48 9 ∈ E) and
p8, p 9 , p2 are not collinear for any two agents E8, E 9 ∈ V0.

Note that Assumption 3 is different from Assumption 1. In Assumption 3, the
configuration satisfying the target formation is assumed to be infinitesimally bearing

E1 E2 · · · E=

E2

Figure 19: Sensing graph for the 1-to-many control system with |V| = = + 1 agents.
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rigid since we hope the shape of target formation can be uniquely defined by the
target bearing vector. Here in Assumption 3, the sensing graph of the 1-to-many
system is not generically bearing rigid, indicating that there will not be any IBR
framework satisfying the target formation. Nonetheless, if = ≥ 2, the position of the
agent E2 can be uniquely defined with the fixed agents.

Moreover, since the leader agents do not move in the 1-to-many system, their
final position is determined by their initial condition. Thus, an assumption on the
initial condition of the fixed agents should be made according to the target bearing
formation.

Assumption 4. For the initial position of the fixed agents {?1(C0), · · · , ?= (C0)}, there
exists a target position p2 for the controlled agent E2, such that the configuration
? = [?1(C0)) , ?2(C0)) , · · · , ?= (C0)) , p)2 ]) satisfies all the bearing measurement in the
target bearing formation (G, g).

As discussed before, the target position p2 can be uniquely defined with the
Assumption 4.

Lemma 3. For the 1-to-many system with at least two leaders (i.e., = ≥ 2), if the
target formation (G, g) satisfies Assumption 3 and the initial condition of the fixed
agents satisfies Assumption 4, then the target position of the controlled agent p2 is

p2 =

(
=∑
8=1

%g28

)−1 (
=∑
8=1

%g28 ?8 (C0)
)
.

Proof. The target position p2 along with the initial condition of the fixed agents
should satisfy the target bearing formation, i.e.,

%g28 (?8 (C0) − p2) = 0,∀8 = 1, · · · , = (16)

From (16), if follows that
=∑
8=1

%g28 (?8 (C0) − p2) = 0. (17)

It can be simplified as (
=∑
8=1

%g28

)
p2 =

(
=∑
8=1

%g28 ?8 (C0)
)
. (18)

Consider two non-parallel vectors G ∈ Rd, H ∈ Rd and their projection matrices
%G , %H. From the property of projection matrix (7), their kernel space is Null(%G) =
span{G},Null(%H) = span{H}. Since G is not parallel with H, the subspace

Null(%G)
⋂

Null(%H) = span{G}
⋂

span{H} = {0}.
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In addition, the projection matrix is always positive semi-definite. The kernel space
of two positive semi-definite matrices is the intersection of the kernel space of these
two matrices (i.e., Null(%G + %H) = Null(%G)

⋂
Null(%H)). Thus, the space Null(%G +

%H) = {0}, implying that %G + %H is invertible.

As the same reason, the matrix
(∑=

8=1 %g28
)

is invertible because g28 ≠ g2 9 ,∀8, 9 =
1, . . . , = holds with the target bearing vector g satisfying Assumption 3. Followed
by equation (18), the target position p2 is obtained as Lemma 3. �

Along with the collision avoidance assumption (Assumption 2), the problem can
be formulated as following, which is the main work of this section.

Problem 4. For the system with one follower and many leaders, given a target bear-
ing formation (G, g) satisfying Assumption 3 and the initial framework (G, ?(C0)),
determine whether the bearing-only formation control law (13) drives the system to
target formation, i.e.,

lim
C→∞

6(C) = lim
C→∞

�� (?(C)) = g.

Equilibrium Analysis of System with 1 Follower and Many Leaders.

Apply the bearing-only formation control law (12) on the 1-to-many system (15).
The system dynamic can be expressed as

¤?8 = 0,∀E8 ∈ V0

¤?2 = −
=∑
9=1

%62 9g2 9 .
(19)

The number of outgoing edges for agent 2, which is also the number of all the
edges in E, directly affects the complexity of Problem 4. We can, however, solve
the problem for the simpler cases. Note that the case with zero outgoing edge is
degenerate. According to the number of agents (|V| = = + 1) or edges (|E | = =),
the problem should be separated to two special cases: 8) = ≤ 2, and 88) = > 2. We
analyze them below.

Less Than Two Outgoing Edges (= ≤ 2) The first two cases have already been
worked out in [29]. We present the main result from [29] with the proof given in
Appendix B.

Lemma 4 ([29]). For the system (19) with = = 1, the distance 321 is invariant during
the full motion. There are two equilibrium for the system. The first equilibrium ?∗20 =

?1−321g21 is almost globally asymptotically stable. The second one ?∗
21

= ?1+321g21
is unstable.

Lemma 5 ([29]). For the system (19) with = = 2, there is a unique equilibrium point
?∗2 = (%g21 + %g22)−1(%g21 ?1 + %g22 ?2) and it is global asymptotically stable.

 

 

 



Bearing-only Formation Control with Directed Sensing 36

More Than Two Outgoing Edges (= > 2) Consider the dynamic equation of
agent 2 as shown in (19), from which it can be observed that the control protocol is
expressed explicitly by the current bearing 6 and target bearing g,

¤?2 = D2 (6, g) = −
=∑
9=1

%62 9g2 9 . (20)

In the formation control problem, the target bearing vector g satisfying Assump-
tion 3 is primarily defined. The equilibrium analysis aims to find the bearing vector
6 satisfying the equilibrium condition ¤?2 = D2 (6, g) = 0 according to the target
bearing g. Meanwhile, as a bearing vector, every bearing measurement in 6 must be
a unit-norm vector. In addition, the bearing vector should also be realizable with
the underlying graph G. Thus, the set X(G, g) including all the bearing vectors 6

satisfying these requirements can be defined as the intersection of three sets:

X(G, g) = X4@ (G, g)
⋂

C=>A<

⋂
CA40;8I01;4 (G) (21)

with

X4@ (G, g) = {G ∈ R2|E | : ¤? = D(G, g) = 0}; (22)

C=>A< =

6 =


61
...

6|E |

 ∈ R2|E | : ‖6: ‖ = 1,∀: = 1, · · · , |E |

 ; (23)

CA40;8I01;4 (G) = {6 ∈ R2|E | : ∃? ∈ R2|V|, such that 6 = �� (?)}. (24)

With more than two terms in
∑=

9=1 %62 9g2 9 , it becomes much more difficult to
obtain a simple and meaningful solution from the the nonlinear system. The analyt-
ical method used to prove Lemma 5 is not practical. The sum −∑=

9=1 %6∗
2 9

g2 9 equals
to zero can not conclude each additive term %6∗

2 9
g2 9 ,∀ 9 = 9 , · · · , = equals to zero.

From the control system (19), it can be found the control law is linear in the
target bearing g but nonlinear in the bearing measurement 6. Thus, we alter the
problem as following which helps to analyze equilibrium set X4@.

For the agent E2 controlled as (20) with = ≥ 2, suppose that the target bearing
g is unknown, nonetheless, the current configuration ? is given and the current
bearing measurement 6 can be obtained by �� (?). This time, we aim to determine
the target bearing vector g leading the control input D2 (6, g) to be zero. As before,
the target set can be expressed by the intersection of three sets:

Y(G, 6) = Y4@ (G, 6)
⋂

C=>A<

⋂
CA40;8I01;4 (G), (25)

where

Y4@ (G, 6) = {y ∈ R2|E | : ¤? = D(6, y) = 0}. (26)

Before working out Y(G, 6), we want to explain the relation between Y(G, 6)
and X(G, g).
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Lemma 6. Assume that 6, g ∈ C=>A<

⋂CA40;8I01;4 (G). Then the following statements
hold:

i) g ∈ X(G, g);

ii) 6 ∈ Y(G, 6).

Proof. Lemma 6 can be verified by the property of projection matrix, %GG = 0. When
6 = g, the control input (20) D2 (6, g) = −∑=

9=1 %62 9g2 9 equals to zero, indicating
that g ∈ X4@ (G, g) and 6 ∈ Y4@ (G, 6). Furthermore, the bearing vectors 6 and
g are assumed to be in set C=>A<

⋂CA40;8I01;4 (G). It is sufficient to conclude that
g ∈ X(G, g) and 6 ∈ Y(G, 6). �

These solutions which always exist in the equilibrium set are called the desired
solutions since it meets the requirement of the formation control problem (Problem
2). It should be mentioned that actually when 62 9 = ±g2 9 for every components of
the bearing vectors 6 and g, the control input (20) D2 (6, g) = −∑=

9=1 %62 9g2 9 equals
to zero due to the property of the projection matrix. However, these combinations
may not exist in CA40;8I01;4 (G) for the sensing graph G in 1-to-many system.

