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Abstract

Cooperative control and multi-agent networks have been subject to extensive
research over the last few years, exhibiting both a rich theoretical framework
as well as a wide range of applications. In this venue, researchers have tried
to establish a unified theory for networks of dynamical systems. Two recurring
themes that appear in many theories include graph theory and energy-based
control, i.e. the notion of passivity. Passivity was first applied to the world of
multi-agent systems by Arcak, and since then many different variants of passiv-
ity were suggested to tackle cooperative control problems, including incremental
passivity and equilibrium-independent passivity (EIP).

In 2014, Bürger, Zelazo and Allgöwer introduced the notion of maximally
equilibrium-independent passive systems (MEIP), in which passivity with re-
spect to all steady-state inputs is assumed, and the collection of all steady-state
input-output pairs is a monotone relation. They showed that the steady-state
limit of a diffusively-coupled multi-agent network, with MEIP agents and con-
trollers, can be found by solving a pair of dual network optimization prob-
lems, known as the optimal potential and optimal flow problems, which have
been studied in the field of network optimization for decades. Thus a network
optimization framework for analysis of multi-agent systems was established.
However, it has a few main drawbacks. First, it requires the agents to be
single-input-single-output systems, limiting the application to many real-world
systems. Second, it requires that the agents are passive with respect to any
steady-state they possess, excluding systems like generators and other passive-
short systems. Lastly, the result they present is purely an analysis result, giving
no method for synthesizing controllers.

The research presented in this thesis confronts all three problems. First,
the notion of MEIP is extended to include multiple-input-multiple-output sys-
tems by applying the notion of cyclically monotone relations introduced by
Rockafellar, and a generalized version of the network optimization framework is
presented. Second, networks with passive-short agents are treated. In this case,
the associated network optimization problems are non-convex, and it is shown
that convexifying them results in a passivizing transformation for the agents,
validating the augmented network optimization framework. Lastly, we apply
the framework to solve various problems in cooperative control, including final-
value synthesis, model-free synthesis, network identification, and fault detection
and isolation.
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Table of Notation

In this dissertation, we will also use the following notation:

Notation Meaning

|A| The cardinality (size) of the set A.
R The set of real numbers.
Q The set of rational numbers.
Z The set of integers.

0, 0d The all-zero vector of length d.
1, 1d The all-one vector of length d.
ei The i-th standard basis vector.
Idd The identity matrix of size d× d.
ker(A) The kernel of the linear transformation A.
Im(A) The image of the linear transformation A.

U⊥ The orthogonal complement of the linear subspace U .
ProjU The orthogonal projection operator on U .
A⊗B The Kronecker product of the matrices A and B.
||x|| The Euclidean norm of the vector x.
A ≥ B The matrix A−B is positive semi-definite.
A > B The matrix A−B is positive-definite.
σ(A) The minimal singular value of A
σ(A) The maximal singular value of A
λmin The minimal eigenvalue of A
λmax The maximal eigenvalue of A

V A set of vertices.
E A set of pairs of vertices, called edges.
G = (V,E) A graph G with vertices V and edges E.
E , EG The incidence matrix of the graph G.
EG,d The incidence operator EG,d = EG ⊗ Idd on the graph G.
λ2(G) The algebraic connectivity of the graph G.

Σi The i-th agent in a multi-agent system.
Σ The collection of all agents in a multi-agent system.
Πe The e-th controller in a multi-agent system.
Π The collection of all controllers in a multi-agent system.
(G,Σ,Π) A diffusively coupled system with agents Σ, controllers Π, and in-

teraction graph G.
MΣ,ΣM The cascade of the dynamical system Σ and the linear map M .

∇F The gradient of the function F .
Hess(U) The Hessian matrix of the function U
∂F The subgradient of the function F .
Cq The space of functions which are continuously differentiable q times.

ID The indicator function of the set D, defined as

{
0 x ∈ D
∞ x 6∈ D

.

Ic The indicator function of the set D = {c}.
K? The Legendre transform of the function K, defined as K?(y) =

supu{y>u−K(u)}.
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Notation Meaning
O(f) A function g growing no faster than f in the specified limit, i.e.

lim sup
x→∞

g(x)
f(x)

<∞ or lim sup
x→x0

g(x)
f(x)

<∞, depending on the context.

o(f) A function g growing strictly slower than f in the specified limit,

i.e. lim
x→∞

g(x)
f(x)

= 0 or lim
x→x0

g(x)
f(x)

= 0, depending on the context.

Ω(f) A function g growing no slower than f in the specified limit, i.e.

lim inf
x→∞

g(x)
f(x)

> 0 or lim inf
x→x0

g(x)
f(x)

> 0, depending on the context.

ω(f) A function g growing strictly faster than f in the specified limit,

i.e. lim
x→∞

g(x)
f(x)

=∞ or lim
x→x0

g(x)
f(x)

=∞, depending on the context.

Θ(f) A function g growing as fast as f in the specified limit, i.e.

lim inf
x→∞

g(x)
f(x)

> 0 and lim sup
x→∞

g(x)
f(x)

< ∞, or lim inf
x→x0

g(x)
f(x)

> 0 and

lim sup
x→x0

g(x)
f(x)

<∞, depending on the context.

Moreover, italicized letters (e.g. yi(t) or yi) will denote time-dependent signals,
whereas normal font letters (e.g. yi) will denote constant vectors. We will also
use the following acronyms:

Acronym Meaning
CM Cyclically Monotone
EIP Equilibrium-Independent Passive (or Passivity)
EIPS Equilibrium-Independent Passive Short
EI-IPS Equilibrium-Independent Input-Passive Short
EI-IOPS Equilibrium-Independent Output-Passive Short
EI-OPS Equilibrium-Independent Input- and Output-Passive Short
FDI Fault Detection and Isolation
GNSS Global Navigation Satellite System
HROPP Hybrid Regularized Optimal Potential Problem
I/O Input/Output
IP Incremental Passivity
LTI Linear and Time-Invariant
MEICMP Maximally Equilibrium-Independent Cyclically Monotone Pas-

sive (or Passivity)
MEIP Maximally Equilibrium-Independent Passive (or Passivity)
MIMO Multiple-Input Multiple-Output
NROPP Network-Regularized Optimal Potential Problem
ODE Ordinary Differential Equation
OFP Optimal Flow Problem
OPP Optimal Potential Problem
PQI Projective Quadratic Inequality
ROPP Regularized Optimal Potential Problem
SISO Single-Input Single-Output
TF Transfer Function
UAV Unmanned Aerial Vehicle
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Chapter 1

Introduction

1.1 Introduction and Focus

The study of cooperative control and multi-agent networks has been in the pin-
nacle of control research for the last few years, exhibiting both a rich theoretical
framework as well as a wide range of applications [83, 105, 107]. Examples in-
clude robotics [68], neural networks and neuroscience [18, 115, 127, 130], power
grids [2, 157], traffic engineering [8], gene regulation [54, 74], communication
networks [29, 112], physics [14, 156], ecology [94, 159], and even behavioral sci-
ences [126,177] and finance [87,102].

In this venue, researchers have tried to establish a unified theory for networks
of dynamical systems. Two recurring themes that appear in many theories in-
clude the study of graph theory, which emerged as an important tool in the
modeling and analysis of these systems [92], and passivity theory [75, 133], as
it brings a powerful framework to analyze the dynamic behavior of these inter-
connected systems. Passivity theory, a system-theoretic notion which is related
to energy conservation, is a widespread tool to synthesize controllers for a wide
range of control problems [4,10,78,93,147,151,160,166], including cyber-physical
systems, energy systems and robotics. It enables an analysis of the networked
system that decouples the dynamics of the agents in the ensemble, the struc-
ture of the information exchange network, and the protocols used to couple
interacting agents [6, 7].

Passivity for multi-agent systems was first pursued in [5], where it was used
to study group coordination problems. Several variants of passivity theory were
used in various contexts like coordinated control of robotic systems [32, 62],
synchronization problems [129,148], port-Hamiltonian systems on graphs [162],
distributed optimization [154], cyber-physical systems [4, 151], micro-grid con-
trol [40] and teleoperation of unmanned aerial vehicle (UAV) swarms [50].

One important variant of passivity particularly useful for the analysis of
multi-agent systems is equilibrium-independent passivity (EIP), introduced in
[64]. For EIP systems, passivity is verified with respect to any steady-state

5
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1.1. INTRODUCTION AND FOCUS

input-output pair, allowing one to show convergence results without specify-
ing the limit beforehand [144]. A generalization of this property, known as
maximal equilibrium-independent passivity (MEIP), was introduced in [23] for
single-input single-output (SISO) systems, allowing one to prove convergence
using energy methods for a much wider class of systems, including nonlinear
first-order integrators and other marginally-stable systems, which are not EIP.

The main result of [23] showed that the asymptotic behavior of these net-
worked systems is (inverse) optimal with respect to a family of network opti-
mization problems. In fact, the steady-state input-output signals of both the
dynamical systems and the controllers comprising the networked system can be
associated to the optimization variables of either an optimal flow or an optimal
potential problem; these are the two canonical dual network optimization prob-
lems described in [122]. Thus, [23] built a network optimization framework for
understanding problems in cooperative control and multi-agent systems, which
can give network-level intuition for handling these problems.

Although promising, the network optimization framework suggested in [23]
has several important drawbacks. First, it can only be applied to single-input-
single-output systems, and not to multiple-input-multiple-output (MIMO) sys-
tems, as the definition of MEIP relied on the notion of monotonicity, which
is not canonically extendable to multiple dimensions. Second, it requires the
agents to be passive (or even output-strictly passive) with respect to all steady-
state input-output pairs they possess, thus restricting the application of the
framework for many important cases. Third, the paper [23] describes an anal-
ysis result. For such analysis to be practically useful, one must also develop
synthesis procedures to design controllers for networked systems to achieve the
desired coordination goals.

This thesis aims to extend the network optimization framework for cooper-
ative control in order to cope with the challenges described above. There are a
few main tools that are used throughout the thesis. The tools of convex analysis
are repeatedly applied to move between steady-state equations for the multi-
agent systems and the associated network optimization problems. Namely, strict
convexity is used to verify uniqueness of the steady-state, subdifferential calcu-
lus is used to simplify nested optimization problems, and convex regularization
terms are used to cope with lack of passivity. Graph theory and algebraic graph
theory are also used throughout the thesis, as analyzing the underlying net-
work structure is vital for understanding the behavior of a multi-agent system.
Other tools are used in specific chapters of the thesis to solve specific problems.
First, the notion of cyclic monotonicity, which was first introduced by Rockafel-
lar in [119] is used to generalize the network optimization framework to MIMO
agents. Second, the notion of system transformation and feedback passivation
(or passification) is repeatedly used when dealing when passive-short agents.
Third, the notions of randomization and absolute continuity are used together
in some application examples, namely network detection and fault detection
and isolation, as it can be proved that certain algorithms work “with almost
any input,” but constructing a deterministic input that is valid for the algorithm
can be near-impossible and time-consuming. Other tools which are used more
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CHAPTER 1. INTRODUCTION

sparingly include group theory, field theory, computational complexity theory,
iterative control, Lyapunov stability, and matrix analysis.

Notation

First, we use some standard notation from set theory, as used in [44] . The
cardinality (or size) of a set A is denoted by |A|. The set R denotes the real
numbers, the set Q denotes the rational numbers, and the set Z denotes the
integers.

Second, we use standard notation from linear algebra and matrix analysis
[66]. The vector 0d denotes the d-dimensional zero vector. The vector 1d denotes
the d-dimensional all-ones vector. In both cases, the subscript may be omitted
when the dimension is clear. The vector ei will denote the i-th standard basis
vector, i.e., ei ∈ Rn and (ei)j = δij , where δij is Dirac’s delta. The identity
matrix of size d× d will be denoted Idd. Given a linear map A, we will denote
its kernel by ker(A) and its image as Im(A). If A is a map from a linear space
to itself, then we denote its minimal singular value by σ(A), and its maximal
singular value by σ(A). Similarly, if all of A’s eigenvalues are real, we’ll let
λmin(A) be the minimal eigenvalue of A, and λmax(A) be the maximal value of
A. For two matrices A,B, we’ll let A⊗B denote the corresponding Kronecker
product. If A,B are both square matrices of the same dimension, we’ll write
A ≥ B if A − B is positive semi-definite. Moreover, we’ll write A > B if
A − B is positive-definite. If U is a linear subspace of Rn, we’ll let U⊥ be
its orthogonal complement, and ProjU be the orthogonal projection on it .The
Euclidean norm of a vector x will be denoted by ‖x‖. Moreover, if X,Y are
two sets inside the same vector space, we let X + Y be their Minkowski sum,
defined as X + Y = {x+ y : x ∈ X, y ∈ Y }.

Next, we use some nomenclature from graph theory [15,57]. A graph G is a
pair G = (V,E), where V is the set of nodes and E is the set of edges. Each edge
e ∈ E consists of two vertices i, j ∈ V, and will be oriented arbitrarily, say from
i to j; we write e = (i, j) in this case. If there is an edge between i and j, we’ll
write i ∼ j. The incidence matrix EG of G is a |V|×|E| matrix such that for each
edge e = (i, j), (EG)ie = −1, (EG)je = 1 and all other entries in e’s column are
zero. In some cases, we’ll omit the subscript and refer to the matrix as E . Given
some positive integer d, the incidence operator EG,d is defined as the Kronecker
product EG,d = EG ⊗ Idd. The Laplacian of the graph G is defined as the matrix
EGE>G . This is a positive semi-definite matrix, and its second lowest eigenvalue
is denoted as λ2(G), which is known as the algebraic connectivity of the graph
G.

We also use notation from analysis and convex analysis [17, 121]. For a
smooth function F , we let ∇F be its gradient. We denote the collection of
all function which are q times continuously differentiable by Cq. If K is a
convex function, we let ∂K denote its subgradient, and let K? be its Legendre
transform, defined as K?(y) = supu{y>u−K(u)}. Moreover, for a set D we let
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1.2. BACKGROUND

ID be the corresponding indicator function, i.e.,

ID(x) =

{
0 x ∈ D
∞ x 6∈ D

.

For the set D = {c}, the corresponding indicator function will be denoted Ic.
Lastly, if Υ is some dynamical system and M is a linear map, we’ll denote

the cascade of M and Υ by MΥ or ΥM , where the rightmost operator is applied
first.

We also go over several acronyms repeatedly used throughout the thesis.
Namely, “ordinary differential equation” will be abbreviated as ODE, and “in-
put/output” will be abbreviated as I/O. Single-input single-output systems will
be called SISO systems, where multiple-input multiple-output systems will be
called MIMO systems. Lastly, linear and time-invariant systems will be denoted
as LTI systems, and their transfer function will be abbreviated as TF.

1.2 Background

In this section, we present the subject of network optimization, introduce the
network dynamic model used throughout the thesis, and present an overview of
the role of passivity in cooperative control.

1.2.1 Network Optimization

The field of network optimization is one of the gems of mathematics, lying at
the intersection of two major subjects - namely graph theory and optimization
theory. Network optimization deals with algorithmically finding optimal solu-
tions to optimization problems defined on graphs, e.g. shortest path problems,
maximal flow problems and routing problem [11,122]. Network optimization is
widely used in theoretical computer science, supply chain management, opera-
tions research and communication networks. This section presents the network
optimization notions required for this thesis .

Consider a graph G = (V,E) with an incidence matrix E . One classic example
of a network is an electrical network, in which the nodes are devices and the
edges are wires. A flow on a network is a vector µ = [µ1, ..,µ|E|]

>, which can
be thought of as a vector of electrical currents running through the edges. In
a similar fashion, we look at u = [u1, ...,u|V|]

> as a divergence vector, which
adds up the in/out flow through each node. In that setting, Kirchhoff’s current
law is represented by u + Eµ = 0. We can also think about y ∈ R|V| as the
potential of the network. To each edge e = (i, j) one can associate a potential
difference ζe = yj − yi. The stacked potential difference vector ζ ∈ R|E| can
also be expressed by ζ = E>y. These connections yield the conversion formula,
relating all four variables by y>u = −ζ>µ.

We consider a few important optimization problems over networks that will
each be given an interpretation in the cooperative control setting. The first

8

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



CHAPTER 1. INTRODUCTION

attempts to optimize the flow and divergence in a network, subject to a con-
servation of flow constraint. We present a flow tariff, giving a cost Cflow

e (µe)
to a flow of volume µe, and a divergence tariff, giving a cost Cdiv

i (ui) to each
divergence ui. In this case, one tries to minimize:

min
∑
i∈V
Cdiv
i (ui) +

∑
e∈E

Cflow
e (µe)

s.t. u + Eµ = 0
,

which is known as the optimal flow problem. If the tariffs are convex functions,
one can consider the dual problem, in the convex optimization sense. Indeed, if
one defines tariffs for tension and potential using the Legendre transform, one
obtains

Cpot
i (yi) = (Cdiv

i )?(yi) = minui

(
u>i yi − Cdiv

i (ui)

)
;

Cten
e (ζe) = (Cflow

e )?(ζe) = minµe

(
µ>e ζe − Cflow

e (µe)

)
.

This gives the dual problem, known as the optimal potential problem:

min
∑
i∈V
Cpot
i (yi) +

∑
e∈E

Cten
e (ζe)

s.t. E>y = ζ
.

Both of these problems are convex, and can be easily solved using gradient
descent or other convex optimization techniques. See Appendix A for more
details.

1.2.2 Diffusively Coupled Networks

We now present the network model used throughout this thesis, for which we will
find a connection to network optimization. We consider a population of agents
interacting over a network, described by the graph G = (V,E). The agents are
represented by the vertices V, and pairs of interacting agents are represented by
edges E. Each specific edge contains information about the coupling (i.e., the
controllers), which are allowed to be dynamic. We assume a diffusive coupling
structure, where the inputs to the edge controllers are the differences between
the outputs of the adjacent agents, and the control input of each agent is the
(directed) sum of the edge controller outputs.

Each agent in the network is modeled as a multiple-input multiple-output
(MIMO) dynamical system of the form

Σi :

{
ẋi(t) = fi(xi(t), ui(t),wi),

yi(t) = hi(xi(t), ui(t),wi)
i ∈ V, (1.1)

where xi(t) ∈ Rpi is the state, ui(t) ∈ Rd is the input, yi(t) ∈ Rd is the out-
put, and wi is a constant exogenous input. Note that each agent need not
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1.2. BACKGROUND

Figure 1.1: Block diagram of the diffusively-coupled network (G,Σ,Π).

have the same state dimension, but we require all agents have the same num-
ber of inputs and outputs, d. Let u(t) = [u1(t)>, . . . , u|V|(t)

>]> and y(t) =

[y1(t)>, . . . , y|V|(t)
>]> be the concatenation of the input and output vectors.

Similarly, x(t) ∈ R
∑|V|
i=1 pi is the stacked state vector, and w the stacked exoge-

nous input.
The agents are diffusively coupled over the network by dynamic systems that

we consider as the network controllers. For the edge e = (i, j), we denote the
difference between the outputs of the adjacent nodes as ζe(t) = yj(t)−yi(t). The
stacked vector ζ(t) can be compactly expressed using the incidence operator of
the graph as ζ(t) = E>G,dy(t). These, in turn, drive the edge controllers described
by the dynamics

Πe :

{
η̇e(t) = φe(ηe(t), ζe(t)),

µe(t) = ψe(ηe(t), ζe(t))
e ∈ E. (1.2)

These edge controllers regulate the relative output of the corresponding agents,
and can be implemented either by the agents, or using a central server commu-
nicating with the agents, e.g. using cloud computing. The output of these con-
trollers will yield an input to the nodal dynamical systems as u(t) = −EG,dµ(t),
with µ(t) the stacked vector of controller outputs. We denote the complete
network system by the triple (G,Σ,Π), where Σ and Π are the parallel intercon-
nection of the agent and controller systems, and G is the underlying network;
see Figure 1.1.

The diffusive coupling structure includes many types of networks, including
the Kuramoto model [43], traffic models [8], and neural networks [65]. We
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CHAPTER 1. INTRODUCTION

illustrate possible uses of diffusively-coupled networks in the following example.

Example 1.1. Consider the gradient system ẋ = −∇F (x), where

F (x) =
∑

(i,j)∈E

Fij(xi − xj),

and Fij are smooth C1 functions. This is an example of a diffusively coupled
network, where the agents are single integrators ẋi = ui, yi = xi, and the con-
trollers are static nonlinearities ∇Fij. This system drives the agents to minimize
the function F (x), and the agents converge to a local minimum of F .

First, consider the consensus problem, in which we want the agents converge
to a state in which xi = xj , ∀i, j ∈ V [107]. It can be achieved using the described
diffusively-coupled network by choosing Fij(ζe) = 1

2‖ζe‖
2. The functions Fij are

convex, meaning that the agents must converge to a global minimum, in which
consensus is achieved.

Second, consider the distance-based formation control problem, in which we
want the agents converge to a state in which ‖xi − xj‖ = dij , ∀i, j ∈ V, where
the distances dij are given. It can be achieved using the described diffusively-
coupled network by choosing Fij(ζe) = 1

4 (‖ζe‖2−d2
ij)

2. This is the distance-based
formation control protocol described in [105].

Lastly, suppose that the states xi are real numbers, and we wish to force
the agents to have the same phase, i.e., xi = xj mod 2π. This can be achieved
using the described diffusively-coupled network by choosing Fij(ζe) = 1−cos(ζe),
which gives the Kuramoto model for the case in which oscillators revolve at the
same velocity, i.e., ωi = 0 [43].

1.2.3 The Role of Passivity in Cooperative Control

Passivity theory has taken an outstanding role in the analysis of cooperative
control systems, and in particular those with the diffusive coupling structure of
Figure 1.1. We dedicate this section to consider a few variants of passivity used
to prove various analysis results for multi-agent systems. For an introduction
to passivity and its relation to stability, we refer the reader to Appendix C.
The main advantage of using passivity theory is that it allows to decouple the
system into three different layers - namely the agent dynamics, the coupling
dynamics, and the network connecting the two. This concept is clearly seen in
the following theorem:

Theorem 1.1 ([23]). Consider the network system (G,Σ,Π) comprised of agents
and controllers. Suppose that there are constant vectors ui, yi, ζe and µe such
that

i) the systems Σi are output strictly-passive with respect to ui and yi;

ii) the systems Πe are passive with respect to ζe and µe;

iii) the stacked vectors u, y, ζ and µ satisfy u = −EG,dµ and ζ = E>G,dy;
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1.2. BACKGROUND

where u = [u>1 , . . . ,u
>
|V|]
>, y = [y>1 , . . . , y

>
|V|]
>, ζ = [ζ>1 , . . . , ζ

>
|E|]
>, and µ =

[µ>1 , . . . ,µ
>
|E|]
>. Then the output vector y(t) converges to y as t→∞.

The first condition involves the agent dynamics, the second the controllers,
and the third the underlying network. We note that the version of the theorem
proved in [23] deals with SISO systems, but the exact same argument also proves
the result for MIMO systems.

The first paper to fully embrace passivity theory to analyze cooperative con-
trol problems was [5]. It led to many variants of passivity in the literature proven
to be useful for the analysis of cooperative control problems. Incremental passiv-
ity (IP), introduced in [110], allows one to consider the passivity property with
respect to certain trajectories, rather than fixed equilibria. Indeed, incremental
passivity was used in [129, 148] to prove various synchronization and analysis
results for multi-agent systems. However, IP is restrictive, as it demands the
passivation inequality to hold for any two trajectories.

Other variants of passivity focus on the collection of all equilibria of a system.
In this direction, the notion of steady-state input-output maps is useful. In the
following, we focus on dynamical systems of the form

Σ :

{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
. (1.3)

Definition 1.1. Consider the dynamical system (1.3) with input u ∈ U and
output y ∈ Y. The steady-state input-output relation associated with (1.3) is
the set k ⊂ U × Y consisting of all steady-state input-output pairs (u, y) of the
system.

Remark 1.1. Even if the relation k is not a function, we can always think of
it as a set-valued function. Namely, for a steady-state input u, let ky(u) = {y :
(u, y) ∈ k}, and for a steady-state output y, let k−1(y) = {u : (u, y) ∈ k}.

Example 1.2. We consider the following four SISO dynamical systems:

Σ1 :

{
ẋ = −x+ u

y = x
,Σ2 :

{
ẋ = u

y = x

Σ3 :

{
ẋ = −x+ u

y = tanh(x)
,Σ4 :

{
ẋ = −x3 + u

y = x

We compute the steady-state input-output relation for each of the systems. For
Σ1, in steady-state, we have ẋ = 0, so y = x = u. Thus the steady-state input-
output relation is k1 = {(u, y) : u = y ∈ R}. For Σ2, in steady-state, we
have ẋ = 0, so u = 0. Moreover, the corresponding steady-state output y can
take any value, depending on initial conditions. Thus the steady-state input-
output relation is k2 = {(u, y) : u = 0, y ∈ R}. For Σ3, in steady-state, we
have ẋ = 0, so y = tanh(x) = tanh(u). Thus the steady-state input-output
relation is k3 = {(u, y) : y = tanh(u) ∈ R}. Lastly, for Σ4, in steady-state,
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Figure 1.2: The steady-state input-output relations considered in Example 1.2.

we have ẋ = 0, so y = x = 3
√

u. Thus the steady-state input-output relation is
k4 = {(u, y) : y = 3

√
u ∈ R}. The relations k1, k2, k3 and k4 can be seen in

Figure 1.2

With this definition, we now introduce the next variant of passivity termed
equilibrium-independent passivity (EIP) [64]. A key feature of EIP is the as-
sumption that for any steady-state input u there is exactly one steady-state
output y. This implies that the steady-state output y can be expressed as a
function of the steady-state input u, which is assumed to be continuous. Thus,
with a slight abuse of notation we can consider the the relation ky as a function
ky : u 7→ y, i.e., y = ky(u). In general, this is less restrictive than IP, and allows
to prove analysis results for MIMO systems. However, there are IP systems
which are not EIP. The epitome of these kind of systems is the single integra-
tor, which can be verified to be IP, but not EIP. The steady-state input u = 0
has multiple different steady-state outputs (depending on the initial condition
of the system), and thus the input-output relation is no longer a function.

The last variant of passivity we review is maximal equilibrium-independent
passivity (MEIP) [23]. It is a variant of EIP that attempts to remedy the
exclusiveness of the single integrator and similar systems. However, it is only
defined in the case of SISO systems, as it relies on the notion of monotone
relations:

Definition 1.2 ([23]). Consider a relation R ⊆ R × R. We say that R is a
monotone relation if for every two elements (u1, y1) and (u2, y2), we have that
(u2−u1)(y2−y1) ≥ 0. We say that R is maximally monotone if it is monotone
and is not contained in a larger monotone relation.

In other words, increasing the first component u implies that the second
component y cannot decrease. We now present the definition of MEIP.

Definition 1.3 ([23]). The SISO system (1.3) is said to be (output-strictly)
maximal equilibrium-independent passive (MEIP) if:
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1.2. BACKGROUND

i) The system is (output-strictly) passive with respect to any steady-state
input-output pair (u, y) it has.

ii) The collection ky of all steady-state input-output pairs (u, y) is maximally
monotone.

This is indeed a generalization of EIP, as the function ky of an EIP system is
monotone ascending [64]. It can also be shown that the single SISO integrator is
MEIP. However, the problem of finding a MIMO analogue of MEIP, or a variant
of EIP that will include marginally-stable systems like the single integrator, has
not been addressed in the literature.

The main result of [23] showed that a diffusively-coupled system (G,Σ,Π) in
which the agents are output-strictly MEIP and the controllers are MEIP must
converge to a closed-loop steady-state, which is the minimizer of two dual convex
instances of the optimal potential problem and the optimal flow problem. This
is a generalization of Theorem 1.1 that allows one to check for convergence of a
multi-agent system without specifying an a priori limit. Thus, one can compute
the steady-state limit of (G,Σ,Π) with relative ease.

More precisely, it is known that any maximal monotone relation in R2 is equal
to the subgradient of some convex function R → R, which is unique up to an
additive constant [121]. Thus, if we let ki and γe be the agents’ and controllers’
steady-state input-output relations, then there exist convex functions Ki,Γe
such that ∂Ki = ki and ∂Γe = γe. The functions Ki,Γe are said to be the
integral functions of ki and γe, respectively. We also define the convex functions
K(u) =

∑
i∈VKi(ui) and Γ(ζ) =

∑
e∈E Γe(ζe), and let K?,Γ? be their Legendre

duals. It is straight forward to check that ∂K = k and ∂Γ = γ, where k and
γ are the stacked relations achieved from concatenating ki and γe, respectively.
The following theorem is proved in [23]:

Theorem 1.2. Consider a diffusively-coupled system (G,Σ,Π), and assume
that the agents are output-strictly MEIP and that the controllers are MEIP.
Let K and Γ be the sum of the integral functions for the agents and for the
controllers, respectively. Then the signals u(t), y(t), ζ(t), µ(t) converge to steady-

states û, ŷ, ζ̂, µ̂, which are optimal primal-dual solutions of the following pair of
network optimization problems:

Optimal Potential Problem Optimal Flow Problem
(OPP) (OFP)

min
y,ζ

K?(y) + Γ(ζ)

s.t. E>y = ζ

min
u,µ

K(u) + Γ?(µ)

s.t. u = −Eµ.

It should be noted that the network optimization framework allows for more
than just finding the steady-state of a diffusively-coupled system, as it gives
“network-level intuition” for problems in multi-agent systems. One example of
this network-level intuition can be seen below:

Example 1.3. Consider a collection of output-strictly MEIP agents interacting
over a graph G = (V,E). We fix arbitrary vectors v1, ..., v|E|, and consider the

14

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



CHAPTER 1. INTRODUCTION

single integrator controllers with these biases, i.e., the controller on the edge
e ∈ E is given by η̇e = ζe − ve, µe = ηe. We ask ourselves whether or not the
closed-loop diffusely-coupled network (G,Σ,Π) will converge to a steady-state.
Intuitively, one could guess that the closed-loop system converges to a steady-
state if and only if the agents have a steady-state output y such that yi−yj = ve
for all e = (i, j) ∈ E. To prove this claim classically, one needs to consider a
Lyapunov function which is the sum of the storage functions for the agents and
the controllers, prove that it is a Lyapunov function, and then invoke LaSalle’s
invariance principle, which is quite cumbersome as we do not know the steady-
state output in advance. Alternatively, one could use the network optimization
framework to prove the claim with ease. Indeed, the integral function of the
controllers is easily computed as Γe(ζe) = Ive(ζe). Thus (OPP) is just the
minimization problem of K?(y) + Iv(ζ), where ζ = E>G y and v = [v>1 , ..., v

>
|E|]
>

is the stacked bias vector. To have a non-infinite value, we must have ζ = v,
so we demand that v ∈ Im(E>G ). Moreover, if we restrict the variable y by
demanding that E>G y = ζ, then (OPP) has a non-infinite value if and only if
K?(y) is finite, i.e., the agents have the steady-state output y. Thus the closed-
loop system (G,Σ,Π) converges if and only if there’s a steady-state output y
such that E>G y = v, which is exactly as conjectured.

1.3 Contributions and Thesis Outline

The following overview presents the outline of this thesis and briefly summarizes
its contributions. The first two chapters deal with theoretical extensions to the
network optimization framework, while the following chapters deal with various
applications of the framework to problems in multi-agent systems.

Chapter 2 - A Network Optimization Framework for MIMO
Systems

In this chapter we introduce a generalization of the network optimization frame-
work of [23] to diffusively-coupled systems with MIMO agents and controllers.
This is done using the notion of cyclically monotone relations. Namely,

• We use the notion of cyclically monotone relations to define maximally
equilibrium-independent cyclically-monotone passive systems (MEICMP),
which is a generalization of MEIP to MIMO systems.

• We derive a network optimization framework for diffusively-coupled sys-
tems with output-strictly MEICMP agents and MEICMP controllers, gen-
eralizing the network optimization framework of [23], using a different
approach than the one presented therein.

• We explore the notion of MEICMP systems. Namely, we show that it
holds for a large class of gradient systems with oscillatory terms, as well
as classifying which linear systems possessing this property.

15

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



1.3. CONTRIBUTIONS AND THESIS OUTLINE

Chapter 3 - A Network Optimization Framework for
Passive-Short Agents

In this chapter we introduce a generalization of the network optimization frame-
work to passive-short systems. It is shown that regularization of the network
optimization problems corresponds to passivation of the non-passive agents, val-
idating the network optimization framework. Namely,

• It is shown that the original network optimization framework of [23] fails
for passive-short agents, and three main causes for the failure are identi-
fied.

• It is shown that for output-passive short agents, the network optimiza-
tion problem can still be defined, but it is no longer convex. It is also
shown that convexifying the optimization problem corresponds to pas-
sivizing the multi-agent system, where the regularizing term gives rise to
a corresponding feedback term. Three different regularization approaches
are presented.

• For the case of general passive-short agents, the network optimization
problem might no longer be defined. The convexification technique is
replaced by a monotonization approach, which is shown to also passivize
the agents, rendering the network optimization framework valid in this
case as well.

Chapter 4 - A Network Optimization Framework for
Controller Synthesis

In this chapter, we introduce a first possible application of the analysis result of
the framework, studying the final-value synthesis problem. In this problem, we
are given agents and the underlying interaction graph, and wish to design edge
controllers to force the closed loop diffusively-coupled system to some desired
steady-state. We will also consider a problem in which only the agents are given,
and we can also design the underlying interaction graph.

• It is shown that the general final-value synthesis problem can be solved
for any desired steady-state and for any underlying interaction graph, and
an efficient algorithm for its solution is presented. Moreover, it is shown
that given any collection of MEIP controllers, one can slightly augment
them to achieve a solution to the final-value synthesis problem.

• The special case of clustering is studied, where it is shown that steady-state
clusters can be understood using symmetries of the multi-agent system
through the notion of exchangeability.

• The problem of cluster synthesis, i.e., forcing the system to cluster with
prescribed cluster sizes at prescribed locations, is studied. We focus on
the case of homogeneous networks, in which the agents are identical to
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CHAPTER 1. INTRODUCTION

one another and the controllers are also required to be identical. We show
that graphs forcing the agents to a desired clustering structure exist, and
give bounds on the number of edges needed for their construction.

Chapter 5 - Applications of the Network Optimization
Framework in Data-Driven Control

In this chapter, we show that the network optimization framework can be used
to derive data-driven control algorithms for multi-agent systems. Namely, we
consider the problem of final-value synthesis for given relative outputs from the
previous chapter, but now assume that exact models for the agents are unknown.
We show how measured data can be used to derive a data-driven solution to the
problem, without estimating a model for the agents. Our approach is through
amplification, cascading fixed edge controllers with adjustable positive gains.

• We first discuss methods for determining passivity and MEIP without
exact models. We present known results for verifying passivity using data,
and show that even an obscure model can be enough to prove MEIP.

• It is shown that for a vast class of controllers, a solution for the final-
value synthesis problem is achieved for large enough gains. This is done
by essentially recasting one of the network optimization problems as a
robust optimization problem. It is then shown that for large gains, the
closed-loop system behaves similarly to an augmented diffusively-coupled
system, where the agents are replaced by single integrators.

• Two data-driven approaches for choosing the gains are studied. The first
uses experiments on each agent to calculate a uniform gain on the edges,
while the second is an iterative scheme augmenting the gains in-run using
data from the closed-loop system. Convergence and stability guarantees
are presented for both approaches. The two approaches are compared for
two case-studies.

Chapter 6 - Applications of the Network Optimization
Framework in Network Identification

In this chapter, we study the problem of network identification. In this problem,
we are given a diffusively-coupled system (G,Σ,Π), with known agents and
controllers, and are required to compute the graph G. We also discuss the
related problem of network differentiation, where it is required to differentiate
between two networked systems having the same agents and controllers, but
different underlying graphs

• We discuss the notion of indication vectors for multi-agent systems, which
are constant exogenous inputs forcing systems with different underlying
graphs to different steady-state outputs. We show different ways of con-
structing them, using randomization and algebraic methods.
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1.3. CONTRIBUTIONS AND THESIS OUTLINE

• A network identification algorithm for networks with MEIP agents and
controllers is suggested, with a polynomial time complexity in the number
of agents. It is first built for networks of LTI agents and controllers,
where the connection between exogenous inputs and steady-state output
is given by a matrix, whose off-diagonal entries correspond to edges in
the underlying graph. We later generalize it to general MEIP agents and
controllers using linearization, and bounds on the error are derived.

• We use complexity theory methods to derive a lower bound on the time
complexity of any algorithm solving the network identification problem
with probability p > 0 and a bounded error, showing that the developed
algorithm is optimal in sense of time complexity.

Chapter 7 - Applications of the Network Optimization
Framework in Fault Detection and Isolation

In this chapter, we study the problem of network fault detection and isolation.
In this problem, one must achieve some control goal (in this case, final-value
synthesis), while faults may occur throughout the network. We study the case
of network faults, in which the underlying graph changes, which can happen
due to malfunctioning communication systems or a cyber attack on the agents.

• We first define the notion of edge-indication vectors, which are close rela-
tives of the indication vectors from Chapter 6. We show that they can be
found using randomization, while also exhibiting their ability to provide
a solution to the synthesis problem

• We show how these edge-indication vectors can be applied to solve the fault
detection and fault isolation problems, while also providing a solution to
an adversarial game. The solutions are developed under the assumption of
the existence of a “convergence assertion protocol”, which checks whether
a diffusively-coupled system converges to a conjectured steady-state.

• Finally, We use the passivity of the agents and controllers to show how
convergence assertion protocols can be built. Two methods are presented,
one relying on high-rate sampling and the other relying on a numerical
connection between the output yi and the storage function Si of each of
the agents.

Chapter 8 - Conclusions and Outlook

This final chapter provides some conclusive remarks, both summarizing the the-
sis and hinting at possible future directions of research.

Supplementary material is provided in several appendices, referenced at ap-
propriate places, with the aim to make this thesis as self-contained as possible.
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CHAPTER 1. INTRODUCTION
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online).

19

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



1.4. PUBLICATIONS

• M. Sharf, and D. Zelazo, “A Data-Driven and Model-Based Ap-
proach to Fault Detection and Isolation in Networked Systems”,
submitted to IEEE Transactions on Automatic Control (arXiv pre-print
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Chapter 2

A Network Optimization
Framework for MIMO
Systems

This section is a review of [138]. We present a variant of passivity generalizing
MEIP for MIMO systems, culminating in a network optimization framework
for MIMO multi-agent systems. This generalization will allow us to extend the
applications presented later from SISO to MIMO systems, provided the passivity
requirements hold. Namely, this generalization will allow us to generalize the
results of Section 3.3 and of Chapters 4, 6 and 7 to MIMO systems, with little
to no effort required.

2.1 Introduction

As we saw in Section 1.2, the notion of EIP is defined for multiple-input multiple-
output (MIMO) systems, but does not apply to the single integrator, even
though it is passive with respect to any steady-state it has. EIP does not
hold also for other marginally-stable systems, e.g. nonlinear integrators. More-
over, the results of [64] prove that a network of EIP systems is stable only for
a positive linear feedback law of the form u = (K ⊗ Idm)y, and they do not
suggest a method of computing the closed-loop steady-state without running
the closed-loop system.

The notion of MEIP tries to generalize EIP. It holds for some marginally
stable systems such as the single integrator and other nonlinear integrators. The
results of [23] proves that a network of output-strictly MEIP systems is stable
under a feedback of general MEIP controllers, and the network optimization
framework provides a way to compute the steady-state of the network by solving
the corresponding network optimization problems, either analytically or using
any appropriate numerical algorithm, such as gradient descent.
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2.2. CYCLICALLY MONOTONE RELATIONS AND COOPERATIVE
CONTROL

However, MEIP, as presented in [23], is only defined for SISO agents, mean-
ing that we cannot apply it for general MIMO agents. The main reason that
MEIP is undefined for MIMO systems is that it requires that the steady-state
relations to be monotone (see Definition 1.2). The notion of monotonicity has
no clear generalization for MIMO relations (or multi-variate functions), meaning
that generalizing MEIP to MIMO systems is non-trivial.

The main analytic tool required to study MIMO systems in this context is
the notion of cyclically monotone (CM) relations, first defined in [119]. The key
result due to [119] shows that CM relations are contained in the sub-gradient of
a convex function. These provide the “correct” generalization of monotonicity
from scalar functions to multi-variate functions, allowing a complete generaliza-
tion of the results of [23] to square MIMO systems.

For the rest of this chapter, we consider a diffusively-couple network (G,Σ,Π),
with agents Σi and edge controllers Πe governed by the equations:

Σi :

{
ẋi(t) = fi(xi(t), ui(t),wi),

yi(t) = hi(xi(t), ui(t),wi)
, Πe :

{
η̇e(t) = φe(ηe(t), ζe(t)),

µe(t) = ψe(ηe(t), ζe(t))

where the dimensions of the input ui, output yi, controller input ζe and con-
troller output µe are all equal to d. The agents and edge controllers are cou-
pled by the equations ζ(t) = EG,dy(t) = (E ⊗ Idd)y(t) and u(t) + EG,dµ(t) =
u(t) + (E ⊗ Idd)µ(t). The chapter is composed of two sections. The first stud-
ies the notion of CM relations, and links it to systems theory by defining the
notion of maximal equilibrium-independent cyclically monotone passive (ME-
ICMP) systems, which are the MIMO generalization of MEIP systems. It then
proves that a diffusively-coupled network comprised of (MIMO) agents that are
(output-strictly) MEICMP with (MIMO) controllers that are also MEICMP
converges to a steady-state. Moreover, we show that the steady-states of the
system are the optimal solutions of a pair of dual network optimization prob-
lems. The second section gives examples of systems with cyclically monotone
input-output relations, and presents a case study.

2.2 Cyclically Monotone Relations and
Cooperative Control

In [23], the concept of monotone relations is used to provide convergence results
for a networked system (G,Σ,Π) comprised of SISO agents. However, many
applications deal with MIMO systems, necessitating a need to extend this work
for network systems consisting of MIMO agents. We consider a MIMO multi-
agent network (G,Σ,Π), with each agent having an input and an output of
dimension d. We begin by considering the steady-states of the system.
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Chapter 2. A Network Optimization Framework for MIMO Systems

2.2.1 Steady-States and Network Consistency

Consider a steady-state (u, y, ζ,µ) of the closed loop system (G,Σ,Π), presented
in Figure 1.1. We know that for every i = 1, ..., |V|, (ui, yi) is a steady-state
input-output pair of the i-th agent Σi. Similarly, for every e ∈ E, (ζe,µe) is
a steady-state input-output pair of the e-th controller Πe. The network in-
terconnection between the systems Σ and Π imposes an additional consistency
constraint between these steady-state values. This motivates us to consider the
steady-state input-output relations for each of the agents and the controllers.