Lemma 7. In the 1-to-many system, if Y(G, 6) = {6} for any bearing vector
6 ∈ C=>A<

⋂ CA40;8I01;4 (G), then X(G, g) = {g} for any target bearing vector g ∈
C=>A<

⋂CA40;8I01;4 (G).

Proof. We aim to prove the lemma by contradiction. Suppose for X(G, g), there
exists another element g′, other than the desired element g. That is, assume
X(G, g) = {g, g′}, indicating that ¤?2 = D2 (g′, g) = 0. Now, consider Y(6 = g′). It in-
cludes at least two elements: g′, g, since D2 (g′, g′) = 0 always holds and D2 (g′, g) = 0
as shown in the last paragraph. The existence of the second element for Y(g′)
contradicts the assumption. �

With the Lemma 6 and Lemma 7, we obtained that the desired solution g always
exists in the equilibrium set X(G, g) and it would be the only element if Y(G, 6) =
{6}.

In the following paragraphs, we aim to find out whether there exists other ele-
ments for set Y(G, 6). It is defined as the intersection of three sets (25), thus, the
analysis is proceeded with three steps: 8) find Y4@ (G, 6); 88) find Y4@ (G, 6)

⋂C=>A<;
888) find Y4@ (G, 6)

⋂C=>A<

⋂CA40;8I01;4 (G).

We start from looking for the elements in Y4@ (G, 6). Define %̃ as

%̃ =
[
%621 %622 · · · %62=

]
.
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Then (19) for agent 2 can be rewritten as:

¤?2 = −
=∑
9=1

%62 9g2 9 = %̃g. (27)

Any vector in the null-space of %̃ satisfies the equilibrium condition, which means

Y4@ (G, 6) = Null(%̃).

In 2-D space, %̃ is in the dimension of R2×2= and its rank is exactly 2. Thus, the
dimension of its null space is 2= − 2.

For every bearing measurement 6: = [(6: )G , (6: )H]) , we define its orthogonal
bearing measurement as 6⊥

:
= [−(6: )H, (6: )G]) such that 6)

:
6⊥
:
= 0. Then, we choose

the following orthogonal bearing vector to 6, 6⊥ = [(6⊥1 )) , · · · , (6⊥<)) ]) . Define
� ∈ R2=×= and �⊥ ∈ R2=×= as the block diagonal matrix of the bearing vector 6 and
its orthogonal vector 6⊥,

� = diag(6) =



621 0 0 · · · 0
0 622 0 · · · 0
0 0 623

. . . 0
...

...
. . .

. . .
...

0 0 0 · · · 62=


; (28)

�⊥ = diag(6⊥) =



6⊥
21 0 0 · · · 0
0 6⊥

82
0 · · · 0

0 0 6⊥
23

. . . 0
...

...
. . .

. . .
...

0 0 0 · · · 6⊥2=


. (29)

It is obvious that Range(�) and Range(�⊥) are orthogonal to each other. The
direct sum of these two range space Range(�) ⊕ Range(�⊥) is exactly the R2=×2=

space. The following lemma shows some property of � and �⊥ with respect to %̃.

Lemma 8. Consider � and �⊥ defined in (28) and (29) respectively. Then

i) %̃� = 02×=;

ii) %̃�⊥ =
[
6⊥
21 6⊥

22 · · · 6⊥2=
]
.

Proof. The proof follows by direct construction. For part 8) , we have that %628628 =

02 implies

%̃� =
[
%621621 %622622 · · · %62=62=

]
=

[
02 02 · · · 02.

]
= 02×=.

 

 

 



Bearing-only Formation Control with Directed Sensing 39

Similarly, for 88) we have %6286
⊥
28
= 6⊥

28
implies

%̃�⊥ =
[
%6216

⊥
21 %6226

⊥
22 · · · %62=6

⊥
2=

]
=

[
6⊥
21 6⊥

22 · · · 6⊥2=
]
.

�

Lemma 8(8) indicates that Range(�) ⊂ Null(%̃). As discussed previously, the
dimension of Null(%̃) should be 2= − 2. The columns of � helps to determine =

basis vectors of Null(%̃) and there are (= − 2) basis vectors left to be determined.
These basis vectors should be orthogonal to �, which can be expressed by the linear
combination of the columns of �⊥.

Consider the matrix %̃�⊥ =
[
6⊥
21, 6

⊥
22, · · · , 6⊥2=

]
∈ R2×=. Define # ∈ R=×(=−2)

which spans the null space of %̃�⊥, i.e., %̃�⊥# = 02×(=−2), from which it can be
shown that �⊥# is in the null space of %̃. The dimension of �⊥# is in R2=×(=−2),
which is exactly the rest of the basis vectors. Thus, we conclude that

Null(%̃) = Range(�) ⊕ Range(�⊥#).

The equilibrium set Y4@ (G, 6) is included in the null space of %̃ which is well
defined by the columns of the matrix � and �⊥#. Thus, the target bearing vector
g belonging to the equilibrium set Y4@ (G, 6) can explicitly expressed by the linear
combination of these column vectors,

Y4@ (G, 6) = {g : g = �0 + �⊥#1,∀0 ∈ R=, 1 ∈ R=−2}, (30)

where 0 = [01, · · · , 0=]) and 1 = [11, · · · , 1=−2]) are vectors of coefficients. We can
also express the target bearing g = �0 + �⊥#1 of each edge individually as

g28 = 08628 +
(
=−2∑
9=1

1 9#8 9

)
6⊥28 . (31)

The second procedure is to find its intersection with C=>A<. From the definition
of 628 and 6⊥

28
, these two vectors are perpendicular to each other. The norm can be

calculated as

‖g28‖ =
(
08628 + (

=−2∑
9=1

1 9#8 9 )6⊥28

)) (
08628 + (

=−2∑
9=1

1 9#8 9 )6⊥28

)
= 02

8 +
(
=−2∑
9=1

1 9#8 9

)2

= 1.

(32)

Eventually, the constraint of realizable bearing vectors CA40;8I01;4 (G) should be
taken into consideration. The set Y(G, 6) is determined by the current bearing
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vector 6, which is realizable and generated from the current configuration ? =

[?)1 , · · · , ?)= , ?)2 ]) . We denote the position of the fixed agent as ?0 = [?)1 , · · · , ?)= ]) .
During the full motion, the fixed agents stay at ?0.

For the target bearing vector g ∈ Y4@ (G, 6)⋂C=>A<, it is also realizable (i.e.,
g ∈ CA40;8I01;4 (G)) if there exists a target position pc for agent 2 such that the
configuration ? = [?)0 , p)2 ]) satisfies all the target bearing g.

Lemma 9. In the 1-to-many system, the bearing vector g ∈ Y4@ (G, 6)
⋂C=>A< is

realizable if and only if 0 = 1=, 1 = 0=−2. Equivalently,

Y(G, 6) = Y4@ (G, 6)
⋂

C=>A<

⋂
CA40;8I01;4 (G) = {6}.

Proof. It can be easily shown that 0 = 1=, 1 = 0=−2 indicates g = �0 + �⊥#1

is realizable. The main work is to prove that the realizablitiy of g = �0 + �⊥#1

requires 0 = 1=, 1 = 0=−2. We aim to prove by contradiction. Suppose that there
exist 0 ≠ 1=, and 1 ≠ 0=−2 such that the bearing vector g = �0 +�⊥#1 is realizable
(while the norm constraint is satisfied). The bearing vector g is realizable indicates
that there exists a position ?̄2 for agent E2, such that the configuration p = [?)0 , ?̄)2 ]
satisfies all the bearing vector g (i.e.,p = �−1

�
(6)).

The displacement measurement (introduced in Section 2.1) between ?2 and ?̄2 is
defined as I2̄2 = ?2 − ?̄2, it can also be rewritten as I2̄2 (8) = I2̄8 + I82,∀E8 ∈ V0 where
I2̄8 = ?8 − ?̄2 and I82 = ?2 − ?8. Moreover, we can express I2̄8 and I82 as

I2̄2 (8) = I2̄8 + I82

= 32̄8g28 − 328628

= (32̄808 − 328)628 +
(
=−2∑
9=1

1 9#8 9

)
32̄86

⊥
28 .

(33)

It can be observed that I2̄2 (8) is expressed by the pair of basis vectors 628, 6⊥28, for all
8 = 1, · · · , =. Multiplying on the left by I2̄2 (8)) of

(∑=−2
9=1 1 9#8 9

)
6⊥
28

gives

I2̄2 (8))
(
=−2∑
9=1

1 9#8 9

)
6⊥28 =

(
=−2∑
9=1

1 9#8 9

)2

32̄8 ≥ 0. (34)

The last inequality holds since the distance 32̄8 is in R>. This inequality holds
for all 8 = 1, · · · , =.

On the other hand, it should be mentioned that the following equation always
holds since (1)= ⊗ �2)�⊥ = %̃�⊥ = [6⊥

21, · · · , 6⊥2=],

(1)= ⊗ �2)�⊥#1 = %̃�⊥#1 = 02 ⇔
=∑
8=1

(
=−2∑
9=1

1 9#8 9

)
6⊥28 = 02 (35)
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Any vector multiplied by zero is zero, which leads to

I)2̄2

=∑
8=1

(
=−2∑
9=1

1 9#8 9

)
6⊥28 = 0 ⇔

=∑
8=1

(
[I2̄2 (8))

(
=−2∑
9=1

1 9#8 9

)
6⊥28

)
= 0. (36)

With each additive term I2̄2 (8))
(∑=−2

9=1 1 9#8 9

)
6⊥
28

greater or equal to zero (34), the
sum equals to zero (35) implies that each additive term should be exactly zero,
which requires that I2̄2 = 02 because the vectors 6⊥

28
,∀8 = 1, · · · , = are not collinear

with each other.

The displacement measurement I2̄2 = 02 indicates that

(32̄808 − 328)628 + (
=−2∑
9=1

1 9#8 9 )32̄86⊥28 = 02,∀8 = 1, · · · , =.

The basis vector 628 and 6⊥
28

are perpendicular to each other, thus, the coefficients
32̄808 − 328 and

∑=−2
9=1 (1 9#8 9 )32̄8 equal to zero individually.

With the distance 328 and 32̄8 taken in R>, we can conclude that 08 > 0 and∑=−2
9=1 1 9#8 9 = 0 for all 8 = 1, · · · , =. Moreover, all the columns of the matrix #

are linear independent, the matrix #1 = 0= requires 1 = 0=−2. Finally, the norm
constraint gives that 0 = 1=. �

As a conclusion, Lemma 9 shows that Y(G, 6) = {6}. Then, we can obtain
X(G, g) = {g} from Lemma 7. For the 1-to-many system with = > 2 outgoing edges
for agent 2 (19), the system reaches equilibrium when the current bearing vector 6

coincides with the target bearing vector g. The position ?∗2 can be uniquely defined
by the equilibrium condition 6∗ = g and the initial condition of the fixed agents,
which is ?∗2 =

(∑
9∈N8

%g8 9

)−1 (∑
9∈N8

%g8 9 ? 9 (C0)
)
. Combined with the positions of

the fixed agents, the equilibrium configuration can be expressed as: ?∗ = �−1
�

(g) =[
(?0(C0))) , (?∗2))

]
.

The last step is to determine the stability of equilibrium.

Lemma 10. The system equilibrium ?∗ =
[
(?0(C0))) , (?∗2))

]
is asymptotically stable.

In other words, in the 1-to-many system with more than two leaders, the agent E2

asymptotically converges to the equilibrium ?∗2 =
(∑

9∈N8
%g8 9

)−1 (∑
9∈N8

%g8 9 ? 9 (C0)
)
.
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Proof. Consider the Lyapunov function: + (C) = 1
2 ‖?2 (C) − ?∗2‖2. Then

¤+ = (?2 − ?∗2)) ¤?2

= −(?2 − ?∗2))
=∑
8=1

%6286
∗
28

= −(?2 − ?∗2))
=∑
8=1

%628

328
(?8 − ?∗2)

= −(?2 − ?∗2))
=∑
8=1

%628

328
(?8 − ?2 + ?2 − ?∗2)

= −(?2 − ?∗2))
(

=∑
8=1

%628

328
(?2 − ?∗2)

)
= −(?2 − ?∗2))

(
=∑
8=1

%628

328

)
︸      ︷︷      ︸

"

(?2 − ?∗2) ≤ 0.

(37)

The projection matrix %628 is positive semi-definite. Thus, the matrix " =∑=
8=1

%628

328
≥ 0, indicating ¤+ (C) ≤ 0 during the motion.

Moreover, ¤+ = 0 if and only if (?2 (C) − ?∗2) ∈ Null(" (C)), where the null space of
" can be considered in two cases:

8) If ?2 (C) is collinear with all the fixed agents, i.e., the bearing measurements
621, 622, · · · , 62= are parallel and the projection matrix %621 = %622 = · · · =
%62= , then the matrix " can be simplified as " = %621

(∑=
8=1

1
328

)
and the

space Null(") = {621} (7). From Assumption 3, any two target bearing
g28, g2 9 , E8, 9 ∈ V0 are not parallel, implying that ?∗2 = p2 is not collinear with
any two other fixed agents. Thus, (?2 (C) − ?∗2) is not parallel with the bearing
measurement 621 and (?2 (C) − ?∗2) is not in the space Null(" (C)).

88) If ?2 (C) is not collinear with all the fixed agents, i.e., there exists E8, 9 ∈ V0
such that ?2 (C), ?8, ? 9 are not collinear and the bearing measurements 628 and
62 9 are not parallel. The sum of the projection matrices %628 +%62 9 is invertible
and positive definite (see the proof of Lemma 3). With all the other additive
terms to be positive semi-definite, the matrix " is positive definite. In this
case, ¤+ = 0 if and only if ?2 (C) − ?∗2 = 0.

As a result, ¤+ (C) ≤ 0 and the equality holds when ?2 (C) reaches the equilibrium ?∗2.
Consequently, the equilibrium ?∗ =

[
(?0(C0))) , (?∗2))

]
is GAS. �

In conclusion, for the 1-to-many system with = > 2, the agent E2 asymptotically
converges to the target position which satisfies the target formation along with the
positions of the leaders.
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Next, we will illustrate the null space analysis of %̃ with an example.

Example 7. Consider the current configuration for the fixed agents and agent 2

shown in Figure 20. The current bearing measurement can be obtained as 621 =

[−1, 0]) , 622 = [−
√

2
2 ,−

√
2

2 ]) , 623 = [
√

2
2 ,−

√
2

2 ]) , 624 = [0, 1]) . Then, the orthogo-
nal vector to each bearing measurement can be expressed as 6⊥

21 = [0,−1]) , 6⊥
22 =

[
√

2
2 ,−

√
2

2 ]) , 6⊥
23 = [−

√
2

2 ,−
√

2
2 ]) , 6⊥

24 = [−1, 0]) .

The matrix # can be acquired by the null space of matrix[
6⊥
21 6⊥

22 6⊥
23 6⊥

24
]
=

[
0

√
2

2 −
√

2
2 −1

−1 −
√

2
2 −

√
2

2 0

]
.

The null space analysis gives that

# =


−
√

2 −1
1

√
2

1 0
0 1


.

Then, the basis vector of the subspace Null(%̃) can be determined by the columns
of matrices � and �⊥#

Null(%̃) = span



621
0
0
0




0
622
0
0




0
0
623
0




0
0
0
624



−
√

26⊥
21

6⊥
22

6⊥
23
0



−6⊥

21√
26⊥

22
0
6⊥
24



. (38)

The vector g satisfying ¤?2 = D2 (6, g) = 0 is in the subspace Null(%̃), which can
be expressed by the linear combination of the basis vectors as following with the
coefficients 08 and 1 9 ,

g21 = 01621 + (−
√

211 − 12)6⊥21
g22 = 02622 + (11 +

√
212)6⊥22

g23 = 03623 + 116
⊥
23

g24 = 04624 + 126
⊥
24

. (39)

?1

?2 ?3

?4

?2

Figure 20: The sensing graph and current configuration for the illustrating example.
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Or in matrix form,

g =
[
� �⊥#

] [
0

1

]
=


621 0 0 0
0 622 0 0
0 0 623 0
0 0 0 624



01
02
03
04


+


−
√

26⊥
21 −6⊥

21
6⊥
22

√
26⊥

22
6⊥
23 0
0 6⊥

24


[
11
12

]
. (40)

Constraints on the coefficients should be made to ensure the norm of each bearing
measurement to be 1,

01 = ±
√

1 − (−
√

211 − 12)2

02 = ±
√

1 − (11 +
√

212)2

03 = ±
√

1 − 12
1

04 = ±
√

1 − 12
2

Note that 11, 12 can only vary in the range assuring that 01, 02, 03, 04 are real.