In this direction, we denote the steady-state input-output relation of the i-th
agent by ki, and the relation for the e-th controller by γe. That is, ki ⊂ Rd×Rd
and γe ⊂ Rd×Rd. We denote the stacked relation for the agents and controllers
as k and γ, respectively. As in Remark 1.1, we can consider these input-output
relations as set-valued functions. The consistency constraints for the steady-
state of the closed-loop system can be written as follows:

Proposition 2.1. Let u ∈ Rd|V|, y ∈ Rd|V|, ζ ∈ Rd|E|,µ ∈ Rd|E| be any four
constant vectors. Then (u, y, ζ,µ) is a steady-state of the closed-loop system
(G,Σ,Π) if and only if

(u, y) ∈ k, (ζ,µ) ∈ γ,
ζ = E>G,dy, u = −EG,dµ.

(2.1)

Proof. Follows directly from the interconnection of the network, and from the
definitions of k and γ.

We wish to manipulate the conditions in (2.1) to reduce the steady-state
characterization from a system with four constraints to one. This can be done
by trying to compute u from y in two different methods. First, we “go around
the loop”, taking the direct path of the block diagram in Figure 1.1. Second, we
can take the “inverse” route and use the inverse relation k−1. Similarly, we can
compute ζ from µ in two different methods, going around the loop or using the
inverse relation γ−1. This idea can be seen in Figure 2.1. We use this intuition
to prove the following proposition.

Proposition 2.2. Let y ∈ Rd|V| be any vector. Then the following conditions
are equivalent:

i) The zero vector 0 belongs to the set k−1(y) + EG,dγ(E>G,dy).

ii) There exists vectors u, ζ and µ such that (u, y, ζ,µ) is a steady-state of the
closed-loop network (G,Σ,Π).

Proof. First, assume the existence of u, ζ and µ. By Proposition 2.1, it follows
that u ∈ k−1(y), ζ = E>G,dy, µ ∈ γ(ζ), and u = −EG,dµ. Thus,

0 = u + EG,dµ ∈ k−1(y) + EG,dγ(ζ) = k−1(y) + EG,dγ(E>G,dy).

Conversely, if 0 ∈ k−1(y) + EG,dγ(E>G,dy), then we know that there are some

u ∈ k−1(y) and µ ∈ γ(E>G,dy) such that u+EG,dµ = 0. Thus, by Proposition 2.1,

the 4-tuple (u, y, ζ = E>G,dy,µ) is a steady-state of the closed-loop system.
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2.2. CYCLICALLY MONOTONE RELATIONS AND COOPERATIVE
CONTROL

Figure 2.1: Converting Proposition 2.1 into one condition. Going around the
loop in the direct path, and taking the “inverse” path using the inverse relation,
must give the same result.

By the same methods, we can also reduce the conditions (2.1) to an inclusion
in the edge-variables µ.

Proposition 2.3. Let µ ∈ Rd|E| be any vector. Then the following conditions
are equivalent:

i) The zero vector 0 belongs to the set γ−1(µ)− E>G,dk(−EG,dµ).

ii) There exists vectors u, y and ζ such that (u, y, ζ,µ) is a steady-state of the
closed-loop network (G,Σ,Π).

Proof. Same as the proof of Proposition 2.2.

2.2.2 Connecting Steady-States to Network Optimization

So far, we showed that the steady-states of the closed-loop system can be un-
derstood using the following two conditions:{

0 ∈ k−1(y) + EG,dγ(E>G,dy)

0 ∈ γ−1(µ)− E>G,dk(−EG,dµ).
(2.2)

These conditions highlight the connection between agents, the controllers, the
underlying network structure, and their impact on the steady-states of the
closed-loop system. However, these conditions are highly nonlinear, and would
be difficult to solve even if they were equations instead of inclusions. One
method of dealing with nonlinear equations of the form g(x) = 0 for some func-
tion g, is to consider its integral function instead. Suppose there is a function
G such that g = ∇G. In that case, we can find a solution to g(x) = 0 by
solving the unconstrained minimization problem, minx G(x). If, in addition,
the function G is convex, the solution to the minimization problem can often be
computed efficiently (i.e., in polynomial time), e.g. by using gradient descent
methods.
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Chapter 2. A Network Optimization Framework for MIMO Systems

In general, convex functions need not be smooth, or even differentiable. In
this case, the notion of the subdifferential of a convex function can be employed.
The subdifferential of the convex function G at the point x is denoted ∂G(x),
and consists of all vectors v such that

G(y) ≥ G(x) + v>(y − x), ∀y.

See [121] and Appendix A for more on subdifferentials. Note that the subdif-
ferential ∂G is a set-valued map. Also, analogously to the differentiable case,
x is a minimum point of G if and only if 0 ∈ ∂G(x). Thus, if we are able
to require that ki and γe are gradients of convex functions (i.e., their integral
functions are convex), then the nonlinear inclusions in (2.2) may be solved us-
ing convex optimization. In fact, such relations have been characterized due to
Rockafellar [119]:

Definition 2.1 (Cyclic Monotonicity). Let d ≥ 1 be an integer, and consider a
subset R of Rd×Rd. We say that R is a cyclically monotone (CM) relation if for
any N ≥ 1 and any pairs (u1, y1), . . . , (uN, yN) ∈ R of d-vectors, the following
inequality holds,

N∑
i=1

y>i (ui − ui−1) ≥ 0. (2.3)

Here, we use the convention that u0 = uN . We say that R is strictly cyclically
monotonic (SCM) if the inequality (2.3) is strict whenever at least two ui-s are
distinct. We term the relation as maximal CM (or maximal SCM) if it is not
strictly contained in a larger CM (SCM) relation.

Remark 2.1. This is a generalization of the concept of monotone relations for
SISO systems. We note that for all dimensions d, cyclic monotonicity implies
monotonicity. Indeed, taking N = 2, the inequality (2.3) can be written as:

0 ≤ y>1 (u1 − u2) + y>2 (u2 − u1) = (y2 − y1)>(u2 − u1),

which holds for all pairs (u1, y1), (u2, y2), coinciding with the definition of a
monotone relation [121].

We now present Rockafellar’s result establishing the connection between
cyclic monotonicity and convex functions.

Theorem 2.1 ([119]). A relation R ⊂ Rn × Rn is the subgradient of a convex
function if and only if it is maximal CM. Moreover, it is the sub-gradient of a
strictly convex function if and only if it is maximal SCM. The convex function
is unique up to an additive scalar.

Remark 2.2. If R is maximally CM, and f is a convex function such that
R = ∂f , then f is the integral function of R.
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2.2. CYCLICALLY MONOTONE RELATIONS AND COOPERATIVE
CONTROL

Remark 2.3. If R is a maximally CM relation, an integral function f can be
found as [119]:

f(u) = sup

{
m∑
i=0

y>i (ui+1 − ui)

}
, (2.4)

with the convention that um+1 = u0, and the supremum is taken over all integers
m ≥ 0 and all pairs (u0, y0), ..., (um, ym) ∈ R. Another method is to use an
analogue of the path integral formula for a potential function, namely choosing
some u0 arbitrarily, and defining

f(u) =

∫
γ

sup{y · dl : (u, y) ∈ R}, (2.5)

where γ is a curve defined on [a, b] connecting u0 to u. Formally, the integral is
defined as

f(u) =

∫ b

a

sup{y · γ′(s) : (u, y) ∈ R}ds. (2.6)

Rockafellar’s Theorem gives us a way to check that a relation is the subdif-
ferential of a convex function. If we want to state the conditions in (2.2) as the
solutions of convex minimization problems, we need to assume that the input-
output relations appearing are CM. This, together with Theorem 1.1, motivates
the following system-theoretic definition:

Definition 2.2. A system Σ is maximal equilibrium-independent cyclically
monotone (output strictly) passive (MEICMP) if

i) for every steady-state input-output pair (u, y), the system Σ is (output
strictly) passive with respect to u and y;

ii) the set of all steady-state input-output pairs, R, is maximally (strictly)
cyclically monotonic.

If the relation is strictly cyclically-monotone, then we say that the system is
maximal equilibrium-independent strictly cyclically monotone (output strictly)
passive (MEISCMP).

Remark 2.4. It can be shown that when d = 1, a relation is cyclically monotone
if and only if it is monotone. Thus, a SISO system is MEIP if and only if it is
MEICMP [119, 121].

Now, suppose that the agents Σi and the controllers Πe are all MEICMP
with steady-state input maps ki and γe. We let Ki and Γe be the associated
integral functions, which are convex functions, as a result of Theorem 2.1. We
let K =

∑
iKi and Γ =

∑
e Γe be their sum, so that ∂K = k and ∂Γ = γ. As

these are convex functions, we can look at the dual convex functions K? and
Γ?, namely

K?(y) = − inf
u
K(u)− y>u,
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Chapter 2. A Network Optimization Framework for MIMO Systems

and similarly for Γ? . These are convex functions that satisfy ∂K? = k−1 and
∂Γ? = γ−1 (see Appendix A). The functions K,K?,Γ,Γ? allow us to convert the
conditions (2.2) to the unconstrained minimization problems of K?(y)+Γ(E>G,dy)

and K(−EG,dµ) + Γ?(µ). Recalling that u = −EG,dµ and that ζ = E>G,dy, we can
state the minimization problems in the following form:

Optimal Potential Problem Optimal Flow Problem
(OPP) (OFP)

min
y,ζ

K?(y) + Γ(ζ)

s.t. E>G,dy = ζ

min
u,µ

K(u) + Γ?(µ)

s.t. u = −EG,dµ.

These static optimization problems, known as the optimal potential problem
and optimal flow problem, are two fundamental problems in the field of network
optimization, which have been widely studied in computer science, mathematics,
and operations research for many years [122]. A well-known instance of these
problems is the maximum-flow/minimum-cut problems, which are widely used
by algorithmists and by supply chain designers [36].

We conclude this subsection by stating the connection between the steady-
states of the closed-loop network and the network optimization problems.

Theorem 2.2. Consider a network system (G,Σ,Π) and suppose that both
the agents and controllers are maximally equilibrium-independent cyclically-
monotone passive. Let K and Γ be the sum of the integral functions for the
agents and for the controllers, respectively. For any 4-tuple of vectors (u, y, ζ,µ),
the following conditions are equivalent:

i) (u, y, ζ,µ) is a steady-state of the closed-loop;

ii) (u,µ) and (y, ζ) are dual optimal solutions of (OFP) and (OPP) respec-
tively.

Proof. We know that a convex function F is minimized at a point x if and only
if 0 ∈ ∂F (x). Applying this to the objective functions of (OPP) and (OFP)
implies that they are minimized exactly when the following inclusions hold,{

0 ∈ k−1(y) + EG,dγ(E>G,dy)

0 ∈ γ−1(µ)− E>G,dk(−EG,dµ).
(2.7)

Thus, Propositions 2.2 and 2.3 imply that if (u, y, ζ,µ) is a steady-state of the
closed-loop, then (u,µ) and (y, ζ) are optimal solutions of (OPP) and (OFP).
The duality between them follows from y = k(u), µ = γ(ζ). Conversely, if
(u,µ) and (y, ζ) are dual optimal solutions, then y minimizes K?(y) + Γ(E>G,dy)
and µ minimizes K(−EG,dµ) + Γ?(µ). Again, a convex function is minimized
only where 0 is in its subdifferential, so we get the same inclusions (2.7). By
Propositions 2.2 and 2.3 we get that (u, y, ζ,µ) must be a steady-state of the
closed-loop.

27

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



2.2. CYCLICALLY MONOTONE RELATIONS AND COOPERATIVE
CONTROL

Remark 2.5. The problems (OPP) and (OFP) are special as they are convex
duals of each other; the cost functions K?(y) + Γ(ζ) and K(u) + Γ?(µ) are
dual [121]. Consequently, if (y, ζ) is an optimal solution of (OPP), then (u,µ)
is an optimal solution of (OFP) if and only if µ ∈ γ(ζ), u ∈ k−1(y) and
u = −EG,dµ. Thus, solving (OPP) and (OFP) on their own gives a viable
method to understand the steady-states of (G,Σ,Π).

2.2.3 Convergence to the Steady-State

Up to now, we dealt with the steady-states of the closed-loop system, but we
did not prove that the system converges to a steady-state. We now address this
point.

Theorem 2.3. Consider the network system (G,Σ,Π), and suppose all node
dynamics are maximally equilibrium-independent cyclically monotone output-
strictly passive and that the controller dynamics are maximally equilibrium-
independent cyclically monotone passive. Then there exists constant vectors
u, y,µ, ζ such that limt→∞ u(t) = u, limt→∞ y(t) = y, limt→∞ µ(t) = µ, and
limt→∞ ζ(t) = ζ. Moreover, (u,µ) and (y, ζ) form optimal dual solutions to
(OPP) and (OFP).

We will give a proof of Theorem 2.3 for the case in which the controllers are
given by the following form:

Πe :

{
η̇e = ζe

µe = ψe(ηe).
(2.8)

The proof for the general case is analogous but more involved, and is not con-
sidered here to improve streamlining and readability.

Proof. Our assumption implies that the optimization problems (OPP) and (OFP)
have dual optimal solutions, meaning that a steady-state solution exists. The
equilibrium-independent passivity assumption implies that there are storage
functions Si (for i ∈ V) and We (for e ∈ E), such that{

Ṡi ≤ −ρi||yi(t)− yi||2 + (yi(t)− yi)
>(ui(t)− ui)

Ẇe ≤ (µe(t)− µ>e (ζe(t)− ζe)
. (2.9)

Theorem 1.1 implies that y(t) converges to y, implying that ζ(t) converges to
0 = ζ = E>y, as the integral function of the controllers is I0 (see Example 1.3).
Integrating implies that η(t) converges to some η, as η̇ = ζ. In turn, this implies
that µ(t) converges to µ = ψ(η) and that u(t) converges to u = −Eµ. It is clear
that (u, y) is a steady-state input-output pair, and furthermore that (u, y, ζ,µ)
satisfy the conditions in Proposition 2.1, meaning that it is also a steady-state of
the closed-loop and thus gives rise to an optimal solution of (OPP) and (OFP).
This concludes the proof of the theorem.
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Chapter 2. A Network Optimization Framework for MIMO Systems

Figure 2.2: Block diagram of a general feedback interconnection.

Remark 2.6. As a consequence of Remark 2.4, Theorem 2.3 also holds for
output-strictly MEIP SISO agents and MEIP SISO controllers, which is the
analysis result of Theorem 1.2. The result presented here is therefore more
general, and the proof derivation, relying on integrating steady-state equations
(or inclusions), provides a different approach than what was presented in [23].

Remark 2.7. The proof of Theorem 2.3 consisted of two parts. The first shows
that if there is a steady-state I/O pair (u, y) for the agents Σ, a steady-state I/O
pair (ζ,µ) for the controllers Π, and ζ = E>G,dy,u = −EG,dµ, then the closed-
loop system converges. This part is based on the output-strict passivity of Σ, the
passivity of Π and Theorem 1.1. The second part (for (OPP)) shows that the
steady-state equation 0 ∈ k−1(y)+EG,dγ(E>G,dy) is equivalent to the minimization

of K?(y) + Γ(E>G,dy). This part is based on the convexity of the integral function

K?(y) + Γ(E>G,dy).
The feedback configuration in Figure 1.1 can be thought of more abstractly as

the symmetric feedback configuration of two MIMO systems P and Q with the
matrix M , as shown in Figure 2.2. This added layer of abstraction, in which we
treat the stacked agents and controllers as stacked dynamical systems and study
their I/O steady-state behavior, will be of great importance later. The reason
is that P , in one case, will be a feedback connection of the agents Σ with some
network control law, coupling the agents together, and forcing us to consider
them as a single, indecomposable system.

To conclude this section, we showed that under certain passivity require-
ments, the analysis problem for multi-agent systems can be solved - the sys-
tem converges to a steady-state dictated by the network optimization problems
(OPP) and (OFP). This connection gives a novel network interpretation to
multi-agent systems, allowing for network-motivated intuition of multi-agent
systems. In the next section, we’ll consider different examples for MIMO sys-
tems with CM input-output steady-state relations.
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2.3. EXAMPLES OF MEICMP SYSTEMS

2.3 Examples of MEICMP Systems

In this section, we focus on giving examples for MEICMP systems, showing
that this property holds for many systems found in the literature. We focus on
two classes of examples, the first being convex-gradient systems with oscillatory
terms, generalizing reaction-diffusion systems, gradient descent algorithms and
more, and the second being oscillatory systems with damping, which are a
natural extension of oscillators like springs and pendulums. We conclude the
section with a simulation of a network of oscillatory systems with damping.

2.3.1 Convex-Gradient Systems with Oscillatory Terms

Many systems can be divided into two parts - an oscillatory term and a damping
term. These include physical systems such as reaction-diffusion systems, Euler-
Lagrange systems and port-Hamiltonian systems, as well as examples coming
from optimization theory, in which gradient descent algorithms play a vital
role [17, 161, 162, 175]. Incremental passivity of these system has been studied
in [71]. Mathematically, these systems can be represented as

ẋ = −∇ψ(x) + Jx+Bu, (2.10)

where x ∈ Rn is the state of the system, u ∈ Rp is the input, representing various
forces (both control and exogenous ones) acting on the system, ψ : Rn → R is
a function representing the gradient part (and the sign is chosen to give ψ a
potential-energy interpretation), J is a skew-symmetric matrix representing the
oscillatory part, and B ∈ Rn×p is the input matrix. Our goal is to show that
for a wide class of measurements y = h(x, u), this system is MEICMP. We first
focus on stability of this system.

On many occasions, the function ψ is convex, and even strictly convex. For
example, ψ = α

2 x
2 gives a linear damping term.

Theorem 2.4. Assume that the system (2.10) is given, and that ψ is a strictly

convex function such that lim
||x||→∞

ψ(x)
||x|| = ∞ (i.e., ψ(x) = o(||x||) as x → ∞).

Suppose furthermore that u is constant. Then there exists a unique x0, which
depends on u, such that all solutions converge to x0 as t→∞.

Remark 2.8. The function ψ in (2.10) can be given the interpretation of po-
tential energy. One might ask if assuming that ψ is radially unbounded is not
enough, using intuition from Lyapunov theory [75]. We consider the system
(2.10) in dimension n = p = 1, where ψ(x) =

∫ x
0

tanh(s)ds, J = 0 and B = 1.
In this case, the closed-loop system can be written as ẋ = − tanh(x) + u. It
is clear that if u > 1 is any constant input, then any solution x(t) will con-
verge to ∞. Moreover, we note that in this case ψ is radially unbounded, as
ψ(x) ≥ 0.1|x|−c for some constant c. Thus, the assumption that ψ(x) = o(||x||)
as x→∞ is essential in Theorem 2.4.
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Chapter 2. A Network Optimization Framework for MIMO Systems

The proof of the theorem is quite convoluted, so it will be postponed for the
time being. We now deal with the question of cyclic monotonicity. Consider
the system {

ẋ = −∇ψ(x) + Jx+Bu

y = Cx+ ρ(u),
(2.11)

where ψ is a strictly convex function such that lim
‖x‖→∞

ψ(x)
‖x‖ = ∞ and J is a

skew-symmetric matrix. By Theorem 2.4, the state of the system converges as
t→∞ whenever u is constant, so the steady-state input-output relation can be
defined.

Theorem 2.5. Consider a system of the form (2.11). Suppose that B and
C are invertible, and that ψ is a strictly convex function. Then the function
B−1∇ψC−1−B−1JC−1 is invertible, and the input-output relation of the system
is CM if the function (B−1∇ψC−1−B−1JC−1)−1+ρ is the gradient of a convex
function. Furthermore, if this map is the gradient of a strictly convex function,
then the input-output relation is SCM.

Proof. We first explain why the function B−1∇ψC−1 −B−1JC−1 is invertible.
As B,C are invertible matrices, we show that ∇ψ−J can be inverted, i.e. that
it is one-to-one. First, we assume that there are two points x, y ∈ Rn such that
∇ψ(x)− Jx = ∇ψ(y)− Jy, which is equivalent to ∇ψ(x)−∇ψ(y) = J(x− y).
Recalling that J is skew-symmetric, multiplying both sides by (x− y)> on the
left implies that (x−y)>(∇ψ(x)−∇ψ(y)) = 0. However, as ψ is strictly convex,
∇ψ is strictly monotone, so we conclude that x = y [121].

As for the second part of the theorem, in steady state we have ẋ = 0.
Thus, if the steady-state input is uss and the state is xss, then they relate by
∇ψ(xss)− Jxss = Buss. As B is invertible, we have

B−1∇ψ(xss)−B−1Jxss = uss.

However, if ρ is the zero function, we have yρ=0
ss = Cxss, so we have the relation

B−1∇ψ(C−1yρ=0
ss )−B−1JC−1yρ=0

ss = uss.

Thus,
yρ=0
ss = (B−1∇ψC−1 −B−1JC−1)−1(uss).

In the case of general ρ, we have the following input-output relation:

yss = (B−1∇ψC−1 −B−1JC−1)−1(uss) + ρ(uss). (2.12)

Corollary 2.1. Consider a system of the form (2.11). If C = B> = Id and ρ
satisfies (∇ψ−J)−1 +ρ = ∇χ for some convex function χ, then the steady-state
input-output relation is CM.

Proof. This follows directly from (2.12) and C = B> = Id.
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2.3. EXAMPLES OF MEICMP SYSTEMS

Corollary 2.2. Consider a system of the form (2.11). If J = 0, B = C>

and ρ(u) is the gradient of a convex function, then the steady-state input-output
relation is CM.

Proof. The only thing that needs to be shown is that B−1∇ψ(C−1u) is the
gradient of a convex function. Note that this is enough, as the inverse of the
gradient function of a convex function is itself the gradient of a convex function
(due to duality of convex functions). To do this, we define µ(x) = ψ(C−1x).
Then µ is convex as ψ is, and the gradient of µ is given by the chain rule. Its
i-th entry is given by

∂µ

∂xi
=

n∑
j=1

∂ψ

∂xj
(C−1x) · ∂(C−1x)j

∂xi
=

n∑
j=1

∂ψ

∂xj
(C−1x) · (C−1)ji

=
n∑
j=1

(C−1)ji
∂ψ

∂xj
(C−1x) = [(C−1)>∇ψ(C−1x)]i = [B−1∇ψ(C−1x)]i,

meaning that ∇µ(x) = B−1∇ψ(C−1x), proving the last part.

Remark 2.9. Theorem 2.5 can be stated more easily for linear systems. Suppose
that B,C and J are as above. Suppose further that ψ has the form ψ(x) = x>Ax
where A > 0, and suppose we only seek for linear maps ρ of the form ρ(u) = Tu
for some matrix T . The dynamical system now has the form,{

ẋ = −(A− J)x+Bu

y = Cx+ Tu
. (2.13)

We now require ρ to satisfy

(B−1∇ψC−1 −B−1JC−1)−1 + ρ = ∇χ,

for some convex function χ. If we again seek linear ρ(u) = Tu, then the left-
hand side of the equation is a linear map, so ∇χ must also be a linear map.
Due to convexity of χ, this is only possible if ∇χ(u) = Du for some D ≥ 0. We
end up with following equation, (B−1AC−1−B−1JC−1)−1 +T ≥ 0. After some
algebraic manipulation, we obtain

C(A− J)−1B + T ≥ 0, (2.14)

Thus we conclude that a linear system{
ẋ = Ax+Bu

y = Cx+ Tu
, (2.15)

where A is Hurwitz, is MEICMP if and only if −CA−1B+T is a positive-definite
symmetric matrix.
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Chapter 2. A Network Optimization Framework for MIMO Systems

To conclude this subsection, we return to the proof of Theorem 2.4. The
proof is rather lengthy, and requires two lemmas. The idea is to try and con-
struct a quadratic Lyapunov function of the form V (x) = 1

2 (x − x0)>(x − x0),
where the point x0 is a fixed point of the flow. Thus, we need to find a point
x0 which satisfies ∇ψ(x0) − Bu = Jx0. The following two lemmas will assure
that such a point exists.

Lemma 2.1. Let χ be a strictly convex function, and suppose that χ(x)
||x|| → ∞

as ||x|| → ∞. Then there exists some ρ > 0, such that for every point x ∈ R
satisfying ‖x‖ = ρ, the inequality 〈x,∇χ(x)〉 ≥ 0 holds.

Proof. Fix some arbitrary unit vector θ ∈ Rn, and consider the convex function
fθ(r) = χ(rθ) and its derivative dfθ

dr = ∇χ(rθ)>θ. Note that because χ grows
faster than any linear function, the same can be said about fθ, and in particular,
it’s derivative tends to infinity. Furthermore, the function fθ is strictly convex,
so dfθ

dr is strictly ascending, Thus there is some rθ such that dfθ
dr > 0 if r > rθ

and dfθ
dr < 0 if r < rθ.

Our task now is to show that rθ is a bounded function of θ. Suppose not,
and let θn be a sequence of unit vectors such that rθn → ∞. Passing to a
sub-sequence, we may assume without loss of generality that θn → θ for some
unit vector θ ∈ Rn. There is some N such that if n ≥ N then rθn > rθ + 1 = t.

In particular,
dfθn
dr |r=t ≤ 0 for n ≥ N but dfθ

dr |r=t > 0. This is impossible,
as the first expression is equal to ∇χ(tθn)>θn, which converges to the second
expression, which is ∇χ(tθ)>θ. Thus, there is some ρ > 0 such that rθ < ρ for
all unit vectors θ, meaning that if x is a vector of norm ρ, then for θ = x

||x|| :

〈∇χ(x), x〉 = ρ〈∇χ(ρθ), θ〉 = ρ
dfθ
dr

(ρ) ≥ 0. (2.16)

Lemma 2.2. Let Q : Rn → Rn be a continuous vector field, and let ρ > 0.
Suppose that for any vector x satisfying ‖x‖ = ρ, the inequality 〈Q(x), x〉 ≥ 0
holds. Then there exists some point y satisfying ‖y‖ ≤ ρ such that Q(y) = 0.

In order to prove the lemma, we use a theorem from algebraic topology.

Theorem 2.6 (Brouwer’s Fixed Point Theorem [63]). Let D be a closed ball
inside Rn, and let f : D → D be a continuous map. Then f has a fixed point.

We now prove the lemma.

Proof. Suppose, heading toward contradiction, that Q does not vanish at any
point in the ball D = {‖x‖ ≤ ρ}. We define a map F : D → D by

F (x) = −ρ Q(x)

‖Q(x)‖
. (2.17)
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2.3. EXAMPLES OF MEICMP SYSTEMS

This is a continuous map (as Q never vanishes), and the norm of F (x) is
always equal to ρ, so F (x) is indeed in D. Thus, we can apply Brouwer’s fixed
point theorem to F and get a fixed point, called y.

We know that y satisfies F (y) = y, i.e., −ρ Q(y)
‖Q(y)‖ = y. On one hand,

taking the norm of the last equation implies that ‖y‖ = ρ. On the other hand,

rearranging it implies that Q(y) = −‖Q(y)‖
ρ y = λy where λ is some negative

scalar (as Q(y) 6= 0). Thus, we found a point y of norm ρ such that 〈Q(y), y〉 =
λ‖y‖2 < 0 for some λ < 0, which contradicts our assumption. Thus Q has a
zero inside the ball D = {||x|| ≤ ρ}.

We are now ready to prove Theorem 2.4.

Proof. First, because u is constant, we can absorb the constant term Bu inside
the gradient ∇ψ(x) by adding the linear term (Bu)>x to ψ(x). This does not
change the fact that ψ is strictly convex, nor the fact that it ascends faster than
any linear function. Thus we may assume that Bu = 0 for the remainder of the
proof.

Now, we define the vector field Q(x) = ∇ψ(x)− Jx. Note that because J is
skew-symmetric, for all x ∈ R,

〈∇ψ(x)− Jx, x〉 = 〈∇ψ(x), x〉. (2.18)

Thus, by the Lemma 2.1, there’s some ρ > 0 such that 〈Q(x), x〉 ≥ 0 for any
vector x satisfying ‖x‖ ≤ ρ, and by Lemma 2.2 we can find some point x0 ∈ R
such that Q(x0) = 0, or equivalently, Jx0 = ∇ψ(x0). We claim that any solution
to the ODE converges to x0. Indeed, define F (x) = 1

2‖x − x0‖2. Then F is
non-negative, vanishing only at x0, and furthermore,

Ḟ = (x− x0)>ẋ = (x− x0)>(−∇ψ(x) + Jx)

= (x− x0)>(−∇ψ(x) +∇ψ(x0) + J(x− x0))

= −(x− x0)>(∇ψ(x)−∇ψ(x0)) ≤ 0, (2.19)

where the last inequality is true because ψ is convex and Theorem 2.1. Fur-
thermore, Ḟ is negative if x 6= x0 because ψ is strictly convex and Theorem 2.1.
The uniqueness of x0 follows from the fact that the flow globally asymptotically
converges to x0. This completes the proof.

2.3.2 Oscillatory Systems with Damping

We consider a damped oscillator with a linear forcing term of the form ẍ+ ζẋ+
ω2x = Bu where B is a constant matrix, u is the input vector, and ζ > 0 is the
damping factor. This system can also be represented via the set of first order
ODEs: {

q̇ = ωp

ṗ = −ωq − ζp+Bu
. (2.20)
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Chapter 2. A Network Optimization Framework for MIMO Systems

One can easily generalize this formulation to more complex methods of
damping: {

q̇ = Mp

ṗ = −M>q −∇ψ(p) +Bu
. (2.21)

We are usually interested in the position as the output, i.e., y = q for this
system. We wish to find a condition that will assure this system is stable and
MEICMP. We first prove the following result.

Theorem 2.7. Consider a system of the form (2.21), and suppose that M is
invertible. Suppose furthermore that ψ is a strictly convex function such that

lim
‖x‖→∞

ψ(x)
‖x‖ = ∞. Then the system is stable for constant inputs. Furthermore,

if the system is injected with the constant input signal u, then there is some q0

such that all trajectories of the system satisfy q → q0, p → p0 = 0 as t → ∞.
Even further, q0 = (M>)−1Bu− (M>)−1∇ψ(p0)

Proof. As above, the assumption on ψ allows us to absorb the linear term inside
ψ, so we can assume Bu = 0. Now, we take p0 = 0 and q0 = −(M>)−1∇ψ(p0).
We note that the following relations hold:

Mp0 = 0, M>q0 = −∇ψ(p0), p>0 ∇ψ(p0) = 0. (2.22)

Now, consider the following Lyapunov function candidate,

F (p, q) =
1

2
(p− p0)>(p− p0) +

1

2
(q − q0)>(q − q0). (2.23)

It’s clear that F ≥ 0 and that F = 0 if and only if p = p0 and q = q0.
Furthermore, the derivative of F along the trajectories is given by:

Ḟ = (p− p0)>ṗ+ (q − q0)>q̇

= (p− p0)>(−M>q −∇ψ(p)) + (q − q0)>Mp

= −(p− p0)>∇ψ(p)− (Mpo)
>q − (M>q0)>p

(2.22)
= −(p− p0)>∇ψ(p) + p>∇ψ(p0)− p>0 ∇ψ(p0)

= −(p− p0)>(∇ψ(p)−∇ψ(p0)).

The last expression is non-positive, and furthermore is strictly negative if p 6= p0

(as ψ is strictly convex). Thus, it follows from Barbalat’s lemma that p →
p0 = 0 as t → ∞, because F is non-negative. Now, the equation driving p is
ṗ = −M>q −∇ψ(p), which can be rewritten as

q = −(M>)−1(ṗ+∇ψ(p)). (2.24)

As t → ∞, the right hand side tends to −(M>)−1(∇ψ(p0)) = q0, concluding
the proof of the claim.
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2.3. EXAMPLES OF MEICMP SYSTEMS

Not only have we proved that the system is stable, we also found the input-
output steady-state relation, which turns out to be linear. Thus, we can apply
Remark 2.9 to conclude the following corollary.

Corollary 2.3. The system (2.21) is MEICMP if and only if the matrix (M>)−1B
is positive semi-definite. Furthermore, it is MEISCMP if and only if this matrix
is positive definite.

2.3.3 Example: A Network of Planar Oscillators

We now demonstrate these results for oscillatory systems with damping by a
simulation. We consider a network of six damped MIMO oscillators,

Σi


[
ẋ1

ẋ2

]
=

[
Ωix2

−Dix2 − Ω>i (x1 − ξi) + Ω−1
i u

]
y = x1

where ξi is the equilibrium point of the oscillator, Ωi is a matrix consisting of
the self frequencies, and Di is a damping matrix, which is positive-definite. The
values of ξi were chosen as normally distributed random variables with mean[
0
0

]
and covariance

[
5 0
0 5

]
. Moreover, the matrices Di were chosen as random

positive-definite matrices by writingDi = UiSiU
>
i , where Si is a diagonal matrix

whose diagonal entries distributed according to a Rayleigh distribution, and
Ui is a random orthogonal matrix chosen according to the Haar probability
measure on the space of unitary matrices [46]. Similarly, the connecting matrix
Ωi was chosen to be diagonal with Rayleigh-distributed diagonal entries. The
underlying graph is the complete bipartite graph on 6 vertices, meaning that
two agents i, j are connected if and only if i is odd and j is even or vice versa.

The steady-state input-output relation of Σi is given by ki(ui) = (ΩiΩ
>
i )−1u+

xi, so that k−1
i (y) = (ΩiΩ

>
i )(y − xi). The corresponding integral function is

K?
i (yi) = 1

2y
>ΩiΩ

>
i y − y>ΩiΩ

>
i xi, which is strictly convex. Moreover, we con-

sider network controllers of the form:{
η̇e = −ηe + ζe

ζe = ψ(ηe).

The function ψ is given as

ψ(x) = arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
,

where sgn(x) is the sign function. This function was chosen to demonstrate that
the network optimization framework holds even for highly-nonlinear systems.
One can verify that ψ(0) = 0 and that ψ is a monotone ascending function, and
that the associated integral function is given by:

Γe(ζe) =

∫ ζe

0

arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
dx.
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Chapter 2. A Network Optimization Framework for MIMO Systems
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Figure 2.3: Positions of the oscillators in the case study.
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Figure 2.4: Distance of the oscillators’ positions from the projected steady-state
value.

We run the system for a total of 300 seconds, checking that its limit corre-
sponds to the minimizer of (OPP). The output of the system in the first 100
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2.4. CONCLUSIONS

seconds can be seen in Figure 2.3, exhibiting the positions of the agents y(t).
We omit the behavior after the first 100 seconds, as no real change in the posi-
tion can be seen with the naked eye. The blue line represents first coordinate,
and the red one represents the second coordinate. We also solve (OPP) using
gradient descent, running the algorithm with random initial conditions and a
total of 8000 steps of varying step-sizes. The distance of the positions of the
oscillators can be seen in Figure 2.4, where we see that the network converges
to the forecasted value, up to minuscule errors arising from stopping both the
network system and the gradient descent algorithm after finite time.

2.4 Conclusions

We have found a profound connection between passivity-based cooperative con-
trol of MIMO systems and network optimization theory in the spirit of Rock-
afellar [122]. This was done by introducing the notion of maximal equilibrium-
independent cyclically monotone passive systems, and showing that such sys-
tems converge to a solution of a collection of network optimization problems,
bonded by duality. In other words, we have established inverse optimality and
duality results for general networks of maximal equilibrium-independent cycli-
cally monotone passive systems. This connection creates a dictionary between
system signals (like outputs and inputs) and network optimization variables (po-
tentials and node divergences, respectively). We have also studied two classes
of nonlinear systems, proving that they are maximal equilibrium-independent
cyclically monotone passive under certain coercivity assumptions, and exem-
plified the connection between the network optimization framework and multi-
agent systems by a case study of planar damped oscillators. This significant
extension of the framework connecting multi-agent systems and cooperative
control to network optimization will allow us to consider the applications ap-
pearing in Chapters 4, 6 and 7 also for MIMO systems, with little to no effort
required.

In the next chapter, we’ll consider another extension of the network opti-
mization framework of [23], this time to Passive-short systems.
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Chapter 3

A Network Optimization
Framework for
Passive-Short Agents

This section is a review of [72, 134, 140]. We demonstrate that the presented
network optimization framework cannot be used for passive-short agents, either
because it is undefined, or because it predicts a wrong limit for the closed-loop
system. The failure of the network optimization framework can be understood
by the integral function for the agents being non-convex (when defined), or by
the steady-state input-output relation for the agents being non-monotone. We
will use this motivation to generalize the network optimization framework by
augmenting the network optimization problems associated with the closed-loop
system, and interpret the augmentation as a transformation of the agents.

3.1 Introduction

As we saw in Section 1.2, the notion of passivity is vital for different approaches
studying large-scale multi-agent systems, including the network optimization
framework. In practice, however, many systems are not well-behaved, and pos-
sess a shortage of passivity (or non-passiveness) in their operation [61,113,158,
167]. Motivated by this fact, we consider dynamical systems that do not fulfill
the passivity requirements, and are characterized by their shortage of passivity.
In the literature, passivity indices are used to quantify the excess or shortage
of passivity in a system and are often compensated using passivation1 methods
such as feedback, feed-forward, or a combination of such schemes [24,168,179].

However, the methods of dealing with shortage of passivity only consider
passivity with respect to a specific steady-state input-output pair (u, y). These
methods give no way of asserting that the multi-agent system converges without

1Also referred to as feedback passification [47,48].
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3.2. SHORTAGE OF PASSIVITY AND FAILURES OF THE NETWORK
OPTIMIZATION FRAMEWORK

specifying a specific steady-state limit. We want to use the network optimization
framework presented in Sections 1.2 and 2.2, assuming we have an equilibrium-
independent shortage of passivity. However, the network optimization frame-
work does not apply for passive-short systems unless augmented, as we’ll see in
Section 3.2. The failure of the framework can be understood in terms of non-
convexity of the integral functions for the agents, if they are defined, and by the
non-monotonicity of the steady-state input-output relations of the agents oth-
erwise. Thus, one might try and convexify the integral functions, or monotonize
the steady-state relations, and understand what the system-theoretic meaning
of these augmentations are. The goal of this chapter is to present the methods of
augmenting the network optimization framework, validating it for passive-short
agents, and to give these augmentations a system-theoretic meaning.

The structure of this chapter is as follows. In Section 3.2, we show three ex-
amples of the failure of the network optimization framework. In Section 3.3, we
consider augmentations of the network optimization framework for networks
of output-passive short agents. In this case, the integral functions are de-
fined, so we can discuss the network optimization problems and try to convexify
them. We show multiple methods of convexification, which translate into mul-
tiple system-theoretic transformations for the agents. In Section 3.4, we study
networks of agents with general shortage of passivity, for which the integral
functions need not be defined. In this case, we focus on monotonization of the
steady-state input-output relations, and present the equivalent system-theoretic
transformation for the agents. We conclude this section by a few case studies.

3.2 Shortage of Passivity and Failures of the
Network Optimization Framework

In this section, we first define and study the notions of shortage of passivity and
equilibrium-independent shortage of passivity, and then discuss some examples
in which the network optimization framework fails, highlighting the different
reasons which can cause the failure.

3.2.1 Shortage of Passivity

We first give a definition of shortage of passivity and equilibrium-independent
shortage of passivity.

Definition 3.1. A dynamical system Σ : u 7→ y is output ρ-passive with respect
to the steady-state (u, y), for some number ρ ∈ R, if there exists a non-negative
C1-smooth function S(x) of the state x of Σ such that the inequality

d

dt
S(x(t)) = ∇S(x(t))ẋ(t) ≤ (y(t)− y)>(u(t)− u)− ρ‖y(t)− y‖2 (3.1)

holds for any trajectory (u(t), x(t), y(t)).
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

We say that the system is input ν-passive with respect to the steady-state
(u, y), for some number ν ∈ R, if there exists a non-negative C1-smooth function
S(x) such that the inequality

d

dt
S(x(t)) = ∇S(x(t))ẋ(t) ≤ (y(t)− y)>(u(t)− u)− ν‖u(t)− u‖2 (3.2)

holds for any trajectory (u(t), x(t), y(t)).
Lastly, we say the system is input-output (ρ, ν)-passive short with respect

to the steady-state (u, y), for some numbers ρ, ν ∈ R such that ρν < 1
4 , if there

exists a non-negative C1-smooth function S(x) such that the inequality

d

dt
S(x(t)) ≤ (y(t)− y)>(u(t)− u)− ρ‖y(t)− y‖2 − ν‖u(t)− u‖2 (3.3)

holds for any trajectory (u(t), x(t), y(t)).

Remark 3.1. It should be noted that the numbers ρ, ν in the definition above are
not unique, as decreasing them makes the inequality easier to satisfy. This moti-
vates the definition of the equilibrium-independent passivity indices analogously
to the output-feedback passivity index (OFP) and the input-feedthrough passivity
index (IFP) in [167]. Moreover, the definition above unifies both strictly-passive,
passive, and passive-short systems. The case ρ, ν > 0 corresponds to strict pas-
sivity, ρ, ν = 0 corresponds to passivity, and ρ, ν < 0 corresponds to shortage
of passivity. Thus, it will allow to consider networks of systems where some
are passive and some are passive-short, without needing to specify the exact pas-
sivity assumption. Moreover, it allows to consider input-output (ρ, ν)-passivity
systems for ρ > 0 and ν < 0 (or vice versa) with no additional effort needed.

Remark 3.2. The demand that ρν < 1
4 is essential. Indeed, if ρν ≥ 1

4 , the
right-hand side of (3.3) is always non-negative. For example, if ρ = ν = − 1

2 ,
then the right-hand side is equal to ‖u(t) − u + y(t) − y‖2 ≥ 0. In that case,
any static nonlinearity would be input-output (ρ, ν)-passive, which is obviously
too broad for such a definition.

Remark 3.3. Observe that input-output (ρ, ν)-passive systems capture both out-
put ρ-passive and input ν-passive systems by setting either ρ = 0 or ν = 0.

The notion of input-output (ρ, ν)-passivity is quite extensive, and includes
many different systems. As a specific case, we claim that it includes all finite-
L2-gain systems, which are defined below:

Definition 3.2. A dynamical system Σ : u 7→ y has finite L2-gain with respect
to the steady-state (u, y) if there exists a number β > 0 and non-negative C1-
smooth function S(x) of the state x of Σ such that the inequality

d

dt
S(x(t)) = ∇S(x(t))ẋ(t) ≤ −‖y(t)− y‖2 + β2‖u(t)− u‖2 (3.4)

holds for any trajectory (u(t), x(t), y(t)). The minimal number β for which the
inequality holds for any trajectory is called the L2-gain of the system Σ, and is
it equal to the operator norm of Σ : L2 → L2.
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3.2. SHORTAGE OF PASSIVITY AND FAILURES OF THE NETWORK
OPTIMIZATION FRAMEWORK

Theorem 3.1. Let Σ : u 7→ y be a finite L2-gain system with gain β with
respect to the steady-state input-output pair (u, y). Then, Σ is input-output
(ρ, ν)-passive with respect to (u, y), with passivity indices ρ = −g(β) < 0, ν ≤
−
(

1 + 1
4(g(β)+β2)

)
, where g(β) is any positive function of the L2-gain β.

Proof. By definition, there exists a storage function S(x) > 0 such that

Ṡ(x) ≤
[
u− u
y − y

]> [−β2 0
0 1

] [
u− u
y − y

]
.