A simulation example is performed to verify the analysis of the 1-to-many system
with more than two leaders.

Example 8. We choose to simulate the 1-to-many system with 5 outgoing edges for
agent E2. In this simulation, the target bearing is chosen as Figure 21a. The
positions of the leaders are chosen to satisfy the assumption 4, which is ?8 =[
cos

( 28
5 c

)
, sin

( 28
5 c

) ])
, for 8 = 1, · · · , 5. A target position of agent E2 can be localized

by target bearing vector g and the position of fixed agents ?0 as p2 = [0, 0]) . The
random initial position for agent E2 is taken as ?2 (C0) = [0.8147, 0.9058]) . Figure
21b depicts the trajectory and the final position of the agent 2, which demonstrates
that the agent 2 converges to the target position. Figure 21c then verifies that the
bearing error converges to zero asymptotically.

?2

?2

?3
?4

?5

?1

(a) The target bearing for-
mation. (b) System trajectories. (c) Bearing error along the

system trajectories.

Figure 21: Simulation result of bearing-only formation control system with target
bearing formation as Figure 21a.
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3.4 BOFC with LFF Graphs
In last section, we presented the idea to analyze the performance of each agent

individually. After acknowledging the behavior of 1-to-many system controller by
BOFC, we are well prepared to work on the system with more general sensing graphs.
In this section, we will propose some conditions on the directed graphs which solves
Problem 3 and then prove the MAS with such sensing graphs can be brought to the
target bearing formation by BOFC.

Ordered LFF Graphs.

Recall that in the Section 2.3, the leader first-follower graph generated from Hen-
neberg construction has been introduced. We use the abbreviation HCLFF graph
in the following text. The most essential property of HCLFF graphs is orderliness,
which directly leads to the occurrence of triangular structure in the system con-
trolled with BOFC. Applying the stability theorem of cascade system, the stability
analysis of equilibrium can be developed step by step.

A reasonable method to extend the universality is adding edge to the formation.
We prefer to keep the leader and first follower since it helps to uniquely define the
scale and position of the framework.

The HCLFF graph can be expanded by adding some additional edges to the
graph. The orderliness property is kept if and only if all the additional edges are
forward edges. If the orderliness still exists, the stability of equilibrium analysis can
be performed with the same method as introduced in Section 2.3.

Definition 12. An ordered LFF graph G is a directed graph such that

8) There exists a leader and a first-follower.

88) All the edges are forward edges.

888) Every vertex other than the leader and the first follower has at least two
outgoing edges.

In Section 3.1, Figure 15a shows an example of target bearing formation whose
underlying graph is ordered LFF graph. The ordered LFF graph consists of a
HCLFF subgraph and some forward edges. The extended ordered LFF graph is still
generically bearing rigid. For the target bearing formation (G, g) whose underlying
graph is ordered LFF graph, the target configuration p satisfying target bearing
vector g can be uniquely determined according to the HCLFF subgraph and the
initial condition of ?1(C0), 321(C0) (Lemma 2). On the other hand, since all the edges
are forward edges, the orderliness in the structure is remained. Note that for agent
E3, there are only two agents with smaller label, which are the leader E1 and first
follower E2. Owning at least two forward edges indicates that agent E3 has exactly
two outgoing edges towards agents E1 and E2.
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Theorem 5. The ordered LFF graphs solve Problem 3. In other words, the bearing-
only formation control (13) asymptotically drives the MAS with ordered LFF sensing
(Def. 12) to the target formation.

Before the proof of Theorem 5, we primarily show that the cascade structure still
occurs since the property of orderliness is maintained in the ordered LFF graph.

The whole multi-agent bearing-only formation control system with the ordered
LFF graph (as Figure 22) can be written as

¤?1
¤?2
¤?3
...

¤?=


=



D1(?1)
D2(?1, ?2)

D3(?1, ?2, ?3)
...

D= (?1, ?2, ?3, · · · , ?=−1, ?=)


, (41)

where D8 = −∑
9∈N8

%68 9g8 9 is the bearing-only formation control law. From the above
equations, it can be observed that the triangular structure appears.

Proof. The equilibrium and stability analysis can be performed step by step with
the order from the leader agent E1 to the last agent E=. For agent E1, there is no
outgoing edge. The corresponding dynamics are ¤?1 = D1 = 0, giving that the leader
is fixed at the initial position which is also the equilibrium for the leader ?∗1 = ?1(C0).

For the first follower (agent E2), its corresponding dynamic equation is ¤?2 =

D2(?1, ?2). Since the equilibrium position for agent E1 has already been determined
as ?∗1, the equilibrium analysis for the first follower E2 focuses on the following
system,

¤?2 = D2(?∗1, ?2) = −%621g21. (42)

The system is the 1-to-many system with one outgoing edge. The system conver-
gence is concluded in Lemma 4. Two equilibrium exist for agent E2, which are
?∗20 = ?∗1 − 321g21 = p2 and ?∗21 = ?∗1 + 321g21. The agent E2 will asymptotically con-
verges to the desired equilibrium ?∗20 if the initial condition ?2(C0) does not coincide
with ?∗21.

For the agents other than the leader and the first follower, all of them have at
least two forward edges, which can be dealt with the similar process. The analysis
of agent E3 is given in detail as an example for all these agents other than the LFF.

E1 E2 E3 E4 E5 E· · ·

Figure 22: Illustrating graph to show the orderliness in an ordered LFF graph.
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Agent E3 dynamics can be written as ¤?3 = D3(?1, ?2, ?3). The equilibrium for
agent E1 and E2 has been solved and divided into two possibilities as ?∗1, ?

∗
20 and

?∗1, ?
∗
21. The equilibrium analysis for agent E3 can be performed on the following

two systems individually:

system 3a: ¤?30 = D3(?∗1, ?∗20, ?30);
system 3b: ¤?31 = D3(?∗1, ?∗21, ?31).

The system 3a is the 1-to-many system with two outgoing edges. In this system,
agents E1 and E2 are fixed at ?∗1 and ?∗20. Its convergence has been concluded in
Lemma 5. There exists a unique GAS equilibrium ?∗30 = (%g31 + %g32)−1(%g31 ?

∗
1 +

%g32 ?
∗
20).

For system 3b, it is also the 1-to-many system with two outgoing edges. However,
Assumption 4 is not satisfied since the target bearing g31 and g32 is not realizable
with E1 and E2 fixed at ?∗1 and ?∗21. An illustration example is given in Figure
23. The Assumption 4 is not satisfied since there does not exist any position p3
such that the configuration ? = [(?∗1)) , (?∗21)

) , (p3)) ]) satisfies the target bearing
g31, g32. Thus, the result of 1-to-many system with two outgoing edges can not be
applied directly.

Consider another 1-to-many system denoted as system 3c. In system 3c, the
fixed agents (leaders) E1 and E2 locate at ?∗1 and ?∗21 and the follower agent E3 is
controlled by BOFC (13). The target bearing vector is chosen as g = [−g)31,−g)31])
such that the Assumption 4 is satisfied. Then, the dynamic of agent E3 in system
3c is

system 3c: ¤?32 = D3(?∗1, ?∗21, ?32) = %631631 + %632632.

The Lemma 5 can be applied to conclude that the system 3c has a unique GAS
equilibria at ?∗32 = (%g31+%g32)−1(%g31 ?

∗
1+%g32 ?

∗
21). On the other hand, the dynamics

of agent E3 in system 3b can be expressed as

¤?31 = D3(?∗1, ?∗21, ?31) = −%631631 − %632632.

Comparing with system 3c, the system 3b and system 3c are actually two au-
tonomous systems with completely opposite dynamic (i.e., ¤?31 = D(?31) and ¤?32 =

−D(?32)). Therefore, the system 3b and system 3c share the same equilibrium, which
means there exists a unique equilibria for system 3b at

?∗31 = ?∗32 = (%g31 + %g32)−1(%g31 ?
∗
1 + %g32 ?

∗
21)

.

Furthermore, it can be verified that if G∗ is a GAS equilibrium for system ¤G =

5 (G), then G∗ is an unstable equilibrium for system ¤G = − 5 (G). For this reason, the
equilibrium ?∗31 is unstable for the system 3b.
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?1?∗20 ?∗21

?∗30

?∗31 = ?∗32

g32
g31

−g32

g32

−g31

Figure 23: Illustration graph for the equilibrium of system 3a, 3b, 3c.

For the other agents, the analysis is similar to agent E3 and performed with
induction. Consider the agent E8, 8 ∈ {3, . . . , =}. Its equilibrium analysis can be
separated to

system 8a: ¤?80 = D8 (?∗1, ?∗20, · · · , ?∗(8−1)0, ?80)
system 8b: ¤?81 = D8 (?∗1, ?∗21, · · · , ?