On the other hand, it follows from Definition 3.1 that Σ is input-output (ρ, ν)-
passive if there exists a storage function S̄(x) > 0 such that

˙̄S(x) ≤
[
u− u
y − y

]′ [−ρ 1
2

1
2 −ν

] [
u− u
y − y

]
,

where ρ < 0, ν < 0 and ρν < 1
4 .

Thus, it’s enough to show the existence of ρ < 0, ν < 0 such that[
−ρ 1

2
1
2 −ν

]
≥
[
−β2 0

0 1

]
,

and ρν < 1
4 , as we can choose S̄(x) = S(x). Indeed, we need to show that[

−ρ+ β2 1
2

1
2 −ν − 1

]
≥ 0.

It is sufficient to show that both the upper left element −ρ + β2 and the de-
terminant are positive. Since ρ < 0, it is clear that −ρ + β2 > 0. As for the
determinant, we have

det

[
−ρ+ β2 1

2
1
2 −ν − 1

]
= (−ρ+ β2)(−ν − 1)− 1

4
.

Assigning ρ = −g(β) < 0, where g(β) is any positive function of the gain β, one
can see that the determinant is non-negative as long as ν ≤ −1 + 1

4(g(β)+β2) ,

which proves the claim.

Remark 3.4. One can easily check that the result above is not true in the
opposite direction, that is, if the system Σ is input-output (ρ, ν)-passive, it does
not necessarily have a finite L2-gain. This is due of the fact that the 2×2 matrix
above cannot be negative semi-definite as −ρ + β2 > 0. See also the example
following this remark.

Example 3.1. Consider the (SISO) linear system Σ : ẋ = x + u; y = x. One
can easily verify using the storage function S(x) = 1

2 (x− x2) that this system is
output- ρ-passive with respect to any steady-state I/O pair (u, y), for ρ = −1.
However, the system does not have a finite L2-gain and is not even L2-stable.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

Indeed, if we apply an input signal of the form u(t) =

{
1 t < 1

0 t ≥ 1
, then the

output is given via the following convolution integral

y(t) =

∫ t

0

et−τu(τ)dτ =

∫ 1

0

et−τdτ = (e− 1)et−1,

which is not even bounded and therefore y(t) /∈ L2, even though the input u(t) ∈
L2. Thus, the system Σ is output ρ-passive with respect to any equilibrium, but
does not have a finite L2-gain with respect to any steady-state input-output pair.

To conclude this subsection, we define the notion of equilibrium-independent
input-output (ρ, ν)-passivity, which will be our main focus throughout this chap-
ter.

Definition 3.3. A dynamical system Σ : u 7→ y is said to be:

i) equilibrium-independent output ρ-passive (EI-OP(ρ)) if (3.1) holds with
respect to any steady-state input-output pair;

ii) equilibrium-independent input ν-passive (EI-IP(ν)) if (3.2) holds with
respect to any steady-state input-output pair;

iii) equilibrium-independent input-output (ρ, ν)-passive (EI-IOP(ρ, ν)) if ρν <
1
4 and (3.3) holds with respect to any steady-state input-output pair.

3.2.2 Failure of the Network Optimization Framework

We can now consider the network optimization framework for EI-IOP(ρ, ν)
agents. We claim that the network optimization framework fails in this case.
We present three examples of this failure. The first shows that the closed-loop
system need not converge, no matter which controllers we choose. The second
shows that the integral functions for the agents need not be defined. The third
shows that even if the closed-loop system converges, and the integral functions
are defined, the limit predicted by the network optimization framework need
not be equal to the actual limit of the closed-loop system.

Example 3.2. Consider a collection of n agents, each having the model ẋi =
xi+ui, yi = xi. It’s easy to check that the agents are EI-OP(ρ) with parameter
ρ = −1. We claim that for any graph G and any collection of controllers Π,
the diffusively-coupled network (G,Σ,Π) diverges. Indeed, take any graph G and
network controllers Π, and consider an initial condition for which xi(0) = 1. Let
µ(t) be the controller output, so that the closed-loop system has the dynamics
ẋ = x − EGµ(t). In particular, 1>ẋ = 1>x, meaning that the mode 1>x is
equal to 1>x(0) exp(t) = n exp(t). Thus the state x, and the output y, do not
converge.
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3.2. SHORTAGE OF PASSIVITY AND FAILURES OF THE NETWORK
OPTIMIZATION FRAMEWORK

Example 3.3. Consider a SISO dynamical system Σ given by

Σ : ẋ = − 3
√
x+ 0.5x+ 0.5u; y = 0.5x− 0.5u, (3.5)

where the input is u and the output is y. By using a change of variables of the
form [

ũ
ỹ

]
=

[
1 1
1 2

] [
u
y

]
,

we obtain the following system

Σ̃ : ẋ = − 3
√
x+ ũ; ỹ = x, (3.6)

where ũ and ỹ are, respectively, the input and output of the transformed system
Σ̃. The matrix transformation T = [ 1 1

1 2 ] also connects the steady-state relations
of the two systems, that is, if (ũ, ỹ) is a steady-state input-output pair for Σ̃,
then (u, y) is a steady-state input-output pair of Σ, where[

ũ
ỹ

]
= T

[
u
y

]
.

It is easy to verify that Σ̃ is MEIP with storage function S(x) = 1
2 (x−x)2, with

x = ỹ for any steady-state I/O pair (ũ, ỹ). Let R(x) = 1
3S(x) be the storage

function for the original system Σ, we obtain

Ṙ =
1

3
Ṡ ≤ 1

3
(ũ− ũ)(ỹ − ỹ) =

1

3

[
ũ− ũ
ỹ − ỹ

]′ [
0 1

2
1
2 0

] [
ũ− ũ
ỹ − ỹ

]
=

1

3

[
u− u
y − y

]′
T ′
[

0 1
2

1
2 0

]
T

[
u− u
y − y

]
=

1

3

[
u− u
y − y

]′ [
1 3

2
3
2 2

] [
u− u
y − y

]
= (u− u)(y − y) +

1

3
(u− u)2 +

2

3
(y − y)2,

i.e., the system Σ is EI-IOP(ρ, ν) with passivity indices ρ = −2/3 and ν = −1/3.
Utilizing the connection between the steady-state input-output relations of the
two systems, one can easily see that the steady-state relation of Σ is given by
the planar curve u = 2σ − σ3; y = σ3 − σ, parameterized by a variable σ, as
shown in Figure 3.1. It is clear from Figure 3.1 that both steady-state input-
output relation and its inverse are non-monotone, and furthermore that they
possess no integral function. In other words, Σ is EI-IOP(ρ, ν) for some ρ, nu,
but one cannot associate an integral function with it, so the network optimization
framework cannot be defined.

Example 3.4. Consider a class of networked nonlinear SISO gradient systems,
which are diffusively-coupled networks with agents described by

Σi : ẋi = −∂U(xi)

∂xi
+ ui; yi = xi, i = 1, . . . , |V|, (3.7)
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Chapter 3. A Network Optimization Framework for Passive-Short Agents
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(b) The inverse relation

Figure 3.1: Steady-state relations of the system in Example 3.3.

where U is a C1 scalar potential function with U(σ) > 0, σ 6= 0 and U(0) = 0.
Moreover, we take identical static gains as controllers Πe : µe = Gζe, where
G > 0, meaning we have a control law of the form

ui = G
∑
j∼i

(xj − xi), i = . . . , |V|, (3.8)

Such classes of systems are important because of their applications in both bi-
ological and multi-agent systems, and are inspired from [131]. As discussed
in [131], (3.7) loosely describes the dynamics of a group of bacteria performing
chemotaxis (where xi is the position of the bacteria) in response to the chemical
stimulus such as directing their movements according to the concentration of
chemicals in their environment to find food (for example, glucose) by swimming
towards the highest concentration of food molecules. Other possible applications
include networks of robots that must efficiently climb gradients to search for a
source by measuring its signal strength in a spatially distributed environment.

Proposition 3.1. Consider the gradient system (3.7), where the Hessian matrix
Hess(U) of the potential U satisfies Hess(U) ≥ ρId|V| for some ρ. Then the
system is EI-OP(ρ).

Proof. Take any steady-state input-output pair (u, y) of the system. Consider
the storage function S(x) = 1

2‖x − x‖2. Taking the derivative of S along the

system dynamics (3.7) yields Ṡ = (x−x)>(−f(x)+u), where we denote f(x) =
∇U(x) for notational convenience. Defining ϕ(x) = f(x) − ρx, we can write
Ṡ = (x− x)>(−ϕ(x)− ρx+ u). Adding and subtracting ϕ(x) and ρx and using
the fact that u = f(x), y = x and ϕ(x) = f(x) − ρx at equilibrium, we can
get Ṡ = −(x − x)>((ϕ(x) − ϕ(x)) − ρ(y − y)>(y − y) + (y − y)(u − u)). By
assumption, Hess(U) ≥ ρI|V|, meaning that it is easy to check that ∇ϕ(x) =

Hess(U)(x)−ρId ≥ 0, implying that −(x−x)>((ϕ(x)−ϕ(x)) ≤ 0. Thus, we can
conclude that Ṡ ≤ −ρ(y− y)>(y− y) + (y− y)>(u− u), and hence the network
(3.7) is EI-OPS with passivity parameter ρ.

We now consider the network optimization framework for the diffusively-
coupled systems (G,Σ,Π). One can compute that the steady-state input-output
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3.2. SHORTAGE OF PASSIVITY AND FAILURES OF THE NETWORK
OPTIMIZATION FRAMEWORK
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Figure 3.2: Steady-state maps and the associated integral function of the EI-
OPS system Σi of Example 3.4. Both ki and k−1

i are non-monotone and the
dual integral function K?

i is non-convex.

relation for the controller is γe(ζe) = Gζe, implying that the integral function
for the controllers is given by Γ(ζ) = G

2 ζ
2. Take the potential U as U(xi) =

r1(1 − cosxi) + 1
2r2x

2
i , r1 > 0, r2 > 0, ∀i ∈ |V|. We have that Hess(U)(xi) =

r1 cosxi + r2 ≥ r2− r1, so the agents are EI-OP(ρ) with parameter ρ = r2− r1.
The steady-state I/O map ki of the systems Σi is given by the planar curve
ui = r1 sinσ + r2σ; yi = σ, parameterized by the variable σ. It can be seen in
Figure 3.2.

It can be seen that k−1
i is a smooth function, so the integral function K?

i can
be defined so that ∇K?

i = k−1
i . We note that K?

i is non-convex. However, we
do note that K?

i has a global minimum at yi = 0. Thus, the minimum of the
optimization problem (OPP), which is the unconstrained optimization problem
of
∑
iK

?
i (yi) + Γ(E>G y), will occur at y = 0.

We choose r1 = 2.5, r2 = 0.1 for all agents, and G = 1. The closed-loop
system was run, and the resulting trajectories can be seen in Figure 3.3. As can
be seen, the system converges to a steady-state different from 0, which was the
steady-state predicted by the network optimization framework.

A more thorough examination of the steady-state of the trajectories in Ex-
ample 3.4 shows that all agents converge to local minima of the function K?

i , as
seen in Figure 3.2. Actually, the closed-loop system converges to a local mini-
mum of the cost function of (OPP), which is not the global minimum. One can
show with methods similar to the ones used in Section 2.2 that if the closed-loop
system does converge to a steady-state, it must be a critical point of the opti-
mization problem. This is true as the critical point of the problem, by definition,
satisfies the equations (2.2). For convex functions, all critical points are global
minima, so the failure of the network optimization framework can be attributed
to non-convexity of the network optimization problems, provided the agents are
EI-IOP(ρ, ν).
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

Figure 3.3: The trajectories of the closed-loop system from Example 3.4. The
steady-state limit is not 0, which was the steady-state limit predicted by (OPP).

3.3 A Network Optimization Framework for
Output Passive-Short Agents

Consider a diffusively-coupled network (G,Σ,Π). Assume that the agents are
SISO and EI-OP(ρi) with passivity parameters ρ1, · · · ρ|V|, and that the con-
trollers are MEIP. Motivated by the previous section, we try and regularize
the network optimization problem (OPP) to make the network optimization
framework valid. We consider the following technical assumption:

Assumption 3.1. Each SISO dynamical system Σi is EI-OP(ρi). Moreover,
we assume that the inverse steady-state relation k−1

i is a function defined over R.
In this case, one can choose the integral functions for k−1

i by taking any steady-
state output y0 and defining K?

i (y) =
∫ y

y0
k−1
i (ỹ)dỹ, so that K?

i are differentiable

and ∇K?
i = k−1

i .

Remark 3.5. The technical assumption makes the presentation more stream-
lined, but it is not essential in order to prove that the agents have integral func-
tions in this case. However, proving this claim without the assumption requires
an extension of the notion of subdifferentials, which we avoid.

Thus, if Assumption 3.1 holds, integral functions exist, and we can write the
(non-convex) problem (OPP). We try and convexify it in order to amend the
network optimization problem. In the next three subsections, we consider var-
ious methods of convexification of (OPP), resulting in different augmentations
for the agents. The first will lead to a term that always successfully convexifies
(OPP), but requires the agents to sense their own output. The second uses the
network to regularize the agents, and only requires the agents to sense their
output relative to their neighbors, yi − yj , but successfully convexifies (OPP)
only if the average of the passivity indices ρ is positive. The third is a hybrid of
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3.3. A NETWORK OPTIMIZATION FRAMEWORK FOR OUTPUT
PASSIVE-SHORT AGENTS

the previous two approaches, which always successfully convexifies (OPP), and
requires no more than one agent to sense its own output.

3.3.1 Agent-Only Regularization

Consider the optimal potential problem (OPP), and add a Tikhonov type reg-

ularization term of the form 1
2‖y‖

2
β = 1

2

∑|V|
i=1 βiy

2
i [17]. The new optimization

problem reads

min
y,ζ

K?(y) + Γ(ζ) +
1

2
y>diag(β)y

s.t. E>y = ζ,

(ROPP)

where β = [β1, . . . , β|V|]
> is a design parameter that will be specified later. By

presenting this regularization term, we have two questions to answer. First, how
can one interpret this augmentation on the system-theoretic level. Second, does
this regularization term actually convexifies (OPP). Toward answering the first
question, we consider the agents’ augmented integral function from (ROPP):

Λ?i (y) = K?
i (y) +

1

2
βiy

2
i . (3.9)

We claim that this regularization term can be understood as an output-feedback
term for each individual agent. Indeed:

Theorem 3.2. Consider the SISO dynamical system Σi and suppose that As-
sumption 3.1 is satisfied. Let Λ?i (y), given by (3.9) be the augmented function
of the (ROPP). Then the output-feedback control of the form

ui = vi − βiyi, (3.10)

with new exogenous input vi for each i ∈ V, gives rise to the integral function
Λ?i (y), in the sense of Assumption 3.1. In other words, the augmented agent Σ̃i
given by

Σ̃i :

{
ẋi = fi(xi, vi − βiyi),
yi = hi(xi),

(3.11)

has a steady-state input-output relation, and Λ?i is the integral function of the
inverse steady-state input-output relation.

Proof. Note that Λ?i (y) is a differentiable function, as it is the sum of the differ-
entiable function K?

i (y) and the quadratic function 1
2βiy

2
i . Thus we can define

an input-output relation λi such that, ∂Λ?i (yi) = λ−1
i (vi) for any vi, where λ−1

i

is the inverse relation of λi. Consequently, it follows from (3.9) that

λ−1
i (yi) = k−1

i (yi) + βiyi, (3.12)
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

If (ui, yi) is a steady-state input-output pair of Σi, and vi = λ−1
i (yi), then we

get from (3.12) that in steady-state,

vi = ui + βiyi, (3.13)

meaning that (vi, yi) is a steady-state input-output pair of agent augmented by
the output-feedback as in (3.10). This completes the proof.

Example 3.5. Consider the SISO agent of the form ẋ = −x+ 3
√
x+u; y = 3

√
x.

The steady-state input-output relation of the system is given by all pairs (u, y)
so that u = y3−y, as in steady-state, x = y3. This implies that k−1(y) = y3−y,
and thus the integral function is given by K?(y) = 1

4y4 − 1
2y2, which is non-

convex.
We consider the augmented function Λ?(y) = 1

4y4, which is convex, and can
be found by adding a Tikhonov regularization term of the form 1

2βy2 to K?(y),
as suggested above. By the proposition, it should induce the output-feedback
u(t) = v(t) − y(t). We verify that the closed-loop system of the agent and the
feedback possesses Λ? as an integral function. Indeed, the closed-loop system
is ẋ = −x + 3

√
x + u = −x + 3

√
x + v − 3

√
x = −x + v, where y = 3

√
x. The

new system has a steady-state input output relation λ satisfying λ−1(y) = y3, as
the new steady-state input output relation consists of all pairs (u, y) such that
u = y3. Thus the integral function of the new system is 1

4y4, as predicted by the
theorem.

This answers the first question - the regularization term corresponds to an
output-feedback term on each agent i ∈ V, with constant gain equal to βi. It
remains to show that the regularized problem (ROPP) is convex. We show
that each function Λ?i is convex, and in fact, that the augmented agents Σ̃i are
output-strictly MEIP.

Theorem 3.3. Consider the SISO dynamical system Σi with steady-state input-
output relation ki and suppose that Assumption 3.1 is satisfied. Let σi be the
passivity parameter of Σi. Then for any βi > −σi, the feedback (3.10) defines
a new dynamical system Σ̃i, which is output-strictly MEIP. In particular, the
function Λ?i is convex.

Proof. Substituting (3.10) and (3.13) in (3.1), yields

Ṡi ≤ −ρi(yi − λi(vi))2 + (yi − λi(vi))(vi − vi), (3.14)

where ρi = βi + σi > 0 since βi > −σi. Thus, the new dynamical system Σ̃i
is output-strictly passive with respect to any steady-state input-output pair it
possesses, so it is output-strictly MEIP if and only if its input-output relation,
λi, is maximally monotone, which we prove next.

Plugging in vi equal to another arbitrary constant v̂i and yi = ŷi = λi(v̂i),
it follows from (3.14) that λi is a monotone relation, so we only need to consider
its maximality. Rockafellar’s Theorem [119] implies that λi is contained in the
subdifferential of some convex function Pi, meaning that λ−1

i is contained in the
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3.3. A NETWORK OPTIMIZATION FRAMEWORK FOR OUTPUT
PASSIVE-SHORT AGENTS

Figure 3.4: Block diagram for the closed-loop system induced by the agent-based
regularization term.

subdifferential of the convex function P ?i . But λ−1
i = ∇Λ?i = ∂Λ?i , so uniqueness

of the subgradient implies that Λ?i = P ?i up to an additive constant. In that
case, Λ?i must be also convex, so λ−1

i = ∂Λ?i implies that λ−1
i , and hence λi, is

actually maximally monotone. This concludes the proof.

As the augmented agents Σ̃i are MEIP, we may use the network optimization
framework for MEIP agents, namely Theorem 1.2, to conclude the following
network optimization framework for EI-OP(ρ) systems:

Theorem 3.4. Let {Σi}i∈V be agents satisfying Assumption 3.1 with passivity
indices ρ1, · · · , ρ|V|. Let {Πe}e∈E be MEIP controllers with stacked integral func-
tion Γ(ζ). Consider the closed-loop network with the controller input ζ = EGy
and the control input u = −EGµ − diag(β)y. Then the closed-loop system con-
verges to a steady-state. Moreover, the steady-state output y and ζ = EGy are
optimal solutions to the problem (ROPP).

The closed-loop system can be seen in Figure 3.4.
This output-feedback is the classical method of passivizing output-passive

short systems [75], which we recover by considering the agent-based regulariza-
tion term to (OPP). However, it has two drawbacks when considering multi-
agent systems. First, all agents need to be able to sense their own output yi in
order to implement the induced control law. In some cases, agents cannot sense
their own output in a global frame of reference, but only the output relative to
other agents, yi − yj . This is the case for a multi-agent system comprised of
robots operating in an area with no GNSS (Global Navigation Satellite System)
reception. The agents can sense their relative position and/or velocity, but they
do not know their own position and velocity in a global frame of reference. Sec-
ond, even if the agents can sense their own output, they need not be amenable
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

to the network designer, and agree to implement the self-feedback considered.
This is the case in open networks. Moreover, an adversary might inject an agent
to the network which claims it implemented the self-feedback, but didn’t, which
will cause the multi-agent system to possibly diverge, or converge to a different
limit than forecasted by the network optimization framework, implying that
this augmentation is susceptible to attacks. Both problems can be addressed by
considering a feedback term which relies on the network alone. In this direction,
we explore network-only regularization terms in the next section.

3.3.2 Network-Only Regularization

We consider a different Tikhonov-type regularization term, of the form of
1
2

∑
e∈E βeζ

2
e, depending only on the network variables ζ. It gives rise to the

network-regularized optimal potential problem (NROPP):

min
y,ζ

K?(y) + Γ(ζ) +
1

2
ζ>Bζ

s.t. E>G y = ζ,

(NROPP)

where B = diag(β) = diag{β1, . . . , β|E|} is a design parameter that will be
appropriately chosen to make (NROPP) convex. We can consider the cost
function of (NROPP) as the sum of two functions - the first is Γ(ζ), which
is known to be convex. The second is K?(y) + 1

2ζ
>diag(β)ζ. Recalling that

ζ = E>G y, we denote the latter as

Λ?N (y) = K?(y) + 0.5y>EGdiag(β)E>G y. (3.15)

The following theorem proves that this new, regularized integral function for
the agents is induced by a network consensus-type feedback.

Proposition 3.2. Consider the agents Σi satisfying Assumption 3.1. Let Λ?N ,
given by (3.15), be the network-regularized integral function for the agents. Then
Λ?N is differentiable. Moreover, consider the MIMO system Σ̃ given by the par-
allel interconnection of the agents {Σi}i∈V with an output-feedback control of the
form

u = v − EGdiag(β)E>G y, (3.16)

with some new exogenous input v ∈ Rn, i.e., Σ̃ is modeled as the feedback-
interconnection of ẋ = f(x, u), y = h(x, u) and (3.16). Let λN be its input-
output steady-state relation. Then λ−1

N is a function, and ∇Λ?N = λ−1
N .

Proof. The proof is similar to the proof of Theorem 3.2. The function Λ?N is
differentiable as a sum of the differentiable functions K? and 1

2y>EGdiag(β)E>G y.
Its derivative is given by

∇Λ?N (y) = k−1(y) + EGdiag(β)E>G y. (3.17)
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3.3. A NETWORK OPTIMIZATION FRAMEWORK FOR OUTPUT
PASSIVE-SHORT AGENTS

If (u, y) is a steady-state input-output steady-state pair for the agents, and we
denote v = ∇Λ?N (y), then (3.17) is equivalent to

v = u + EGdiag(β)E>G y. (3.18)

Rearranging the terms, we conclude that (v, y) is a steady-state input-output
pair for the closed-loop system Σ̃ given by the agents with the network feedback
as in (3.16), as u = v − EGdiag(β)E>G y and y are a steady-state input-output
pair for the agents Σ. This completes the proof.

In other words, Proposition 3.2 gives the following interpretation of (NROPP).
It is the optimal potential problem (OPP) for the closed-loop system which is
the feedback connection of the controllers Π with the augmented agents Σ̃, as
seen in Figure 3.5. In the spirit of feedback connection of passive systems, and
because the controllers Π are MEIP, we wish to understand when Σ̃ is passive.

Proposition 3.3. Suppose that R+EGdiag(β)E>G is positive-semi definite, where

R = diag{ρ1, . . . , ρ|V|} with ρi the passivity index of Σi. Then Σ̃ is passive with
respect to any steady-state input-output pair. Moreover, if the matrix is positive-
definite, then Σ̃ is output-strict passivity.

Proof. We take a steady-state input-output pair (v, y) for Σ̃, so that (u, y) is
a steady-state input-output pair of Σ where v = u + EGdiag(β)E>G y. If S(x) =∑
i S(xi) is the sum of the storage functions for the agents Σi, then summing

(3.1) over the agents gives

Ṡ ≤ −(y − y)>R(y − y) + (y − y)>(u− u).

Substituting u = v − EGdiag(β)E>G y gives

Ṡ ≤ −(y − y)>R(y − y) + (y − y)>(v − v)− (y − y)>EGdiag(β)E>G (y − y).

Grouping R and EGdiag(β)E>G completes the proof.

We conclude the following theorem.

Theorem 3.5. Let {Σi}i∈V be agents satisfying Assumption 3.1 with passiv-
ity indices ρ1, ..., ρ|V|. Let {Πe}e∈E be MEIP controllers with stacked integral

function Γ. Consider the closed-loop system with the controller input ζ = E>G y
and the control input u = −EGµ− EGdiag(β)ζ. If R+ EGdiag(β)E>G is positive-
definite, then the closed-loop system converges to a steady-state. Moreover, the
steady-state output y and ζ = E>G y are the optimal solutions to the problem
(NROPP).

Proof. By the discussion above, the closed-loop system is a feedback connec-
tion of the network-regularized agents Σ̃, which are output-strictly passive with
respect to any steady-state they have, and the controllers Π, which are MEIP.
Moreover, the augmented agents’ steady-state input-output relation λ−1

N is the
gradient of the function Λ?N . The proof now follows from Theorem 1.2 and
Remark 2.7.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

Figure 3.5: Block diagram for the closed-loop system induced by the network-
based regularization term.

We now ask ourselves how to ensure R + EGdiag(β)E>G is positive-definite
by appropriately choosing the gains βe. To answer that question, we prove the
following.

Theorem 3.6. Let ρ1, ..., ρ|V| be any real numbers and assume G is connected.

There exists some β1, ..., β|E| such that diag(ρ)+EGdiag(β)E>G is positive definite
if and only if

∑
i∈V ρi is strictly positive.

Proof. Suppose first that there exist some β1, ..., β|E| such that X = R +

EGdiag(β)E>G is positive definite. Then 1>|V|X1|V| > 0. However, E>G 1|V| = 0, so

0 < 1>|V|X1|V| = 1>|V|R1|V| =
∑
i ρi.

As for the other direction, suppose that
∑
i ρi > 0. We show that if b is

large enough, then R+ bEGE>G is positive definite, which will conclude the proof
as we can choose βe = b. As the matrix in question is symmetric, it’s enough
to show that for any x ∈ R|V|, x>(R+ bEGE>G )x ≥ 0.

We can write any vector x ∈ R|V| as x = α1|V| + EGz for z ∈ R|E| orthogonal
to ker(EG). The quadratic form is

x>(R+ bEGE>G )x = α2
∑
i

ρi + z>E>G R(2α1|V| + EGz) + b||E>G EGz||2,

where we use E>G 1|V| = 0. Now, E>G EG is a positive semi-definite matrix, and

z is orthogonal to its kernel, as ker(E>G EG) = ker(EG). Thus ||E>G EGz|| ≥
λmin,6=0(E>G EG)||z||, where λmin,6=0(E>G EG) is the minimal non-zero eigenvalue.
Moreover, E>G EG and EGE>G share nonzero eigenvalues [66], hence the minimal
nonzero eigenvalue of E>G EG is λ2(G), the second lowest eigenvalue of the graph
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3.3. A NETWORK OPTIMIZATION FRAMEWORK FOR OUTPUT
PASSIVE-SHORT AGENTS

Laplacian. Therefore the quadratic form is bounded from below by

α2
∑
i

ρi + 2αz>E>G R1|V| + z>E>G REGz + bλ2
2(G)||z||2

=

∥∥∥∥
√∑

i ρi√
|V|

α1|V| +

√
|V|√∑
i ρi

REGz
∥∥∥∥2

+ z>
(
E>G REG −

|V|∑
i ρi
E>G R2EG + bλ2(G)2Id

)
z.

The first summand is non-negative, as it is a norm, and the second is positive
if the symmetric matrix multiplying z> and z is positive-definite (and z 6= 0),
which is guaranteed if

b >
λmax

( |V|∑
i ρi
E>G diag(ρ)2EG − E>G diag(ρ)EG

)
λ2(G)2

:= b,

where λmax(·) is the largest eigenvalue of a matrix. Note that in the case z = 0,
α 6= 0 and the norm is positive, so x>(R + bEGE>G )x is positive as well. This
completes the proof.

Remark 3.6. Note that if G is not connected, the result of Theorem 3.6 holds
if we require that the sum on each connected component is positive.

Example 3.6. One might expect that if we only demand positive-semi definite-
ness in Theorem 3.6, we might be able to accommodate

∑
i∈Vc ρi = 0. However,

this is not the case. Consider a two-agent case with ρ1 = 1 and ρ2 = −1. There
is only one edge in the case,

diag(ρ) + EGdiag(β)E>G =

[
1 + β −β
−β −1 + β

]
.

This matrix can never be positive semi-definite, as its determinant is equal to
−1 < 0. Thus, the agents cannot be passivized using the network.

Theorem 3.6 does not only characterize the diffusively-coupled systems that
can be regularized using the network, but it also gives a prescription for network
regularization, namely have a uniform gain of size b + ε, for some ε > 0, over
all edges. However, it shows that not all diffusively-coupled systems satisfying
Assumption 3.1 can be network-passivized. This can be problematic in some
applications, e.g. open networks in which the sign of the sum

∑
i ρi might be

volatile, meaning that there might be long periods in which we cannot provide
a solution. For that reason, we consider a more general approach in the next
subsection, fusing both agent-based and network-based regularization terms.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

3.3.3 Hybrid Regularization

We return to the problem of regularizing the non-convex network optimiza-
tion problem (OPP). Motivated by Subsections 3.3.1 and 3.3.2, we consider a
quadratic regularization term containing both agent-based and netword-based
regularization terms Namely, we consider the Hybrid-Regularized Optimal Po-
tential Problem (HROPP),

min
y,ζ

K?(y) + Γ(ζ) +
1

2
ζ>diag(β)ζ +

1

2
y>diag(α)y

s.t. E>G y = ζ.

(HROPP)

As we’ll see, unlike in Subsection 3.3.1, the vector α = [α1, ..., α|V|]
> can be very

sparse. Namely, we can prove the following theorems.

Theorem 3.7. Consider the agents Σi satisfying Assumption 3.1. Let Λ?H(y) =
K?(y) + 1

2y>EGdiag(β)E>G y + 1
2y>diag(α)y be the augmented agents’ integral

function. Then Λ?H is differentiable. Moreover, consider the MIMO system Σ̃
given by the agents with the output-feedback control

u = v − EGdiag(β)E>G y − diag(α)y, (3.19)

with a new exogenous input v ∈ Rn. Let λH be its steady-state input-output
relation. Then λ−1

H is a function, and ∇Λ?H = λ−1
H .

Proof. Similar to the proof of Proposition 3.2.

Theorem 3.8. Let {Σi}i∈V be agents satisfying Assumption 3.1. Let {Πe}e∈E
be MEIP controllers with stacked integral function Γ. Consider the closed-
loop system with the controller input ζ = E>G y and the control input u =
−EGµ − EGdiag(β)ζ − diag(α)y. If the matrix diag(ρ + α) + EGdiag(β)E>G is
positive-definite, then the closed-loop system converges. Moreover, the steady-
state output y and ζ = E>G y are the optimal solutions to the problem (HROPP).

Proof. Similar to the proof of Theorem 3.5.

Corollary 3.1. (Almost Network-Only Regularization) Let {Σi}i∈V be agents
satisfying Assumption 3.1, and suppose that the graph G is connected. Let Vsr ⊆
V be any nonempty subset of the agents. Let {Πe}e∈E be MEIP controllers with
stacked integral function Γ. Consider the closed-loop system with the controller
input ζ = E>G y and the control input u = −EGµ− EGdiag(β)ζ − diag(α)y. Then

there exist vectors α ∈ R|V|, β ∈ R|E| such that:

i) For any vertex i 6∈ Vsr, αi = 0.

ii) The closed-loop system converges to a steady-state.

iii) The steady-state output y and ζ = E>G y are the optimal solutions to the
optimization problem (HROPP).
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3.3. A NETWORK OPTIMIZATION FRAMEWORK FOR OUTPUT
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Figure 3.6: Block diagram for the closed-loop system induced by the hybrid
regularization term with one self-regulating agent Σ|V|.

An example of the closed-loop system for a single self-regulating agent Σ|V|
can be seen in Figure 3.6.

Proof. By Theorem 3.8, it’s enough to find some α, β satisfying the first condi-
tion such that diag(ρ+α)+EGdiag(β)E>G is positive-definite. Fixing α, Theorem
3.6 implies that there is some β such that diag(ρ+α)+EGdiag(β)E>G is positive-
definite if and only if

∑
i(ρi+αi) > 0, or

∑
i αi > −

∑
i ρi. Taking any i0 ∈ Vsr

and choosing αi = 1 −
∑
i ρi for i = i0, and αi = 0 otherwise, completes the

proof.

Remark 3.7. The set Vsr in the theorem can be thought of the set of vertices
that can sense their own output, and are amenable to the network designer
(i.e., self-regularizable agents). The theorem shows the strength of the hybrid
approach for regularization of (OPP). We can choose almost all αi-s to be zero
- namely one agent is enough. In practice, this solution is less restrictive than
the one offered in Subsections 3.3.1 and 3.3.2, as it makes no assumptions on
the passivity indices of the agents, and requires only one agent to implement a
self-feedback.

Remark 3.8. In all of the regularization procedures discussed in this section, we
considered quadratic terms around 0. One could also consider quadratic terms
of the form αi(yi − v)2, or βe(ζe − v)2, for some number v, which will give the
same result using the same exact analysis. These regularization terms are of use
when we wish to steer the system toward a certain steady-state, v. For example,
in a traffic control model, using the term αiy

2
i would steer the i-th agent toward

zero-velocity (as 0 is the minimizer of αiy
2
i ), which can be dangerous. This is
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

demonstrated in the case study presented in Subsection 3.5.3. This idea is used
in Chapter 5 to give a model-free solution to a certain synthesis problem.

3.4 A Network Optimization Framework for
General Passive-Short Agents

Until now, we focused on the case that all agents are EI-OP(ρi), for some
ρi ∈ R, and explained how to rectify (OPP) so that it becomes convex, which
resulted in a passivizing transformation for the agents, rendering the network
optimization framework valid. One can act similarly in the case of EI-IP(νi)
agents, replacing (OPP) with (OFP). In this section, we wish to broaden our
viewpoint and consider general input-output (ρ, ν)-passive agents.

Consider Example 3.3, in which the agents are EI-IOP(ρ, ν) with passivity
indices ρ = −2/3 and ν = −1/3. In that example, the steady-state input-
output relation of each of the agents was non-monotone enough so that the
notion of integral functions could not have be defined, even when omitting the
convexity requirement. Thus, the network optimization framework can’t be
directly applied, nor be defined. In particular, the convexification approach
used in the previous section can not be applied.

We take a different approach. Instead of convexifying the integral func-
tion (which is undefined), we opt to monotonize the steady-state input-output
relation, a first step in transforming the agent to being MEIP, which is the
route for applying the network optimization framework. The idea can be seen
pictorially in Figure 3.7. We start by studying how steady-state input-output
relations alter when applying linear transformations, and how can they be made
monotone.

MEIP

Non-monotone

Maximally 
monotone

Non-existent

Convex

Figure 3.7: Passivation, monotonization and convexification by transformation.
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

3.4.1 Monotonization of I/O Relations by Linear
Transformations: A Geometric Approach

Consider the dynamical system Σ : u 7→ y and suppose it is EI-IOP(ρ, ν). Let k
be the steady-state I/O relation of Σ. Our goal is to find a monotonizing trans-
formation T : (u, y) 7→ (ũ, ỹ) for k. Namely, we look for a linear transformation

T of the form

[
ũ
ỹ

]
= T

[
u
y

]
. We can use the EI-IOP(ρ, ν) assumption to deduce

some information on k.

Proposition 3.4. Let k be the steady-state I/O relation of Σ, which is EI-
IOP(ρ, ν). Then for any two points (u1, y1), (u2, y2) in k, the following inequal-
ity holds:

0 ≤ −ρ(y1 − y2)2 + (u1 − u2)(y1 − y2)− ν(u1 − u2)2. (3.20)

Proof. Consider inequality (3.3) for the steady-state input-output pair (u1, y1),
and let S(x) be the corresponding storage function. The steady-state input-
output pair (u2, y2) corresponds to some steady state x2, so that (u2, x2, y2) is
an (equilibrium) trajectory of the system. Inserting this into (3.3), and noting
that S(x2) is a fixed number, we conclude the inequality (3.20) holds.

The proposition suggests the following definition:

Definition 3.4. A projective quadratic inequality (PQI) is a an inequality in
the variables ξ, χ of the form

0 ≤ aξ2 + bξχ+ cχ2, (3.21)

for some numbers a, b, c, not all zero. The inequality is called non-trivial if
b2 − 4ac > 0. The associated solution set of the PQI is the set of all point
(ξ, χ) ∈ R2 satisfying the inequality.

By Definition 3.4, it is clear that (3.20) is a PQI. Indeed, plugging ξ = u1−u2

and χ = y1 − y2 and choosing a, b, c correctly verifies this. The demand ρν < 1
4

is equivalent to the non-triviality of the PQI. For example, monotonicity of
the steady-state k can be written as 0 ≤ (u1 − u2)(y1 − y2), which can be
transformed to a PQI by choosing a = c = 0 and b = 1 in (3.21). Similarly,
strict monotonicity can be modeled by taking b = 1 and a ≤ 0, c < 0 or b = 1
and a < 0, c ≤ 0.

As for transformations, the linear transformation T of the form[
ũ
ỹ

]
= T

[
u
y

]
can be written as

ũ = T11u + T12y

ỹ = T21u + T22y.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents
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Figure 3.8: A double cone (in blue), and the associated symmetric section (in
solid red). The parts of S1 outside the symmetric section are presented by the
dashed red line.

Plugging it inside (3.20) gives some other PQI. More precisely, if we let f(ξ, χ) =
aξ2 + bξχ + cχ2, and T is a linear map, then T maps to PQI f(ξ, χ) ≥ 0 to
f(T−1(ξ̃, χ̃)) ≥ 0. Our goal is to find a map T which transforms an inequality of
the form in Definition 3.4 to the PQI which corresponds to monotonicity. Thus,
we are compelled to consider the action of the group of linear transformations
on the collection of PQIs.

Let A be the solution set of the original PQI. The connection between the
original and transformed PQI described above shows that the solution set of the
new PQI is T (A) = {T (ξ, χ) : (ξ, χ) ∈ A}, implying we can study the effect of
linear transformations on PQIs by studying their actions on the solution sets.
The action of the group of linear transformations on the collection of PQIs
can be understood algebraically, but we use the notion of the solution set to
understand it geometrically. We begin by giving a geometric characterization
of the solution sets.

Note 3.1. In this subsection, we abuse notation and identify the point (cos θ, sin θ)
on the unit circle S1 with the angle θ in some segment of length 2π.

Definition 3.5. A symmetric section S on the unit circle S1 ⊆ R2 is defined
as the union of two closed disjoint sections that are opposite to each other, i.e.,
S = B ∪ (B + π) where B is a closed section of angle < π. A symmetric
double-cone is defined as A = {λs : λ > 0, s ∈ R} for some symmetric section
S.

An example of a symmetric section and the associated symmetric double-
cone can be seen in Figure 3.8.

Theorem 3.9. The solution set of any non-trivial PQI is a symmetric double-
cone. Moreover, any symmetric double-cone is the solution set of some non-
trivial PQI, which is unique up to a positive multiplicative constant.
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

The proof of the theorem will be postponed to the end of this subsection.
This theorem presents a geometric interpretation of the steady-state condition
(3.20). The relation between cones and measures of passivity is best known for
static systems through the notion of sector-bounded nonlinearities [75]. It was
expanded to more general systems in [173], and later in [90]. We consider a
different branch of this connection, focusing on the steady-state relation rather
on trajectories. In turn, it allows us to have intuition when constructing mono-
tonizing maps. In particular, we have the following result.

Theorem 3.10. Let (ξ1, χ1) and (ξ2, χ2) be two non-colinear solutions of a1ξ
2+

ξχ+ c1χ
2 = 0. Moreover, let (ξ3, χ3) and (ξ4, χ4) be two non-colinear solutions

of a2ξ
2 + ξχ+ c2χ

2 = 0. Define

T1 =

[
ξ3 ξ4
χ3 χ4

] [
ξ1 ξ2
χ1 χ2

]−1

, T2 =

[
ξ3 −ξ4
χ3 −χ4

] [
ξ1 ξ2
χ1 χ2

]−1

.

Then one of the maps T1, T2 transforms the PQI a1ξ
2 + ξχ + c1χ

2 ≥ 0 to the
PQI τa2ξ

2 + τξχ+ τc2χ
2 ≥ 0 for some τ > 0.

The non-colinear solutions of the equations correspond to the straight lines
forming the boundary of the symmetric double-cone, thus can be found geo-
metrically. Moreover, as will be evident from the proof, knowing which one of
T1 and T2 works is possible by checking the PQIs on (ξ1 + ξ2, χ1 + χ2) and
(ξ3 + ξ4, χ3 + χ4). Namely, if they both satisfy or both don’t satisfy the PQIs,
then T1 works, and otherwise T2 works.

Proof. It’s enough to show that either T1 or T2 maps the solution set of a1ξ
2 +

b1ξχ + c1χ
2 ≥ 0 to the solution set of a2ξ

2 + b2ξχ + c2χ
2 ≥ 0. Let A1 be the

solution set of the first PQI, and let A2 be the solution set of the second PQI.
We note that T1(A1) and T2(A1) are symmetric double-cones, whose boundary
is the image of the boundary of A1 under T1 and T2 respectively, i.e., they
are the image of span{(ξ1, χ1)} ∪ span{(ξ2, χ2)} under T1, T2. We note that
T1 maps (ξ1, χ1),(ξ2, χ2) to (ξ3, χ3),(ξ4, χ4) correspondingly, and that T2 maps
(ξ1, χ1),(ξ2, χ2) to (ξ3, χ3),(−ξ4,−χ4) correspondingly. Thus, span{(ξ1, χ1)} ∪
span{(ξ2, χ2)} is mapped by T1 and T2 to span{(ξ3, χ3)}∪span{(ξ4, χ4)}, so that
T1(A1), T2(A1) have the same boundary as A2. As T1, T2 are homeomorphisms,
they map interior points to interior points, so it’s enough to show that some
point in the interior of A1 is mapped to a point in A2 either by T1 or by T2, or
that a point in the interior of R2 \A1 is mapped to a point in R2 \A2 either by
T1 or by T2.

Consider the point (ξ1+ξ2, χ1+χ2). By non-colinearity, this point cannot be
on the boundary of A1, which is equal to span{(ξ1, χ1)}∪ span{(ξ2, χ2)}. Thus,
it’s either in the interior of A1 or in the interior of its complement. We assume
the prior case, as the proof for the other is similar. The point (ξ1 + ξ2, χ1 +χ2)
is mapped to (ξ3 ± ξ4, χ3 ± χ4) by T1,T2. By non-colinearity, these points
do not lie on the boundary of A2. Moreover, the line passing through them is
parallel to span{(ξ4, χ4)} which is part of the boundary of A2, and their average
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

is (ξ3, χ3), which is on the boundary. Thus one point is in the interior of A2,
and one is in the interior of its complement. This completes the proof.

Example 3.7. Consider the system Σ studied in Example 3.3, in which the
steady-state input-output relation was non-monotone. There, we saw that the
system is EI-IOP(ρ, ν) with parameters ρ = −2/3 and ν = −1/3. The corre-
sponding PQI is 0 ≤ 1

3ξ
2 + ξχ + 2

3χ
2. We use Theorem 3.10 to find a mono-

tonizing transformation. That is, we seek a transformation mapping the given
PQI to the PQI defining monotonicity, i.e., ξχ ≥ 0. We take (ξ3, χ3) = (1, 0)
and (ξ4, χ4) = (0, 1), as these are non-colinear solutions to ξχ = 0. As for the
points corresponding to the original PQI, 0 = 1

3ξ
2 +ξχ+ 2

3χ
2 can be rewritten as

1
3 (ξ+χ)(ξ+2χ) = 0. Thus we can take (ξ1, χ1) = (2,−1) and (ξ2, χ2) = (−1, 1).
It’s easy to check that (ξ1 + χ1, ξ2 + χ2) = (1, 0) satisfies the original PQI
0 ≤ 2

3ξ
2 + ξχ + 1

3χ
2, so the map T−1

1 , where T1 is defined as in the Theo-
rem 3.10, should monotonize the steady-state relation. Plugging in T1, we get

T1 =

[
1 0
0 1

] [
2 −1
−1 1

]−1

=

[
1 1
1 2

]
,

so that

T−1
1 =

[
2 −1
−1 1

]
,

and [
ξ
χ

]
= T−1

1

[
ξ̃
χ̃

]
.

Then,

0 ≤1

3
ξ2 + ξχ+

2

3
χ2 =

1

3
(2ξ̂ − χ̂)2 + (2ξ̂ − χ̂)(−ξ̂ + χ̂) +

2

3
(−ξ̂ + χ̂)2

=

(
4

3
− 2 +

2

3

)
ξ̂2 +

(
− 4

3
+ 3− 4

3

)
ξ̂χ̂+

(
1

3
− 1 +

2

3

)
χ̂2 =

1

3
ξ̂χ̂

so the transformed PQI can also be written as 0 ≤ ξ̂χ̂, which corresponds to
monotonicity. To get the transformed steady-state relation, we recall that the
steady-state relation of Σ is given by the planar curve u = 2σ− σ3; y = σ3− σ,
parameterized by a variable σ. The transformed relation is given by:[

ũ
ỹ

]
= T1

[
u
y

]
=

[
1 1
1 2

] [
2σ − σ3

σ3 − σ

]
=

[
σ
σ3

]
,

and can be modeled as ỹ = ũ3, which is a monotone relation.

The above theorem prescribes a monotonizing transformation for the relation
k. Moreover, it prescribes a transformation which forces strict monotonicity,
which can be viewed as the PQI −ρξ2 + ξχ− νχ2 ≥ 0 for some ρ, ν ≥ 0 which
are not both zero. Before moving on, we repay our debt and prove Theorem
3.9.
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
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Proof. Consider a PQI aξ2 + bξχ+cχ2 ≥ 0. If a = c = 0 and b 6= 0, the solution
set is either the union of the first and third quadrants, or the union of the second
and fourth quadrants (depending whether b > 0 or b < 0). Moreover, it is a
symmetric double-cone in both these cases. Thus, we can assume that either
a 6= 0 or c 6= 0. By switching the roles of ξ and χ, we may assume, without
loss of generality, that a 6= 0. Note that if (ξ, χ) is a solution to the PQI, and
λ ∈ R, then (λξ, λχ) is also a solution to the PQI. Thus, it’s enough to show that
the intersection of the solution set with the unit circle is a symmetric section.
Writing a general point in S1 as (cos θ, sin θ), the inequality becomes

a cos2 θ + b cos θ sin θ + c sin2 θ ≥ 0.

We assume, for a moment, that cos θ 6= 0, and divide by cos2 θ. The inequality
becomes

a tan2 θ + b tan θ + c ≥ 0.

We denote t± = −b±
√
b2−4ac

2a and consider two possible scenarios:

i) a < 0: In that case, the inequality holds only when tan θ is between t+
and t−. As tan is a monotone ascending function in (−π/2, π/2) and
(π/2, 1.5π), and tends to infinite values at the limits of said intervals, we
conclude that the inequality holds only when θ is inside I1∪I2, where I1, I2
are the closed intervals which are the image of [t−, t+] under arctan(x) and
arctan(x) +π, so that I2 = I1 +π. Note that as a < 0, any point at which
cos θ = 0 does not satisfy the inequality. Thus the intersection of the
solution set with S1 is a symmetric section.

ii) a > 0: In that case, the inequality holds only when tan θ is outside the
interval (t−, t+). Similarly to the previous case, tan θ ∈ (t−, t+) can be
written as B ∪ (B + π) where B is an open section of angle < π. Thus
its complement, which is the intersection of the solution set with S1, is a
symmetric section.

Conversely, consider a symmetric double-cone A, and let S = B ∪ (B + π)
be the associated symmetric section. Let C ∪ (C + π) be the complement of S
inside S1, where C is an open section. We first claim that cos θ 6= 0 either on B
or on C. Indeed, B ∪ C is a half-open half-circle, and the only points at which
cos θ = 0 are θ = ±π/2. Thus, B ∪ C can only contain one of them. Moreover,
B and C are disjoint, so at least one does not include points at which cos θ 6= 0.
Now, we consider two possible cases.

i) B (hence S) contains no points at which cos θ = 0. Then tan maps B
continuously into some interval I = [t−, t+]. Thus θ ∈ S if and only if
−(tan θ− t−)(tan θ− t+) ≥ 0. Inverting the process from the first part of
the proof, we can rewrite this as a PQI, such that the intersection of its
solution set with S1 is equal to S, meaning that its solution set is equal to
A. Non-triviality of the PQI follows from the fact that t± are two distinct
solutions to the associated equation.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

ii) C contains no points at which cos θ = 0. Then tan maps C continuously
into some interval I = (t−, t+). Thus, θ ∈ C ∪ (C + π) if and only if
(tan θ − t−)(tan θ − t+) < 0. Equivalently, θ ∈ S if and only if (tan θ −
t−)(tan θ− t+) ≥ 0. Inverting the process from the first part of the proof,
we can rewrite this as a PQI, such that the intersection of its solution set
with S1 is equal to S, meaning that its solution set is equal to A. Non-
triviality follows from the fact that t± are two distinct solutions to the
associated equation.

As for uniqueness, note that if the non-trivial PQIs a1ξ
2 + b1ξχ+ c1χ

2 ≥ 0
and a2ξ

2 + b2ξχ + c2χ
2 ≥ 0 define the same solution set, then the equations

a1ξ
2 + b1ξχ+ c1χ

2 = 0 and a2ξ
2 + b2ξχ+ c2χ

2 = 0 have the same solutions (as
the boundaries of the solution sets). In particular, for ξ = τχ, both equations
χ2(a1τ

2 + b1τ + c1) = 0 and χ2(a2τ
2 + b2τ + c2) = 0 have the same solutions. If

a1 or a2 is non-zero, then dividing by χ2, as b21 − 4a1c1 > 0 and b22 − 4a2c2 > 0,
both equations have two solutions, t−, t+. Thus, we can write:

a1τ
2 + b1τ + c1 = a1(τ − t−)(τ − t+),

a2τ
2 + b2τ + c2 = a2(τ − t−)(τ − t+),

implying the original PQIs are the same up to scalar, which must be positive due
to the direction of the inequalities. If a1 = a2 = 0, then we must have b1, b2 6= 0,
as otherwise b21 − 4a1c1 = 0 or b22 − 4a2c2 = 0. Now, for χ = 1, we get that
the equations b1ξ + c1 = 0 and b2ξ + c2 = 0 have the same solutions, implying
that (b1, c1) and (b2, c2) are equal up to a multiplicative scalar. As a1 = a2 = 0,
we conclude the same about the original PQIs. Moreover, the scalar has to be
positive due to the direction of the original PQIs. This completes the proof.

3.4.2 From Monotonization to Passivation and
Implementation

Until now, we found a map T : R2 → R2, monotonizing the steady-state relation
k. We claim that the map T , in fact, augments the system Σ to be output-
strictly passive with respect to any equilibrium it has, by defining a new input
and output by [

ũ
ỹ

]
= T

[
u
y

]
.

Proposition 3.5. Suppose that Σ is EI-IOP(ρ, ν), and let T be a linear map
transforming the PQI ρξ2 + ξχ + νχ2 ≥ 0 to ρ′ξ2 + ξχ + ν′χ2 ≥ 0, as built in
Theorem 3.10. Consider the augmented system with input and output. defined
by [

ũ
ỹ

]
= T

[
u
y

]
.

Then the augmented system is EI-IOP(ρ′, ν′). In particular, if the map T mono-
tonizes the relation k, then it passivizes Σ.
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

Proof. The inequality defining EI-IOP(ρ, ν) for ρ, ν is the PQI ρξ2 +ξχ+νχ2 ≥
0, where we put ξ = y(t) − y and χ = u(t) = u for some trajectory (u(t), y(t))
and steady-state I/O pair (u, y). The proposition now follows from noting that[

ξ
χ

]
= T−1

[
ξ̃
χ̃

]
,

satisfies the PQI ρ′ξ2 + ξχ+ ν′χ2 ≥ 0, ξ̃ = ỹ(t)− ỹ and χ̃ = ũ(t)− ũ.

The proposition shows that the monotonizing linear transformation from
Theorem 3.10 augments the plant Σ to another plant, Σ̃, which is passive with
respect to any steady-state I/O pair it has.

Remark 3.9. Proposition 3.5, together with Subsection 3.4.1, prescribes a lin-
ear transformation that passivizes the agent with respect to all equilibria. We
note that the same procedure can be applied to “classical” passivity, in which
one only looks at passivity with respect to a single equilibrium. However, our
approach is entirely geometric and does no rely on algebraic manipulations. As
we saw in Section 3.2 that, our approach is more general than the one in [169],
as our approach does not demand finite-L2-gain stability of the passive-short
system Σ.

The main upshot of the geometric approach over the classical algebraic ap-
proach, besides its intuition stemming from sector-bounded nonlinearities and
geometry, is its simplicity and generality. The algebraic approach, like the one
presented in [169], relies on a collection of inequalities between the entries of
the passivizing matrix, depending on the passivity parameters of the original
system and the desired passivity parameters of the augmented system. Even
if one shows that these inequalities have a solution theoretically, finding a so-
lution can be hard, especially if the passivity parameters of the plant are not
exactly known. On the contrary, the geometric approach relies on choosing four
points by solving two quadratic equations, as described in Theorem 3.10, and
checking if two specific PQIs are satisfied at specific points, which is simpler for
a computer to do.

Moreover, it is evident from the discussion above that if the linear trans-
formation forces k to become strictly monotone, then the augmented agent is
strictly passive. For the remainder of this section, we show that the augmen-
tation can be easily implemented using standard control tools, namely gains,
feedback and feed-through. We also wish to connect the steady-state I/O rela-
tion of the augmented system Σ̃, denoted by λ, to k.

In this direction, take any linear map T : R2 → R2 of the form

T =

[
a b
c d

]
,

where we assume that det(T ) 6= 0. It defines the plant augmentation of the
form [

ũ
ỹ

]
= T

[
u
y

]
. (3.22)
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

Text

Figure 3.9: The transformed system Σ̃ after the linear transformation T . If
T =

[
a b
c d

]
, then δA = b/a, δB = d− b

ac, δC = c and δD = a.

For simplicity of presentation, we assume that a 6= 0.2 We note that T
can be written as a product of elementary matrices, and the effect of each ele-
mentary matrix on Σi can be easily understood. By applying each elementary
transformation sequentially, the effect of their product, that is the transforma-
tion T , can be realized. Table 3.1 summaries these elementary transformations
and their effect on the system Σ. Following Table 3.1, T can be written as

T =

[
a b
c d

]
= LDLCLBLA, (3.23)

with δA = b/a, δB = d− b
ac, δC = c and δD = a. The product of these matrices

can be seen as the sequential transformation to the original system Σ, which
can be understood as a loop-transformation, illustrated in Figure 3.9.

Remark 3.10. Writing T = LDLCLBLA allows us to give a closed form de-
scription of the transformed system. Suppose the original system is given by
ẋ = f(x, u); y = h(x). Applying LA gives a new input v, and the augmented
system ẋ = f(x, v − δAh(x)); y = h(x). Applying LB on this system gives ẋ =
f(x, v− δAh(x)); y = δBh(x). Applying LC then gives ẋ = f(x, v− δAh(x)); y =
δBh(x) + δCv, and applying LD finally gives ẋ = f(x, δDv − δAh(x)); y =
δBh(x) + δCδDv.

Example 3.8. Suppose T is given by T = [ 1 0
c d ], or ũ = u and ỹ = cu + dy.

The steady-state I/O relations λ and k of the systems Σ̃ and Σ respectively, are
connected as

λ(ũ) = cũ + dk(ũ). (3.24)

On the other hand, we note that[
1 0
c d

]
=

[
1 0
c 1

] [
1 0
0 d

]
= LCLB ,

as defined in Table 3.1, with δC = c, and δB = d. Define[
u1

y1

]
=

[
1 0
0 d

] [
u
y

]
,

2We note that by switching the names of (ξ3, χ3) and (ξ4, χ4) in Theorem 3.10, we switch
the two columns of T . Thus we can always assume that a 6= 0, as a = b = 0 cannot hold due
to the determinant condition.
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E
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S
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O
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Elementary
Transformation

Relation
between I/O of

Σi and Σ̃i

Effect on Steady-State
Relations

Realization Effect on Integral
Functions

LA =

[
1 δA
0 1

]
ũ = u+ δAy

ỹ = y
λ−1
A (ỹ) = k−1(ỹ) + δAỹ output-

feedback
Λ?(y) = K?(y) + 1

2
δAy2

LB =

[
1 0
0 δB

]
ũ = u
ỹ = δBy

λB(u) = δBk(u) or
λ−1
B (ỹ) = k−1( 1

δB
ỹ)

post-gain Λ?(y) = 1
δB
K?( 1

δB
y) or

Λ(u) = δBK(u)

LC =

[
1 0
δC 1

]
ũ = u

ỹ = y + δCu
λC(ũ) = k(ũ) + δC ũ input-

feedthrough
Λ(u) = K(u) + 1

2
δCu2

LD =

[
δD 0
0 1

]
ũ = δDu
ỹ = y

λ−1
D (y) = δDk

−1(y) or
λD(ũ) = k( 1

δD
ũ)

pre-gain Λ?(y) = δDK
?(y) or

Λ(u) = 1
δD
K( 1

δD
u)

Table 3.1: Elementary matrices and their realizations.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

such that [
ũ
ỹ

]
=

[
1 0
c 1

] [
u1

y1

]
.

Note that both transformations, from (u, y) to (u1, y1) and from (u1, y1) to (ũ, ỹ),
are given by the elementary matrices LB and LC , respectively. Let κ be the
steady-state input-output relation from u1 to y1. Then,

κ(u1) = dk(u1), λ(ũ) = κ(ũ) + cũ = dk(ũ) + cũ,

which is the same as (3.24). Thus, if we write T as a product of elementary
matrices, the new I/O relation λ can be seen as the old I/O relation k, after
applying the elementary linear transformations sequentially.

Proposition 3.6. Let k and λ be the steady-state I/O relations of Σ and Σ̃,
respectively, where Σ̃ is the result of applying the transformation T in (3.23)
on Σ, where δA = b/a, δB = d − b

ac, δC = c and δD = a. Assume that κ1

is the steady-state I/O relation for some system Σ1 : u1 7→ y1, obtained after
the transformation LA =

[
1 δA
0 1

]
on the original system Σ. Then, the relation

between λ and k is given by

λ(ũ) =

(
d− b

a
c

)
κ1

(
1

a
ũ

)
+
c

a
ũ, (3.25)

where the inverse of κ1 is

(κ1)−1(y1) = k−1(y1) +
b

a
y1. (3.26)

Proof. Denote the steady-state I/O relations after the first, the second, and the
third elementary matrix transformations, sequentially in (3.23), as κ1, κ2, κ3,
corresponding to the steady-state I/O pairs (u1, y1), (u2, yi) and (u3, y3). The
first transformation, [

u1

y1

]
= LA

[
u
y

]
=

[
1 b

a
0 1

] [
u
y

]
,

has the steady-state inverse I/O relation κ−1
1 (y1) = k−1(y1) + b

ay1. The second
transformation, [

u2

y2

]
= LB

[
u1

y1

]
=

[
1 0
0 d− b

ac

] [
u1

y1

]
,

has the steady-state I/O relation κ2(u2) = (d− b
ac)κ1(u2). The third transfor-

mation, [
u3

y3

]
= LC

[
u2

y2

]
=

[
1 0
c 1

] [
u2

y2

]
,

has steady-state I/O relation κ3(u3) = κ2(u3) + cu3. Finally, the fourth trans-
formation, [

ũ
ỹ

]
= LD

[
u3

y3

]
=

[
a 0
0 1

] [
u3

y3

]
,
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

has the steady-state I/O relation λ of Σ̃, and λ(ũ) = κ3( 1
a ũ). Substituting back

for κ3 and then for κ2, we get the desired result.

Example 3.9. Consider the system in Example 3.3. The steady-state I/O
relation λ of Σ̃ consists of all pairs (ũ, ũ3). We use Proposition 3.6 to verify
this result. According to Proposition 3.6, for the given matrix transformation
T = [ 1 1

1 2 ], λ is given by λ(ũ) = κ1(ũ) + ũ. After the first transformation LA =
[ 1 1
0 1 ], the steady-state I/O pairs of the system Σ1 are u1 = u + y, and y1 = y.

Substituting u = 2σ − σ3, and y = σ3 − σ as obtained in Example 3.3 yields
u1 = σ and hence κ1(u1) = y1 = u3

1 − u1. This implies that κ1(ũ1) = u3
1 − u1,

which on substitution yields λ(ũ) = ũ3, as expected.

Corollary 3.2. For the conditions given in Proposition 3.6, if additionally
b = 0, the relation between the relations λ and k, is given by

λ(ũ) = dk

(
1

a
ũ

)
+
c

a
ũ. (3.27)

One can easily verify Example 3.8 using Corollary 3.2.

Proposition 3.6 connects the steady-state I/O relations of the new and the
old system. In some cases,i.e., when ρ, ν ≥ 0, we know that the original system
posses an integral functions. We can integrate the steady-state transformation,
and obtain a connection between the original and the new integral function. For
example, integrating the steady-state equation for output-feedback λ−1(ỹ) =
k−1(ỹ) + δỹ results in K?(ỹ) = Λ?(ỹ) + δ

2 ỹ2, where K?,Λ? are the integral
functions of k−1, λ−1 respectively. Similarly, input-feedthrough corresponds to
a quadratic term added to the integral function K of k, and pre- and post-gain
correspond to scaling the integral function. These connections are summarized
Table 3.1.

Example 3.10. Consider Example 3.5. We saw that the steady-state input-
output relation for the system is u = k−1(y) = y3 − y, so the corresponding
integral function is K?(y) = 1

4y4 − 1
2y2. Consider the input-output transforma-

tion T = [ 1 1
0 1 ], which can be written as ũ = u+y = u+ 3

√
x, ỹ = y, meaning that

u = − 3
√
x+ ũ. Thus, the augmented system Σ̃ can be realized by the state-space

model ẋ = −x + ũ, ỹ = 3
√
x, which has a steady-state input-output relation of

ũ = λ−1(ỹ) = ỹ3, and the corresponding integral function is Λ?(ỹ) = 1
4 ỹ4. It is

evident that Λ?(y) = K?(y)+ 1
2y2, as forecast by the discussion above and Table

3.1.

Up to now, we showed how to monotonize the non-monotone relation k
using a transformation, and how to implement the monotonizing transformation,
connecting the old and new steady-state relations via a simple procedure. In
the next section, we deal with the last ingredient missing for MEIP, namely
maximality of the acquired monotone relation.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

3.4.3 Maximality of Input-Output Relations and the
Network Optimization Framework

As we saw, the map T monotonizes the steady-state relation k, i.e., the steady-
state input-output relation λ of the augmented agent Σ̃ is monotone. However,
it does not guarantee that λ is maximally monotone, which is essential for the
network optimization framework. We explore a possible way to assure that λ
is maximally monotone, under which we prove the network optimization frame-
work. We begin by introducing the following property of relations.

Definition 3.6 (Cursive Relations). A set A ⊂ R2 is called cursive if there
exists a curve α : R→ R2 such that the following conditions hold:

i) The set A is the image of α.

ii) The map α is continuous.

iii) The map α satisfies lim
|t|→∞

‖α(t)‖ =∞, where ‖ · ‖ is the Euclidean norm.

iv) The set {t ∈ R : ∃s 6= t, α(s) = α(t)} has measure zero.

A relation Υ is called cursive if the set {(p, q) ∈ R2 : q ∈ Υ (p)} is cursive.

Intuitively speaking, a relation is cursive if it can be drawn on a piece of paper
without lifting the pen. The third requirement demands that the drawing will
be infinite (in both time directions), and the fourth allows the pen to cross its
own path, but forbids it from going over the same line twice. This intuition is
the reason we call these relations cursive relations.

Under the assumption that the steady-state I/O relation k of Σ is cursive
(which is usually the case in dynamical systems of the form (1.1)), we prove the
maximality of λ in the following theorem.

Theorem 3.11. Let k and λ be the steady-state I/O relations of the original
system Σ and the transformed system Σ̃ under the transformation T , respec-
tively. Suppose that k is a cursive relation and T is chosen to monotonize k as
in Theorem 3.10. Then,

i) λ is a maximally monotone relation, and

ii) Σ̃ is MEIP.

Moreover, if T transforms k to a strictly monotone relation, then Σ̃ is output-
strictly MEIP.

Before proving the theorem, we prove the following lemma.

Lemma 3.1. A cursive monotone relation Υ must be maximally monotone.

Proof. Let AΥ ⊆ R2 be the set associated with Υ , which is cursive by assump-
tion. Let α be the corresponding curve. If Υ is not maximal, then there is
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

some point (p0, q0) /∈ AΥ so that Υ ∪ {(p0, q0)} is a monotone relation. By
monotonicity, we find that

AΥ ⊆ {(p, q) ∈ R, (p ≥ p0 and q ≥ q0) or (p ≤ p0 and q ≤ q0), (p, q) 6= (p0, q0)}.

The set on the right hand side has two connected components, namely {(p, q) :
p ≥ p0, q ≥ q0, (p, q) 6= (p0, q0)} and {(p, q) : p ≤ p0, q ≤ q0, (p, q) 6= (p0, q0)}.
Since AΥ is the image of a single curve, hence connected, it is contained in
one of these connected components. Suppose, without loss of generality, it is
contained in {(p, q) : p ≥ p0, q ≥ q0, (p, q) 6= (p0, q0)}. It is clear that we can
choose the curve α(t) = (α1(t), α2(t)) so that both functions α1, α2 are non-
decreasing, as Υ is monotone. Thus, we must have α1(0) ≥ limt→−∞ α1(t) ≥
p0, α2(0) ≥ limt→−∞ α2(t) ≥ q0. However, these inequalities imply that
‖α(t)‖ =

√
α1(t)2 + α2(t)2 remains bounded as t → −∞. This contradicts

the assumption that Υ was cursive, hence it must be maximally monotone,
which proves the claim.

We are now ready to prove Theorem 3.11.

Proof. By the definition of MEIP and Lemma 3.1, it is enough to show that if k
is cursive, then so is λ. Let Ak be the set associated with k, and Aλ be the set
associated with λ. It is clear that (ũ, ỹ) is a steady-state of Σ̃ if and only if (u, y)
is a steady-state of Σ, where these I/O pairs are related by the transformation T .
Thus, Aλ is the image ofAk under the invertible linear map T . Since k is cursive,
we let α : R→ R2 be a curve plotting Ak. We define the curve β(t) = T (α(t)).
We claim that the curve β proves that Aλ, and hence λ, is cursive. Indeed, it is
clear that Aλ is the image of β. Furthermore, β is continuous as a composition
of the continuous maps T and α. The third property in Definition 3.6 holds as
lim|t|→∞ ||β(t)|| ≥ lim|t|→∞ σ(T )||α(t)|| = ∞, where we use the fact that T is
invertible, hence σ(T ), the minimal singular value of T , is positive. Lastly, the
fourth property in Definition 3.6 holds as β(t) = β(s) if and only if α(t) = α(s),
as T is invertible. Thus, the set {t : ∃s 6= t, β(t) = β(s)} is the same as the one
for α, hence has measure zero. This completes the proof.

Before moving to the network optimization framework, we wonder how com-
mon are cursive relations. Obviously, all stable linear systems have cursive
steady-state I/O relations, as their steady-state I/O relations form a line inside
R2. We can push this further, as demonstrated by the following proposition:

Proposition 3.7. Consider the system Υ governed by the ODE ẋ = −f(x) +
g(x)u, y = h(x) for some C1 smooth functions f, g and a continuous function h
such that g > 0. Assume that the either f/g or h is strictly monotone ascending,
and that either lims→±∞ |h(s)| = ∞ or lims→±∞ |f(s)/g(s)| = ∞. Then the
system Υ has a cursive steady-state I/O relation.

Proof. In steady-state, we have ẋ = 0, thus we have f(x) = g(x)u. More-
over, y = h(x) in steady-state. Thus the steady-state input-output relation
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

can be parameterized as (f(σ)/g(σ), h(σ) for the parameter σ ∈ R. Con-
sider the curve α : R → R2 defined by α(σ) = (f(σ)/g(σ), h(σ)). Then the
steady-state relation is the image of α, which is continuous. The norm of α
is equal to

√
(f(σ)/g(σ))2 + h(σ)2, so the assumption on the limit shows that

lim|t|→∞ ||α(t)|| = ∞. Lastly, due to strict monotonicity, the curve α is an
injective map. Thus the steady-state input-output relation is cursive.

Remark 3.11. Note that the strict monotonicity assumption can easily be
relaxed−it shows that the curve α(t) = (f(t)/g(t), h(t)) is injective as one of
its coordinates is an injective map, but in practice we may have a non-self-
intersecting curve which can behave very wildly in each coordinate. Moreover,
non-self-intersecting is a stronger requirement then needed, we only need that
the “self-intersecting set” is of measure zero.

As we showed that cursive relations appear for a wide class of systems, we
can conclude the network optimization framework for EI-IOP(ρ, ν) agents by
Theorem 3.10 and the network optimization framework for MEIP agents.

Theorem 3.12. Consider the diffusively-coupled network (G,Σ,Π), and sup-
pose that the agents Σi are EI-IOP(ρi, νi) with cursive steady-state I/O re-
lations ki, and that the controllers are MEIP with integral function Γe. Let
J = diag(T1, T2, . . . , T|V|) be a linear transformation, where Ti is chosen as in
Theorem 3.10 to so that ki becomes strictly monotone by applying Ti. Then
the transformed network (G, Σ̃,Π) converges, and the the steady-state limits
(ũ, ỹ, ζ,µ) are the minimizers of the following dual network optimization prob-
lems:

TOPP TOFP

min
ỹ,ζ

Λ?(ỹ) + Γ(ζ)

s.t. E>ỹ = ζ

min
ũ,µ

Λ(ũ) + Γ?(µ̃)

s.t. ũ = −Eµ

where Γ(ζ) =
∑
e∈E Γe(ζe), Λ(u) =

∑
i∈V Λi(ui), and Λi is the integral function

associated with the maximally monotone relation λi, obtained by applying Ti to
ki.

For the special cases in which the original EI-IOP(ρ, ν) agents have inte-
gral functions, we can use the discussion preceding Example 3.10, connecting
the original and the augmented integral functions, to prescribe (TOPP) and
(TOFP) in terms of (OPP) and (OFP), namely (TOPP) and (TOFP) can be
viewed as regularized versions of (OPP) and (OFP), where quadratic terms are
added both the the agents’ integral functions and their duals, assuming these
were defined for the original network. This is a generalization of Subsection
3.3.1 which prescribed the quadratic correction of (OPP) when the agents are
EI-OP(ρ). The main difference between this approach and the one in Subsec-
tion 3.3.1 is that there the network optimization framework can always at least
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3.4. A NETWORK OPTIMIZATION FRAMEWORK FOR GENERAL
PASSIVE-SHORT AGENTS

be defined, and convexifying it leads to the passivizing transformation. In our
case, the simultaneous input- and output-shortage of passivity can cause the
network optimization framework to be undefined, forbidding us from trying to
convexify it. In particular, we conclude this section by stating the main result
of Subsection 3.3.1 and providing a proof using the methods we introduced.

Corollary 3.3. Consider the diffusively-coupled network (G,Σ,Π), and sup-
pose that the agents have cursive steady-state I/O relations ki, and that the
controllers are MEIP with integral function Γe. Let J = diag(T1, T2, . . . , T|V|)
be as in Theorem 3.12.

i) Suppose that the agents Σi are EI-OP(ρi), and that the relations k−1
i have

integral functions K?
i . Then we can take

Ti =

[
1 βi
0 1

]
,

for any βi > −ρi, and the cost function of (TOPP) is K?(y) + Γ(ζ) +
1
2y>diag(β)y, where K?(y) =

∑
i∈VK

?
i (yi).

ii) Suppose that the agents Σi are EI-IP(νi), and that the relations ki have
integral functions Ki. Then we can take

Ti =

[
1 0
βi 1

]
,

for any βi > −ρi, and the cost function of (TOPP) is K(u) + Γ?(µ) +
1
2u>diag(β)u, where K(y) =

∑
i∈VKi(ui).

Proof. We only prove the first case, as the proof second case is completely
analogous. Each agent is EI-OP(ρi), so that the associated PQI is given by
0 ≤ ξχ − ρiχ2. We take any βi > −ρi and look for some Ti which transforms
this PQI into 0 ≤ ξχ−(ρi+βi)χ

2, which implies strict monotonicity. We build Ti
according to Theorem 3.10, taking (ξ1, χ1) = (1, 0), (ξ2, χ2) = (ρi, 1), (ξ3, χ3) =
(1, 0) and (ξ4, χ4) = (ρi + βi, 1). We note that (ξ1 + χ1, ξ2 + χ2) = (1 + ρi, 1)
satisfies

χξ − ρiχ2 = 1 + ρi − ρi = 1 ≥ 0

meaning that (ξ1 +χ1, ξ2 +χ2) satisfies the first PQI. Similarly, (ξ3 +χ3, ξ4 +χ4)
satisfies the second PQI. Thus, we can take Ti as:

Ti =

[
ξ3 ξ4
χ3 χ4

] [
ξ1 ξ2
χ1 χ2

]−1

=

[
1 ρi + βi
0 1

] [
1 ρi
0 1

]−1

=

[
1 βi
0 1

]
,

which proves the first part. As for the second part, Table 3.1 implies that
the steady-state relation λi of the augmented system is given by λ−1

i (yi) =
k−1
i (yi) + βiyi. Integrating this equation with respect to yi gives that Λ?i (yi) =
K?
i (yi) + 1

2βiy
2
i . Using K?(y) =

∑
i∈VK

?
i (yi) and Λ?(y) =

∑
i∈V Λ?i (yi) gives

that Λ?(y) = K?(y) + 1
2y>diag(β)y, completing the proof.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

3.5 Case Studies

We present a total of three case studies. The first two deal with Examples 3.2
and 3.4, appearing in Section 3.2, and the third deals with a traffic model.

3.5.1 Unstable First Order Systems

As in Example 3.2, we consider a collection of n = 100 LTI agents, each modeled
by the transfer function Gi(s) = 1

s−1 , or by the model ẋi = xi+ui, yi = xi. The
agents are EI-OP(ρ) with parameter ρ = −1. The steady-state input-output
relation of the agents is given by ki(ui) = −ui, or equivalently by k−1

i (yi) = −yi.
The integral function in this case is equal to K?

i (y) = − 1
2y2
i , which is indeed

non-convex.
We consider a diffusively-coupled system of the form (G,Σ,Π) where the

graph G is the complete graph on n agents, Σ are the agents, and the controllers
are static gain of size 1. In that case, the closed-loop system can be written as
ẋ = (Id − EGE>G )x. The system is unstable, as the matrix Id − EGE>G has an
eigenvalue 1 with eigenvector 1n, implying it is not Hurwitz. The associated
problem (OPP) reads:

min − 1

2

∑
i∈V

y2
i +

1

2

∑
e∈E

ζ2
e

s.t. ζ = E>G y

which is non-convex. Thus we wish to regularize (OPP), where we note that
ρ̄, the average of the passivity indices, is equal to −1, meaning that we cannot
apply the network-based regularization procedure. We consider both an agent-
based regularization, and a hybrid regularization.

First, we consider agent-based regularization. It’s obvious that the Tikhonov
regularization term 1

2

∑
i∈V βiy

2
i convexifies (OPP) whenever βi > 1 = −ρi, as

predicted by Theorem 3.3. Choosing βi = 1.1, the regularized problem (ROPP)
reads:

min
1

20

∑
i∈V

y2
i +

1

2

∑
e∈E

ζ2
e

s.t. ζ = E>G y

which is minimized at y = 0 and ζ = 0. The corresponding output-feedback
gives a closed-loop system governed by the equation ẋ = (−0.1Id − EGE>G )x.
Noting that the dynamics matrix is negative-definite, we conclude that the
state x(t) converges to 0 as t→∞, giving the steady-state output y = 0. Thus
the network optimization framework predicts a correct limit for the augmented
closed-loop system. The trajectories of the augmented closed-loop system can
be seen in Figure 3.10.

Now, we consider hybrid regularization. We consider five different cases here,
which are summarized in the table below:
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3.5. CASE STUDIES

Scenario Number of Self
Regulating Agents

Size of
αi

Average of
αi + ρi

Size of b

1 1 101 0.01 9703.97
2 1 201 1 382.41
3 10 10.1 0.01 81.09
4 10 20 1 3.35
5 20 8 0.6 0.73

Table 3.2: Comparison of hybrid regularization terms for networks with output-
passive short agents.

It is evident from the table that although one self-regularizing agent is enough
to regularize the entire network, the gains required for regularization might be
very large. Reducing the size of the required gains can either be done by “over-
regularizing” the self-regulating agent, i.e. give it a much larger constant αi
than needed, or by using a larger set of self-regulating agents. The table shows
that even a small proportion of self-regulating agents, e.g. 10%−20%, is enough
to significantly reduce the size of the required gains for regularization.

The trajectories of the augmented closed-loop system for scenarios 2 and 4
can be seen in Figure 3.10

3.5.2 Gradient Systems

We return to Example 3.4, in which the system (3.7) was studied, for the func-
tion U(xi) = r1(1 − cosxi) + 1

2r2x
2
i , with r1 = 2.5, r2 = 0.1. The system is

EI-OP(ρ) with parameter ρ = −2.4. The steady-state input-output relation
can be parameterized as u = r1 sinσ + r2σ, y = σ by the parameter σ ∈ R.
As can be seen in Figure 3.2, the relation is cursive, but non-monotone. We
use the framework of Section 3.4 to monotonize the steady-state input-output
relation, and show the resulting network-optimization framework predicts the
correct limit of the augmented closed-loop networked system.

We apply Theorem 3.12. We note that the transformation T = [ 1 κ
0 1 ] reg-

ularizes the agent, so long that κ ≥ 2.4. We choose κ = 2.5. The augmented
agent Σ̃i has an input-output relation of the form u = r1 sinσ + r2σ + 2.5σ =
2.5 sinσ + 2.6σ, y = σ, which is maximally monotone, as can be seen in Fig-
ure 3.11. The integral functions Λi,Λ

?
i for the augmented agent can be seen in

Figure 3.11.

We consider the diffusively-coupled system (G, Σ̃,Π) with the augmented
agents and original controllers, µe = ζe. As can be seen from Figure 3.2, the
minimum of Λi is achieved at yi = 0. Moreover, the global minimum of Γ(ζ) =
1
2ζ

2 is achieved at ζ = 0, so the network optimization problem (OPP) for the
augmented network is minimized at y = 0, ζ = 0. We run the augmented
closed-loop system and plot the trajectories in Figure 3.12, which shows that
the augmented closed-loop system converges to 0, as predicted.
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Chapter 3. A Network Optimization Framework for Passive-Short Agents
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(a) Agent-based regularization.

(b) Hybrid regularization, scenario 2. (c) Hybrid regularization, scenario 4.

Figure 3.10: System trajectories for different regularization terms for a network
of unstable first order systems.

3.5.3 Traffic Model

Consider the traffic dynamics model proposed in [8], in which vehicles adjust
their velocity xi according to the equation ẋi = κi(Vi(∆p) − xi), where κi > 0
is a constant representing the sensitivity of the i-th driver, and

Vi(∆p) = V 0
i + V 1

i

∑
j∼i

tanh(pj − pi), (3.30)

is the adjustment, where V 0
i are the preferred velocities, and V 1

i are the “sen-
sitivity coefficients”. The parameters κi are heterogeneous and could be either
positive or negative depending on the attentiveness of the individual driver.
The case of κi > 0 was studied in [23], where it was shown that it can inhibit a
clustering phenomenon. The case of κi < 0 corresponds to drowsy driving, or
intoxicated driving.
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3.5. CASE STUDIES
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Figure 3.11: Steady-state input-output relations and integral functions of the
transformed system Σ̃i.

Figure 3.12: Trajectories of the augmented closed-loop system for a diffusively-
coupled network of gradient systems.

Consider a case where only some agents know their own velocity (e.g., by
a GNSS measurement). Thus, agents which have no GNSS reception cannot
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

implement the regularization of (OPP), or the self-feedback loops, resulting
from the agent-based regularization protocol. Instead, we opt for the hybrid
regularization protocol.

The model is a diffusively coupled network with the agents Σi : ẋi = κi(−xi+
V 0
i + V 1

i u), yi = xi and the controllers Πe : η̇e = ζe, µe = tanh(ηe). The
agents are EI-OP(ρi) if V 1

i κi > 0, with ρi = κi, so κi > 0 corresponds to
output-strict MEIP agents. We suppose that only agent i0 has GNSS reception,
implementing a correction term of the form αi0y

2
i0

+ βζ>ζ to (OPP), giving us

(HROPP). The new control law is u(t) = −αi0xi0ei0 − βEGE>G x− V (∆p) where
V (∆p) = [V1(∆p), · · · , Vn(∆p)]>, and ei is the i-th standard basis vector. Only
the states xi0 and E>G x are used in the control law, meaning that no agent but i0
is required to know its velocity in a global frame of reference, but only positions
and velocities relative to its neighbors.

To illustrate this, we consider a network of n = 100 agents, all connected to
each other, with parameters κi randomly chosen either as −1 (w.p. 1/3) and 1
(w.p. 2/3). Moreover, the parameters V 0

i were chosen as a Gaussian mixture
model, with half of the samples having mean 20 and standard deviation 15, and
half having mean 120 and standard deviation 15. Lastly, V 1

i where chosen as
0.8κi. In [23], it is shown that (OPP) in this case is given by

min
y,ζ

∑
i

1

2V 1
i

(yi − V 0
i )2 +

∑
e

|ζe| s.t. ζ = E>G y,

meaning that (HROPP) is given by:

min
y,ζ

∑
i

1

2V 1
i

(yi − V 0
i )2 +

∑
e

|ζe|+ αi0y
2
i0 + β

∑
e

ζ2
e

s.t. ζ = E>G y.
It is evident that when V 1

i < 0 (corresponding to κi < 0), the optimization
problem (OPP) is non-convex, as it contains a negative quadratic term.

Here, the average 1
n

∑
i ρi = 1

n

∑
i κi is positive, so we use the network-

regularization method, choosing αi0 = 0, so that (HROPP) reduces to (NROPP).
Choosing β = (b + ε)1, we apply Theorems 3.8 and 3.6 to conclude that the
system converges, and find its steady-state limit. We plot the trajectories of
the system in Figure 3.13(a), as well as the minimizer of (NROPP) in Figure
3.13(b). One can see that the steady-state value of the system matches the
forecast, namely the minimizer of (NROPP). It should be noted that we obtain
a clustering phenomenon, as noted in [23]. However, the agents form much
larger clusters than in [23]. This is due to the term −βEGE>G x appearing in u,
which not only passivizes the system, but also forces the trajectories closer to a
consensus.

3.6 Conclusions

We considered the network optimization framework for equilibrium-independent
input-output (ρ, ν)-passive agents. We have first shown that the framework,
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3.6. CONCLUSIONS

(a) Vehicles’ trajectories for network-only reg-
ularization.
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(b) Asymptotic behaviour predicted by
(NROPP).

Figure 3.13: Traffic control model.

unless augmented, may fail for equilibrium-independent passive-short agents in
more than one way - the networked system might not converge, the integral
functions might not be defined, and even when both of these obstructions do
not happen, the framework might still predict a false value for the limit of the
diffusively-coupled system. The failure of the system could be understood in
terms of non-convexity of the agents’ integral functions K,K?, or in terms of
the non-monotonicity of the agents’ steady-state relations ki.

We first focused on networks with equilibrium-independent output ρ-passive
agents. We showed that in this case, the problem (OPP) can still be defined,
but the cost function is non-convex. We considered a regularization term for
the problem (OPP), and showed that it results in an output-feedback for the
agents, and that the augmented network system converges to the limit predicted
by the regularized optimization problem. We considered three different possi-
ble regularization terms, agent-based, network-based, and hybrid, and explored
when each can be used.

We then shifted our focus to networks with general equilibrium-independent
input-output (ρ, ν)-passive agents. In this case, the integral function might not
even be defined, so we exchange convexifying the integral function by monotoniz-
ing the steady-state input-output relation. We use a geometric-based argument
to show that a monotonizing transformation can always be found, and that it
induces an augmented agent which is passive with respect to all equilibria. As
MEIP requires the steady-state relation to be maximally monotone, and not
just monotone, we define the notion of cursive relations. We show that if the
original, unaugmented agent has a cursive input-output steady-state relation,
then the augmented agent is MEIP. Moreover, we show how the integral func-
tion of the agent is achieved from the original steady-state relation using the
monotonizing transformation and integrating. By applying this procedure for
each of the agents, we end up with a network of output-strictly MEIP agents
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Chapter 3. A Network Optimization Framework for Passive-Short Agents

and MEIP controllers, for which the network optimization framework holds. We
then presented the different regularization procedure for three case studies.

These regularization procedures allow us to extend the network optimization
framework to a much larger class of networked systems. In turn, it will allow
us to consider the applications appearing in Chapters 4, 5, 6 and 7 also for
passive-short systems.

In the next chapter, we’ll consider a first application of the network-optimization
framework, when we’ll use its convergence guarantees to solve a synthesis prob-
lem.
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Chapter 4

A Network Optimization
Framework for Controller
Synthesis

This section is a review of [136, 142], and parts of [138]. We apply the network
optimization framework to study the problem of synthesis, in which we are
given a multi-agent system, in which the agents {Σi} and interaction graph G
are given, and some control goal is specified. Our goal is to find networked
controllers {Πe} such that the diffusively-coupled system (G,Σ,Π) satisfies the
control goal. We focus on final-value synthesis, in which the control goal is that
some specified signal in the system (e.g., the agents’ outputs) converges to a
given desired steady-state value.