∗
(8−1)1, ?81)

The system (8a) is a 1-to-many system with at least two outgoing edges. From
Lemma 5 and Lemma 10, there exists only one asymptotically stable equilibrium
?∗
80
=

(∑
9∈N8

%g8 9

)−1 (∑
9∈N8

%g8 9 ?
∗
90

)
to the system (8a).

The system (8b) is also an 1-to-many system with at least two outgoing edges.
The obstacle that the Assumption 4 is not fulfilled still occurs as with system 3b.
It can be handled with the same method. The equilibrium of system (8b) is ?∗

81
=(∑

9∈N8
%g8 9

)−1 (∑
9∈N8

%g8 9 ?
∗
90

)
, which is an unstable equilibrium. After the equilib-

rium analysis of all agents are carried out, the system equilibrium can be parted into
two group ?∗0 = [(?∗1)) , (?∗20)) , · · · , (?∗=0)) ]) and ?∗

1
= [(?∗1)) , (?∗21)

) , · · · , (?∗
=1
)) ]) .

As illustrated in Figure 24, the configuration ?∗0 satisfies all the target bearing
g and coincides with the target configuration p defined by the ?1(C0) and 321(C0).

?1 ?2

?3

?4?5

?6

(a) The target formation.

?∗
1 ?∗

20

?∗
30

?∗
40?∗

50

?∗
60

?∗
21

?∗
31

?∗
41 ?∗

51

?∗
61

(b) The equilibrium ?∗0 and ?∗
1

corre-
sponding to the target formation 24a.

Figure 24: Illustrating graph for the two groups of equilibrium.
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The configuration ?∗
1

satisfies the negative target bearing −g and it is symmetric
to the target configuration with respect to ?1(C0). The last step is to prove the
stability of the equilibrium. Recall the bearing-only formation control system with
the sensing graph described by ordered LFF graph stated in equation (41), the
stability theorem of cascade system (Theorem 6) can be applied again and again.
Firstly, for the subsystem

¤?1 = 0,

The equilibrium ?∗1 = ?1(C0) is stable.

For the subsystem ¤?2 = D2(?∗1, ?2), we obtained that ?∗20 is an almost GAS
equilibria. With the stability theorem of cascade system (Theorem 6), it can be
inferred that for the subsystem [

¤?1
¤?2

]
=

[
D1(?1)

D2(?1, ?2)

]
,

the equilibrium (?∗1, ?∗20) is almost GAS.

Next, we find that ?∗30 is the GAS equilibrium for system ¤?3 = D3(?∗1, ?∗20, ?3).
It indicates that for the subsystem

¤?1
¤?2
¤?3

 =


D1(?1)

D2(?1, ?2)
D3(?1, ?2, ?3)

 ,
the equilibrium (?∗1, ?∗20, ?∗30) is almost GAS.

The procedure can be repeated for the remaining subsystems ¤?8 = D8 (?1, . . . , ?8)
for 8 ∈ {4, . . . , =}. Consistent with all the agents, we have shown that ?∗

80
is the GAS

equilibrium for subsystem (8a). Eventually, it can be concluded that the equilibrium
?∗0 is almost GAS for the BOFC system (41) with ordered LFF sensing graph.

The stability of equilibrium ?∗
1

can be proved in the same way. The result
is that the equilibrium ?∗

1
is not stable mainly because all the equilibrium ?∗

81
is

unstable. Consequently, the BOFC system (41) with ordered LFF graph converges
to the target configuration p which satisfies the target bearing formation (G, g) in
an almost GAS manner. The ordered LFF graph solves the Problem 3. �

Along with the proof, we will present some numerical simulation for the BOFC
system with the ordered LFF graphs.

Example 9. For the multi-agent system of the numerical simulation, the target
formation is assigned as Figure 25a. Observe that the directed sensing condition is
expressed by an ordered LFF graph. The initial configuration of the system is chosen
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?1?2

?3

?4 ?5

?6

(a) The target bearing forma-
tion.

(b) System trajectories. (c) Bearing error along the
system trajectories.

Figure 25: Simulation result of bearing-only formation control system with target
bearing formation as Figure 25a.

randomly. For this particular example,

?(C0) = [(0.5000, 0.8660), (0.8763, 1.7925), (0.6551, 0.1626),
(0.1190, 0.4984), (0.9597, 0.3404), (0.5853, 0.2238)]) .

The agents are controlled with the distributed control scheme, bearing-only formation
control (12).

As shown in Figure 25b, the MAS converges to the target bearing formation.
Moreover, the Figure 25c indicates that the bearing error between the target bearing
and current bearing converges to zero asymptotically.

Disordered LFF Graph.

In Def. 12, the condition of the directed graph for Problem 3 is expanded by
adding forward edges. We still regard this extended class of directed graph as
not general enough. From Section 3.1, the second trail provides the feasibility of
occurrence of the backward edges.

Definition 13. A disordered LFF graph G is a directed graph such that:

8) There exists a leader and a first follower.

88) For each vertex other than the leader and the first follower, there exists at least
two forward outgoing edges.

The disordered LFF graph G always contains an HCLFF subgraph, implying that
G is generically bearing rigid. For the infinitesimally bearing rigid target bearing
formation (G, g) whose underlying graph G is disordered LFF graph, the configu-
ration p satisfying target bearing vector g can be uniquely determined according to
the HCLFF subgraph and the initial condition of ?1, 321.
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We now explore whether the disordered LFF graph is a solution to Problem 3.
With the bearing-only formation control law (13) applied on each agent distribu-
tively, the control system can be expressed as

¤? = D(6, g) = −�̃)
>DC diag(%6)g, (43)

where �̃>DC = �>DC ⊗ �d.

Compared with Def 12, the appearance of backward edges breaks the triangular
structure in the control system. The equilibrium analysis for the system (43) can
not be performed step by step.

In system (43), the control input is a function of target measurement and the
current measurement: ¤? = D(6, g). We aim to look for the equilibrium set X(G, g)
defined in the same way as (21). However, due to the nonlinearity and asymmetry
of the system, it is tedious to work out X(G, g). Again, we bring in Y(G, 6) to
deal with the nonlinearity. Similarly as in Section 3.3, the first step is to reveal the
relation between sets X(G, g) and Y(G, 6) with the sensing graph G satisfying Def
13. Then, we will proceed on the set Y(G, 6).

It can be discovered that the control law D(6, g) = �̃)
>DC diag(%6)g is a symmetric

function, i.e., it satisfies D(6, g) = D(−6, g). Moreover, the control law is linear in
the g, leading that D(6, g) = −D(6,−g). This property gives that if vector G is in
X4@ (G, g) or Y4@ (G, 6) then −G is in X4@ (G, g) or Y4@ (G, 6).

On the other hand, if the vector G is in C=>A<

⋂CA40;8I01;4 (G), then −G is also in
C=>A<

⋂CA40;8I01;4. Then, we can conclude that if G is in X(G, g) or Y(G, g) then −G
is in X(G, g) or Y(G, g), which means the elements of X(G, g) and Y(G, 6) appears
in pairs.

Lemma 11. Assume that 6, g ∈ C=>A<

⋂CA40;8I01;4 (G). Then the following state-
ments hold for any disordered LFF graph G:

i) {g,−g} ⊆ X(G, g);

ii) {6,−6} ⊆ Y(G, 6).

Proof. From the property of projection matrix (7), it can be inferred that %68 9g8 9 = 0
when 68 9 = ±g8 9 , or equivalently, g8 9 = ±68 9 . Thus, it can be determined that
{g,−g} ⊆ X4@ (G, g) and {6,−6} ⊆ Y4@ (G, 6).

On the other hand, if the vector 6 satisfies the norm constraint, meaning that
every component of 6 has norm 1, then the negative vector −6 also satisfies the
norm constraint. Moreover, if the vector 6 is realizable in Rd with the disordered
LFF graph G, indicating there exists configuration ? such that �� (?) = 6. It can
be verified that the vector −6 is also realizable with the configuration −? (i.e.,
�� (−?) = −6).
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As a result, the bearing vectors 6 and g are assumed to be in the set
C=>A<

⋂CA40;8I01;4 (G), leading to the fact −6,−g ∈ C=>A<

⋂CA40;8I01;4 (G). It can be
concluded that {g,−g} ⊆ X(G, g) and {6,−6} ⊆ Y(G, 6). �

Lemma 12. For any 6, g ∈ C=>A<

⋂CA40;8I01;4 and disordered LFF graph G, if
Y(G, 6) = {±6}, then X(G, g) = {g}.

Proof. The Lemma 12 is alike with Lemma 7, the proof can be accomplished by
contradiction. Suppose for set X(G, g), there exists another pair of elements ±G (i.e.,
{±g,±G} ⊆ X(G, g)), indicating that ¤? = D(±G, g) = 0 and ±G ∈ C=>A<

⋂CA40;8I01;4 (G).
Then, consider the set Y(G, G). Since 8) D(G, g) = 0; 88) g ∈ C=>A<

⋂CA40;8I01;4 (G);
888) the elements appear in couple, we have ±g in the set Y(G, G). Along with {±G},
it can be obtained that {±g,±G} ⊆ Y(G, G), which contradicts the assumption. �

In the following paragraph, the target is to find out the elements in the set
Y(G, 6), which is defined in the intersection of three sets: Y4@ (G, 6), C=>A< and
CA40;8I01;4 (G). For any realizable bearing vector g, there exists a configuration p ∈
R2= and a distance vector d ∈ R< with d: > 0,∀: = 1, · · · , <, such that g = �� (p) =(
diag(d)−1 ⊗ �d

)
�̃p.

Note that the condition d: = ‖z: ‖ = ‖(�: ⊗ �d)p‖ should be required for the
components of the distance vector, where �: is the :-th row from the incidence
matrix �. Moreover, the vector in Y4@ (G, 6) can be generated from the space
Null

(
�̃)

>DC diag(%6)
)
. Combining these conditions, it can be summarized that if

there exists a configuration p satisfying

p ∈ Null
(
�̃)

>DC diag(%6)
(
diag(d)−1 ⊗ �d

)
�̃

)
, (44)

then, the bearing vector g = �� (p) is in the set Y(G, 6).

Lemma 13. For the directed formation (G, 6) over disordered LFF graph G,

Null
(
�̃)

>DC diag(%6)
(
diag(d)−1 ⊗ �d

)
�̃

)
= span{1= ⊗ �d, ?}.

Proof. The Lemma 13 is dependent with two properties of the directed formation
(G, 6) over disordered LFF graph G. The first one is that the directed formation
(G, 6) is IBR since the underlying graph G is generically bearing rigid and the
bearing vector 6 is assumed to be not in the set of measure zero. In section 2.1, we
showed that the following holds for IBR formation

Null(diag(%6)�̃) = span{1= ⊗ �d, ?}. (45)

The second property of interest is the bearing kernel equivalence investigated by
work [24], a brief introduction of this property can be found in Appendix C. The
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main result of bearing kernel equivalent formation is discussed in Corollary 3. It
can be summarized that for the formation (G, 6) over disordered LFF graph,

Null(�̃)
>DC diag(%6)�̃) = Null(diag(%6)�̃). (46)

Then, some trick of linear algebra is applied here.

Corollary 2. Suppose that � ∈ R?×@, � ∈ R@×? and � ∈ R@×@ is a full rank diagonal
matrix. The following statements are equivalent:

8) Null(�)⋂ Range(�) = {0@}

88) Null(��) = Null(�)

888) Null(�)⋂ Range(��) = {0@}

8E) Null(���) = Null(��)

E) Null(���) = Null(�)

Proof. For any matrix multiplication ��, the null space of matrix �� can be ex-
pressed as the vector space Null(��) = {G ∈ R? : ��G = 0?}. Thus, the vector
G ∈ Null(��) can be determined with two approaches. Firstly, any vector G in
Null(�) (i.e., �G = 0@) is also in Null(��) since ��G = �0@ = 0?. The second
approach is that the vector G is in Null(��), if the vector �G ∈ Range(�) is also in
Null(�) (i.e., �(�G) = 0?).

(8 ⇔ 88) From the above paragraph, it can be inferred that Null(�) ⊆ Null(��).
Moreover, Null(�) = Null(��) if and only if no vector can be generated from the
second approach, or mathematically, Null(�)⋂ Range(�) = {0@}.

(888 ⇔ 8E) The proof is exactly the same as (8 ⇔ 88).

(8 ⇔ 888) Since the matrix � is a full rank diagonal matrix, it can be ob-
tained that Range(�) = Range(��). Therefore, Null(�)⋂ Range(�) equals to
Null(�)⋂ Range(��) and statement 8 is equivalent to statement 888.

(8E ⇔ E) Since the matrix � is a full rank diagonal matrix, its null space
Null(�) = {0@}. Then, Null(�)⋂ Range(�) = {0@} always holds. As proved
(8 ⇔ 88), this implies Null(��) = Null(�) is always true. So the statement 8E

(Null(���) = Null(��)) is equivalent to statement E (Null(���) = Null(�)). �

Recall in Corollary 3 and Equation (46), the directed formation over disor-
dered LFF graph is bearing kernel equivalent, meaning that Null

(
�̃)

>DC diag(%6)�̃
)
=

Null
(
diag(%6)�̃

)
. It coincides with the statement (88) where matrix � = �̃)

>DC ∈
R=3×<3 and � =

(
diag(%6)�̃

)
∈ R<3×=3. Let the matrix

(
diag(3)−1 ⊗ �d

)
which is a
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full rank diagonal matrix in R<3×<3 take the role as �. With the statement (E), it
can be inferred that

Null
(
�̃)

>DC

(
diag(3)−1 ⊗ �d

)
diag(%6)�̃

)
= Null

(
diag(%6)�̃

)
(47)

Moreover, the matrix
(
diag(3)−1 ⊗ �d

)
and matrix diag(%6) commute, since both

matrices are symmetric and their product is also symmetric (the product of a di-
agonal matrix and a symmetric matrix is symmetric). Thus, we can switch their
position in matrix multiplication, i.e.,

�̃)
>DC

(
diag(3)−1 ⊗ �d

)
diag(%6)�̃ = �̃)

>DC diag(%6)
(
diag(3)−1 ⊗ �d

)
�̃. (48)

With the equations (45), (47), (48), it can be proved that

Null
(
�̃)

>DC diag(%6)
(
diag(d)−1 ⊗ �d

)
�̃

)
= span{1= ⊗ �d, ?}.

�

With Lemma 13, the configuration p satisfying condition (44) can be determined
in the subspace span{1= ⊗ �d, ?}. Furthermore, the bearing vector in the set Y(G, 6)
can be found by g = �� (p). For any configuration p in span{1= ⊗ �d, ?}, the bearing
function will lead to g = �� (p) = ±6. Therefore, the bearing vectors 6 and −6 are
the only elements in the equilibrium set Y(G, 6). Followed by that, the Lemma 12
refers that the equilibrium set

X(G, g) = {g,−g}.

As we discussed, the configuration p corresponding to the bearing vector can be
uniquely determined according to the HCLFF subgraph and the initial condition of
?1, 321. We denote ?∗0 and ?∗

1
as the equilibrium configuration satisfying bearing

vector g and −g separately.

Lemma 14. For the bearing-only formation control system (13) with directed sensing
described with disordered LFF graph (Def. 13), the equilibrium ?∗

1
is unstable.

Proof. The stability of equilibrium ?∗
1

can be proved with stability theorem of cas-
cade structure. With a leader and a first follower, the nonlinear control system can
be separated into two subsystems,[

¤?1
¤?2

]
=

[
D1(?1)

D2(?1, ?2)

]
(49)

¤?3
...

¤?=

 =


D3(?1, ?2, ?3, · · · , ?=)

...

D= (?1, ?2, ?3, · · · , ?=)

 . (50)
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The configuration ?∗
1
= [?∗1

) , ?∗21
) , ?∗31

) , · · · , ?∗
=1

) ]) is one of the equilibrium of the
whole system. The part [?∗1

) , ?∗21
) ]) is one of the equilibrium of system (49). And

the rest part [?∗31
) , · · · , ?∗

=1
) ]) is the equilibrium of system (50) with ?1, ?2 fixed

at ?∗1, ?
∗
21.

From the stability theorem of cascade structure, the equilibrium ?∗
1

is GAS, if
[?∗1

) , ?∗21
) ]) is GAS for system (49) and [?∗31

) , · · · , ?∗
=1

) ]) is GAS for system (50)
with ?1, ?2 fixed at ?∗1, ?

∗
21. However, the Lemma 4 shows that the equilibrium

[?∗1
) , ?∗21

) ]) is not stable for system (49). So the configuration ?∗
1

is not stable for
the whole system. �

To find the convergence of bearing-only formation control system with disordered
LFF sensing graph, we still need to determine the stability of the other equilibrium
?∗0.