4.1 Introduction

As we saw, the study of multi-agent networks is a cornerstone of control research.
An important problem in the study of multi-agent systems is that of controller
synthesis - namely the construction of distributed controllers forcing the closed-
loop system to converge to some desired output. This control goal encompasses
many canonical problems including synchronization and formation control [92,
105,107,108]. It also encompasses the problem of clustering, in which the agents
are divided into different groups (namely, clusters). The problem then tasks
one to design a distributed control law forcing agents in the same cluster to
synchronize, while agents in different clusters do not synchronize. The clustering
problem is essential in fields like ecology [149], neuroscience [132], and bio-
mimicry of swarms [109].

Our goal in this chapter is to describe a solution to the synthesis problem for
multi-agent systems by applying the network optimization framework. Our con-
trol objective is to assure the convergence of the networked system to a desired
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4.2. FINAL-VALUE SYNTHESIS FOR MULTI-AGENT SYSTEMS

output or a desired relative output configuration - we term this desired output
a formation of the system.1 This is a crucial first step toward applications that
will be used continuously throughout the later chapters of this thesis.

The rest of this chapter is organized as follows. The next section consid-
ers the general case of heterogeneous agents, and deals with the problem of
final-value synthesis for the output and the relative-output configuration. The
following section mainly deals with network having certain symmetries, culmi-
nating in the special case of synthesis on homogeneous networks. It is shown
that in this case a clustering solution is achieved, and the notion of cluster
synthesis is briefly explored.

4.2 Final-Value Synthesis for Multi-Agent
Systems

Our goal is to design controllers {Πe} on the edges to achieve a desired steady-
state output for the networked system. We can specify the demand in terms of
the output y(t), or in terms of the relative output E>G y(t) = ζ(t). We first study
the case of a desired output, and then adapt our results to the case of a desired
relative output, or a desired formation. The final-value synthesis problem for
the output vector is stated as follows:

Problem 4.1. Let {Σi}i∈V be MEICMP agents and let G be any graph on |V|
nodes. Let y? ∈ (Rd)|V| be some vector.

i) Find a computationally feasible criterion assuring the existence of con-
trollers {Πe}e∈E, such that the output of the system (G,Σ,Π) has y? as a
steady-state.

ii) In the case y? satisfies the criterion, find a construction for {Πe}e∈E, that
forces the system converge to y?.

This section has five parts. Subsection 4.2.1 deals with solving part 1 of the
Problem 4.1. Subsection 4.2.2 deals with solving the second part of the same
problem. Subsection 4.2.3 deals with different control objectives y?, namely by
prescribing a procedure which uses a solution for some y?1 to find a solution for
y?2 by augmenting the controller. Subsection 4.2.4 addresses outputs that do not
satisfy the desired synthesis criteria. Finally, Subsection 4.2.5 adapts the results
to the final-value synthesis problem for relative outputs, and briefly discusses
other final-value synthesis problems.

For the rest of this section, we consider MIMO agents which are MEICMP,
and, as before, denote the input-output steady-state relations of the nodes by
ki, and their integral functions by Ki. We choose the controllers to be output-
strictly MEICMP, so we can discuss their input-output steady-state relations
γe and their integral functions by Γe.

1This is not to be confused with the standard formation control problem which aims to
control a team of agents to some desired spatial configuration [105]. Our use of the term
formation in this context is more abstract.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

4.2.1 Characterizing Forcible Steady-States

The result of Theorem 2.3 helps us predict the steady-state outputs of the
closed-loop by solving the optimal potential problem (OPP), which we restate
for the convenience of the reader:

min
y,ζ

K?(y) + Γ(ζ) (4.1)

s.t. E>G,dy = ζ.

The outline to the solution of Problem 4.1 is given by studying the minimizers of
the optimization problem (OPP). We recall Proposition 2.2, which says that y?

is a steady-state of the closed-loop system if and only if the following “equation”
holds:

0 ∈ k−1(y?) + EG,dγ(E>G,dy?). (4.2)

We conclude:

Corollary 4.1. Let y? ∈ (Rd)|V|. One can choose output-strictly MEICMP
controllers {Πe}e∈E so that y? is a steady state of the closed-loop system if and
only if k−1(y?) ∩ Im(EG,d) 6= ∅.

Proof. If y? is a steady state (for some choice of controllers), then (4.2) proves
that k−1(y?)∩ Im(EG,d) 6= ∅. Conversely, if k−1(y?)∩ Im(EG,d) 6= ∅, then we can
take some vector ξ such that −EG,dξ ∈ k−1(y?). If the MEICMP controllers
Πe are chosen so that γ(E>G,dy?) 3 −ξ, then Proposition 4.1 implies that y? is
a steady state of the closed-loop system, so it is enough to show that there are
MEICMP controllers Πe such that −ξ ∈ γ(E>G,dy?). There are many ways to
choose these controllers, one of them being

Πe :

{
η̇e = −ηe + ζe − (ξe + ζ?e )

µe = ηe
. (4.3)

Remark 4.1. The chosen controllers have a special structure - these are linear
controllers with constant exogenous inputs forcing the system to converge to
y?, but their dependence on y? is only through the constant ξe + ζ?e. This small
change in the controller will force the entire system converge to a different point.
We’ll emphasize this point in Subsection 4.2.3.

It is well-known that the set Im(EG,d), called the cut-space of the graph G,

consists of all vectors u ∈ (Rd)|V| such that
∑|V|
i=1 ui = 0 [57]. Thus, the first

part of Problem 4.1 is solved by the following result.

Corollary 4.2. The vector y ∈ (Rd)|V| is forcible as a steady-state if and only

if 0 ∈
∑|V|
i=1 k

−1
i (yi).
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4.2. FINAL-VALUE SYNTHESIS FOR MULTI-AGENT SYSTEMS

4.2.2 Forcing Global Asymptotic Convergence

We now solve part 2 of Problem 4.1, giving criteria for controllers to provide
global asymptotic convergence and constructing controllers that satisfy these
criteria. By Theorem 2.3, if we take output-strictly MEICMP controllers, then
the closed-loop system converges to some ŷ, so that (ŷ, ζ̂ = E>G,dŷ) form an
optimal solution of (OPP).

Corollary 4.3. If the chosen controllers are output-strictly MEICMP, and
(OPP) has only one solution (ŷ, ζ̂), then the closed-loop system globally asymp-
totically converges to ŷ.

The minimization of the function K?(y) + Γ(ζ) appearing in (OPP) can be
divided into two parts:

min
E>G,dy=ζ

[K?(y) + Γ(ζ)] = min
ζ∈Im(E>G,d)

min
y:E>G,dy=ζ

[K?(y) + Γ(ζ)]

= min
ζ∈Im(E>G,d)

[Γ(ζ) + min
y:E>G,dy=ζ

K?(y)]. (4.4)

Our goal is to have (y?, ζ? = E>G,dy?) as the sole minimizer of this problem.
Thus we have two goals - the outer minimization problem needs to have ζ? as a
sole minimizer, and the inner minimization problem needs to have y? as a sole
minimizer. The main tool we employ is strict convexity. We note that if the
systems {Πe}e∈E are output-strictly MEISCMP, then the input-output relation
γ is strictly cyclically monotone, and therefore Γ is strictly convex. Let us first
deal with the outer minimization problem in (4.4).

Definition 4.1. The minimal potential function is a function G := GG,K :
Im(E>G,d) → R, depending on the graph G and the agents’ integral function, K,
defined by

G(ζ) = min{K?(y)| E>G,dy = ζ}.

Note that (4.4) can be rewritten as:

min
E>G,dy=ζ

[K?(y) + Γ(ζ)] = min
ζ∈Im(E>G,d)

[Γ(ζ) +G(ζ)]. (4.5)

Proposition 4.1. Suppose that (4.2) is satisfied by the pair (y?, ζ? = E>G,dy?).
Suppose further that the function Γe is strictly convex in the neighborhood of ζ?e
for all e ∈ E. Then ζ? is the unique minimizer of the optimization problem in
(4.5), i.e., ζ? is the unique minimizer of Γ(ζ) +G(ζ).

Proof. Because the function K? is convex, the function G is also convex (see
Appendix A). Thus Γ(ζ) + G(ζ) is convex as a sum of convex functions, and
it is strictly convex near ζ?. Let M be the collection of (G + Γ)’s minima. It
follows from Proposition 2.2 that ζ? ∈ M . Furthermore, the set M is convex,
since G+Γ is a convex function. Finally, there is some small neighborhood U of
ζ? such that M ∩U contains no more than one point, as G+Γ is strictly convex
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Chapter 4. A Network Optimization Framework for Controller Synthesis

in a neighborhood of ζ?. We claim that these facts imply that M contains the
single point ζ?, concluding the proof.

Indeed, suppose that there’s some other ζ ∈ M . By convexity, we have
ζt = tζ + (1 − t)ζ? ∈ M for all t ∈ (0, 1), and in particular, for small t > 0.
If t > 0 is small enough then ζt ∈ U , as U is open, meaning that ζt ∈ M ∩ U
for t > 0 small. But this is impossible as M ∩ U cannot contain more than one
point. Thus ζ? is the unique minimizer of G+ Γ.

Now, we focus on the inner minimization problem of (4.4), namely the op-
timization problem defining G(ζ). We wish that y? would be the unique mini-
mizer of K?(y) on the set {E>G,dy = ζ?} = {y? + β ⊗ 1 |β ∈ Rd}. We consider

A : Rd → R defined by A(β) = K?(y? + β ⊗ 1), and we wish that β = 0 will be
the unique minimizer of A.

Minimizing A is the same as finding β such that 0 ∈ ∂A(β). By subdifferen-
tial calculus (see Appendix A and [121]), we have ∂A(β) = Projker E>G,d

k−1(y? +

β⊗ 1), where we use {β⊗ 1 : β ∈ Rd} = ker E>G,d. We know that the projection

of a vector u on ker E>G,d is given by

Projker E>G,d
u =

(
1

|V|

|V|∑
1

ui

)
⊗ 1,

so we conclude that 0 ∈ ∂A(β) is equivalent to 0 ∈
∑|V|

1 k−1
i (y?i + β ⊗ 1). Note

that plugging β = 0 gives the exact same condition appearing in Corollary 4.2.
Thus if y? satisfies the condition in Corollary 4.2, then it is a solution to the
inner minimization problem of (4.4). We want to make sure that it is the only
minimizer. By similar methods, we can prove the following result.

Proposition 4.2. Consider the function A(β) = K?(y?+β⊗1). If y? satisfies
the condition in Corollary 4.2 and A is strictly convex near 0, then y? is the
unique minimizer of K?(y) on the set {E>G,dy = ζ?}.

The proof is exactly the same as the proof of Proposition 4.1. We conclude
the subsection with the main synthesis result.

Theorem 4.1 (Synthesis Criterion of MEICMP systems). Consider a net-
worked system (G,Σ,Π), and let y? be the desired steady-state output. Suppose
that {Πe}e∈E are output-strictly MEICMP controllers, and denote their input-
output relations by γe, and the corresponding integral functions by Γe. Assume
that the following conditions hold:

i) the equation (4.2) is satisfied by the pair (y?, ζ? = E>G,dy?);

ii) for any e ∈ E, the function Γ?e is strictly convex in a neighborhood of ζe;

iii) the function A : Rd → R, defined by A(β) =
∑|V|
i=1K

?
i (y?i + β ⊗ 1), is

strictly convex near β = 0;

iv) the vector 0 is in the subdifferential set
∑|V|
i=1 k

−1
i (y?i ).
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4.2. FINAL-VALUE SYNTHESIS FOR MULTI-AGENT SYSTEMS

Then the output of the closed-loop system globally asymptotically converges to
y?. Furthermore, if the agents are output-strictly MEICMP, we can relax our
demand and require the controllers {Πe}e∈E to only be MEICMP.

Proof. The MEICMP assumptions imply that the closed-loop system always
converges to some solution of (OPP). The equation (4.4), together with con-
ditions i)-iv) show that (y?, ζ? = E>G,dy?) are the unique minimizers of (OPP),
implying that the system always converges to y?. This completes the proof.

Example 4.1. Consider the controllers constructed in (4.3):

Πe :

{
η̇e = −ηe + ζe − (ξe + ζ?e )

µe = ηe
,

for some {ξe}e∈E which are a function of y?, and chosen so that condition i)
of Theorem 4.1 is satisfied. In that case, we can compute and see that γe(ζe) =
ζe−ξe−ζ?e, so that Γe(ζe) = 1

2 ||ζe||
2−ζ>e (ξe+ζ?e) is a strictly convex function,

yielding that condition ii) is satisfied. We note that the condition i) is equivalent
in this case to k−1(y?) = EG,dξ, meaning that ξ can be found in polynomial
time (in the number of agents) by using the method of least squares, namely
ξ = (E>G,dEG,d)†E>G,dk−1(y?), where E>G,dEG,d is the tensor product of the edge
Laplacian of the graph G with the identity matrix Idd [174].

Remark 4.2. Note that the conditions iii) and iv) in Theorem 4.1 are controller
independent, but conditions i) and ii) can always be satisfied by a correct choice
of controller. This is a phenomenon similar to the one appearing in consensus
protocols, in which agreement is achieved, but its convergence point is completely
determined by the initial conditions of the agents and cannot be controlled.

4.2.3 Changing the Objective and “Formation
Reconfiguration”

In practical applications, we may want to change the desired output y? after
some time. However, we wish to avoid a change in the controller design scheme.
Note that in Example 4.1, we used the desired output y? to define the vector
ξ+ζ?. Barring this vector, the controller was independent of y?. In this section,
we propose a “Formation Reconfiguration” scheme, allowing one to solve the
synthesis problem for arbitrary desired achievable output vector y? ∈ R|E| using
controller augmentation.

We wish to implement a mechanism similar to Example 4.1 for general con-
trollers. We take a stacked controller of the form (1.2), and add a constant
exogenous input ω = (α, β),

Π#
ω :

{
η̇ = φ(η, ζ − α)

µ = ψ(η, ζ − α) + β.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

Figure 4.1: The formation reconfiguration scheme.

This design allows us to alter the controller by changing ω = (α, β), yielding
different steady-state outputs. We denote the steady-state output of the closed-
loop system with the controller Π#

ω as y0, i.e., Π#
ω solves the synthesis problem

for y0.

The following result implies that it is enough to solve the synthesis problem
for a single output or relative output (e.g., consensus), applying the “formation
reconfiguration” procedure to force any other forcible desired output.

Theorem 4.2 (Formation Reconfiguration). Consider a networked system
(G,Σ,Π), and suppose that its output converges to y0. Then there is a function
g : y 7→ ω such that for any desired achievable output y?, satisfying conditions
iii) and iv) of Theorem 4.1, if one defines α = E>G,dy?−E>G,dy0 and β = g(y?)−
g(y0), then the output of the networked system (G,Σ,Π#

ω ) converges to y?.

The theorem can be understood using the standard approach of changing the
steady-state behavior by changing the reference signal. The main point of Theo-
rem 4.2 is that any steady-state limit can be achieved by appropriately choosing
the reference signal. The controllers produced by the formation reconfiguration
scheme are illustrated in Figure 4.1.

Proof. The steady-state input-output relation γ#
ω of Π#

ω can be computed from
γ using the equation

γ#
ω (ζ) = γ(ζ− α) + β.

Given any achievable y, we know from condition iv) of Theorem 4.1 that
k−1(y)∩Im(EG,d) 6= ∅, so we take some µy ∈ (Rd)|E| such that −EG,dµy ∈ k−1(y);
we define g(y) = µy.

Now, take some achievable y?. We denote ζ0 = E>G,dy0, and ζ? = E>G,dy?, so
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4.2. FINAL-VALUE SYNTHESIS FOR MULTI-AGENT SYSTEMS

that α = ζ? − ζ0, and β = µy? − µy0
. Then,

k−1(y?) = k−1(y0) + [k−1(y?)− k−1(y0)]

= −EG,dγ(ζ0)− EG,d(µy? − µy0
) = −EG,d (γ(ζ0)− µy0

+ µy?)

= −EG,d(γ(ζ0) + β) = −EG,d(γ(ζ0) + β) = −EG,dγ#
ω (ζ0 + α)

= −EG,dγ#
ω (ζ?),

which proves our claim.

4.2.4 Plant Augmentation and Leading Agents for
Non-achievable Steady States

We saw in Subsection 4.2.1 that y can be forced as a steady-state of the system
if and only if 0 ∈

∑
i∈V k

−1
i (yi). This can be troublesome in applications, in

which a certain non-forcible steady-state can be desired for various reasons, e.g.
cost minimization or efficiency maximization.

One method of coping with this problem is slightly augmenting the plant.
This is done by introducing a constant external reference signal z to some of the
nodes. In this direction, we consider a generalized notion of the nodal dynamical
systems, which can be figuratively seen in Figure 4.2:

Σ′i :

{
ẋi = fi(xi, ui + zi,wi)

yi = hi(xi, ui + zi,wi),
(4.6)

Note that if a node is forced to have zi = 0, it is of the unaugmented form
we studied earlier. We say that a node is a follower if we force it to have zi = 0,
and we call it a leader otherwise. We focus on the case in which there is only
one leading node, i0 ∈ V. Our interest in leading nodes can be summarized by
the following definition.

Definition 4.2. Let y ∈ (Rd)|V|. We say that the leading node i0 ∈ V can force
y if there is some constant vector zi0 , such that the closed-loop system, with
exogenous input zi0 to the node i0 and zero exogenous input for all nodes j 6= i0,
has y as a steady-state. We say that the leading node i0 ∈ V is omnipotent if it
can force any vector y ∈ Im(k).

Theorem 4.3. Consider the network system (G,Σ,Π) and suppose all agents
are MEICMP. Furthermore let i0 ∈ V be the only leading node (i.e., zi = 0 for
all i 6= i0). Then i0 is omnipotent.

Figure 4.2: Agent augmentation overcoming non-achievable steady-states.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

Proof. Recall that the steady-state input-output relations for the i-th node with
zero exogenous input were denoted by ki, and denote the steady-state input-
output relation for the constant exogenous input zi0 by ki0,zi0 . Then

ki0,zi0 (ui0) = ki0(ui0 + zi0), k−1
i0,zi0

(yi0) = k−1
i0

(yi0)− zi0 .

Thus, we obtain that i0 ∈ V can force y ∈ Rd if there is some zi0 ∈ Rd such
that

0 ∈
∑
i6=i0

k−1
i (yi) + k−1

i0,zi0
(yi0) =

∑
i∈V

k−1
i (yi)− zi0 .

Hence, if we pick zi0 to be some vector in
∑
i∈V k

−1
i (yi), then we get that indeed

0 ∈
∑
i6=i0 k

−1
i (yi) + k−1

i0,zi0
(yi0), allowing to force y as a steady-state. Thus i0

is omnipotent.

4.2.5 Final-Value Synthesis for Other Signals

Up to now, we have touched only on the final-value problem for the output
vector, y(t). One can consider an analogue to Problem 4.1 for a desired relative
output vector ζ?, a desired input vector u?, and a desired controller output
vector µ?. This section briefly summarizes the small adaptations in the case of
relative-output synthesis, and briefly discusses the other two synthesis problems.

The main difference between the synthesis problem for a desired output
vector y? and the synthesis problem for a desired formation vector ζ? can be
seen in the following theorem and corollary:

Theorem 4.4. For every ζ ∈ Im(E>G,d), there exists a vector y such that E>G,dy =

ζ and k−1(y) ∩ Im(EG,d) 6= ∅.

Proof. We consider the function A defined before, which is the restriction of
K? on the set Y = {y : E>G,dy = ζ}. As A is a convex function defined on
an affine subspace, it must have a minimum at some point y ∈ Y . Moreover,
we know that the zero vector lies in ∂A(y). In Appendix A, it is shown that
∂A(y) = Projker E>G,d

(k−1(y)). Thus, because we know that the zero vector is in

the subgradient of A at y, we conclude that there is some vector u ∈ k−1(y)
such that Projker E>G,d

(u) = 0, which is the same as u ∈ ker(E>G,d)⊥ = Im(EG,d).
This completes the proof.

Corollary 4.4. For every ζ? ∈ Im(E>G,d), there exists some vectors y,µ such

that both 0 ∈ k−1(y) + EG,dµ and E>G,dy = ζ? hold. In particular, if one chooses
MEICMP controllers {Πe} such that γ(ζ?) = µ, then (4.2) is satisfied, implying
that (y, ζ?) is a minimizer of OPP, and that ζ? is a steady-state output of the
system (G,Σ,Π).

Proof. Take y to be the vector from Theorem 4.4. As k−1(y) ∩ Im(EG,d) 6= ∅,
we conclude that there is some vector µ such that EG,d(−µ) ∈ k−1(y). This is
equivalent to 0 ∈ k−1(y) + EG,dµ.
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4.2. FINAL-VALUE SYNTHESIS FOR MULTI-AGENT SYSTEMS

This solves the first part of the synthesis problem, showing that any forma-
tion vector ζ? ∈ Im(E>G,d) can be forced as a steady-state. As for the second
part, the discussion in Section 4.2 produces the following conclusion:

Remark 4.3. Consider Theorem 4.1, where we only assume conditions i) and
ii), i.e. we assume that:

i) the equation (4.2) is satisfied by the pair (y?, ζ?);

ii) for any e ∈ E, the function Γ?e is strictly convex in a neighborhood of ζe;.

Then we get that the system (G,Σ,Π) converges to some ŷ which satisfies E>G,dŷ =

E>G,dy? = ζ?. We can take y? to be the vector y from Theorem 4.4, then we
conclude that condition i) is satisfied. Thus, the only requirement for global
asymptotical convergence to ζ? is strict convexity of Γ around it. It should be
noted that the controllers from Example 4.1 always satisfy this requirement.

The proof of the remark goes word-by-word as the proof of Theorem 4.1.

Remark 4.4. In the general case, checking whether some function Γ : Rd|E| →
Rd|E| is strictly convex (near ζ?) might be a hard task - one can try and show
that for all vectors ζ0, ζ1,µ0 and any t ∈ R, the function t 7→ µ>0 γ(ζ0 + tζ1) has
no horizontal lines in its graph, which might not easily checkable.

However, one should note that Γ(ζ) =
∑
e Γe(ζe) has the property that it is

strictly convex (near ζ?) if and only if Γe are strictly convex (near ζ?e) for all
e ∈ E. When the agents are SISO, this is easier to verify geometrically since the
Γe : R→ R are one-dimensional maps. In particular, Γe is strictly convex if its
graph does not contain any straight lines, or equivalently, γe does not have any
horizontal lines for all e ∈ E. We emphasize a few special cases of importance.

i) The relation γ(ζ) = ∇ψ(ζ) defines a strictly convex function if and only
if ψ is strictly convex.

ii) The relation γ(ζ) = Mζ+µ0 defines a strictly convex function if and only
if M is a positive-definite matrix.

iii) If γ defines a monotone relation and it is given by a differentiable map
γ(ζ) = φ(ζ), then it defines a strictly convex function near ζ? if the dif-
ferential dφ(ζ?) is a full-rank matrix. Note that it is possible that this
condition is violated, but that we still have a strictly convex function - for
example γe(ζe) = ζ3

e with ζ? = 0.

This concludes the theory for the synthesis problem for relative output vec-
tors. One could also consider a synthesis problem with respect to the vector u?,
or the vector µ?. For these cases, Proposition 2.2 is replaced with Proposition
2.3 as the tool used to design the controllers. In this case, unlike the synthesis
for the output y, the equation in Proposition 2.2 can always be satisfied by a
proper choice of γ−1(µ?), for any value of k(u?) = k(−EG,dµ?). One can also
establish global asymptotic converge using strict convexity (of Γ?) as before.

We now exemplify the results of this chapter in case studies.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

4.2.6 Case Studies

We consider two case studies regarding the final-value synthesis problem for the
relative-output vector, and one case study regarding the final-value synthesis
problem for the output vector.

4.2.6.1 Simple Integrators and Nonlinear Consensus

We now focus on the case in which our agents are single SISO integrators. They
are governed by the equations ẋi = ui; yi = xi. The input-output steady-state
of each node and the corresponding integral function is given by:

ki(ui) =

{
RN , ui = 0

∅, ui 6= 0
, Ki(ui) =

{
0, ui = 0

∞, ui 6= 0,
(4.7)

which has a dual function K?
i (yi) = 0. This simplifies the problem (OPP), as

it reduces to optimizing Γ(ζ) over ζ ∈ Im(E>G,d) = Im(E>). Equivalently, we
can start from (4.2) and conclude that the equation at the minimum is just
Eγ(ζ) = 0.

Suppose we want to reach output agreement (i.e., the formation ζ? = 0). We
need γ(0) to be in the kernel of E . Thus a pick as γk(ζk) = ζk ·exp(ζ2

k) is viable.
Furthermore, the corresponding convex function is Γk(ζk) = 1

2 exp(ζ2
k), which is

strictly convex. Thus the closed-loop system converges to a steady-state output-
agreement. Implementing these controllers leads to the closed-loop system

ẋi =
∑
j∼i

(xj(t)− xi(t)) · (exp((xj(t)− xi(t))2)),

which is a nonlinear coupling driving the system to consensus. Similarly, the
choice γ(ζ) = ζ with Γ(ζ) = 1

2‖ζ‖
2, will lead to the well-known linear consensus

protocol [92,108], defined as:

ẋi =
∑
j∼i

(xj(t)− xi(t)).

4.2.6.2 Formation Reconfiguration of Damped Oscillators

We consider a network of four damped SISO oscillators,

Σi


[
ẋ1

ẋ2

]
=

[
x2

−bix2 − ω2
i (x1 − xi) + u

]
,

y = x1

where xi is the equilibrium point of the spring. The underlying graph was chosen
to be a path graph (i.e., V = {v1, v2, v3, v4},E = {{v1, v2}, {v2, v3}, {v3, v4}}).
For the diagonal matrix W with ωi on the diagonal, the input-output steady-
state relation is given by k(u) = W−2u + x. This implies that K?(y) =
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(a) The oscillators’ outputs.
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(b) The formation vector ζ(t) = E>y(t) of
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Figure 4.3: Formation control of damped oscillators.

1
2y
>W 2y− y>W 2x, and the minimization algorithm solving (4.2) can be solved

by methods of quadratic programming. For this example, the values ωi, bi, and
xi were chosen randomly as

ω = [15.54, 5.13, 7.89, 4.29](Hz),

b = [1.66, 1.22, 4.62, 1.23](1/sec),

x = [3, −2, 1, 0](m).

For a consensus objective, ζ? = 0, (4.2) reduces to Eγ(ζ?) = 0. Solving for
this ζ?, we choose γ(ζ) = tanh(ζ). To implement the said input-output relation,
we take the following SISO controller on each of the edges,{

η̇k = −ηk + ζk

µk = tanh(ηk).

We then use the formation reconfiguration scheme to create an augmented
controller. The desired formation was changed every 25 seconds as ζ1 = [0, 0, 0]>,
ζ2 = [1, 1, 1]>, ζ3 = [2, 2, 2]>, ζ4 = [0, 3, 0]>, and ζ5 = [3, 0,−3]>. The output
y(t) of the system can be seen in Figure 4.3(a) and relative outputs ζ in Figure
4.3(b). We can see that the agents do as their supposed to, converging to the
desired formations.

4.2.6.3 Formation Reconfiguration of Damped MIMO Oscillators

We consider a network of four damped MIMO oscillators:

Σi


[
ẋ1

ẋ2

]
=

[
Ωix2

−Dix2 − Ω>i (x1 − xi) + Ω−1
i u

]
y = x1
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Chapter 4. A Network Optimization Framework for Controller Synthesis

Figure 4.4: Network structure for synthesis of damped MIMO oscillators exam-
ple.

where xi is the equilibrium point of the oscillator, Ωi is a matrix consisting of
the self frequencies, and Di is a damping matrix, which is positive-definite. The
exact values of the matrices and xi-s were randomly chosen. The underlying
graph is given in Figure 4.4.

The steady-state input-output relation if Σi can be computed to be ki(ui) =
(ΩiΩ

>
i )−1u + xi, whose inverse is k−1

i (y) = (ΩiΩ
>
i )(y − xi). This gives us the

convex function K?
i (yi) = 1

2y
>ΩiΩ

>
i y − y>ΩiΩ

>
i xi, which is strictly convex.

We solve the synthesis problem for y? (see Chapter 4). Where the controllers
are taken to be identical and equal to{

η̇e = −ηe + ζe

ζe = ψ(ηe).

The function ψ is given as

ψ(x) = arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
,

where sgn(x) is the sign function. One can verify that ψ(0) = 0 and that ψ is a
monotone ascending function. The associated integral function is given by:

Γe(ζe) =

∫ ζe

0

arcsin

(
log2

(
ex+1

2

)
sgn(x)

log2
(
ex+1

2

)
+ 1

)
dx.

We use the formation reconfiguration scheme (Theorem 4.2) to create an
augmented controller, where we use the first node as a leading node (see Section
4.2). The control objective was changed every 30 seconds according to the
following desired steady-states,

y?1 = [0, 0, 0, 0, 0, 0, 0, 0]>, y?2 = [1, 1, 2, 2, 3, 3, 4, 4]>,

y?3 = [1, 2, 3, 4, 5, 6, 7, 8]>, y?4 = [−1, 0, 0, 0, 1, 0, 2, 2]>,

y?5 = [2, 2, 2, 2, 2, 2,−10,−10]>,

where the first two entries refer to the first agent, the next two refer to the second
agent, and so on. The output of the system can be seen in Figure 4.5, exhibiting
the positions of the agents y(t). The blue line represents first coordinate, and
the red one represents the second coordinate. We can see that the agents act as
expected, converging to the desired formations.
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS
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Figure 4.5: Formation control of damped MIMO oscillators.

4.3 Clustering in Symmetric Multi-Agent
Systems

In this section, we treat a special case of the final-value synthesis problem, in
which the control goal is for the agents to form clusters of prescribed sizes.
Various methods have been used to study clustering, e.g. structural balance
of the underlying graph [1], pinning control [111] and inter-cluster nonidentical
inputs [59].

We approach the clustering problem using symmetry. The notion of symme-
try is one of the cornerstones of mathematics and physics. It is used in control
theory extensively for many different applications. Examples include design-
ing observers [16], more efficient algorithms for model-predictive control [38],
and bipedal locomotion [146]. In cooperative control, symmetry on the network
level was used in [27, 28, 117] to study controllability and observability. How-
ever, these works discuss network symmetries preserving the agents’ models,
which can be different even if the agents are equivalent. Moreover, the current
literature about symmetries in multi-agent systems deals with symmetries in
the trajectories of the agents, although consensus and clustering only require
symmetries on the steady-state level. In order to use the network optimization
framework, we make either of the following two assumptions:

Assumption 4.1. The agents Σi are output-strictly MEIP and the controllers
Πe are MEIP.

Assumption 4.2. The agents Σi are MEIP and the controllers Πe are output-
strictly MEIP.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

This rest of this section is as follows. First, we define the notion of static
automorphisms for multi-agent systems. These are symmetries of the system on
the steady-state level. We then show that the group of all static automorphisms
acts on G, and that this action can be used to understand the agents’ clustering
behavior. Lastly, we restrict ourselves to the case of statically-homogeneous
networks, in which all agents and all controllers exhibit the same steady-state
behavior, and consider the cluster synthesis problem, in which the agents are
required to cluster in a prescribed manner. We begin with a brief overview
about the role of symmetry in control and in multi-agent systems .

4.3.1 The Static Automorphism Group of a Multi-Agent
System

As stated, symmetries have been used in the study of control laws for many
systems [16,38,146]. In cooperative control, symmetries were used in the study
of controllability and observability [27, 28, 117]. Namely, in [117], it is shown
that if we have a weighted graph G = (V,E,W) and input nodes S ⊂ V, then
the controlled consensus system ẋ = −L(G)x + Bu, where L(G) is the graph
Laplacian and B is supported on S, is uncontrollable, as long as there exists a
nontrivial graph automorphism ψ ∈ Aut(G) such that Pψ commutes with L(G)
and PψB = B. Later, [27] expended this idea to “Fractional Automorphism”,
using the inherent linearity of the system.

Pushing this idea a step further, we want to consider more general systems.
A first step is the case of linear systems. If we try and mimic [27], then we
require that the symmetry matrix Pψ, which corresponds to some permuta-
tion, commutes with the dynamics matrix A of the entire system. This has a
few drawbacks - The main one is that this is extremely model-dependent, i.e.,
different matrices A might yield different symmetries, even though the agents
are equivalent. Specifically, on a two-vertex graph with one edge, where both
agents have the same dynamics, but different realizations of the model, the
graph automorphism exchanging the vertices is not a symmetry.

One possible direction to remove this problem is to try and use realization-
independent models, like the transfer function for an LTI system. However,
we take a different path, as we mostly care about the steady-state limit for
clustering. We first define the notion of static equivalence between dynamical
systems.

Definition 4.3. Two dynamical systems Υ1,Υ2 are called statically equivalent
if their steady-state input-output relations are identical.
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS

Example 4.2. Consider the following dynamical systems:

Υ1 : y = u Υ2 :

{
ẋ = −x+ u,

y = x

Υ3 :

{
ẋ = −10x+ u,

y = 10x
Υ4 :

{
ẋ = − tanh(x) + u,

y = tanh(x)

Υ5 :

{
ẋ = −x+ sinh(u),

y = arcsinh(x)
Υ6 :

{
ẋ = −x+ u,

y = 0.5(x+ u)

These systems are vastly different from one another. One is memory-less, while
the others are not. Some are LTI, and some are nonlinear. Of the nonlinear
ones, one is input-affine nonlinear, while the other is not. All are output-strictly
passive, but only Υ6 is input-strictly passive. However, all of these systems have
the steady-state input-output relation k(u) = u, meaning that they are statically
equivalent.

Definition 4.4. Let (G,Σ,Π) be any diffusively-coupled system. A static auto-
morphism is a map ψ : V→ V such that the following conditions hold:

i) The map ψ is an automorphism of the graph G.

ii) For any i ∈ V, Σi and Σψ(i) are statically equivalent.

iii) For any e ∈ E, Πe and Πψ(e) are statically equivalent.

iv) The map ψ preserves edge orientation.

We denote the collection of all static automorphisms of (G,Σ,Π) by Aut(G,Σ,Π).
Naturally, this is a subgroup of the group of automorphisms Aut(G) of the graph
G.

The name “static” automorphism hints at the existence of a “dynamic”
automorphism. That would be an automorphism sending agents and controllers
to agents and controllers having the same dynamics (e.g. that can be modeled
using the same model). We shall not expand on that notion in this thesis.

Remark 4.5. The requirement that the map ψ is orientation-preserving might
appear unnatural - usually, the choice of edge orientation in a diffusively-coupled
system is arbitrary. However, this is a key point in proving that these static
automorphisms commute with EG,d, which in turn allows one to show that the
steady-states of the system are invariant under these static automorphisms. This
assumption can be traded by another assumption, namely that the controller’s
steady-state relations γe satisfy the relations γe(−x) = −γe(x) for all e ∈ E and
all x. However, as we’ll see later, this is enough to guarantee that the network
converges to consensus, which prohibits a more refined clustering behavior.

The remark urges us to consider the following assumption, or its invalidity:
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Chapter 4. A Network Optimization Framework for Controller Synthesis

Assumption 4.3. The equality γe(−x) = −γe(x) holds for every x and every
e ∈ E.

Notation 4.1. Each permutation ψ : V → V defines a linear map R|V| → R|V|

by permuting the coordinates according to ψ. We denote the linear operator by
Pψ. If ψ is a graph automorphism for the graph G = (V,E), then it gives rise
to a permutation E→ E on the edges. We denote the corresponding linear map
R|E| → R|E| by Qψ. Namely, (Pψ)ij = δψ(i)j and (Qψ)ef = δψ(e)f for i, j ∈ V
and e, f ∈ E.

Proposition 4.3. For any graph G = (V,E), and for any static automorphism
ψ, we have PψEG,d = EG,dQψ.

Proof. It’s enough to prove it in the case where d = 1, i.e. that the agents are
SISO and EG,d = E . Now, for every i ∈ V and e ∈ E,

[PψE ]ie =
∑
k∈V

(Pψ)ikEke =
∑
k∈V

δψ(i)kEke = Eψ(i),e

[EQψ]ie =
∑
f∈E

Eif (Qψ)fe =
∑
f∈E

Eifδψ(f)e = Eiψ−1(e).

Thus, because ψ(i) ∈ e if and only if i ∈ ψ−1(e), the entries of E are the same
up to sign. Moreover, because ψ preserves edge orientations, then the signs are
the same and the proof is complete.

4.3.2 Steady-State Clustering in Multi-Agent Systems

We wish to build a connection between the group action of Aut(G) on G and
the symmetries in the steady-state y of (G,Σ,Π). We start with the following
proposition.

Proposition 4.4. The function F (y) = K?(y) + Γ(E>G,dy) is Aut(G,Σ,Π)-

invariant. In other words, F (Pψy) = F (y) for any y ∈ R|V| and ψ ∈ Aut(G,Σ,Π).

Proof. We first note that Ki = Kψ(i) and Γe = Γψ(e), as ki = kψ(i) and γe =
γψ(e). Thus,

K(Pψy) =
∑
i∈V

Ki((Pψy)i) =
∑
i∈V

Ki(yψ(i)) =
∑
i∈V

Kψ(i)(yψ(i)) =
∑
j∈V

Kj((y)j)

= K(y),

where we use the switch j = ψ(i) and the fact that ψ : V → V is a bijection.
Similarly, due to Proposition 4.3, one has

Γ(E>G,dPψy) = Γ(QψE>G,dy) =
∑
e∈E

Γe((QψE>G,dy)e) =
∑
e∈E

Γe((QψE>G,dy)e) =∑
e∈E

Γe((E>G,dy)ψ(e)) =
∑
e∈E

Γψ(e)((QψE>G,dy)ψ(e)) =
∑
k∈E

Γk((E>G,dy)k) = Γ(E>G,dy),

where we switch k = ψ(e). This completes the proof.
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS

Corollary 4.5. Suppose that (G,Σ,Π) is a diffusively coupled network satisfying
either Assumption 4.1 or 4.2. Then the set of steady-state outputs for the dif-
fusively coupled network (G,Σ,Π) is Aut(G,Σ,Π)-invariant, i.e., it is preserved
when applying Pψ-s for ψ ∈ Aut(G,Σ,Π).

Proof. Immediate from Theorem 2.3 and Proposition 4.4.

Up to now, we showed that if y is a possible steady-state output of the
diffusively coupled network (G,Σ,Π), for some initial condition, then Pψy is also
a possible steady-state output of the network, for some (maybe different) initial
condition. We want to push the envelope and show that, actually, Pψy = y.
Our main tool, as before, is strong convexity.

Theorem 4.5. Consider the diffusively-coupled system (G,Σ,Π), and suppose
that either Assumption 4.1 or Assumption 4.2 hold. Then for any steady-state
y of the closed-loop and any static automorphism ψ ∈ Aut(G,Σ,Π), Pψy = y.

Proof. We recall that output-strictly MEIP systems have strictly monotone
input-output steady-state relations [23], and that a convex function is strictly
convex R → R if and only if its subdifferential is a strictly monotone rela-
tion [121]. Moreover, we recall that if F is a strictly convex function defined on
the affine subspace {x ∈ Rn : Ax = b} for some matrix A and vector b, then it
has a unique minimum [121].

Suppose that Assumption 4.1 holds. Then Ki are all strictly convex, and Γe
are all convex. Thus the function F (x) = K?(x) + Γ(E>G,dx) is strictly convex,
meaning it has a unique minimum, which is y by Theorem 2.3. Thus, because
Pψy is also a minimizer of F , we conclude that Pψy = y.

Alternatively, suppose that Assumption 4.2 holds. In that case, the functions
Ki are convex and Γe are strictly convex. Thus F is strictly convex only in
directions orthogonal to the consensus line span{1|V|}, meaning that there could
be more than one minimizer. However, we note that for any d ∈ R, the function
F is strictly convex on the affine subspace Ac = {x ∈ R|V||1>|V|x = c}, meaning
that F has a unique minimizer on each of these affine subspaces. Choose c =
y>1|V|, so that y ∈ Ac. Because y is a minimizer of F on all of R|V|, its also a
minimizer on Ac, making it the unique minimizer of F on Ac. Noting that Pψy
is also a minimizer of F , and that 1>|V|y = 1>|V|Pψy, we get that y = Pψy.

The theorem shows that the system converges to a steady-state y invariant
under static automorphisms. We want to restate it in a manner emphasizing
the clustering that occurs. For that, we define the notion of exchangeability

Definition 4.5. We say that two agents i, j ∈ V are exchangeable if there
exists a static automorphism ψ ∈ Aut(G,Σ,Π) such that ψ(i) = j. We define
the exchangeability graph of the diffusively-coupled system (G,Σ,Π) as the graph
H = H(G,Σ,Π) = (V,EH), where there is an edge {i, j} ∈ EH if i and j are
exchangeable.

Proposition 4.5. The exchangeability graph H = H(G,Σ,Π) is a union of
disjoint cliques.
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Chapter 4. A Network Optimization Framework for Controller Synthesis

Proof. It’s enough to show that if there is a path between vertices i, j, then
there is an edge {i, j}. Let i, j be any two vertices, and suppose that there
is a path i = v0, v1, v2, ..., vk−1, vk = j in H. By definition, there are static
automorphisms ψ0, ..., ψk−1 such that vr = ψr−1(vr−1) for any r = 1, 2, ..., k.
Because Aut(G,Σ,Π) is a group, the composed map ψk−1ψk−2 · · ·ψ1ψ0 is also a
static automorphism, and naturally, it maps i to j. Thus the edge {i, j} exists
in the graph H, completing the proof.

Example 4.3. Consider the graph G in Figure 4.6(a), where all the edges are
oriented from 1, 2 to 3.4.5, the nodes 1, 3, 4, 5 are all LTI with transfer function
G(s) = 1

s+1 , and node 2 is LTI with transfer function G(s) = 1
2s+1 . All edge

controllers are static, having the form µe = ζe. We compute the exchangeability
graph H of the diffusively coupled system. Suppose ψ is an automorphism of G.
Then ψ preserves the degree of each vertex. Thus, the sets {1, 2} and {3, 4, 5}
are all invariant under ψ. Moreover, ψ cannot map 1 to 2, or vice versa, as
the agents are not statically equivalent. Furthermore, the map ψ mapping 1 →
1, 2→ 2, and 3→ 4→ 5→ 3 is a static automorphism of the diffusively-coupled
system. Thus the exchangeability graph H contains the edges {3, 4}, {4, 5} and
{5, 3}. As we showed that agents 1 and 2 must remain invariant under static
automorphism, no more edges exist in the exchangeability graph H, so it is the
union of three cliques - {1}, {2} and {3, 4, 5}. The graph can be seen in Figure
4.6(b).

(a) Underlying graph G. (b) The exchangability graph H.

Figure 4.6: A graph of the diffusively-coupled network in Example 4.3 and the
corresponding exchangeability graph.

We can now restate Theorem 4.5 in a more profound way:

Theorem 4.6. Consider the diffusively-coupled system (G,Σ,Π), and suppose
that either Assumption 4.1 or Assumption 4.2 hold. Then the system converges
to a clustering steady-state, with clusters corresponding to the connected com-
ponents of the exchangeability graph H(G,Σ,Π).

Proof. The system converges to some steady-state y by Theorem 2.3. By The-
orem 4.5, The steady-state y is invariant to all static automorphisms. If we
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS

take any two vertices {i, j} lying in the same connected component of the ex-
changeability graph H, then by Proposition 4.5, the edge {i, j} is in H. Thus
there is an automorphism ψ such that ψ(i) = j. Looking at the components
of the equation Pψy = y implies that yi = yj . In other words, we showed that
the diffusively coupled system (G,Σ,Π) converges to a steady-state, and agents
connected in the exchangeability graph H converge to the same limit. This
completes the proof.

4.3.3 Homogeneous Networks and Cluster Synthesis

In many practical examples, we are dealing with a diffusively coupled network in
which the agents are identical. Examples include neural networks, platooning,
coupled oscillators, and robotic swarms. Furthermore, in many practical scenar-
ios we may desire to have all controllers in the system identical. This is the case
where the agents have no identifiers like serial numbers. We can also try and
use this frame to make clustering more robust - even if we use a wrong model
for the controllers or the agents, we will still have clustering do to symmetry.
It should be noted that designing controllers that force the system to cluster
can be done by using the synthesis procedure appearing in the previous section,
but there is no guarantee that the achieved edge controllers will be identical, or
even statically equivalent. We note that the built scheme allows us to consider
networks with identical agents/controllers by using static equivalent:

Definition 4.6. A diffusively-coupled network is statically homogeneous if any
two agents, and any two controllers, are statically equivalent.

As seen in Example 4.2, statically homogeneous networks can include agents
and controllers of many different kinds. Moreover, the notion of statically ho-
mogeneous networks allows us to study clustering using purely graph-theoretic
and combinatorial methods. Indeed, we claim that static automorphisms for
(G,Σ,Π) are just graph automorphisms of G.

Proposition 4.6. Let (G,Σ,Π) be any statically homogeneous diffusively cou-
pled network. A map ψ : V → V is a static automorphism of the system if and
only if ψ ∈ Aut(G).

Proof. Follows from the definition of a static automorphism, and static equiva-
lence of agents and controllers.

Assumption 4.3 has special significance for statically homogeneous networks.

Theorem 4.7. Suppose that (G,Σ,Π) is statically homogeneous, and either
Assumption 4.1 or Assumption 4.2 holds. If Assumption 4.3 holds, then the
network converges to consensus.

Proof. Assumption 4.3 implies that γ(0) = 0, meaning that Γ is minimized at
0. We note that by definition of statically homogeneous networks, all agents are
statically equivalent, and they have the same integral function, i.e. Ki = Kj
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Figure 4.7: Trajectories of a statically homogeneous network with non-identical
agents.

for all i, j ∈ V. If we let β be the minimum of each of the integral functions
Ki, then y = β ⊗ 1|V| minimizes both K(y) and Γ(E>G,dy). Thus it minimizes
(OPP), which is strictly convex in any direction orthogonal to the consensus
line, meaning y is the unique minimizer, and completing the proof.

Example 4.4. We consider a cycle graph G on 5 nodes. The agents’ models are
given by Υ2,Υ3,Υ4,Υ5,Υ6 of Example 4.2, where we add an identical random
constant exogenous input to all agents to avoid the mundane case of convergence
to y = 0. All the controllers on the edges are modeled as Υ1 of the same
example. Obviously, this is a statically homogeneous network with non-identical
agents.Furthermore, the automorphism group Aut(G) can map any vertex in G
to any other vertex, meaning that Theorem 4.6 implies that the system should
converge to consensus. The output y(t) and the relative output ζ(t) of the closed-
loop system can be seen in Figure 4.7. It is evident that the system indeed
converges to consensus, up to numerical errors due to limited precision.

So long that Assumption 4.3 does not hold, so consensus is not forced, clus-
tering in statically homogeneous networks can be understood in terms of the
action of Aut(G) on the graph G. One interesting problem that can benefit from
this framework is cluster synthesis. Namely, given fixed identical (or statically
equivalent) agents, how can one design the interaction graph G and identical con-
trollers in order to achieve clustering with prescribed cluster sizes, at prescribed
values. We give an example of a cluster synthesis problem below. However, it
should be noted that the solution to these problems is not unique. For example,
both the complete graph and cycle graph work when we want a single cluster,
and there are many other solutions, such as Cayley graphs on finite groups [26].

Example 4.5. We are given five agents, all are LTI with the TF G(s) = 1
s+1 .

We wish to find a graph G, and a collection of identical controllers, such that
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS
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Figure 4.8: Cluster synthesis - The closed-loop system trajectories.

(G,Σ,Π) converges to two clusters, one with two agents and one with three
agents. The first cluster should be located at yi = 1, and the second at yi = 0.

First, according to the discussion at Subsection 4.3.2, we want to find a
graph G, having five vertices, so that vertices 1, 2 are exchangeable, and vertices
3, 4, 5 are exchangeable. We consider the graph again in Figure 4.6(a), where
we orient the edges from 1, 2 to 3, 4, 5. Obviously, vertices 1, 2 are exchangeable,
and vertices 3, 4, 5 are exchangeable as well (but not with 1 and 2). It can be
shown that this is the graph having the minimal number of edges possessing this
property.

Now for the controller synthesis procedure. As we know from the Section
4.2, not all vectors are available as steady-state outputs of a diffusively-coupled
network with prescribed agents. This can be fixed by adding an (identical)
constant exogenous input to all agents, and the steady-state equation becomes
w = k−1(y) +EG,dγ(E>G,dy) (see Proposition 6.1). Writing this equation in coor-

dinates, we get two equations, one for vertices in the 1st cluster, having yi = 0,
and another for vertices in the 2nd cluster, having yi = 1:

w = 0− 3γ1(1− 0) = −3γ1(1),

w = 1 + 2γ1(1− 0) = 1 + 2γ1(1),

where γ1 is the steady-state input-output relation for each instance of the (identi-
cal) controller. We recall that we also need monotonicity, so γ1 must be mono-
tone. One possible solution to this set of equations is w = 0.6 and γ1(x) =
−1.2 + x, the latter realized by the controller µe = −1.2 + ζe. We simulate the
closed-loop system with the prescribed agents and synthesized graph and con-
trollers. The output of the system is available in Figure 4.8. It is evident that
our solution indeed solves the cluster synthesis problem.

Solving the general form of the cluster synthesis problem is an ongoing affair,
and only partial results have been established. We’ll present the current results,
which revolve around asserting that agents form the desired clusters, without
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Chapter 4. A Network Optimization Framework for Controller Synthesis

worrying about the clusters locations. Namely, suppose one gives a list r1, · · · , rk
of positive integers such that |V| = r1 + · · · + rk. We want to find a weakly
connected2 directed graph G such that the group action of Aut(G) on G forces
clusters of sizes r1, · · · , rk. This is another way of saying that the corresponding
exchangeability graph H has cliques of sizes r1, · · · , rk. The static connectivity
requirement stems from demanding that the underlying communication graph
is connected, which is desirable for many applications. We wish to understand
how many edges a graph G can have, assuming that the group action of Aut(G)
on G forces clusters of sizes r1, · · · , rk.

Theorem 4.8. Let r1, · · · rk be any positive integers such that n = r1 + · · ·+rk.

i) Suppose that G is any weakly connected directed graph such that the action
of Aut(G) on G forces clusters of sizes r1, · · · , rk. Then G has at least m
edges, where

m = min
T tree on k vertices

∑
e∈T ,e={i,j}

rirj
gcd(ri, rj)

, (4.8)

where gcd(a, b) the is the greatest common divisor of a and b.

ii) There exists a weakly connected directed graph G such that the action of
Aut(G) on G forces clusters of sizes r1, · · · , rk, and G has M edges, where

M = min
T path on k vertices

( ∑
e∈T ,
e={i,j}

rirj
gcd(ri, rj)

)
+ min

i∈V
ri. (4.9)

Proof. We start by proving the former claim. Consider a graph G such that the
action of Aut(G) on G forces the desired clustering structure. Let V1, · · · , Vk
be the orbits of Aut(G) in G, i.e., the different clusters in the exchangeability
graph. For any two indices i, j ∈ {1, · · · , k}, we consider the induced bi-partite
subgraph Gij on the vertices Vi ∪Vj .3 We claim that if it is not empty, then Gij
has at least

rirj
gcd(ri,rj)

edges.

Indeed, because Vj is invariant to Aut(G), for any x ∈ Vi and any ψ ∈
Aut(G), x and ψ(x) have the same number of edges from them to Vj . Thus, all
vertices in Vi have the same Gij-degree. Similarly, all vertices in Vj have the same
Gij-degree. Let di be the Gij-degree of vertices in Vi, and dj be the Gij-degree
of vertices in Vj . As the edges of Gij are only between Vi and Vj , we conclude
that the number of edges in Gij is equal to ridi = rjdj . Thus, the number rj
divides ridi, and the number

rj
gcd(ri,rj)

divides ri
gcd(ri,rj)

di. However, the numbers
rj

gcd(ri,rj)
, ri

gcd(ri,rj)
are relatively prime, meaning that

rj
gcd(ri,rj)

must divide di.

In particular, di ≥ rj
gcd(ri,rj)

, and Gij has at least ridi ≥ rirj
gcd(ri,rj)

edges.

2Recall that a directed graph is weakly connected if its unoriented counterpart is connected.
3In other words, only edges between Vi and Vj exist in the subgraph.
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS

Now, we consider the condensed graph G′. The vertices of G′ are {v1, · · · , vk},
and vi is connected to vj if and only if there is an edge between Vi and Vj . Ob-
viously, since G is weakly connected, G′ is also connected. Let T be a spanning
tree for G′. For each edge e = (i, j) in T , there is an edge between Vi and Vj ,
meaning that the graph Gij contains at least

rirj
gcd(ri,rj)

edges. Thus the graph G
has at least

∑
e∈T ,e={i,j}

rirj
gcd(ri,rj)

edges, meaning that it has at least m edges.

We now move to the second part of the theorem. Suppose that T is a path on
k vertices, and let i1, · · · , ik be the order of the vertices in the path. Moreover,
let e = {ij , ij+1} be an edge in T . By reordering r1, · · · , rk, we assume that
ij = j for j = 1, 2, · · · , k. We let i be the vertex at which ri is minimized.

For each j ∈ {1, · · · , k}, we number the vertices in Vj as vj1, · · · , vjrj . Build the
graph G in the following manner:

i) For every j, we consider the following edges between Vj and Vj+1. For

p = 1, · · · , rjrj+1

gcd(rj ,rj+1) , add an edge from vjp mod rj
to vj+1

p mod rj+1
.

iii) For each p = 1, · · · , ri, connect vip to vi(p+1) mod ri
.

It’s easy to see that the number of edges in G is( ∑
e∈T ,e={i,j}

rirj
gcd(ri, rj)

)
+ ri.

We want to show that the orbits of the action of Aut(G) on G are exactly
V1, · · · , Vk, and that G is weakly connected, concluding the proof.

First, we show that G is weakly connected. Indeed, we first note that the
induced subgraph on Vi is weakly connected, as the following cycle eventually
passes through all the nodes in the graph:

vi1 → vi2 → vi3 → · · ·

Now, by the way we built G, any vertex vip is connected all vertices vlp mod rl
.

Thus, for any two vertices vj1p1
and vj2p2

, we can consider a path that starts from

vj1p1
, goes to vip1 mod ri

, moves to vip2 mod ri
using the connectivity of induced

subgraph on Vi, and continues to vj2p2
. Thus G is weakly connected.

As for the orbits, we first consider the map ψ defined on the vertices of G by
sending each vertex vjp to vj(p+1) mod rj

. By definition of the graph G, it’s clear

that ψ is a graph automorphism. Moreover, it’s clear that repeatedly applying
ψ can move vjp to any vertex in Vj . Thus the orbit of vjp contains the set Vj .

Conversely, we show that each Vi is invariant under Aut(G), proving that
the orbits of the action of Aut(G) on G are exactly V1, · · ·Vk. This is obvious
if k = 1, as then V1 = V, so we assume that k ≥ 2. In that case, either i 6= 1
or i 6= k (or both). We assume without loss of generality that i 6= k, as the
complementary case can be treated similarly. Graph automorphisms preserve
all graph properties, and in particular, they preserve the out-degree of vertices.
As all edges are oriented from Vj to Vj+1 or from Vi to itself where i 6= k, the
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Chapter 4. A Network Optimization Framework for Controller Synthesis

vertices in Vk have an out-degree of 0, and they are the only ones with this
property. Thus Vk must be invariant under Aut(G). The only vertices with
edges to Vk are in Vk−1, meaning that Vk−1 is also invariant under Aut(G).
Iterating this argument, we conclude that V1, · · ·Vk must all be invariant under
the action of Aut(G). Thus they are the orbits of the action, and the action of
Aut(G) on G has orbits of size r1, · · · , rk. This completes the proof.

Remark 4.6. One might ask why the lower bound considers all possible trees,
while the upper bound only considers path graphs. The main reason for this
distinction can be seen in the proof - one can build a general graph G where one
uses a tree graph as a basis, instead of the path graph 1 → 2 → 3 → · · · →
k. In that case, proving that each vertex vip can reach all of Vi using graph
automorphisms is easy, but it might be possible that its orbit is actually larger.

Remark 4.7. Note that the lower bound in the theorem can be found using
Kruskal’s Algorithm, or any other algorithm finding a minimal spanning tree
in a graph [36], meaning it can be computed in polynomial time. However, the
upper bound requires one to solve a specific case of a variant of the traveling
salesman problem, which is known to be NP-hard [36].

Theorem 4.8 deals with a general cluster structure, and some of the graphs
it constructs can be seen in Example 4.6. We apply it to more specific cases in
order to achieve concrete bounds on the number of edges needed for clustering
in these cases.

Corollary 4.6. Suppose that all cluster sizes r1, · · · , rk are equal, and bigger
than 1. Then the minimal weakly connected directed graph G such that the action
of Aut(G) on G forces clusters of size r1, · · · , rk has exactly n edges.

Proof. Let r be the size of all clusters. We note that in this case,
rirj

gcd(ri,rj)
= r,

and the number of clusters is k = n/r. Thus, if we build a graph G as in the
proof of Theorem 4.8, then G has exactly n edges, as the summation over edges
e ∈ T goes over k−1 edges. It remains to show that no such graph on less than
n edges exists.

First, we know that any graph on n nodes and less than n− 1 edges is not
connected [15]. Thus, it suffices to show that no such graph on n − 1 vertices
exists. Indeed, let di be the out-degree of some arbitrary vertex in the i-th orbit,
i = 1, · · · , k. As the action of the automorphism group preserves the out-degree,
it is the same for all vertices in the i-th orbit. The number of edges is the sum
of the out-degree over all vertices, but it’s equal to rd1 + · · · + rdk. Thus the
number of edges in G must be divisible in r. But n = kr, meaning that n− 1 is
not divisible by r unless r = 1. Thus there is no such graph on n− 1 edges.

Corollary 4.7. Let r1, · · · , rk be positive integers such that k ≥ 2 and that for
every i, j, either ri divides rj or vice versa, and let n = r1 + · · · + rk. Then
the minimal weakly connected directed graph G such that the action Aut(G) on
G forces clusters of sizes r1, · · · , rk has no more than n edges.
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4.3. CLUSTERING IN SYMMETRIC MULTI-AGENT SYSTEMS

Proof. We reorder the numbers r1, · · · , rk such that rl divides rj for l ≤ j. We
note that if rl divides rj , then

rlrj
gcd(rl,rj)

= max(rl, rj) = rl. Thus, if we let G
be the graph built in the proof of Theorem 4.8, it has the following number of
edges:

k−1∑
j=1

rjrj+1

gcd(rj , rj+1)
+ r1 =

k−1∑
j=1

rj+1 + r1 =
∑
j=1

rj = n.

Corollary 4.8. Let r1, · · · , rk be positive integers such that k ≥ 2 and ri ≤ q
for all i, , and let n = r1 + · · ·+rk. Then the minimal weakly connected directed
graph G such that the action of Aut(G) on G forces clusters of sizes r1, · · · , rk
has no more than n+O(q3) edges.

Proof. Without loss of generality, we assume that the numbers ri are ordered
such that r1 ≤ r2 ≤ · · · rk. Let mi be the number of clusters of size i for
i = 1, 2, · · · , q. As before, consider the graph G built in the proof of Theorem
4.8. We note that if rl = rj then

rlrj
gcd(rl,rj)

= rl, and
rlrj

gcd(rl,rj)
≤ rlrj otherwise.

Thus, the number of edges in G is given by:

k−1∑
j=1

rjrj+1

gcd(rj , rj+1)
+ r1 ≤

∑
l∈{1,·,q},ml 6=0

(ml − 1)l +

q−1∑
l=1

l(l − 1) + r1.

Indeed, for each l ∈ {1, · · · , q}, if there’s at least one cluster of size l, then there
are ml−1 edges in the path T = 1→ 2→ · · · → k that touch two clusters of size
l. The second term bounds the number of edges that appear between clusters
of different sizes. We note that n =

∑q
l=1 lml, so the first term is bounded by

n. As for the second term, we can bound l(l−1) by l2 and then use the formula∑q−1
l=1 l

2 = (q−1)q(2q−1)
6 . The formula first appears in Fibonacci’s Liber Abaci

from 1201, and can also be found in [143]. Lastly, the last term r1 is bounded
by q. This completes the proof.

We now give examples of graphs constructed by Theorem 4.8, and show they
indeed force a clustering structure on the agents.

Example 4.6. We consider a collection of n = 12 identical agents, all of the
form ẋ = −x+u+α, y = x where α is a log-uniform random variable between 0.1
and 1, identical for all agents. In all experiments described below, we considered
identical controllers, equal to the static nonlinearity of the form

µ = a1 + a2(ζ + sin(ζ))

where a1 was chosen as a Gaussian random variable with mean 0 and stan-
dard deviation 10, and a2 was chosen as a log-uniform random variable between
0.1 and 10. We note that the agents are indeed output-strictly MEIP and the
controllers are MEIP, so the conditions of Theorem 4.5 hold. Moreover, the net-
work is homogeneous, so Aut(G,Σ,Π) = Aut(G). Thus, we can use the graphs
constructed by Theorem 4.8 to force a clustering behavior.

106

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 4. A Network Optimization Framework for Controller Synthesis

(a) Graph forcing cluster sizes r1 = r2 = r3 = r4 =
3. Nodes with the same color will be in the same
cluster.
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(b) Agent’s trajectories for the
closed-loop system. Colors corre-
spond to node colors in the graph.

Figure 4.9: First example of graphs solving the cluster synthesis problem, as
constructed in Theorem 4.8.

(a) Another graph forcing cluster sizes r1 =
r2 = r3 = r4 = 3. Nodes with the same color
will be in the same cluster.
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(b) Agent’s trajectories for the
closed-loop system. Colors corre-
spond to node colors in the graph.

Figure 4.10: Second example of graphs solving the cluster synthesis problem, as
constructed in Theorem 4.8.

We first consider the cluster synthesis problem with four equally-sized clus-
ters, i.e., r1 = r2 = r3 = r4 = 3. One possible graph forcing these clusters, as
constructed by Theorem 4.8, can be seen in Figure 4.9, along with the agent’s
trajectories for the corresponding closed-loop system. Another example of such
graph can be seen in Figure 4.10, again with the agent’s trajectories for the
corresponding closed-loop system.

Secondly, we consider the cluster synthesis problem with three equally-sized
clusters, i.e. r1 = r2 = r3 = 4. One possible graph forcing these clusters, as
constructed by Theorem 4.8, can be seen in Figure 4.11, along with the agent’s
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4.4. CONCLUSIONS

(a) Graph forcing cluster sizes r1 = r2 = r3 = 4.
Nodes with the same color will be in the same
cluster.
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(b) Agent’s trajectories for the
closed-loop system. Colors corre-
spond to node colors in the graph.

Figure 4.11: Third example of graphs solving the cluster synthesis problem, as
constructed in Theorem 4.8.

(a) Graph forcing cluster sizes r1 = r2 = 1, r3 = r4 =
2, r5 = r6 = 3. Nodes with the same color will be in
the same cluster.
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(b) Agent’s trajectories for the
closed-loop system. Colors corre-
spond to node colors in the graph.

Figure 4.12: Fourth example of graphs solving the cluster synthesis problem, as
constructed in Theorem 4.8.

trajectories for the corresponding closed-loop system.
Lastly, we consider the cluster synthesis problem with six clusters of different

sizes, defined by r1 = r2 = 1, r3 = r4 = 2, r5 = r6 = 3. One possible graph
forcing these clusters, as constructed by Theorem 4.8, can be seen in Figure 4.12,
along with the agent’s trajectories for the corresponding closed-loop system.

4.4 Conclusions

In this chapter, we explored the problems of final-value synthesis and cluster
synthesis. For the former, we presented a synthesis scheme for solving the
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Chapter 4. A Network Optimization Framework for Controller Synthesis

final-value synthesis problem, for which the closed-loop system globally asymp-
totically converges to the desired value. This was done using tools from convex
optimization and strict convexity. Later we focused on clustering, which is a
specific case of the final-value synthesis problem, in which we showed that cer-
tain symmetries in the network correspond to the formation of certain clusters
in the steady-state output. We then presented a method to build these sym-
metric networks for the case of statically equivalent agents. Several examples
were presented throughout the chapter demonstrating the problems and solution
schemes.

In the next chapter, we’ll solve a similar final-value synthesis problem, but
using data-driven methods, with no knowledge on the specific models, or the
steady-state input-output relations that the agents possess.
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Chapter 5

Applications of the Network
Optimization Framework in
Data-Driven Control

This section is a review of [135]. We study the problem of practical final-value
synthesis, in which one is given agents {Σi}, an interaction graph G, a vector
of desired relative positions ζ? ∈ Im(E>) and a tolerance level ε > 0. Our goal
is to find networked controllers {Πe} such that the diffusively-coupled system
(G,Σ,Π) converges to a steady-state for which the relative positions vector is
ε-close to ζ?. This is an easier problem than the synthesis problem described
in the previous section. However, we focus on the case in which there is no
known model from the agents, but they are given as a blackbox, with no or a
very limited model. We show how one can solve the problem in a data-driven
manner, with either very few preliminary experiments, or an on-line iterative
scheme.

5.1 Introduction

As we already saw, multi-agent systems have received extensive attention in the
past years, due to their appearance in many fields of engineering, exact sciences
and social sciences. The state-of-the-art approach to model-based control for
multi-agent systems offers rigorous stability analysis, performance guarantees
and systematic insights into the considered problem. However, with the growing
complexity of systems, the modeling process is reaching its limits. Obtaining a
reliable mathematical model of the agents can become a long and hard endeavor.

At the same time, modern technology allows for gathering and storing more
and more data from systems and processes. Therefore, there has been an in-
creasing interest in what is called data-driven controller design. There have
been different approaches to data-driven controller design very generally (see,
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5.2. PROBLEM FORMULATION AND VERIFICATION OF PASSIVITY

e.g., [67,152]), and some approaches to multi-agent control from data more par-
ticularly [13, 21, 73]. Nonetheless, the centralized nature of the general design
schemes, or the specificity of the agents’ model and high measurement rate for
the multi-agent approaches, prevents the application of many of the aforemen-
tioned approaches in various real-world scenarios.

In this chapter, we develop a data-driven controller approach for multi-agent
systems that comes with rigorous theoretical analysis and stability guarantees
for the closed loop, with almost no assumptions on the agents and very few
measurements needed. The approach is based on the notion of high-gain con-
trollers. Some ideas on high-gain approaches for cooperative control can be
found in [164] and references therein. In [178], the authors provide a high-gain
condition in the design of distributed H∞ controllers for platoons with undi-
rected topologies, while there are also many approaches for (adaptively) tuning
the coupling weights, e.g. [171]. Our approach provides an upper bound on
a high-gain controller on the basis of passivity measures. Passivity properties
of the components can provide sufficient abstractions of their detailed dynam-
ical models for guaranteed control. Such passivity properties, in turn, can be
obtained from data as ongoing work shows (e.g., [95, 123,125,153]).

This chapter generally studies the problem of controller synthesis for diffu-
sively coupled systems. The control objective is to converge to an ε-neighborhood
of a constant prescribed relative output vector. That is, for some tolerance ε > 0,
we aim to design controllers so that the steady-state relative output limit is ε-
close to the prescribed values. The related problem of practical synchronization
of multi-agent systems have been considered in [96], in which the plants were
assumed to be known up to some bounded additive disturbance. However, a
nominal model of the plant was needed to achieve the practical synchronization.
It was also pursued in [76], in which strong coupling was used to drive agents
to a neighborhood of a common trajectory, but again, a model for the agents
was needed.

5.2 Problem Formulation and Verification of
Passivity

We focus on the final-value synthesis problem for the relative-output vector
of SISO agents. In this problem, the agents know the relative output ζe =
yi − yj with respect to their neighbors, and the control goal is to converge
to a steady-state with prescribed relative outputs ζ?. Examples include the
consensus problem, in which all outputs must agree, as well as relative-position
based formation control of robots, in which the robots are required to organize
themselves in a desired spatial structure [105].

More specifically, we are given a graph G and SISO agents Σ, and our goal
is to design controllers Π so that the formation vector ζ(t) of the diffusively
coupled network (G,Σ,Π) will converge to a desired, given steady-state vector
ζ?. One evident solution to the problem is to apply a (shifted) integrator as a
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

controller. However, this solution will not always work even when the agents
are MEIP.

Example 5.1. Consider the case of agents Σi with integrator dynamics, to-
gether with the controllers Πe according to the previous idea, where we desire
consensus (i.e., ζ? = 0) over a connected graph G,

Σi :

{
ẋi = ui

yi = xi
, Πe :

{
η̇e = ζe

µe = ηe
.

The trajectories of the diffusively-coupled system can be understood by noting
that the closed-loop system yields the second-order dynamics ẍ = −EE>x, where
E is the incidence matrix of the graph. Decomposing x using a basis of eigenvec-
tors of the graph Laplacian EE>, which is a positive semi-definite matrix, we see
that the trajectory of x(t) oscillates around the consensus manifold {x : ∃λ ∈
R, x = λ1n}. Specifically, x(t)− 1

n1
>
n x(t) =

∑n
i=2 ci cos(

√
λit+ ϕi)vi + +c0t1,

where λ2, . . . , λn > 0 are the non-trivial eigenvalues of the graph Laplacian,
v2, . . . , vn are corresponding unit-length eigenvectors, and ci, ϕi are constants
depending on the initial conditions x(0), η(0). Thus x(t) = y(t) does not con-
verge anywhere, let alone to consensus. Moreover, the vector ζ(t) = E>y(t) =∑n
i=2 λici cos(

√
λit + ϕi)vi does not converge as t → ∞. Thus the integrator

controller does not solve the final-value synthesis problem for the relative output
vector in this case.

Even if the integrator would solve this problem in general, we would like
more freedom in choosing the controller. In practice, one might want to design
the controller to satisfy extra requirements (like H2- or H∞-norm minimization,
or making sure that certain restrictions on the behavior of the system are not
broken). We do not try and satisfy these more complex requirements, but in-
stead show that a large class of controllers can be used to solve the practical
final-value synthesis problem. In turn, this allows one to choose from a wide
range of controllers, and try and satisfy additional desired properties. In the
previous section, we saw an algorithm solving the relative position-based forma-
tion control problem with ease, as long as the agents are MEIP and a perfect
model of each agent is known. This algorithm allows a vast amount of free-
dom in the choice of controllers. However, in practice we oftentimes have no
exact model of our agents, or there is even no closed form mathematical model
available at all.

To formalize the goals we aim at, we define the notion of practical final-value
synthesis.

Problem 5.1. Given a graph G, agents Σ, a desired formation ζ? ∈ Im(E>),
and an error margin ε, find a controller Π so that the relative output vector ζ(t)
of the network (G,Σ,Π) converges to some ζ0 such that ‖ζ? − ζ0‖ ≤ ε.

By choosing suitable error margins ε, practical final-value synthesis (com-
pared to final-value synthesis) comprises no restriction or real drawback in any
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5.2. PROBLEM FORMULATION AND VERIFICATION OF PASSIVITY

Figure 5.1: Block diagram of the diffusively-coupled network (G,Σ,Π, A).

application case. Therefore, solving the practical final-value synthesis prob-
lem constitutes an interesting problem especially for unknown dynamics of the
agents. Thus, we strive to develop an algorithm solving this practical final-value
synthesis problem without a model of the agents while still providing rigorous
guarantees.

The underlying idea of our approach is amplifying the controller output.
Consider the scenario depicted in Figure 5.1, where the graph G, the agents Σ
and the nominal controller Π are fixed, and the gain matrix A is a diagonal
matrix A = diag({ae}e∈E) with positive entries. We will show in the following
that when the gains ae become large enough, then the controller dynamics Π
become much more emphasized than the agent dynamics Σ. By correctly choos-
ing the nominal controller Π according to ζ?, we can hence achieve arbitrarily
close formations to ζ?, as the effect of the agents on the closed-loop dynamics
will be dampened. We denote the diffusively-coupled system in Figure 5.1 as
the 4-tuple (G,Σ,Π, A), or as (G,Σ,Π, a) where a is the vector of diagonal en-
tries of A. In case A has uniform gains, i.e., A = αI, we’ll denote the system
as (G,Σ,Π, α1n) . In order to apply the network optimization framework of
Theorems 1.2 and 2.3, we make the following assumption:

Assumption 5.1. The agents {Σi}i∈V are all MEIP, and the nominal con-
trollers {Πe}e∈E are all output-strictly MEIP.

Before expanding on the suggested controller design, we want to discuss
Assumption 5.1. In practice, it might not be known whether an agent is MEIP.
Therefore, we discuss how to either verify MEIP for the agents, or determine
their shortage of passivity if they are not MEIP. We also discuss how to passivize
the agents in the latter case.

First, in some occasions, we actually do have some model for the agents,
which might be obscure or uncertain. For example, one might know that an
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

agent can be modeled by some gradient system, or some Euler-Lagrange sys-
tem, but the exact model is unknown due to uncertainty on the characterizing
parameters. In that case, we can use analytical results to check if the agents are
MEIP. To exemplify this idea, we show how a very rough model can be used to
prove that a system is MEIP.

Proposition 5.1. Consider a control-affine SISO dynamical system of the form

ẋ = −f(x) + g(x)u; y = h(x), (5.1)

where we assume that g(x) > 0 for all x, and that f/g : R → R is a con-
tinuous monotone ascending function, and that h is continuous strictly mono-
tone ascending. Moreover, assume that either lim|x|→∞ |f(x)/g(x)| = ∞ or
lim|x|→∞ |h(x)| =∞. Then (5.1) is MEIP.

The proof of the proposition will be delayed to the end of this subsection. See
also Section 2.3 for a treatment on gradient systems with oscillatory terms. More
generally, one can use an obscure model to give an estimate about equilibrium-
independent passivity indices using similar ideas.

Another approach for verifying Assumption 5.1 is learning input-output pas-
sivity properties from trajectories. For LTI systems, the shortage of passivity
can be asymptotically revealed by iteratively probing the agents and measuring
the output signal as presented in [125] and extended, e.g., in [153]. More re-
cently, it has been shown in [123] that even one input-output trajectory (with
persistently exciting input) is sufficient to find the shortage of passivity of an LTI
system. For nonlinear agents, one can apply approaches presented in [95, 124],
under an assumption on Lipschitz continuity of the steady-state relation. How-
ever, for general non-linear systems, this is still a work in progress. It should
be noted that for LTI systems, output-strict passivity directly implies output
strict MEIP [23].

Using either approaches, we can either find that an agent is MEIP, or that it
has some shortage of passivity, and we need to render the agent passive in order
to apply the model-free formation control approaches presented in this chapter.
We can use passivizing transformations on the non-passive agent in order to get
a passive augmented agent. See Chapter 3 for more details.

With this discussion and relaxation of Assumption 5.1, we return to our
solution of the practical final-value synthesis problem. Recall that we considered
closed-loop systems of the form (G,Σ,Π, a), where a is a vector of edge gains.
From here, the chapter diverges into two sections. The next section deals with
theory and analysis for uniform edge gains. The following section deals with
theory and analysis for the case of heterogeneous edge gains. However, before
moving on, we repay our debt and prove Proposition 5.1. For the proof, we
recall the notion of cursive relations, and specifically Lemma 3.1.

Proof. Consider an arbitrary steady-state of the system. As h is continuous
and strictly monotone ascending, hence invertible, we must have ẋ = 0 for
any steady-state input-output pair. Thus, we conclude that any steady-state
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5.3. UNIFORM GAIN AMPLIFICATION METHODS

input-output pair can be written as (f(σ)/g(σ), h(σ)) for some σ ∈ R. We
first show passivity with respect to every steady-state, and then show that
the steady-state input-output relation is maximally monotone. Take a steady-

state (f(x0)/g(x0), h(x0)) of the system, and define S(x) =
∫ x

x0

h(σ)−h(x0)
g(σ) dσ.

We claim that S is a storage function for the steady-state input-output pair
(f(x0)/g(x0), h(x0)). Indeed, S(x) ≥ 0, with equality only at x0, immediately
follows from strict monotonicity of h and the positivity of g. As for the inequality
defining passivity, we have:

d

dt
S(x) =

h(x)− h(x0)

g(x)
(−f(x) + g(x)u)

= (h(x)− h(x0))u− f(x)

g(x)
(h(x)− h(x0))

= (h(x)− h(x0))

(
u− f(x0)

g(x0)

)
−
(
f(x)

g(x)
− f(x0)

g(x0)

)
(h(x)− h(x0)),

where the second term is non-positive as f
g , h are monotone ascending, and

the first term is (y − h(x0))(u − f(x0)
g(x0) ). This proves that the system is indeed

passive with respect to any steady-state input-output pair. As for maximal
monotonicity of the steady-state relation, we recall that it can be parameterized
as (f(σ)/g(σ), h(σ)) for σ ∈ R. We claim that this relation is both monotone and
cursive, which will show that the relation is maximal monotone. Monotonicity
follows from the system being passive with respect to any steady-state. As
for cursiveness, the map σ 7→ (f(σ)/g(σ), h(σ)) is a curve whose image is the
relation. Moreover, it’s clear that the map is continuous, and also injective due
to strict monotonicity of h. Lastly, we have

lim
|t|→∞

∥∥∥∥(f(t)

g(t)
, h(t)

)∥∥∥∥ ≥ lim
t→∞

max

{∣∣∣∣f(t)

g(t)

∣∣∣∣, |h(t)|
}

=∞, (5.2)

proving that the steady-state relation is also cursive, and completing the proof.

Remark 5.1. Following the proof of the proposition, we note that the passivity
index with respect to the steady-state input-output pair (f(x0)/g(x0), h(x0)) is

ρ = inf
x∈R

f(x)
g(x) −

f(x0)
g(x0)

h(x)− h(x0)
.

This will help us apply some of the presented methods to control-affine systems
for cases in which the actual value of the passivity index is needed, e.g. Chapter
7.

5.3 Uniform Gain Amplification Methods

We split this chapter into two parts. The first part deals with the theory, and the
second part deals with the corresponding implementation of practical final-value
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

synthesis using uniform gains on the edges.

5.3.1 Theory

We wish to understand the effect of amplification on the steady-state of the
closed-loop system. For the remainder of the section, we fix a graph G, SISO
agents Σ and controllers Π such that Assumption 5.1 holds. We consider the
diffusively coupled system (G,Σ,Π, α1n) in Figure 5.1, where the gains over all
edges are identical and equal to α > 0, and wish to understand the affect of α.
We let K and Γ denote the sum of the integral functions of the agents and of
the controllers, respectively. We first study the steady-states of this diffusively
coupled system.

Lemma 5.1. Under the assumptions above, the closed-loop system converges
to a steady-state, and the steady-state vectors y, ζ of the closed-loop system are
minimizers of the following optimization problem (OPP):

min
y,ζ

K?(y) + αΓ(ζ)

s.t. E>y = ζ.

Proof. We define a new stacked controller, Π̄ = αΠ, by cascading the previous
controller Π with the gain α. The resulting controller Π̄ is again output-strictly
MEIP, and we let γ̄, Γ̄ denote the corresponding steady-state input-output re-
lation and integral function. Theorem 1.2 implies that the closed-loop system
(with Π̄) converges to minimizers of (OPP) for the system (G,Σ, Π̄). Moreover,
we have γ̄(ζ) = αγ(ζ) for any ζ ∈ R|E|. Integration thus yields Γ̄ = αΓ, and
writing (OPP) for the system (G,Σ, Π̄) reads:

min
y,ζ

K?(y) + αΓ(ζ)

s.t. E>y = ζ.

Our goal is to show that when α � 1, the relative output vector ζ of the
diffusively coupled system (G,Σ,Π, α1n) globally asymptotically converges to
an ε = ε(α)-ball around the minimizer of Γ, and limα→∞ ε(α) = 0. Thus, if
we design the controllers so that Γ is minimized at ζ?, then α � 1 provides a
solution to the ε-practical final-value synthesis problem. Indeed, we can prove
the following theorem:

Theorem 5.1. Consider the closed-loop system (G,Σ,Π, α1n), where we as-
sume that the agents are MEIP and the controllers are output-strictly MEIP.
Assume Γ has a unique minimizer in Im(E>), denoted ζ1. For any ε > 0, there
exists some α0 > 0, such that for all α > α0 and for all initial conditions, the
closed-loop system converges to a vector y satisfying ‖E>y − ζ1‖ < ε.
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5.3. UNIFORM GAIN AMPLIFICATION METHODS

In order to prove the theorem, we study (OPP) for the diffusively coupled
system (G,Σ,Π, α1n), as described in Lemma 5.1. In order to do so, we need
to prove a couple of lemmas. The first deals with lower bounds on the values of
convex functions away from their minimizers.

Lemma 5.2. Let U be a finite-dimensional vector space and let f : U → R be
a strictly convex function. Denote x0 ∈ U as the unique minimum of f . Then
for any δ > 0 there exists some M > f(x0) such that for any point x ∈ U , if
f(x) < M then ‖x− x0‖ < δ.

Proof. We assume without loss of generality that f(x0) = 0. Let ν be the
minimum of f on the set {x ∈ U : ||x− x0|| = δ}, which is positive since x0 is
f ’s unique minimum and the set {x ∈ U : ‖x− x0‖ = δ} is compact. We know
that, for any y ∈ U , the difference quotient

f(x0 + λy)− f(x0)

λ
,

is an increasing function of λ > 0 (see Appendix A). Manipulating this inequality

implies that for any x ∈ U , if ||x|| ≥ δ then we have that f(x) ≥ ||x||δ ν, and in
particular f(x) ≥ ν whenever ||x|| ≥ δ. Thus, if f(x) < ν then we must have
||x− x0|| < δ, so we can choose M = ν and complete the proof.

The second lemma deals with minimizers of perturbed versions of convex
functions on graphs.

Lemma 5.3. Fix a graph G = (V,E) and let E be its incidence matrix. Let
K : R|V| → R be a convex function, and let Γ : R|E| → R be a strictly convex
function having a unique minimum ζ1 when restricted to the set Im(E>). For
any α > 0, consider the function Fα(y) = K?(y) + αΓ(E>y). Then for any
ε > 0, there exists some α0 > 0 such that if α > α0 then all of Fα’s minima, y,
satisfy ‖E>y − ζ1‖ < ε.

Proof. By subtracting constants from K? and Γ, we may assume without loss
of generality that min(K?) = min(Γ) = 0. Choose some y0 ∈ R|V| such that
E>y0 = ζ1 and let m = K?(y0). Note that Fα(y0) = m, meaning that if y is any
minimum of Fα, it must satisfy Fα(y) ≤ m, and in particular Γ(E>y) ≤ m

α . Now,
from Lemma 5.2 we know that there’s some M > 0 such that if Γ(E>y) < M
then ‖E>y − ζ1‖ < ε. If we choose α0 = m

M , then whenever α > α0 we have
Γ(E>y) < M , implying ‖E>y − ζ1‖ < ε. This completes the proof of the
lemma.

We now connect the pieces and prove Theorem 5.1.

Proof. Lemma 5.1 implies that the closed-loop system always converges to a
minimizer of (OPP)

min
y,ζ

K?(y) + αΓ(ζ)

s.t. E>y = ζ.
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

Lemma 5.3 proves that there is some α0 > 0 such that if α > α0 then all
minimizers of (OPP) satisfy ‖E>y − ζ1‖ < ε. This proves the theorem.

Remark 5.2. The parameters ε and ζ? can be used to estimate the minimal gain
α0 solving the ε-practical final-value synthesis problem by following the proofs
of Lemma 5.2 and Lemma 5.3. Namely, α0 ≤ m

M where M is the minimum of
Γ on the set {ζ ∈ Im(E>) : ‖ζ − ζ?‖ = ε}, and m = K?(y) − minyK

?(y) =
K?(y?) +K(0) where y? ∈ R|V| is any vector satisfying E>y? = ζ?.

Corollary 5.1. Let (G,Σ,Π, α1n) satisfy Assumption 5.1 and let (G,ΣInt,Π) be
a network with identical underlying graph and controllers, but single integrator
dynamics for each agent. Denote the relative outputs of each system as ζ(t)
and ζInt(t) respectively. Then for any ε > 0, there exists an α0 > 0 such that
if α ≥ α0, then the relative outputs ζ(t) and ζInt(t) both converge to constant
vectors ζ? and ζ?Int respectively, and satisfy ‖ζ? − ζ?Int‖ ≤ ε.

Proof. The agents ΣInt are MEIP. Thus, by Theorem 1.2, we know that the
diffusively-coupled system (G,ΣInt,Π) converges to a steady-state, and its steady-
state output is a minimizer of the associated (OPP) problem. Note that the
input-output relation of ΣInt’s is given via k−1(y) = 0, meaning the integral
function K? is the zero function. Thus the associated problem (OPP) is the
unconstrained minimization of Γ(E>y), meaning that the system (G,ΣInt,Π)
converges, and its output converges to a minimizer of Γ(E>y), i.e., its relative
output ζ(t) converges to the minimizer of Γ on Im(E>). Applying Theorem 5.1
now completes the proof.

Remark 5.3 (Almost Data-free control). Corollary 5.1 can be thought of as a
synthesis procedure. Indeed, we can solve the synthesis problem as if the agents
were simple integrators, and then amplify the controller output by a factor α.
The corollary shows that for any ε > 0, there is a threshold α0 > 0 such that
if α > α0, then the closed-loop system converges to an ε-neighborhood of ζ?. It
is important to note that we only know that α0 exists as long as the agents are
MEIP. Computing an estimate on α0, however, requires one to conduct a few
experiments.

There are a few possible approaches to try and eliminate this requirement.
One can try an iterative scheme, in which the edge gains are updated between
iterations. Gradient-descent and extremum-seeking approaches are discussed
in the next section (see Algorithm 3), but both require to measure the system
between iterations.