Conjecture 1. For the bearing-only formation control system (13) with directed
sensing described with disordered LFF graph (Def. 13), the configuration at equilib-
rium ?∗0 is almost globally asymptotically stable.

Unfortunately, we didn’t manage to find the appropriate way to prove this conjec-
ture mathematically. Since the cascade structure does not appear in the bearing-only
formation control system with disordered LFF sensing graph, we can not apply the
theorem of cascade system (Theorem 6) to prove Conjecture 1. Thus, the preferable
method is prove with a suitable Lyapunov function. This method should work, but
it is difficult since the BOFC system (13) with directed sensing is strongly nonlinear
and asymmetric.

In the following, we show by example that Conjecture 1 seems to hold.

Example 10. For this numerical simulation, the target formation is assigned as
Figure 26a. The directed sensing condition is expressed by a disordered LFF graph
shown as the underlying graph of the target formation. The initial configuration of

?1?2

?3

?4 ?5

?6

(a) The target bearing forma-
tion.

(b) System trajectories. (c) Bearing error along the
system trajectories.

Figure 26: Simulation result of bearing-only formation control system with target
bearing formation as Figure 26a.
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the system is chosen randomly. For this particular example,

?(C0) = [(0.5000, 0.8660), (1.4469, 1.1875), (0.5060, 0.6991),
(0.8909, 0.9593), (0.5472, 0.1386), (0.1493, 0.2575)]) .

The agents in the system are controlled with bearing-only formation control with
directed sensing (12). As shown in Figure 26b, the MAS converges to the target
bearing formation, which coincides with the equilibrium ?∗0. Moreover, the Figure
25c indicates that the bearing error between the target bearing and current bearing
converges to zero asymptotically.

As a conclusion, the bearing-only formation control system with the disordered
directed sensing has exactly two equilibrium. The undesired equilibrium is unstable,
while the desired equilibrium seems to be asymptotically stable.
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4 Conclusion and Open Questions

In this chapter, we conclude the work conducted for this thesis and also suggest
some future orientation following our results.

4.1 Conclusion
In Section 3.3, we presented the 1-to-many control system which is a simpler

bearing-only formation control problem with directed sensing. The analysis of the
motion was performed according to different numbers of outgoing edges. We pro-
posed the scheme to work out the equilibrium for the nonlinear bearing-only for-
mation control system. The result is that in the 1-to-many system with arbitrary
leaders, the follower agent asymptotically converges to the position satisfying the
target bearing.

In Section 3.4, we discussed some different approaches for expansion of directed
sensing graph such that the bearing-only formation control still works. We firstly
extended the HCLFF graph to ordered LFF graph (Def. 12) with the orderliness in
structure maintained. The stability theorem of cascade nonlinear system helps to
simplify the convergence analysis of the BOFC system. Then, we proposed the dis-
ordered LFF graph (Def. 13) which breaks the orderliness. The equilibrium analysis
was performed with the similar method as 1-to-many system. Although the stabil-
ity of system equilibrium was partially determined, we provided some simulation
results showing that the disordered LFF graph actually solves the main problem
of this research (Problem 3). As a result, the BOFC system with either ordered
LFF sensing graph or disordered LFF sensing graph converges asymptotically to
the target formation from almost every initial conditions.

4.2 Open Questions
In Section 3.4, the research focuses on the condition of graph with a leader and a

first follower which helps to uniquely define the configuration satisfying the target
formation. The situation that the graph does not contain a leader and a first follower
is still an open question. The ultimate target of this thesis is to determine whether
the bearing-only formation control can drive the system to the target formation with
an arbitrary directed sensing graph. In this direction, the future work can focus on
the problem with varying (or dynamic) sensing condition. Extra control effort may
be utilized on the sensors of agents to hold the sensing condition inside the class
that bearing-only formation control works. The work [28] offers an example on the
MAS with two agents.

On the theoretical side, we suggest that common conditions for the directed
graphs is generically bearing rigidity and bearing kernel equivalence. The exist-
ing works presented that the leader-first-follower graph generated from Henneberg
construction is a basic graph satisfying these two common conditions. Actually,
these conditions belong to the bearing rigidity theory on directed graphs. Although
the bearing rigidity theory has been developed completely on undirected graphs as
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introduced in Section 2.1, the theory on directed graphs is not well-defined.

Finally, in this work we illustrated that for bearing-only formation control system
with disordered LFF graph, the equilibrium corresponding to the target formation
is the only equilibrium possible to be stable. The simulations also implied that the
system would converge to the target bearing. The relating proof should be given in
future work.
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Appendices

A Stability of Cascade Dynamical Systems

The stability of cascade dynamical system sis widely applied in control theory. In
this section, we summarize the version presented in [36, Thm 4.1]. Consider the
nonlinear triangular system

¤G = 5 (G) (51)

¤H = 6(G, H), (52)

where the variables G ∈ R: ; H ∈ R< and the functions 5 : R: → R: , 6 : R==:+< →
R<. The variable of the space R= = R:+< is denoted by I = [G) , H) ]) . It is assumed
that the function 5 and 6 satisfy local Lipschitz conditions and that all solutions
exist ∀C ≥ 0.

Suppose that 5 (G∗) = 0, implying that G∗ is an equilibrium of subsystem (51).
Then, fix G = G∗ in subsystem (52) as follows,

¤H = 6(G∗, H). (53)

Denote H∗ as the equilibrium of system (53), satisfying 6(G∗, H∗) = 0. Then, I∗ =

[G∗) , H∗) ]) will be an equilibrium of system (51) and (52).

Theorem 6. If G∗ is global asymptotically stable(GAS) for (51) and H∗ is GAS for
system (53), then I∗ is GAS for the triangular system (51) and (52).

The proof of the theorem can be accessed by Lyapunov function techniques [37].
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B Proof of the Equilibrium Analysis of 1-to-many
System with One or Two Outgoing Edges

B.1 One Outgoing Edge Case
In the case that there is only one leader for the controllable agent, the control

system can be expressed as:
¤?2 = −%621g21 (54)

The equilibrium analysis has been well performed in [29]. The result is described in
lemma 4. The detailed proof is shown below.

Proof. First, we can verify the invariance of 321 along the system trajectories. Con-
sider its derivative,

3

3C
32
21 =

3

3C
(I)21I21)

= 2I)21 ¤I21
= 2I)21( ¤?1 − ¤?2)
= 2I)21%621g21
= 0.

(55)

Consequently, 321 is not varying, or equivalently, the trajectory of agent 2 should
belong to a circle with radius 321 and center ?1.

With the system stated in (54), the equilibrium is reached when ¤?2 = −%621g21 =

0. The property of projection matrix implies that

6∗21 = ±g21. (56)

Along with the conclusion on the trajectory of agent 2, there exists two equi-
librium. The first equilibrium ?∗20 = ?1 − 321g21 satisfies the condition 6∗

21 = g21,
meaning that the bearing measurement reaches the target. Thus, ?∗20 is denoted as
the desired equilibrium. The second equilibrium ?∗

21
= ?1 + 321g21 satisfies the con-

dition 6∗
21 = −g21, which is not desired in the formation control problem (Problem

2).

Consider the Lyapunov function +0 = 1
2 | |?2 − ?∗20 | |2 and +1 = 1

2 | |?2 − ?∗
21
| |2. It

can be verified that +0 and +1 are positive semi-definite. The Lyapunov function
equals to zero (+0 = 0 or +1 = 0) if and only if agent E2 locates on the corresponding
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equilibria (?2 = ?∗20 or ?2 = ?∗
21

). Along a trajectory of system (54),

¤+0 = (?2 − ?∗20)) ¤?2
= −(?2 − ?∗20))%621g21
= −[(?2 − ?1) + (?1 − ?∗20)])%621g21
= −(?1 − ?∗20))%621g21
= −321(g∗21))%621g21 ≤ 0

(57)

Similarly,
¤+1 = 321(g∗21))%621g21 ≥ 0. (58)

The last inequality holds since the projection matrix is always positive definite.
¤+0 = 0 if and only if ?2 = ?∗20 or ?2 = ?∗

21
. Thus, ?∗

21
is unstable and ?∗20 is almost

globally asymptotically stable due to LaSalle’s principle.

�

B.2 Two Outgoing Edge Case

With two outgoing edges (pointing to agents E1 and E2), the dynamics of agent
E2 can be expressed as

¤?2 = −%621g21 − %622g22. (59)

As before, the system convergence is concluded in Lemma 5.