Another approach is to update the edge gains on a much slower time-scale
than the dynamics of the system. This results in a two time-scale dynamical
system, where the gains ae of the system (G,Σ,Π, a) are updated slowly enough
to allow the system to converge. Taking ae as uniform gains of size α, and
slowly increasing α, assures that eventually, α > α0, so the system will converge
ε-close to ζ?. The only data we do need is whether or not the system has already
converged to an ε-neighborhood of ζ?, to know whether α should be updated or
not. This requires no data on the trajectories themselves, nor information on
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5.3. UNIFORM GAIN AMPLIFICATION METHODS

the specific steady-state limit. This results in an essentially data-free solution
of the practical final-value synthesis problem, in which the only data needed is
whether or not the control goal has been achieved. Moreover, the algorithm is
valid as long as the agents are known to be MEIP.

5.3.2 Data-Driven Determination of Gains

In the previous subsection, we introduced a formula for a uniform gain α de-
scribed by the ratio of m and M , that solves the practical final-value synthesis
problem, where m and M are as defined in Remark 5.2. The parameter M
depends on the integral function Γ of the controllers, evaluated on well-defined
points, namely {ζ ∈ Im(E>) : ‖ζ− ζ?‖ = ε}. Thus we can compute M exactly
with no prior knowledge on the agents. This is not the case for the parameter
m, which depends on the integral function of the agents. Without knowledge of
any model of the agents, we need to obtain an estimate of m solely on the basis
of input-output data from the agents.

From Remark 5.2 above, we know that m =
∑n
i=1(K?

i (y?i ) + Ki(0)) =∑n
i=1mi for some y? ∈ Rn such that E>y? = ζ?. Without any model of

the agents, m cannot be computed directly, but we can yield an upper bound
on m from measured input-output trajectories via the inverse relations k−1

i ,
i = 1, . . . , n.

Proposition 5.2. Let (u?i , y
?
i ), (ui,1, yi,1), (ui,2, yi,2), . . . , (ui,r, yi,r) and (0, yi,0)

be steady-state input-output pairs for agent i, for some r ≥ 0. Then:

mi ≤ ui,1(yi,1 − yi,0) + · · ·+ ui,r(yi,r − yi,r−1) + u?i (y
? − yi,r).

Proof. We prove the claim by induction on the number of steady-state pairs,
r + 2. First, consider the case r = 0 of two steady-state pairs. First, because
(0, yi,0) is a steady-state pair, we know that Ki(0) = −K?

i (yi,0) by Fenchel
duality. Similarly, Ki(u

?
i ) = u?i y

?
i −K?

i (y?i ). Thus,

mi = K?
i (y?i )+Ki(0) = K?

i (y?i )−K?
i (yi,0) ≤ u?i (y

?−yi,0),

where we use the inequality K?
i (b) − K?

i (c) ≥ k−1
i (c)(b − c) for b = yi,0 and

c = y?i . Now, we move to the case r ≥ 1. We write mi as (K?
i (y?i )−K?

i (yi,r)) +
(K?

i (yi,r)−Ki(0)). The first element can be shown to be smaller or equal than
u?i (y

? − yi,r) using the inequality K?
i (b) − K?

i (c) ≥ k−1
i (c)(b − c) for b = yi,r

and c = y?i . The second element is smaller or equal than ui,1(yi,1− yi,0) + · · ·+
ui,r(yi,r−yi,r−1) by induction hypothesis, as we use a total of r+1 steady-state
input-output pairs. Thus, mi is smaller or equal than the sum of the two bounds,
which is equal to ui,1(yi,1 − yi,0) + · · ·+ ui,r(yi,r − yi,r−1) + u?i (y

? − yi,r).

Remark 5.4. If we only have two steady-state pairs, (u?i , y
?
i ) and (0, yi,0), the

estimate on mi becomes mi ≤ u?i (y
?
i − yi,0). Thus two steady-state pairs, cor-

responding to two measurements/experiments, are enough to yield a meaningful
bound on mi. However, it is important to note that more experiments yield
better estimates of mi, i.e., if r ≥ 1 then the estimate in the theorem is better
than the one above as long as (yi,0, yi,1, ..., yi,r, y

?
i ) is a monotone series.
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

With Remark 5.4, we can hence compute an upper bound on m from the
two steady-state pairs (u?i , y

?
i ) and (0, yi,0) of each agent. In the following, we

present a method to actually obtain the required steady-state input-output pairs
(0, yi,0) and (u?i , y

?
i ) of the agents.

We would like to estimate mi from above by computing yi,0 and u?i . De-
signing experiments to measure these quantities are possible, but can require
additional information on the plant, e.g. output-strict passivity. Instead, we opt
for a different approach and try to estimate yi,0 and u?i instead of computing
them directly. This is described in Algorithm 1.

Algorithm 1 applies Remark 5.4 in order to bound mi from above. It does
so by using the monotonicity of the steady-state input-output relation to bound
u?i and yi,0 from above and below, as computing the exact values of u?i and yi,0
might not be feasible only from experiments. It is important to note that the
closed-loop experiments are done with output-strictly MEIP controller, which
assure that the closed-loop system indeed converges. We prove the following:

Proposition 5.3. The output mi from Algorithm 1 is an upper bound on mi.

Proof. First, we show that the closed-loop experiments conducted by the algo-
rithm indeed converge. The plant Σi is assumed to be passive with respect to
any steady-state input-output pair it possesses. Moreover, the static controller
u = βi(y−yref) is output-strictly passive with respect to any steady-state input-
output pair it possesses. Thus it’s enough to show that the closed-loop system
has a steady-state, which will prove convergence as this is a feedback connection
of a passive system with an output-strictly passive system. Indeed, a steady-
state input-output pair (ui, yi) of the system needs to satisfy ui ∈ k−1

i (yi) and
ui = −βi(yi− yref). Thus it’s enough to show that −βi(yi − yref) ∈ k−1(yi) has
a solution. This is equivalent to

0 ∈ k−1(yi) + βi(yi − yref) = ∇
(
K?
i (yi) +

βi
2

(yi − yref)
2

)
,

so yi exists and is equal to the minimizer of K?
i (yi) + βi

2 (yi−yref)
2. This shows

that the closed-loop experiments converge. Thus the algorithm halts, and it
remains to show that it outputs an upper-bound on mi.

Using Remark 5.4, it’s enough to show that yi,0 ∈ [yi,0, yi,0] and u?i ∈ [u?i ,u
?
i ].

To do so, we first claim that U1 ≤ u?i ≤ U3 and Y1 ≤ yi,0 ≤ Y3. We first show
that Y1 ≤ yi,0, by showing that yi,− ≤ yi,0. Indeed, because ki is a monotone
map, this is equivalent to saying that ui,− ≤ 0. By the structure of the second
experiment, the steady-state input is close to −1, and in particular smaller
than 0. The inequality yi,0 ≤ yi,+ is proved similarly. We note that because
ui,− ≈ −1 and ui,+ ≈ 1, we have ui,− ≤ ui,+ and thus yi,− ≤ yi,+. as ki is
monotone.

Next, we prove that U1 ≤ u?i . By monotonicity of ki, this is equivalent to
Y1 ≤ y?i . Because yi,− ≤ yi,+, it’s enough to show that either yi,− ≤ y?i or
yi,2 ≤ y?i . If the first case is true, then the proof is complete. Otherwise, yi,− >
y?i , so the algorithm finds yi,2 by running the closed-loop system in Figure 5.2
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5.3. UNIFORM GAIN AMPLIFICATION METHODS

Algorithm 1 Estimating mi for an MEIP Agent

1: Run the closed-loop system in Figure 5.2 with βi small and yref = 1
βi

2: Wait for convergence, and measure the steady-state output yi,+ and the
steady-state input ui,+

3: Run the closed-loop system in Figure 5.2 with βi small and yref = − 1
βi

4: Wait for convergence, and measure the steady-state output yi,− and the
steady-state input ui,−

5: if yi,+ < y?i then
6: Run the closed-loop system in Figure 5.2 with βi = 1 and yref � y?i
7: Wait for convergence, and measure the steady-state input ui,2 and output

yi,2
8: else
9: if yi,− > y?i then

10: Run the closed-loop system in Figure 5.2 with βi = 1 and yref � y?i
11: Wait for convergence, and measure the steady-state input ui,2 and out-

put yi,2
12: else
13: Define ui,2 = ui,+ and yi,2 = yi,+
14: end if
15: end if
16: Sort the array {ui,−,ui,+,ui,2}. Denote the result by U = {U1, U2, U3}
17: Sort the array {yi,−, yi,+, yi,2}. Denote the result by Y = {Y1, Y2, Y3}
18: if U2 > 0 then
19: Define yi,0 = Y1 and yi,0 = Y2

20: else
21: if U2 < 0 then
22: Define yi,0 = Y2 and yi,0 = Y3

23: else
24: Define yi,0 = Y2 and yi,0 = Y2

25: end if
26: end if
27: if Y2 > y?i then
28: Define u?i = U1 and u?i = U2

29: else
30: if Y2 < y?i then
31: Define u?i = U2 and u?i = U3

32: else
33: Define u?i = U2 and u?i = U2

34: end if
35: end if
36: return mi as the maximum over ω(y?i − υ), where ω ∈ {u?i ,u?i } and υ ∈
{yi,0, yi,0}
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

yiui

yref

−

−

Σi

βi

Figure 5.2: Experimental setup of the closed-loop experiment for estimating mi

as used in Algorithm 1.

with βi = 1 and yref � y?i . The increased coupling strength implies that the
steady-state output yi,2 should be close to yref , which is much smaller than y?i .
Thus yi,2 < y?i , which shows that Y1 ≤ y?1, or equivalently U1 ≤ u?1. The proof
that u?1 ≤ U3 is similar. This completes the proof of the proposition.

Remark 5.5. The second part of Algorithm 1, namely from Step 16 until the
end, can be used to improve the estimates on u?i and yi,0. Namely, we run
another experiment, in which the agent converges to a steady-state input-output
pair (ûi, ŷi). One then defines the array U = {u?i ,u?i , ûi} and Y = {yi,0, yi,0, ŷi},
and applies this last part (line 16-36) once more. If ûi is not between u?i and

u?i , (or equivalently, ŷi is not between yi,0 and yi,0), then we do not improve
our estimate of mi. Otherwise, we shrink the estimated intervals containing u?i
and yi,0, and thus improve our estimate of m. Doing this iteratively allows to
exactly compute u?i and y?i , which would be not advisable in practice due to the
huge amount of necessary experiments.

We saw that mi can be bounded using no more than three experiments for
general MEIP agents. However, we can improve on that if we somehow know
that the agent is LTI. To be precise, we have the following proposition.

Proposition 5.4. Suppose that the agent Σi is known to be both MEIP and
LTI. Let (ũ, ỹ) be any steady-state input-output pair for which either ũ 6= 0 or

ỹ 6= 0.1 Then mi =
(y?i )2ũ

2ỹ . Thus mi can be calculated exactly using a single
experiment.

Proof. Indeed, [64] and Remark 2.9 show that in this case, k is a linear function,
and the system state matrix is Hurwitz. Moreover, unless the transfer function
of the agent is 0, k−1 is a linear function k−1(y) = sy for some s > 0. Thus
K?(y) = s

2y2. Now, k−1(0) = s · 0 = 0, so (0, 0) is a steady-state input-output
pair, meaning that yi,0 = 0. Moreover, we know that ũ = sỹ, and not both are
zero, so we conclude that ỹ 6= 0, and that s = ũ

ỹ . Thus, K?
i (yi,0) = Ki(0) = 0

and K?
i (y?i ) = s

2 (y?i )
2. This completes the proof, as mi = K?

i (y?i )−K?
i (yi,0).

1e.g., by running the system in Figure 5.2 with some β > 0 and yref 6= 0
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5.4. NON-UNIFORM GAIN AMPLIFICATION METHODS

We conclude this chapter with Algorithm 2 for solving the practical final-
value synthesis problem using the single-gain amplification scheme, which is
applied to two case studies in Section 5.5

Algorithm 2 Synthesis Procedure for Practical Formation Control

1: Choose some output-strictly MEIP controllers Πe such that the integral
function Γ has a single minimizer ζ? when restricted to the set Im(E>).

2: Choose some y? ∈ Rn such that E>y? = ζ?.
3: for i = 1, ..., n do
4: Run Algorithm 1. Let mi be the output
5: end for
6: Let m =

∑n
i=1mi

7: Compute M = min{ζ ∈ Im(E>) : ‖ζ− ζ?‖ = ε}
8: Compute α = m/M
9: return the controllers {αΠe}e∈E;

Remark 5.6. Step 1 of the algorithm allows almost complete freedom of choice
for the controllers. One possible choice are the static controllers µe = ζe − ζ?e.
Moreover, if Πe is any MEIP controller for each e ∈ E, and γe(ζe) = 0 has
a unique solution for each e ∈ E, then the “formation reconfiguration” scheme
from Subsection 4.2.3 suggests a way to find the required controllers using mild
augmentation.

Remark 5.7. The algorithm allows one to choose any vector y? such that
E>y? = ζ?. All possible choices lead to some gain α which assures a solution of
the practical final-value synthesis problem, but some choices yield better results
(i.e., smaller gains) than others. The optimal y?, minimizing the estimate m,
can be found as the minimizer of the problem min{K?(y) : E>y = ζ?}, which
we cannot compute using data alone. One can use physical intuition to choose
a vector y? which is relatively close to the actual minimizer, but the algorithm
is still valid no matter which y? is chosen.

5.4 Non-Uniform Gain Amplification Methods

Let us revisit Figure 5.1 and let A = diag({ae}e ∈ E) with positive, but possibly
distinct entries ae. These additional degrees of freedom can be used, for exam-
ple, to reduce the conservatism and retrieve a smaller norm of the adjustable
gain vector a while still solving the practical final-value synthesis problem. It
follows directly from Theorem 5.1 that there always exists a bounded vector
a that solves the practical final-value synthesis problem. However, the ques-
tion remains how the entries of a can be chosen based only on knowledge of
input-output data and passivity properties.

Our idea here is to probe our diffusively coupled system for given gains
ae and adjust the gains according to the resulting steady-state output. By

124

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

iteratively performing experiments in this way, we strive to find controller gains
that solve the practical final-value synthesis problem. This idea and approach is
tightly connected to iterative learning control, where one iteratively applies and
adjusts a controller to improve the performance of the closed-loop for a repetitive
task [20]. Our approach here is based on passivity and network optimization
with only requiring the possibility to perform iterative experiments.

One natural idea in this direction is to define a cost function that penalizes
the distance of the resulting steady-state to the desired formation control goal
and then apply a gradient descent approach, adjusting the gain a for each ex-
periment. However, to obtain the gradient of ‖E>y(a) − ζ?‖2 with respect to
the vector a, where y(a) is the steady-state output of (G,Σ,Π, a), one requires
knowledge of the inverse relations k−1

i for all i = 1, . . . , n. With no model
of the agents available, a direct gradient descent approach is hence infeasible.
Moreover, it can be shown that even approximate- or stochastic-gradient de-
scent approaches are very hard to implement distributedly, due to powers of
weighted Laplacian matrices appearing the true value of the gradient. There-
fore, we present in the following a simple iterative multi-gain control scheme
without knowledge on the exact steepest descent direction.

We start off with an arbitrarily chosen gain vector a0 with positive entries.
Due to Assumption 5.1, the closed-loop converges to a steady state. According
to the measured state, the idea is then to iteratively perform experiments and
update the gain vector until we reach our control goal, i.e., practical final-value
synthesis. The update formula can be summarized by

a(j+1)
e = a(j)

e + hve, e ∈ E, (5.3)

where h > 0 is the step size and v, with entries ve, e = 1, . . . , |E|, is the update
direction. We denote the e-th entry of E>y as fe and choose v in each iteration
such that

ve =

{
fe−ζ?e
γe(fe)

γ(fe) 6= 0

0 otherwise
, (5.4)

for all e = 1, . . . , |E|. If k−1 and γ are differentiable functions, then we claim that
F (a) = ||E>y(a)− ζ?||2 decreases in the direction of v, i.e., v>∇F (a) < 0. This
leads to a multi-gain distributed control scheme, using (5.3) with (5.4), which
is summarized in Algorithm 3. This multi-gain distributed control scheme is
guaranteed to solve the practical final-value synthesis problem after a finite
number of iterations, which is summarized in the following theorem.

Theorem 5.2. Suppose that the functions k−1, γ are differentiable, and that

there exists an agent i0 ∈ V such that
dk−1
i0

dyi0
> 0 for any point yi0 ∈ R. Moreover,

assume that dγe
dζe

> 0 for any e ∈ E, ζe ∈ R. Then v>∇F (a) ≤ 0, with v, F as

defined in Algorithm 3 (with equality if and only if E>y(a) = ζ?). Furthermore,
if the step size h > 0 is small enough, then the Algorithm 3 halts after finite time,
providing a gain vector that solves the practical final-value synthesis problem.
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5.4. NON-UNIFORM GAIN AMPLIFICATION METHODS

Algorithm 3 Practical Formation control with derivative-free optimization

1: Initialize a(0), e.g. with 1|E|.
2: Choose step size h and set j = 0.
3: while F (a) = ‖E>y(a)− ζ?‖2 > ε2 do
4: Apply a(j) to the closed loop.

5: Compute ve =

{
fe−ζ?e
γe(fe)

γ(fe) 6= 0

0 γ(fe) = 0
∀e.

6: Update a
(j+1)
e = a

(j)
e + hve, j = j + 1.

7: end while
8: return a.

For streamlining reasons, we postpone the proof of the theorem to the end
of the section. Algorithm 3 together with the theoretical results from Theorem
5.2 provide us with a very simple and distributed, iterative control scheme
with theoretical guarantees. Note also, that the steady-states of the agents
are independent of their initial condition. For each iteration, the agents can
hence start from the position they converged to at the last iteration. This can
be interpreted similarly to Remark 5.3, where gains are updated on a slower time
scale than convergence of the agents. However, instead of only the information
whether practical final-value synthesis is achieved, we need the actual difference
E>y − ζ? that is achieved with the current controller in each iteration. In the
special case of a proportional controllers µe = ζe − (ζ?)e, yielding ve = 1, we
retrieve the exact controller scheme proposed in Remark 5.3.

An alternative gradient-free control scheme is the extremum seeking frame-
work as presented in [45]. Assuming that k−1 and γ are twice continuously
differentiable, a step in the direction of steepest descent is approximated every
4|E| steps (cf. [45, Theorem 1]). While the extremum seeking framework approx-
imates the steepest descent (and the simple multi-gain approach only guaran-
tees a descending direction), it also requires large amounts of experiments per
approximated gradient step. Furthermore, the algorithm as presented in [45]
cannot be computed in a purely distributed fashion. Therefore, the simple dis-
tributed control scheme in Algorithm 3 displays significant advantages in the
present problem setup.

We now repay our debt and prove Theorem 5.2. We first need to prove a
lemma:

Lemma 5.4. Suppose that the assumptions of Theorem 5.2 hold, and let C > 0
be any constant. Define A1 = {y ∈ Rn : ‖E>y − ζ?‖ ≤ C} and A2 = {y ∈ Rn :∑
i k
−1
i (yi) = 0}. Then the set A1 ∩A2 is bounded.

Proof. First, we note that the inequality ‖E>y − ζ?‖ ≤ C implies that for any
edge {i, j} ∈ E, we have |yi − yj | ≤ C + ||ζ?|| by the triangle inequality. We
let ω = (C + ||ζ?||)diam(G), where diam(G) is the diameter of the graph G,
so that if there exists some i, j ∈ V such that |yi − yj | > ω then y 6∈ A1.
Moreover, let z = k(0). Then

∑
i k
−1
i (zi) = 0. Moreover, if y ∈ Rn satisfies
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

∀i : yi > zi, then y 6∈ A2. Indeed, for each i we have k−1
i (yi) ≥ k−1

i (zi), and
k−1
i0

(zi0) > k−1
i0

(yi0), meaning that
∑
i k
−1
i (yi) >

∑
i k
−1
i (zi) = 0. Similarly, if

∀i, zi > yi then y 6∈ A2. We now claim that for any y ∈ A1 ∩A2 and any i ∈ V,
we have C1 < yi < C2, where C1 = minj zj − ω − 1 and C2 = maxj zj + ω + 1.
Indeed, take any y ∈ Rn, and suppose there exists i ∈ V such that yi ≥ C2.
There are two possibilities.

i) There is some k ∈ V such that yk < maxj zj + 1. Then |yi − yk| > ω,
implying that y 6∈ A1.

ii) For any k ∈ V, yk ≥ maxj zj + 1, implying that y 6∈ A2.

Similarly, one shows that if there’s some i such that yi ≤ C1, then y 6∈ A1 ∩A2.
This completes the proof.

Proof of Theorem 5.2. Consider the solution y(a) of 0 = k−1(y)+Ediag(a)γ(E>y)
as a function of a. Then y(a) is a differentiable function by the inverse function
theorem, and it’s differential is given by:

dy

da
= −X(y(a))Ediag(γ(E>y(a))), (5.5)

where the matrix X(y) is given by

X(y) = [diag(∇k−1(y)) + Ediag(∇γ(E>y))E>]−1. (5.6)

We note that X(y) is a positive-definite matrix for any y ∈ Rn, by Proposition
6.1. We conclude that the gradient of F is given by:

∇F (a) = −diag(γ(E>y(a)))E>X(y(a))E(E>y(a)− ζ?). (5.7)

We note that v>diag(γ(E>y(a)) = E>y(a) − ζ?, as γe(xe) = 0 if and only if
fe = ζ?e by strict monotonicity. Thus,

v>∇F (a) = −(E(E>y(a)− ζ?))>X(y(a))E(E>y(a)− ζ?) (5.8)

which is ≤ 0 as X(y(a)) is a positive-definite matrix.
Now, we claim that v>∇F (a) = 0 if and only if E>y(a) = ζ?. Indeed, ζ? ∈

Im(E>), so we denote ζ? = E>y0 for some y0. As X(y(a)) is positive definite,
(5.8) implies that v>∇F (a) = 0 if and only if E(E>y(a)− ζ?) = EE>(y(a)− y0)
is the zero vector. The kernel of the Laplacian EE> is the span of the all-one
vector 1n, so y(a)− y0 = κ1n for some κ > 0, hence E>y(a) = E>y0 = ζ?. This
concludes the first part of the proof.

As for convergence, we know that if h is small enough, then F (a(j+1)) <
F (a(j)), although the value of h so that F (a(j+1)) < F (a(j)) can depend on a(j)

itself. However, it is obvious that if h is small enough, then for any j, we have
F (a(j)) ≤ F (a(0)). We let C =

√
F (a(0)) = ‖E>y(a(0))− ζ?‖, and consider the

sets A1 = {y : ‖E>y − ζ?‖ ≤ C} and A2 = {y :
∑
i k
−1
i (yi) = 0}.

For any j, we know that y(a(j)) ∈ A1 by above, and that y(a(j)) ∈ A2 by the
steady-state equation 0 = k−1(y(a)) + Ediag(a)γ(E>y(a)). This shows that all
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5.5. CASE STUDIES

steady-state outputs achieved during the algorithm are in the set D = A1 ∩A2,
which is bounded by Lemma 5.4. The mapping sending a matrix to its minimal
singular value is continuous, meaning that σ(X(y)) achieves a minimum on the
set D at some point y1, and the minimum is positive asX(y1) is positive-definite.
We denote the minimum value by σ(D).

Now, consider equation (5.8). We get that v>∇F (a) is bounded by above
−σ(D)||E(E>y(a) − ζ?)||2. In turn, we saw above that unless E>y(a) = ζ?,
E(E>y(a) − ζ?) 6= 0, meaning that ‖E(E>y(a) − ζ?)‖ ≥ ς||E>y(a) − ζ?||2,
where ς is the minimal nonzero singular value of E . Hence, at any time step j,
v>∇F (a(j)) < −σ(D)ςF (a(j)). In turn we conclude that F (a(j+1)) = F (a(j))−
hσ(D)ςF (a(j)) + o(h) = (1 − hσ(D)ς)F (a(j)) + o(h). Iterating this equation
shows that eventually, F (a(j)) < ε, completing the proof.

5.5 Case Studies

We will present two extensive case studies. In each case, we apply the presented
single-gain and multi-gain approaches. The first example considers a class of
vehicles trying to coordinate their velocity in presence of drag and external
forces. The second example studies the model-free cooperative control of a
neural network.

5.5.1 Velocity Coordination in Vehicles with Drag and
Exogenous Forces

Consider a collection of 5 one-dimensional robots, each modeled by a double
integrator G(s) = 1

s2 . The robots try to coordinate their velocity. Each of them
has its own drag profile f(ṗ), which is unknown to the algorithm, but it is known
that f is increasing and f(0) = 0. Moreover, each vehicle experiences external
forces (e.g., wind, and being placed on a slope). The velocity of the vehicles is
governed by the equation

Σi :

{
ẋi = −fi(xi) + ui + wi

yi = xi,
(5.9)

where xi is the velocity of the i-th vehicle, fi is its drag model, wi are the
exogenous forces acting on it, ui is the control input, and yi is the measure-
ment. In the simulation, the drag models fi are given by cd|x|x, where the
drag coefficient cd is chosen randomly as a log-uniform value between 0.1 and
1. We assume that the vehicles are light, so the wind accelerates the vehicles
by a non-negligible amount. Thus, the exogenous input wi is randomly chosen
between −2 and 2. We wish to achieve velocity consensus, with error no greater
than ε = 1. We consider a diffusive coupling of the system. We use the cycle
graph G = C5, and we choose proportional controllers ζe = µe with gain equal
to 1.

We apply the amplification scheme presented in Algorithm 2 and choose
the consensus value y?i = 1.5m/sec to use in the estimation algorithm. Note
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

that the plants are MEIP, but not output-strictly MEIP. We use Algorithm
1 to estimate the needed uniform gain α. In all cases, the first and second
experiments are conducted with βi = 0.01, and yref = ±100. Based on the
results of the previous experiments, we run a third experiment on each of the
agents for which this is required, this time with βi = 1 and yref = ±10, where
the sign is chosen according to Algorithm 1. The experimental results of the
five plants are available in Figure 5.3.

We now estimate each mi for i = 1, ..., 5 using Remark 5.4. For example,
for agent #2 we get the three steady-state input-output pairs (1.0167,−1.6748),
(−0.9586,−4.1426), and (4.9341, 5.0659). Monotonicity implies that it has steady-
states (u?1, y

?
1) = (u?1, 1.5) and (0, y1,0) with 1.0168 ≤ u?1 ≤ 4.9341 and−4.1426 ≤

y1,0 ≤ −1.6748. Thus we can estimate m2 ≤ 4.9341 · (1.5 − (−4.1426)) =
27.8412. Similarly, we estimate m1,m3,m4,m5, and get m1 = 17.4568,m3 =
2.1153,m4 = 2.0410,m5 = 13.0345. Thus, their sum is m = 62.4888.

As for estimating M , we have Γe(ζe) = ζ2
e, so Γ(ζ) = |E|‖ζ‖2. The minimum

is at ζ = 0, and by definition we have M = minx∈Im(E>): ‖x−x0‖=ε Γ(x) = |E|ε2.
Thus, we get α = m

M = m
5ε2 = 12.47. To verify the algorithm, we run the

closed-loop system (G,Σ,Π, α ⊗ 1) with the gain α we found. The results are
available in Figure 5.4(a). One can see that the overall control goal is achieved
- the agents converge to a steady-state which is ε-close to consensus. However,
it should be noted that the agents actually converge to a much closer steady-
state than predicted by the algorithm. Namely, the distance of the steady-
state output from consensus is roughly 0.1, much smaller than 1. Thus, the
algorithm probably overestimates the minimal gain α needed by at least one
order of magnitude. One can mitigate this by using more experiments to better
estimate mi, as mentioned in Proposition 5.2 or in Remark 5.5. For comparison,
running the algorithm with y? = 0 gives α = 16.07 and y?i = 1.25m/sec gives
α = 12.40.

As seen above, the main factor for α’s size is the second agent, which con-
tributes about 45% to the size of m. Thus we wish to reduce m2’s size by using
additional experiment. Running a fourth experiment (just on agent #2) with
βi = 1 and yref = 4.5 gave the steady-state input-output pair (2.1577, 2.3423).
Estimating mi using Remark 5.5 now gives mi = 11.96, which in turn gives
α = 9.33. Thus one additional experiment on a single agent allowed us to
reduce the value of α by about 25%.

Altogether we could show that Algorithm 2 manages to solve the practi-
cal velocity consensus problem of vehicles, affected by drag and exogenous in-
puts, without using any model for the agents, while conducting very few experi-
ments for each agent. However, it overestimates the required coupling needed to
achieve practical consensus, and thus has unnecessarily large energy consump-
tion. The trajectories of the closed loop system with the new gain are available
in Figure 5.4(b).
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5.5. CASE STUDIES
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Figure 5.3: Results of the first set of experiments for the data-driven synthesis
of a network of vehicles.

Let us now apply the iterative multi-gain control strategy. We start with
a(0) = 0.1 ⊗ 1|E|, we choose the step size h = 0.1 and apply Algorithm 3. In
fact, since ζ? = 0 and ζe = µe, we receive v = 1|E|, which constitutes the
special case where our iterative scheme yields the controller scheme proposed
in Remark 5.3. The corresponding norm of the gain vector and the resulting
ε in each iteration is illustrated in Figure 5.5. After 10 iterations, we already
arrive at a vector, which solves the practical final-value synthesis problem with
‖a(10)‖ = 4.24, while ε = 0.99 < 1. Note that the controller with the uniform
gain had ‖a‖ =

√
|E| · 12.47 = 27.8838, so the iterative scheme beats it by a

factor of 7 in terms of energy.

5.5.2 Clustering in Neural Networks

Consider a collection of n = 40 neurons, each modeled by the dynamical system{
ẋi = − 1

τi
xi + biui + wi

yi = tanh(xi),
(5.10)

where xi is the voltage of the i-th neuron, τi is its self-correlation time, bi is the
correlation coefficient, determining the susceptibility of the neuron to external
inputs, and wi is some (constant) exogenous input. The values of the parameters
τi, bi, wi are unknown to the algorithm. However, it is known that τi, bi > 0. In
the simulation, the numbers τi were chosen log-uniformly between 1 and 10, bi
were log-uniformly chosen between 0.3 and 3, and wi uniformly chosen between
−0.5 and 0.5.

We wish to design a two-cluster formation. Namely, we divide the n = 40
neurons into two groups of 20, and require that the neurons in each set will
share the same steady-state output. Moreover, we require that the output of
the first set will be smaller than the output of the second set by 1. We denote
the desired formation by ζ?. We allow an error margin of ε = 0.2. We use a

130

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control
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(a) The closed-loop network with uniform
gain α = 12.47. The two leftmost graphs
plot the agents’ trajectories over 0.5 sec-
onds and over 10 seconds. The rightmost
graphs plots the relative outputs.

0 0.2 0.4

Time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
u

tp
u

t

0 5 10

Time

-1

-0.5

0

0.5

1

1.5

2

O
u

tp
u

t

1

2

3

4

5

0 5 10

Time

10-4

10-3

10-2

10-1

100

101

R
e

la
ti
v
e

 O
u

tp
u

t 
(

)

(b) The closed-loop network with uniform
gain α = 9.33. The two leftmost graphs
plot the agents’ trajectories over 0.5 sec-
onds and over 10 seconds. The rightmost
graphs plots the relative outputs.

Figure 5.4: Results of data-driven control for a vehicle network.
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Figure 5.5: The norm of the gain vector and distance from desired formation
over iterations j, when applying the iterative multi-gain control strategy for
velocity coordination in vehicles.

random Erdős-Rényi graph, with probability of each edge to appear is p = 0.25.
We choose proportional controllers µe = ζe − (ζ?)e with gain equal to 1.

We apply the amplification scheme presented in Algorithm 2 and choose
the desired value y? = [0, · · · , 0, 1, · · · , 1]>. Note that the plants are MEIP,
but not output-strictly MEIP. In all cases, the first and second experiments are
conducted with βi = 0.01, and yref = ±100. Based on the results of the previous
experiments, we run a third experiment on each of the agents for which it is
required, this time with βi = 1 and yref = ±2, with sign chosen as in Algorithm
1. The experimental results are available in Figure 5.6(a).

We now estimate each mi for i = 1, ..., 40 using Remark 5.4, and achieve m =
61.1740. As for estimating M , we have Γe(ζe) = ζ2

e, so Γ(ζ) = ‖ζ‖2. The mini-
mum is at ζ = 0, and by definition we have M = minx∈Im(E>): ‖x−x0‖=ε Γ(x) =
|E|ε2. Thus, we get α = m

M = m
|E|ε2 = 8.8402. To verify the algorithm, we run
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(a) Results of first set of Experiments
for the data-driven synthesis of a neu-
ral network.

(b) The closed-loop network with uniform
gain α = 8.8402. The two leftmost graphs plot
the agents’ trajectories over 0.3 seconds and
over 20 seconds. The rightmost graph plots
the error ζ(t)− ζ?.

Figure 5.6: Results of data-driven control for a neural network.

the closed-loop system (G,Σ,Π, α1) with the gain α we found. The results are
available in Figure 5.6(b). One can see that the overall control goal is achieved
- the agents converge to a steady-state which is ε-close to the desired formation.
However, as before, the agents actually converge to a much closer steady-state
than predicted by the algorithm.

Applying the iterative multi-gain scheme, we start with a(0) = 1|E|, we choose
the step size h = 1 and apply Algorithm 3. In fact, since we consider propor-
tional controllers with gain equal to 1 again, we receive v = 1|E|. The norm
of the gain vector and the resulting ε in each iteration is illustrated in Fig-
ure 5.7. After 4 iterations, we already at a vector solving the specified practical
final-value synthesis problem with ‖a(4)‖ = 65.76, while ε = 0.19 < 0.2. The
controller with the uniform gain had ‖a‖ =

√
|E| · 8.8402 = 116.2747, so the

iterative scheme beats it by a factor of 2 in terms of energy.
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Figure 5.7: The norm of the gain vector and distance from desired formation
over iterations j, when applying the iterative multi-gain control strategy for
neural network clustering
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Chapter 5. Applications of the Network Optimization Framework in
Data-Driven Control

5.6 Conclusions

We presented an approach for model-free practical final-value synthesis for dif-
fusively coupled systems only on the premise of passivity of the agents, based on
the network optimization framework. The presented approach led to two control
schemes: with additional three experiments on the agents, we can bound the
controller gain solving the practical final-value synthesis problem from above,
or we can iteratively adapt the adjustable gain vector until practical final-value
synthesis is reached. Both approaches are especially simple in their application,
while still being scalable and providing theoretical guarantees. In the next sec-
tion, we’ll explore uncertainties in another fundamental aspect of multi-agent
systems, focusing on the underlying graph instead of the agents’ models, study-
ing the network identification problem.
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5.6. CONCLUSIONS
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Chapter 6

Applications of the Network
Optimization Framework in
Network Identification

This section is a review of [137,141]. We apply the network optimization frame-
work to study the problem of network identification, in which we are given a
multi-agent system with known agents and controllers, but unknown interaction
graph. Our goal is to find out what is the underlying interaction graph, where
we are allowed to inject exogenous inputs into the network and measure the
corresponding output.

6.1 Introduction

One of the most important aspects in multi-agent systems, both in theory and in
practice, is the information-exchange layer, governing the interaction of agents
with one another. Identifying the underlying network of a multi-agent sys-
tem from measurements is of great importance in many applications. Exam-
ples include data mining and privacy in social networks [177], estimating brain
connectivity using EEG in neuroscience [18, 127], and estimating influence be-
tween currencies using a history of their exchange rates in finance [102]. Other
fields with similar problems include systems biology [54, 74], communication
networks [29,112], ecology [94,159] and physics [14,156].

A few different approaches for network identification were considered in the
literature, including measuring naturally occurring excitations [172], using un-
measured intrinsic persistent excitations [33], probing the network with specif-
ically design inputs [156], and using transfer entropy and other information-
theoretic measures [163]. Seminal works dealing with network identification
include [128] in which sparse enough topologies can be identified from a small
number of observations, and [87, 88], providing exact reconstruction for tree-
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

like graphs. Other important works include [101], presenting a sieve method
for solving the network identification problem for consensus-seeking networks,
and [100], using a node-knockout method. More recent methods include spectral
methods [89] and auto-regressive models [104]. The network identification the-
ory for nonlinear agents, with possibly nonlinear interactions, is less developed.
Some works linearize the dynamics of the system around a steady-state, and
then use a sparse recovery technique to identify the connecting matrix [56, 81].
Other works use adaptive observers to try and find the network structure, while
assuming the Lipschitzity of certain elements in the dynamics [22, 30]. How-
ever, these methods are not applicable when the dynamics are not Lipschitz, or
when they cannot be linearized effectively. For example, the drag force exerted
on many high-velocity moving objects is quadratic in their velocity. Another
example includes finite-time consensus algorithms, which include a nonlinear
network feedback term which is not Lipschitz [165]. We address this problem
by providing a network identification scheme for a wide range of systems, in-
cluding nonlinear ones, by probing them with specially constructed inputs.

We use the passivity-based network optimization scheme to solve the network
identification problem for a large class of systems with nonlinear agents and
controllers. We do so by injecting constant exogenous inputs, and tracking the
output of the agents. By appropriately designing the exogenous inputs, we are
able to differentiate the outputs of the closed-loop system associated to different
underlying graphs. The key idea is that the steady-state outputs are solutions
to network optimization problems and they are one-to-one dependent on the
exogenous input. This dependency can be linearized, and the associated matrix
can be found by looking at a finite number of inputs and outputs.

The rest of the chapter is organized as follows. In Section 6.2, we define the
network model, and consider the related problem of differentiation between two
multi-agent systems with identical agents and controllers, but different underly-
ing graphs. In Section 6.3, we’ll consider a solution to the network identification
problem. Moreover, we’ll study the network identification problem from a com-
plexity theory point of view, and show that the resulting algorithm is optimal.
We’ll present relevant case studies at the end of each section.

6.2 Network Differentiation Using Constant
Exogenous Inputs

The problem of network identification we aim to solve can be stated as follows.
Given a multi-agent system (G,Σ,Π), in which models for Σ and Π are known,
determine the underlying graph structure G from the network measurements
and an appropriately designed exogenous input w. We start by defining the
network model and formulating the problem.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

6.2.1 Motivation and Problem Definition

Many works on network identification consider networks of consensus-seeking
agents [100,101],

ẋi =
∑
i∼j

νij(xj − xi) +Biwi, (6.1)

where wi is the controlled exogenous input for the i-th agent, and νij = νji are
the coupling coefficients. We consider a more general case of (possibly nonlinear)
agents interacting over a modified protocol,

ẋi = fi(xi) + qi(xi)
∑
i∼j

νijgij(hj(xj)− hi(xi)) +Biwi, (6.2)

where xi ∈ R , and fi, qi, gij , hi : R → R are smooth functions.1 Examples
of systems governed by (6.2), for appropriate choice of functions fi, qi, gij , hi,
include traffic control models [8], neural networks [51], and the Kuramoto model
for synchronizing oscillators [43]. We let f, q, g, h denote the stacked versions of
fi, qi, gij , hi.

In the model (6.1), the standard assumption is that only certain agents can
be controlled using the exogenous input wi (i.e., Bi = 0 is possible), and one
can observe the outputs of only certain agents. For this chapter, we assume that
the exogenous output wi can be added to all agents, and that the output of all
agents can be observed. For our case, we can assume without loss of generality
that Bi = 1. We shall also denote the matrix of the coupling coefficients νij as
N = diag(· · · , νij , · · · ).

We note that the system (6.2) is a diffusively-coupled network, where the
agents and the controllers are given by

Σi :

{
ẋi = fi(xi) + qi(xi)ui + wi
yi = hi(xi)

,Πij : µij = νijgij(ζij) , (6.3)

and the network is connected using the diffusive coupling ζ = E>G y and u =
−EGµ. We would like to use the network-optimization framework to establish
network identification results. We make the following assumptions on the agents
and controllers, allowing us to use network optimization framework presented.
With this model, we will often write the closed-loop as (Gν ,Σ, g).

Assumption 6.1. The systems Σi, for all i ∈ V, are MEIP (See Proposition
5.1). Furthermore, the controllers Πe, for all e ∈ E, are output-strictly MEIP.
Moreover, the weights νij are all positive.

Assumption 6.2. The inverse of the steady-state input-output relation for each
agent, k−1

i (yi), is a C1 function of yi. Furthermore, the function gij(ζij) is a

twice differentiable function of ζij, and that the derivative
dgij
dζij

> 0 for all

ζij ∈ R.

1The functions gij are defined for all pairs, even those absent from the underlying graph.
It is often assumed in multi-agent systems that each agent knows how to run a given protocol
(i.e., consensus)
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

Assumption 6.2 implies that the integral function K?
i associated with k−1

i is
smooth and ∇K?

i = k−1
i . Assumption 6.1 implies that gij is strictly monotone

ascending. The stronger assumption on gij , namely Assumption 6.2, is made
mainly to avoid heavy technical tools.

We will also consider the special case where the agents and controllers are
described by LTI dynamics. For such systems, the input-output relation ki for
each agent is linear and strictly monotone, and so is the function gij . When
Σi is an integrator, the input-output relation is given as {(0, y) : y ∈ R}. In
these cases, k−1

i is a linear function over R. In particular, k−1
i (xi) = aixi for

some constant ai ≥ 0. We can then define the matrix A = diag(a1, . . . , an) such
that k−1(x) = Ax. Similarly, we denote gij(xij) = bijxij , where bij > 0, and
B = diag(· · · , bij , · · · ) > 0.

We can now formulate two fundamental problems that we will consider.

Problem 6.1 (Network Differentiation). Consider the network system (Gν1
,Σ, g)

of the form (6.2) satisfying Assumptions 6.1 and 6.2 with known steady-state
input-output relations for the agents and controllers. Design the control inputs
w = w(t) so that it is possible to differentiate the network system (Gν1 ,Σ, g)
from the network system (Gν2 ,Σ, g), when Gν1 6= Gν2 .

Problem 6.2 (Network Identification). Consider the network system (Gν ,Σ, g)
of the form (6.2) satisfying Assumptions 6.1 and 6.2 with known steady-state
input-output relations for the agents and controllers, but unknown network struc-
ture G and coupling coefficients {νe}. Design the control input w = w(t) such
that, together with the output measurements of the network, it is possible to
reconstruct the graph G and the coupling coefficients {νe}.

The network optimization framework requires the exogenous inputs to be
constant signals. Thus, we will consider a constant w, and denote it as w.
We can write an equation connecting the steady-state output y to the constant
exogenous input w.

Proposition 6.1. Suppose that the system (Gν ,Σ, g) is run with the constant
exogenous input w . Suppose that the agents are MEIP and the controllers are
output-strictly MEIP, or vice versa. If k is the steady-state input-output relation
for the agents, then the output y of the system converges to a steady-state y
satisfying the following equation,

w = k−1(y) + EGNg(E>G y). (6.4)

Proof. Immediately from Proposition 2.2 and Theorem 1.2, where we use γ(ζ) =
Ng(ζ) and k−1(y) = u+w. We note that this is an equation and not an inclusion
due to Assumption 6.2.