Proof. The equilibrium of the system should satisfy

−%6∗
21

g21 − %6∗
22

g22 = 0 (60)

By multiplying −6∗)
21 on the left, we have 6∗)

21

(
%6∗

21
g21 + %6∗

22
g22

)
= 6∗)

21%6∗
22

g22 = 0.
This equation holds if and only if 6∗

21 = ±6∗
22 or 6∗

22 = ±g22. The first condition
6∗
21 = ±6∗

22 can be satisfied unless g21 is parallel with g22, which contradicts with
assumption ??. On the other hand, 6∗

21 = ±g21 can be obtained by substituting
the second condition 6∗

22 = ±g22 back to (60). Thus, the equilibrium condition for
equation (60) can be simplified as:

6∗21 = ±g21, 6∗22 = ±g22 (61)

Geometrically, 6∗
21 = g21 and 6∗

22 = g22 is the only realizable combination in R3.
Then, we can locate the equilibrium ?∗2 at (%g21 + %g22)−1(%g21 ?1 + %g22 ?2).
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Consider the Lyapunov function + = 1
2 | |?2 − ?∗2 | |2, which is positive definite,

radially bounded and continuously differentiable. Along the trajectory, we have

¤+ = (?2 − ?∗2)) ¤?2
= −(?2 − ?∗2)) (%621g21 + %622g22)

= −(?2 − ?∗2))
(
%621

3∗
21

I∗21 +
%622

3∗
22

I∗22

)
= −(?2 − ?∗2))

[
%621

3∗
21

(?1 − ?2 + ?2 − ?∗2) +
%622

3∗
22

(?2 − ?2 + ?2 − ?∗2)
]

= −(?2 − ?∗2))
(
%621

3∗
21

+
%622

3∗
22

)
(?2 − ?∗2) ≤ 0

(62)

The inequality holds since
(
%621
3∗
21

+ %622
3∗
22

)
is positive semi-definite. Moreover, ¤+ = 0

if and only if when the system reaches equilibrium (i.e., ?2 = ?∗2). (A relating proof
can be found in [29], it is also similar with the proof of Lemma 10. �
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C Bearing Kernel Equivalence of Directed Forma-
tions

The work [24] focuses on a property of directed formations called bearing kernel
equivalence. The notion of bearing equivalence emerges as one of the key properties
to critically affect stability and convergence of bearing-based formation systems
(defined in the following paragraphs) modelled by directed graphs.

In this research, the bearing kernel equivalence is applied to prove Lemma 13.
In this section, we will briefly define this property. The introduction starts from the
bearing-based formation control system with undirected sensing,

¤?8 = D8 = −
∑
9∈N8

%g8 9 (?8 − ? 9 ). (63)

Its matrix form is expressed as,

¤? = D = −!�?, (64)

where !� = �̃) diag(%6)�̃ is called the bearing Laplacian matrix over undirected
formation (G, 6).

In the work [17], they showed that the bearing-based formation control strategy
(64) solves the bearing formation control problem with undirected sensing (Problem
1) mainly because

Null(!�) = Null('�) = span{1= ⊗ �d, ?}. (65)

As we introduced in Section 2.2, the bearing-only formation control 11 also solves
the bearing formation control problem with undirected sensing (Problem 1). These
main differences between these two control strategies are 8) BOFC requires only
the bearing measurement, while the bearing-based formation control applies the
relative position measurement as well; 88) BOFC is a nonlinear control scheme, but
the bearing-based formation control is linear.

Later, the bearing-based formation control system was also developed for di-
rected sensing graphs,

¤? = D = −!̄�?, (66)

where !̄� = �̃)
>DC diag(%6)�̃ is the bearing Laplacian matrix over directed formation

(G, 6). In the work [24], they pointed out that the key to determine whether bearing-
based formation control strategy (66) solves the bearing formation control problem
with directed sensing (Problem 4) is if the bearing Laplacian matrix over directed
formation !̄� satisfies the kernel space condition (65) like the undirected version.
Thus, they define the bearing kernel equivalence as following:

Definition 14 ([24]). A directed formation (G, 6) is bearing kernel equivalent if
Null( !̄�) = Null('�) = span{1= ⊗ �d, ?}.
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The work [24] then proposed some conditions for the formations to be bearing
kernel equivalent.

Corollary 3 ([24]). The directed formations over disordered LFF graphs are bearing
kernel equivalent, i.e.,

Null( !̄�) = Null('�) = span{1= ⊗ �d, ?}.

Or equivalently,

Null(�̃)
>DC diag(%6)�̃) = Null(diag(%6)�̃) = span{1= ⊗ �d, ?}.

The presented Corollary 3 was one of the results concluded in [24]. With this
corollary, we can prove the Lemma 13.
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Hebrew Abstract 

 

תזה זו חוקרת את הבעיה  של בקרת תצורה, שמטרתה להניע מערכת מרובת סוכנים  

להשיג תצורה מרחבית רצויה. מוצעת סכמת שליטה  שנקראת בקרת  תצורה על  סמך זוויות  

לפתרון הבעיה הזו. הבקר  הזה קיבל עניין מחקרי מכיוון שהוא דורש ומחיל רק מדידות זוויות  

 בין הסוכנים, במקום מדידות מרחק. 

 

אחת מההגבלות של בקרת תצורה על סמך זוויות הינו תנאי החישה שננקוב  בו. עבודות  

ראשונות חקרו מקיפית  את הבקר הזה בהנחה על חישה לא מופנה בין הסוכנים, שנחשב   

כתנאי לא ריאליסטי. מאמץ מחקרי יותר עדכני התמקד בבעיה עם חישה מופנה, כאשר 

אך לא בהכרח להפך. מחקר חדש הראה כי החוק לשליטה   j יכול לחוש את הסוכן i הסוכן

על פי זוויות בלבד עובד גם עם קובצה מסוימת של גרפים של  חישה מופנה שנקראים  

על סמך זוויות בלבד.. זהו צעד   Henneberg שנוצרים מבניית  (LFF) ""מנהיג-ראשון- עוקב 

מהותי הלאה מההנחה הקודמת של גרפים לא מופנוים למשפחת גרפים מופנים  מצומצמת.  

על בסיס זה, המטרה של  העבודה היא להרחיב   את  התוצאות לתנאים כלליים יותר על 

 מגרפי חישה מופנות שבהן בקרת הזוויות בלבד מצליחה.

 

על מנת להשיג זאת,  אנו ננתח תחילה מערכת מרובת  סוכנים עם סוכן  נע יחיד שמבוקר על  

סמך זוויות בלבד. המטרה היא לקבוע האם הסוכן הנע יתכנס למיקום רצוי המקיים  את כל  

הזוויות המטרה המצוינות,  למספרים שונים של קשתות יוצאות )סוכנים שהוא יכול לחוש(.  

האתגר העיקרי הוא למצוא נקודות שיווי משקל של  מערכת לא לינארית זו. הגישה שלנו 

מתמקדת בניתוח של בעיה  לינארית  קשורה וביצוע הקישור לנקודות שיווי משקל של  

המערכת הלא לינארית.  לאחר הגדרת נקודות השיווי  משקל של המערכת,  אנו  מבצעים גם  

ניתוח יציבות המראה כי הסוכן הנע מתכנס למיקום  הרצוי. תוצאה זו מאפשרת  לנו להרחיב  

שבהן לסוכנים  עוקבים  יכולים   LFF את משפחת הגרפים שפותרות  את הבעיה לגרפים

להיות יותר מ- 2 קשתות חיישה יוצאות. אנו מבצעים ניתוחי  יציבות והתכנסות  עבור מקרה 

זה. אנו חוקרים גם הרחבה נוספת של משפחת הגרפים ונניח כי תנאי מספיק לפתרון בעיית  

הנחה זו מאומתת   .LFF בקרת התצורה כללית  יותר הוא שיש קיום  תת-גרף  שהוא גרף

 באמצעות בסימולציות. 

 

 

 



מערכות  המחקר בוצע בהנחייתו של פרופסור דניאל זלזו, בפקולטה  
 .אוטונומיות ורובוטיקה

 
מחבר/ת חיבור זה מצהיר/ה כי המחקר, כולל איסוף הנתונים, עיבודם 

 והצגתם, התייחסות והשוואה למחקרים 
קודמים וכו’, נעשה כולו בצורה ישרה, כמצופה ממחקר מדעי המבוצע לפי 

 העולםאמות המידה האתיות של 
האקדמי. כמו כן, הדיווח על המחקר ותוצאותיו בחיבור זה נעשה בצורה ישרה  

 .ומלאה, לפי אותן אמות מידה
 

 .אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי
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