In practice, the value of w is known, and the value of y can be measured.
We note that the steady-state output y depends not only on the steady-state
input w, but also on the incidence matrix EG and the weights N = diag(νij), as
seen by equation (6.4). We wish to manipulate this relation to achieve network
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

differentiation and identification. For the remainder of this section, we assume
that the graph is unweighted, i.e. that the weights νij are all equal to 1 [100].
We note that if the values of νij are known, then we can “absorb” them in-
side the functions gij , effectively yielding a diffusively-coupled network with an
unweighted graph.

We denote the solution of (6.4) as yG . Furthermore, we note that (6.4) is
graph dependent, and that the steady-state output yG can be measured from
the network (as the network converges to a steady-state by Proposition 6.1).
The idea now is to choose the bias vectors w wisely so that different graphs will
have different steady-state outputs.

Definition 6.1. Consider a closed-loop system of the form (6.2) satisfying As-
sumptions 6.1 and 6.2, where the controllers gij have been determined for all
possible pairs {i, j}. Let G be a collection of graphs on n vertices. A vector
w ∈ Rn is called a G-indication vector if for any two graphs G,H ∈ G with
G 6= H, the steady-state output of (G,Σ, g) is different from the steady-state
output of (H,Σ, g). In other words, one has that yG 6= yH.

Given an indication vector w, we can quantify how much it can differentiate
between different graphs. We do so with the following definition.

Definition 6.2. The separation index of w, denoted ε = ε(w), is defined as the
minimal distance between yG and yH where G 6= H, i.e., ε = minG6=H ‖yG−yH‖,
where the minimization is over all graphs in G.

Remark 6.1. The separation index ε acts as a bound on the error we can tol-
erate when computing the steady-state output of the closed-loop system. This
error can be comprised of both numerical errors, as well as errors arising from
early termination of the system (i.e., before reaching steady-state). Indeed, sup-
pose we want to differentiate between G,H, where we know that ‖yG − yH‖ ≥ ε.
Suppose we have the terminal output y of the closed-loop system for either G or
H. By the triangle inequality, if ‖y − yG‖ < 0.5ε then ‖y − yH‖ ≥ 0.5ε and vice
versa. Thus, if we know that the sum of the numerical and early termination
errors is less than 0.5ε, we can correctly choose the underlying graph by choosing
which of yG and yH is closer to y.

Our goal is to construct a G-indication vector, as we can use it to differentiate
between any two diffusively-coupled systems of the form {(G,Σ, g)}G∈G. We
will first focus on a solution for general networks, relying on randomization. We
will later give additional construction methods for LTI systems using various
algebraic methods. In both cases, we’ll be able to give stronger results for LTI
systems, but will require more analysis to do so. Assume for now that the agents
and controllers are LTI. We can now restate (6.4) in a new manner, involving
linear equations. The following result will be useful in the analysis.

Proposition 6.2. If A 6= 0, then for any connected graph G, the matrix S =
A+ EGNBE>G is invertible.
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

Proof. Note that EGNBE>G ≥ 0 and that A ≥ 0, implying that S ≥ 0. Further-
more, the kernel of EGNBE>G is equal to span(1). But we have that 1>A1 =∑|V|
i=1 ai > 0, completing the proof.

Proposition 6.2 gives an explicit form for (6.4) for the case A 6= 0 by inverting
the matrix in question,

yG = (A+ EGNBE>G )−1w = XG,A6=0w.

If A = 0, however, we note that for any G ∈ G, the linear operator EGNBE>G
preserves Im(EG) = 1⊥, and moreover, it is invertible when restricted to it.
Thus, we denote the restriction of EGNBE>G on 1⊥ by YG , and obtain:

yG = YGProj
1⊥w = XG,A=0w.

These linear relations between the steady-state output yG and the constant
exogenous input w give an equivalent, easier definition of indication vectors:

Corollary 6.1. For LTI agents and controllers, and for a vector w ∈ Rn, the
following statements hold:

i) If A 6= 0, w is a G-indication vector if and only if for any two different
graphs G,H ∈ G, we have XG,A6=0w 6= XH,A6=0w.

ii) If A = 0, w is a G-indication vector if and only if any two different graphs
G,H ∈ G, we have XG,A=0w 6= XH,A=0w.

We will omit A = 0 and A 6= 0 and use XG for notational simplicity. We
first note the following interesting property of XG .

Proposition 6.3. If G 6= H then XG 6= XH.

Proof. Suppose first that A 6= 0. We can reconstruct the weighted graph
Laplacian EGNBE>G from XG using the relation EGNBE>G = −A + X−1

G , thus

XG = XH implies G = H, as B,N > 0. If A = 0, we note that YG = −X−1
G on

the set 1⊥. This determines the graph Laplacian, as it is the projection of the
weighted graph Laplacian on span(1)⊥ = ker(EGNBE>G )⊥.

Remark 6.2. In the case of LTI agents and controllers, Corollary 6.1 implies
that the relation between yG and w is linear. Thus, for any constant β > 0, the
separation index satisfies ε(βw) = βε(w).

We now give a first method for constructing indication vectors, namely
through randomization.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

6.2.2 Constructing Indication Vectors Using
Randomization

Our first approach is to construct the indication vectors via randomization. We
claim that random vectors w ∈ Rn are indication vectors with probability 1.

Theorem 6.1. Let P be any absolutely continuous probability distribution on
Rn, and let G be the collection of all graphs over n nodes. Then the following
equation holds:

P(w is a G-indication vector) = 1.

In order to prove the Theorem, we need the following adaptation of the
implicit function theorem:

Lemma 6.1. Let F : Rn → Rm be a smooth function, and consider the set
Z = {x : F (x) = 0}. Suppose that the differential ∇F (x) is not the zero matrix
at any point x ∈ Z. Then Z is a zero-measure set.

In order to streamline the proofs better, we delay the proof of the lemma to
the end of the subsection. We now prove Theorem 6.1:

Proof. Recall that w is not an indication vector if and only if there are two
graphs G1,G2 and a vector y ∈ R|V| such that

k−1(y) + EGiNg(E>Giy) = w, i = 1, 2.

Subtracting one equation from the other gives

EG1
Ng(E>G1

y)− EG2
Ng(E>G2

y) = 0. (6.5)

For each G1,G2, the collection of solutions to (6.5) forms a set, and note that w
is an indication vector if and only if the solutions y are not in any of these sets.
Define

F (y) = EG1
Ng(E>G1

y)− EG2
Ng(E>G2

y),

so that F : Rn → Rn is a smooth function. Its differential is given by

∇F (y) = EG1
N∇g(E>G1

y)E>G1
− EG2

N∇g(E>G2
y)E>G2

,

where ∇g = diag(
dgij
dζij

) is the derivative of g. Because
dgij
dζij

> 0 by Assumption

6.2, ∇F (y) is the difference of two weighted graph Laplacians, with underlying
graphs G1,G2 and positive weights. Thus ∇F never vanishes, and Lemma 6.1
implies that the solutions of (6.5) form a zero measure set. Thus w is an
indication vector if and only if the solutions y are not in the finite union of the
zero measure sets defined by (6.5), i.e., a zero-measure set.

The mapping between w and y, w = k−1(y)+EGNg(E>y) = G(y), is smooth
and strictly cyclically monotone, meaning that it is the gradient of a strictly
convex and smooth function. Thus, the inverse function y = G−1(w) is a smooth
and strictly cyclically convex function, as the gradient of the dual function,
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

which is also strictly convex and smooth (See Appendix A). This implies that
G−1 is absolutely continuous [86], sending zero measure sets to zero measure
sets. In turn, the set that y has to avoid (for w to be an indication vector)
is zero-measure, meaning that the corresponding set that w has to avoid is
also zero measure. But P is a absolutely continuous probability measure, and
thus the probability of the zero-measure set that w has to avoid is zero. This
completes the proof.

Remark 6.3. The proof above also works when we do not know that νij = 1
(i.e., that N = Id), in the sense that for any two weighted graphs G1,ν1

,G2,ν2
,

w differentiates them with probability 1. Indeed, the derivative of F (y) =
EG1N1g(E>G1

y)−EG2N2g(E>G2
y), which is equal to ∇F (y) = EG1N1∇g(E>G1

y)E>G1
−

EG2N2∇g(E>G2
y)E>G2

, is still the difference of two weighted graph Laplacians, thus
non-zero. However, we cannot use the union bound to show that w, with proba-
bility 1, differentiates any pair of weighted graphs, as the collection of weighted
graphs is uncountable.

Thus, we can find an indication vector by randomly sampling any abso-
lutely continuous probability measure on Rn, e.g. a random Gaussian vector.
This method works as long as Assumptions 6.1 and 6.2 hold, but can produce
stronger results when considering LTI agents and controllers. In particular, we
can estimate the separation index of a randomly chosen vector.

Theorem 6.2. Suppose the agents and controllers are LTI. Furthermore, sup-
pose that w is sampled according to the standard Gaussian probability measure
P on Rn. Define β = min{a1, ..., an} if A 6= 0, and β = mini,j{bij}/

(
n
2

)
other-

wise. Then for any δ > 0, the separation index ε = ε(w) satisfies δ ≤ ε with

probability ≥ 1 − 2n
2+1(2Φ(δ/2β) − 1), where Φ is the cumulative distribution

function of a standard Gaussian random variable.

We first prove a lemma:

Lemma 6.2. For any connected graphs G,H, σ̄(XG − XH) ≤ CG,A + CH,A
where we define

CG,A =

{
1

σ(A+EGNBE>G )
A 6= 0

1
σ(YG) A = 0

.

Proof. First, σ̄(XG −XH) ≤ σ̄(XG) + σ̄(XH) as σ̄(·) is a norm on the space of
matrices. The proof is now completed using the formula σ̄(C−1) = 1

σ(C) .

We can now prove Theorem 6.2.

Proof. The distance between the steady-state output associated with G and the
one associated with H is ‖(XG − XH)w‖2. We fix some G,H and let F =
XG −XH. We use the SVD decomposition to write F>F = U>DU where U is
an orthogonal matrix and D = diag(σ2

1 , ..., σ
2
n) is a diagonal matrix with entries
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

equal to the squares of the singular values of F . Using the fact that w and
U−1w both distribute according to P, we see that:

P(||Fw|| > δ) = P(||Fw||2 > δ2) = P(||FU>w||2 > δ2) =

P(w>UF>FU>w > δ2) = P(w>Dw > δ2) = P

( n∑
i=1

σ2
iw2

i > δ2

)
.

Now, we note that the entries wi of w are all standard Gaussian random vari-
ables, and that they are independent. Thus, we can estimate:

P

( n∑
i=1

σ2
iw2

i > δ2

)
≥ P

(
|w1| ≥

δ

σ1

)
= 1− 2Φ

(
− δ

σ̄(F )

)
Thus, we know that for any pair of graphs G,H, the chance that ||XGw −
XHw|| > δ is at most 1− 2Φ(− δ

σ̄(XG−XH) ).

Now, we use Lemma 6.2 and the fact that Φ is monotone increasing to bound
the probability that ||XGw − XHw|| > δ from below by 1 − 2Φ(− δ

CG,A+CH,A
).

We bound each CG,A using Lemma 6.2. First, if A 6= 0 then σ(A+EGNBE>G ) ≥
min{a1, · · · , an}, and otherwise σ(YG) = mini,j{νijbij}λ2(G) ≥ mini,j{bij}

(
n
2

)−1

(See Appendix B), where we use νi,j = 1. Because there are a total of 2(n2) pos-

sible graphs on n nodes, and a total of (2(n2))2 ≤ 2n
2

of pairs G,H to consider,
we can use the union bound to conclude that the chance that ε < δ is no more
than ∑

G,H

(
1− 2Φ

(
− δ

σ̄(XG −XH)

))
≤ 2n

2+1

(
Φ

(
δ

2β

)
− 1

)
.

Remark 6.4. Theorem 6.2 and Remark 6.2 give a viable method for assuring
that the distance between different steady-state outputs of the system (corre-
sponding to different base graphs) is as large as desired. First, choose a desired
degree of security p, which is the probability of the choice to be successful (say

p = .99). Choose δ so that p ≤ 1− 2n
2

(2Φ(δ/2β)− 1). Now choose w randomly
according to a standard Gaussian distribution, and multiply it by 1/δ.

To conclude this subsection, we repay our debt and prove Lemma 6.1:

Proof. We denote the coordinates of F by F = (F1, ..., Fm). We also let Zj =
{x : Fj(x) = 0} for j = 1, . . . ,m, so that Z ⊆ Zj . Let x = (x1, . . . , xn) ∈ Z.
We know that ∇F (x) 6= 0, so there’s some j such that ∇Fj(x) 6= 0 in a small
neighborhood of x. Thus, by the implicit function theorem, we can express
one coordinate as a smooth function of the others. For ease of writing, assume
without loss of generality that its the n-th coordinate, and let φ be the smooth
function such that near x, the set Zj is given by yn = φ(y1, ..., yn−1).
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

More precisely, we can find a small cube Q containing x such that the set
Zj ∩Q is given by yn = φ(y1, ..., yn−1). If we attempt to compute the volume of
Zj∩Q, we can do so using the integral

∫
Q
1yn=φ(y1,...,yn−1)(y)dx, where 1E is the

indicator function of E. This integral is obviously zero due to Fubini’s theorem,
and the fact that given y1, . . . , yn−1, only one yn can satisfy the equation yn =
φ(y1, ..., yn−1). Thus the volume of Z ∩ Q, which is smaller or equal to the
volume of Zj ∩Q as Zj ⊆ Z, nulls.

Up to now, we showed that if x ∈ Z the there exists some small open set
Q = Qx such that Z ∩Qx is of measure zero. If we let Br denote the closed ball
of radius r around the origin, then Z ∩Br is compact, and {Qx : x ∈ Z ∩Br}
is an open cover. Thus Z ∩ Br is contained in the union of finitely many
sets of the form Z ∩ Qx, each of them having zero measure, implying that
Z ∩ Br is zero measure. We note that Z is the countable union of the sets
Z∩B1, Z∩B2, Z∩B3, ..., meaning that it is the countable union of zero measure
sets, hence a zero measure set itself.

Up to now, we considered a randomization-based method for constructing
indication vectors. In the next subsection, we consider other, algebraic-based
methods for constructing indication vectors

6.2.3 Constructing Indication Vectors Using
Algebraic Methods

For this subsection, we assume that both agents and controllers are LTI. We
first construct indication vectors by using computational bases. We can apply
this method if the elements of A,B are rational. In this case, the elements of
XG are all rational. The idea is that we can reconstruct the entries of XG from
XGw if w is of the form w = [1,B,B2, ...,Bn−1]> for an integer B large enough.
We can consider the following toy example:

Example 6.1. Suppose that C = [a,b, c] is a vector with positive integer entries
no greater than 9. Take w = [1, 10, 100]>. Then Cw = a + 10b + 100c is a three-
digit number, and we can reconstruct C by looking at the three digits individually
- a is the units digit, b is the tens digit, and c is the hundreds digit.

We can generalize this to a more general framework:

Theorem 6.3. Suppose that A,B are rational, the denominators of all entries
of the matrices {XG}G∈G divide D, and that the numerator (in absolute value)
is no larger than N . Let B be any integer larger than (2N + 1)D. Then the
vector w = [1,B, ...,Bn−1]> is a G-indication vector.

Proof. Each element in the product XGw corresponds to a single row of XG
multiplied with w, so it’s enough to reconstruct each row separately. We take
a single row of XG and mark it as [p1

q1
, · · · , pnqn ]>, where |pi| ≤ N and qi divides

D. We let R = (XGw)i. Therefore,

R =
[p1

q1
· · · pn

qn

]
w =

p1

q1
+
p2

q2
B + · · ·+ pn

qn
Bn−1.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

We can define mi = D
q1

, which is an integer no larger than D, and multiply both
sides of the equation by D to obtain

DR = m1p1 +m2p2B + · · ·+mnpnBn−1.

Note that mipi is an integer lying between −ND and ND. We can add∑n−1
i=0 (NDBi) to both sides of the equation, leading to

DR +
n−1∑
i=0

(NDBi) = (m1p1 +ND) + · · ·+ (mnpn +ND)Bn−1.

The left hand side is known, and the coefficients in the right hand side are
integers between 0 and 2ND. Thus, writing DR +

∑n−1
i=0 (NDBi) in base B,

the numbers mipi + ND can be computed by looking at the individual digits.
Deducting

∑n−1
i=0 (NDBi) and dividing the entries pi

qi
by D allows one to compute

XG . In particular, because G 6= H implies XG 6= XH, we get that w is an
indication vector.

Remark 6.5. One can choose B to be either a power of 2 or a power of 10 in
the above algorithm. In both cases, writing the number in base B becomes easy -
in base 10, one just uses the decimal representation and batches digits together,
and in base 2, one uses the binary representation and batches bits together.

We now consider a slightly different method for constructing indication vec-
tors. In the above, we assumed that the entries of XG have a bound to show that
XGw = XHw must imply XG = XH, by writing both sides in an appropriate
computational basis and comparing them. We can take it a step further, by
using algebraic field theory (see Appendix E). As before, we motivate the idea
by an example:

Example 6.2. Let C1 = [a1,b1, c1] and C2 = [a2,b2, c2] be any two vectors
with rational entries. Take w = [1, π, π2]>, and assume that C1w = C2w. We
get the equation (a1 − a2) + (b1 − b2)π + (c1 − c2)π2 = 0. We know that the
number π is transcendental, meaning that for any polynomial p(x) with rational
coefficients, p(π) = 0 implies that p ≡ 0. Thus a1 = a2,b1 = b2, c1 = c2 and
C1 = C2.

Again, we can generalize this idea for a much larger class of systems:

Theorem 6.4. Let K ⊇ F be a field extension, where F is any field containing
the rationals and K ⊆ R. Suppose that ai, bij are in F, and let v1, ..., vn ∈ K be
linearly independent over F. Then w = [v1, ..., vn]> is a G-indication vector.

Proof. By construction, the entries of XG lie in F, as A,B have entries in F and
EG has rational entries. However, by the definition of linear independence, we
know that the map Fn → K sending the vector m to m>w is one-to-one. In
turn, the map Fn×n → Kn sending the matrix M to Mw is also one-to-one, as
we can treat each row separately. Thus if XG and XH are different, so is their
product with w. This proves that w is a G-indication vector.
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6.2. NETWORK DIFFERENTIATION USING CONSTANT EXOGENOUS
INPUTS

Corollary 6.2. The vector w = [1, α, α2, ..., αn−1]> is a G-indication vector,
so long that α is transcendental and the entries of A are rational.

The reader is referred to Appendix E for examples of transcendental num-
bers.

Corollary 6.3. Suppose the entries of A are rational. Let p1, ..., pn be any
prime numbers. Then v = [1,

√
p1, ...,

√
pn−1]> is a G-indication vector.

Proof. The first corollary follows from the definition of a transcendental number.
The second corollary follows from the square roots of the primes being linearly
independent over Q (see Appendix E).

We conclude this section with an example of network differentiation using
randomly generated indication vectors.

6.2.3.1 Example of Network Differentiation

We consider a continuous neural network, as appearing in [130], on n neurons
of one species. The governing ODE has the form,

V̇i = − 1

τi
Vi + bi

∑
j∼i

(tanh(Vj)− tanh(Vi)) + wi, (6.6)

where Vi is the voltage on the i-th neuron, τi > 0 is the self-correlation time
of the neurons, bi is a coupling coefficient, and the external input wi is any
other input current to neuron i. We run the system with n = 10 neurons. The
correlation times were chosen log-uniformly between 0.5sec and 1sec, and we
choose bi = 0.1 for all i. In this case, the agents are MEIP and the controllers
are output-strictly MEIP.

We choose an indication vector as in the proof of Proposition 6.1, and run
the system with the original underlying graph, showing in Figure 6.1(a). The
output of the system can be seen in Figure 6.1(b). We first run the system for
10 seconds, which are enough for convergence. After 10 seconds, the red edge
in Figure 6.1(a) gets cut off. We can see that the output of agent #6 (in light
blue) and agent #10 (in yellow) change meaningfully, so we are able to detect
the change in the underlying graph. After ten more seconds, another edge gets
removed from the graph, this time the blue one. We can see that again the out-
puts of two agents, #1 (in black) and #2 (in pink), are changed by a measurable
amount, allowing to detect the second change in the underlying graph, which is
now unconnected. Finally, after a total of 20 seconds, we reintroduce both of
the removed edges, see that the system has returned to its original steady-state.

To conclude this section, we presented numerous ways to choose a constant
exogenous input to differentiate between two systems with identical agents and
controllers, but different underlying graphs. In the next section, we’ll tackle the
problem of reconstructing the (weighted) graph from measurements.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

(a) The interaction graphs simulated in the case study. The
red edge is cut after 10 seconds, and the blue edge is cut
after 20 seconds.
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(b) Trajectories of the neural network (6.6) with changes
in the underlying network.

Figure 6.1: Network differentiation in neural networks.

6.3 Network Identification with Minimal Time
Complexity

The approaches made in the previous section can be used to solve the network
identification problem using the notion of look-up tables. Look-up tables are
tables comprising of two columns, one called the key and the other called the
value, that act like oracles and are designed to decrease runtime computations.
The key is usually easy to come by, and the value is usually harder to find.
Examples of look-up tables include mathematical tables, like logarithm tables

147

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
COMPLEXITY

and sine tables. Other examples include phone books and other databases like
hospital or police records.

Proposition 6.4. Let (G,Σ, g) be a network system of the form (6.2) satisfying
Assumptions 6.1 and 6.2. Then for any indication vector w, there exists an
algorithm solving Problem 6.2 using only a single exogenous output, namely w.

Proof. Let G be the collection of all graphs on n vertices. We construct a G-
indication vector w using Theorem 6.1. Before running the system, we build a
lookup table with keys being graphs H ∈ G, and values being the outputs yH,
which can be computed by (6.4). Now, run the closed-loop system with the
input w. By definition of a G-indication vector, we know that the steady-state
output y of closed-loop system completely classifies the underlying graph G,
i.e., different underlying graphs give rise to different steady-state outputs. We
can now reconstruct the graph G by comparing y to the values of the look-up
table, finding the graph H minimizing ‖y − yH‖. Because w can differentiate
the systems (G,Σ, g) and (H,Σ, g) if G 6= H, we must have that G = H.

Remark 6.6. In the proof above, we assumed that the closed-loop system is
run until the output converges. However, in practice, both numerical errors and
early termination errors give us a skewed value of the true terminal output of the
closed-loop system, as was discussed in Remark 6.1. In the algorithm presented
above, we can tolerate an error of up to 0.5ε(w) in the value of y.

We should note that in order to implement the network detection scheme
in the proof of Proposition 6.4, we need an observer with access to the look-up
table, the output of all of the agents, and the input w. The size of the look-up
table increases rapidly with the number of nodes if we don’t assume anything
about the underlying graph. One should note that the computation can be done
offline, and that it can be completely parallelized - we are just comparing the
entries of the table to the measured output. Furthermore, if we add additional
assumptions on the graph (e.g., the underlying graph is a subgraph of some
known graph), the size of the look-up table drops significantly. However, in
the worst case, we are still dealing with super-exponential time complexity,
implying this method is not useful in practice. Another approach tries to apply
another method of constructing indication vectors, which also gives a method
of reconstruction:

Theorem 6.5. Let (G,Σ, g) be a network system of the form (6.2) satisfying
Assumptions 6.1 and 6.2, consisting of LTI agents and controllers, so that the
matrices A,B,N have rational entries. Suppose furthermore that the matrix N
is known. Then there exists a distributed O(nω1) time algorithm solving Problem
6.2. It requires to run the system only once, with a specific constant exogenous
input w.

The number ω1 is defined as the matrix inversion exponent for positive-
definite matrices, and satisfies 2 ≤ ω1 ≤ ω < 3, where ω is the matrix multiplica-
tion exponent. See Appendix D for more on complexity of matrix multiplication
and inversion.

148

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 6. Applications of the Network Optimization Framework in Network
Identification

Remark 6.7. In the case of LTI agents and controllers, finding the graph G
is roughly equivalent to finding XG. The distributive nature of the algorithm
is manifested in the fact that the i-th row of XG is computed solely from the
steady-state output of the i-th agent.

Proof. We pick an indication vector using the method of Theorem 6.3. The
proof of Theorem 6.3 gives an easy way to reconstruct XG ’s i-th row from the
output of the i-th agent, taking O(n) time. Doing this for all agents takes O(n2)
times, and gives us XG . Afterward, we can reconstruct the graph Laplacian
using the formula EGNBE>G = −A − X−1

G in O(nω1) time, and then find the
underlying graph by looking at the non-zero off-diagonal entries of it, completing
the proof.

This algorithm looks better, as it only takes a sub-cubic number of basic
operations. However, in practice, it can be numerically unstable, as it deals
with very large numbers, whose smaller digits can be inaccurate due to limited
precision. This can be negated by using integer-based representation (instead
of floating-point types), but will still be inefficient. We note that the algorithm
consists of two parts. The first, in which we use the measurements to build the
matrix XG , and the seconds, where we use it to reconstruct G. The problematic
part is the first, so we try and find a different approach to build the linear
connection between the input and output. Moreover, even if we don’t have LTI
agents and controllers, we might still be able to linearize the relation and apply
the algorithm. We start with LTI agents and controllers

6.3.1 An Algorithm for LTI Agents and Controllers

As before, suppose that our agents and controllers are LTI, i.e.,

Σi :

{
ẋi = −ςixi + ui + wi

yi = %ixi
,Πij : µij = νijbijζij , (6.7)

for some bij , %i > 0 and ςi ≥ 0. In this case, the steady-state input-output
relations are γ(ζ) = Bζ and k−1(y) = Ay, where B = diag(· · · , bij , · · · ) and
A = diag(· · · , ςi/%i, · · · ). Thus, (6.4) takes the same form as before,

w = Ay + EGNBE>G y. (6.8)

As before, the matrices A,B are known, but the matrices EG and N are not.
We denote the unknown matrix EGNBE>G by L, and the connecting matrix

A+ EGNBE>G by M . We note that M = A+L , that M = X−1
G , and that L is

a weighted Laplacian. Hence, we can reconstruct the graph G and the coupling
coefficient matrix N by looking at the off-diagonal entries of L, or of M , as
A = M − L is diagonal. Indeed,

Proposition 6.5. Suppose the matrix M = A+ EGNBE>G is known. Then the
graph G and the coupling coefficients νij can be exactly reconstructed. The graph
G consists of all edges e = {i, j} such that Lij 6= 0, and the coupling coefficients

are νij = −Mij

bij
.
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6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
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Proof. Directly follows from bij > 0, the fact that L is a weighted Laplacian
with graph G and weights bijνij , and the fact that M = A + L, where A is a
diagonal matrix.

Our goal now is to reconstruct the matrix M only from measurements. The
equation connecting the steady-state output and the constant exogenous input
is My = w, where both the vectors y and w are known. Thus, if we have a
series of k measurements y1, ..., yk and w1, ...,wk, with k = n = |V|, such that
Myi = wi for all i, and y1, ..., yk are linearly independent, we can reconstruct the
matrix M . Namely, we have M = WY −1 where Y is the matrix whose columns
are y1, ..., yn, and W is the matrix whose columns are w1, ...,wn. Thus, we can
solve the reconstruction problem by running the system n times with different
exogenous inputs and measuring the achieved steady-states, as long as we can
assure that the measured steady-state outputs will be linearly independent. We
can easily enforce this by considering the properties of M as a linear operator.

Proposition 6.6. Let κ 6= 0 be any constant, and consider the following col-
lection of n vectors yi:

i) If A 6= 0, let {wi}ni=1 be any collection of linearly independent vectors. Let
yi be the solution of (6.8) with w = wi.

ii) If A = 0, let {wi}n−1
i=1 be any set of n − 1 linearly independent vectors in

the space orthogonal to 1n. Let yi be the solution of (6.8) with w = wi,
where y>i 1n = 0 for i = 1, . . . , n− 1. Define yn = κ1n with κ 6= 0.

Then the set {y1, ..., yn} consists of linearly independent vectors.

Proof. Suppose first that A 6= 0. In that case, it is known that M is invert-
ible by Proposition 6.2. Thus, M sends linearly independent sets of vectors to
linearly independent sets of vectors. Now suppose that A = 0. The matrix
M = EGNBE>G is a weighted Laplacian, meaning that the solution y to the
equation w = My is not unique in Rn, but only in span(1n)⊥, the space or-
thogonal to 1n. Moreover, the matrix M preserves the space span(1n)⊥, and
the restricted operator M : span(1n)⊥ → span(1n)⊥ is invertible. Thus, by
the same reasoning as above, the vectors y1, ..., yn−1 are linearly independent.
Moreover, they are all orthogonal to yn. implying that the vectors y1, ..., yn are
linearly independent and completing the proof.

Proposition 6.6 suggests an algorithm for reconstruction. In the case A 6= 0,
we choose vectors wi as in the theorem, run the system with them, measure the
corresponding steady-state outputs, and then do a small computation involving
matrix inversion, as described in the discussion prior to the proposition. In the
case A = 0, we note that M1n = 0, independent of the values of the weighted
graph Gν . This urges us to choose yn = 1n and wn = 0 and repeat the same
procedure, this time running the system only n− 1 times.

However, consider Proposition 6.6 in the case A = 0. There, the vectors
y1, ..., yn are linearly independent, but the vectors w1 = My1, ...,wn = Myn are
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

not - the last vector is equal to zero. For reasons explained later (see Remark
6.10), we’ll want the vectors w1, ...,wn to be linearly independent even in the
case A = 0. To remedy the problem, we instead consider the matrix M ′ =
EGNBE>G + 1

n1n1
>
n in the case A = 0. Moreover, we observe that M ′1n = 1n

and note that if yi is in span(1n)⊥, then M ′yi = Myi. Therefore, we choose
vectors wi, yi as in Proposition 6.6 for i = 1, . . . , n− 1, and also yn = wn = 1n.
Defining W,Y as above, we note that M ′ = WY −1, and M = M ′− 1

n1n1
>
n . We

will implement this scheme, in which the added term of the form 1
n1n1

>
n will

be denoted by Q

Remark 6.8. As we said, Proposition 6.6 gives a reconstruction scheme -
choose any n (or n−1) linearly independent vectors in the proper space, run the
system n (or n − 1) times using them as inputs, measure the steady-state out-
puts, and then use the discussion preceding Proposition 6.6 to compute the graph
G and the weights νij. Instead of doing n (or n − 1) separate experiments in
which we run the system with one of the wi-s, we can use the global asymptotic
convergence of the system to use a switching signal. We use an exogenous input
w(t) whose value is changed every time the system reaches its steady-state, or
ε-close to it. See also Remark 6.9 about declaring when a steady-state is reached.

We conclude this subsection with an algorithm for network reconstruction
for LTI agents and controllers, namely Algorithm 4.

Theorem 6.6. Consider a diffusively coupled system (Gν ,Σ, g). Suppose that
the agents are MEIP, and that the static nonlinearities gij are output-strictly
MEIP. Suppose furthermore that the agents and controllers are all LTI. Then

i) Algorithm 4 outputs the correct graph and coupling coefficients.

ii) The time complexity of the Algorithm 4 is O(nω), where ω ≤ 3 is the
matrix multiplication exponent (see Appendix D).

Proof. By Propositions 6.5 and 6.6, in order to prove the first claim, it’s enough
to show that the vectors wi chosen are linearly independent, which is obvious.

As for complexity, we go over the different parts and estimate the time
complexity required. The first part, before the for-loop, takes O(n2) time (just
to initialize wi for i = 1, · · · ,NumOfRuns). The first for-loop takes O(n2) time
as well, as each iteration takes O(n) time just to store yi in memory. The
computation between the two for-loops takes O(nω) time. Lastly, the last for-
loop also takes O(n2) time. Since ω ≥ 2, the result is obtained.

Remark 6.9. Algorithm 4 (as well as Algorithm 5 presented in the next sub-
section), like the algorithm presented in Theorem 6.5, runs the system with fixed
exogenous inputs, and then measures the steady-state output of the closed-loop
system. In practice, the exact steady-state output is achieved only asymptoti-
cally, which is both unfeasible to run, and forbids the switching input scheme of
Remark 6.8. Therefore, we must stop the system and measure the output after
a finite amount of time. We are therefore interested in understanding how long
to run the system to assure sufficient proximity to the true steady-state output.
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6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
COMPLEXITY

Algorithm 4 Network Reconstruction Scheme for LTI agents and controllers

1: if A = 0 then
2: Choose wi = ei − en for i = 1, ..., n− 1.
3: Put yn = 1n and wn = 1n.
4: Put NumOfRuns = n− 1.
5: Put Q = 1

n1n1
>
n .

6: else
7: Choose wi = ei for i = 1, ..., n.
8: Put NumOfRuns = n and Q = 0.
9: end if

10: for i = 1 to NumOfRuns do
11: Update the value of w(t) to wi.
12: Wait for the diffusively coupled network to converge (see Remark 6.9).

Measure it’s steady-state output and denote it as yi.
13: end for
14: Define the matrix Y as the n× n matrix having y1, ..., yn as its columns.
15: Define the matrix W as the n× n matrix having w1, ...,wn as its columns.
16: Define M ′ = WY −1.
17: Define M = M ′ −Q.
18: Define an empty graph H on n nodes.
19: for i, j = 1 to n such that i 6= j do
20: if Mi,j 6= 0 and i 6= j then
21: Add the edge {i, j} to the graph H.

22: Define pij = −Mij

bij

23: end if
24: end for
25: Output the graph H and the coupling coefficients {pij}.

There are many ways to know the desired runtime of the system, or at least
some approximation of it. One can use the storage function of the closed-loop
system to estimate the distance from steady-state at each point in the run, ter-
minating when the distance from steady-state is small enough. Another solution
is to stop running the system when ẏ (or ẋ) is small enough. Other ways to
determine the runtime of the system include conducting computer-based simu-
lations, or even intuition based on the physical time constants in the agents’
dynamics.

Another method one can use is equilibrium-independent Lyapunov exponents.
For LTI systems, if we have a steady-state xss for the agents, it corresponds to a
quadratic storage function, namely of the form S(x) =

∑n
i=1 qi(xi(t)− (xss)i)

2

for some positive numbers q1, ..., qn. We can consider the closed-loop system,
for which we can write

Ṡ ≤ −
n∑
i=1

ρi

(
hi(xi(t))− hi((xss)i)

)2

, (6.9)
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

where ρi > 0 are the output-passivity parameters of the agents (see [23, Theorem

3.4]). The right-hand side is bounded by −mini

{
qi
ρi%i

}
S(x). In other words,

we can conclude from Lyapunov’s theorem that the closed-loop system always
converges to its steady-state exponentially fast with a known exponent, no matter
what steady-state it has. More exactly, the storage function decays exponentially

fast with exponent mini

{
qi
ρi%i

}
, meaning that by sensing the value of the storage

function at the beginning of the run, we can compute a bound on how long
we need to wait until we are ε-close to the steady-state, namely log(S(x(0))/ε)
divided by the exponent. This method can be generalized for other, nonlinear
systems as well. Generically speaking, inequalities bounding the measurement
function hi from below using the storage function of the i-th agent can be used
to achieve certain convergence rate guarantees, that in turn allow us to establish
the needed runtime for the algorithm. We will return to this idea in Chapter 7,
where it will be used for fault detection and isolation algorithms.

Remark 6.10. After running the system, we end up with matrices W,Y and
want to compute M = WY −1. There is another way to do the same compu-
tation, which changes its time complexity from O(nω) to O(nω1). Indeed, we
consider M−1 = YW−1. If W is chosen smartly, then the product YW−1 can
be computed in O(n2) time instead of O(nω) time. Indeed, this happens if W
is diagonal, or more generally, if W is the product of at most O(n) elementary
matrices (see [66] for a definition). Indeed, if this is the case, then W−1 is also
a product of at most O(n) elementary matrices, and taking a product with an
elementary matrix only takes O(n) time. In this case, we want to invert the
matrix M−1 = YW−1, which it is positive-definite. Thus we can invert it using
O(nω1) operations instead of O(nω) operations. We show below that W is the
product of at most O(n) elementary matrices.

Proposition 6.7. The matrix W constructed in Algorithm 4 (and 5) is the
product of no more than O(n) elementary matrices.

Proof. This is clear for A 6= 0, as W = I, so we show it for A = 0. We run
a Gaussian elimination procedure on the matrix W defined by the algorithm.
Each row operation corresponds to a multiplication by an elementary matrix,
so it suffices to show that the procedure halts after O(n) steps. We’ll show it
halts after 2(n−1)+1 steps. Indeed, we first consider the row operations of the
form Rn → Rn +Ri for i = 1, · · · , n− 1, namely add row i to row n. These are
n− 1 total row operations, leaving all first n− 1 rows unaltered, and changing
the last row of the matrix to [0, · · · , 0, n]. We now divide the n-th row by n,
which is another row operation, altering the last row to [0, · · · , 0, 1]. Lastly, we
apply the row operations Ri → Ri −Rn for i = 1, · · · , n− 1. These operations
nullify the only nonzero off-diagonal element in each row, achieving an identity
matrix. Thus, by applying a total of (n − 1) + 1 + (n − 1) row operations, we
transformed the matrix W to the identity matrix. Thus W is the product of
2n− 1 row operations, completing the proof of the theorem.
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6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
COMPLEXITY

Remark 6.11. We compare Algorithm 4 to the algorithm presented in Theorem
6.5. Both algorithms run roughly with the same time complexity, but Algorithm
4 has two advantages over the one presented in Theorem 6.5. Firstly, it does not
assume that the coupling coefficients νij are identical, or even known. Secondly,
the algorithm in Theorem 6.5 can sometimes be difficult to implement due to the
size of the numbers involved in it. In the presented algorithm, however, we trade
this problem with inverting a matrix W , which is easily invertible, eliminating
numerical instability. It should also be noted that the proposed algorithm is
deterministic, unlike the one presented in Theorem 6.5.

6.3.2 An Algorithm for General MEIP Agents and
Controllers Using Linearization

In general, our agents and controllers might not be LTI. However, we can still
try and apply the Algorithm 4 using linearization. As we’ll see later, we will
need another technical assumption, which is slight relaxation of Assumption 6.2:

Assumption 6.3. For each i, j, k−1
i ,gij are continuous monotone functions.

Moreover, on any bounded interval, there are at most finitely many points at
which k−1

i ,gij are not twice differentiable. Lastly, the set of points on which
dgij
dζij

= 0 is of measure zero.

Heading toward linearization, we first run the system with some w0 and get
y0. We can now linearize the equation w = k−1(y) + EGNg(E>G y) around y0. If
we input w = w0 + δw, then we obtain,

w − k−1(y) = EGNg(E>G y) ≈ EGNg(E>G y0) + EGN∇g(E>G y0)E>G δy, (6.10)

where y is the steady-state output of the network, and δy = y − y0. More
precisely, we have the following result.

Proposition 6.8. Suppose that the functions k−1, g are twice differentiable at
y0. Then for any δw small enough, the equation

EGN∇g(E>G y0)E>G δy = δw − k−1(y) + k−1(y0) +O(‖δy‖2) (6.11)

holds, where y = y0 + δy.

Proof. Immediately follows from subtracting w0 = k−1(y0)+EGNg(E>Gy0) from
w = k−1(y) + EGNg(E>Gy) and using Taylor expansion up to first order, where
we note that the twice differentiability assumption implies that the error of the
first order approximation is O(‖δy‖2) .

As before, we inject n different signals into the system and measure n out-
put vectors, δy1, ..., δyn. We can use (6.11) to estimate the value of the matrix
EGN∇g(E>G y0)E>G applied on each of δy1, ..., δyn. As before, we can replace one
of these vectors with 1n, as we know that it lies in the kernel of the matrix.
If we knew these vectors are linearly independent, we could use the same re-
construction method as in the linear case. Thus we strive to find a method in
which δy1, · · · δyn are linearly independent.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

Theorem 6.7. Let Pn,0 be any absolutely continuous probability measure on
Rn, and suppose that we sample w0 according to Pn,0. Let y0 be a solution
to the equation w0 = k−1(y) + ENg(E>y). Choose κ 6= 0 and define vectors
δy1, ..., δyn−1, δyn in the following way:

i) If k−1 is differentiable at y0 and ∇k−1(y0) = 0, choose δwi = κ(ei − en)
for i = 1, · · · , n− 1. Define yi as the solution to the equation w0 + δwi =
k−1(yi)+ENg(E>yi) and δyi = (Idn− 1

n1n1
>
n )(yi−y0), for i = 1 · · · , n−1.

Also, set δyn = κ1n.

ii) Otherwise, choose δwi = κei for i = 1, · · · , n. Define yi as the solution to
the equation w0 + δwi = k−1(yi) + ENg(E>yi) and δyi = yi − y0.

Suppose Assumptions 6.1 and 6.3 hold. If κ is small enough, then the set A =
{δy1, ..., δyn−1, δyn} is a basis for Rn.

Before proving Theorem 6.7, we state and prove a lemma.

Lemma 6.3. Suppose that the same assumptions as in Theorem 6.7 hold. Then
for any i ∈ {1, ..., n} and any number x ∈ R, the set of all w ∈ Rn such that the
solution y to w = k−1(y) + EGNg(E>G y) satisfies yi = x has measure zero.

Proof. Consider the map G : Rn → Rn defined by G(y) = k−1(y)+EGNg(E>G y).
The relevant set S is the image of R = {y ∈ Rn : yi = x} under G. The
assumption on k−1 implies that it is continuous and piece-wise smooth, hence
locally Lipschitz. Thus, G is absolutely continuous, sending zero-measure sets
to zero-measure sets. As R has measure zero, we conclude that S also has
measure zero, which concludes the proof.

Corollary 6.4. Under the same assumptions as in Theorem 6.7, the function
k−1 is twice differentiable at y0 with probability 1.

We can now prove Theorem 6.7.

Proof. The idea of the proof is to reduce the theorem to Proposition 6.6 using
linearization. By Corollary 6.4, we know that the Pn,0-probability that k−1 is
not twice differentiable at y0 is zero. Thus, we can assume this scenario does not
happen. Under this assumption, we can write the following equation connecting
δyi and δwi,

δwi = ∇k−1(yi)δyi + EGN∇g(E>G y0)E>G δyi +O(‖δyi‖2). (6.12)

It follows immediately in the case ∇k−1(y0) 6= 0, and uses E>G 1n = 0 in the
case ∇k−1(y0) = 0. Because κ is small, and k−1 and g are twice differentiable
at y0 and E>G y0, we can conclude that ‖δyi‖ = O(‖δwi‖). Thus, we can rewrite
(6.12) differently:

δwi −O(‖δwi‖2) =
(
∇k−1(y0) + EGN∇g(E>G y0)E>G

)
δyi. (6.13)
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6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
COMPLEXITY

Let us first focus on the case ∇k−1(y0) 6= 0. The matrix ∇k−1(y0) +
EGN∇g(E>G y0)E>G is invertible by Proposition 6.2, meaning that A is linearly
independent if and only if the vectors on the left-hand side of (6.13) are linearly
independent. However, these vectors are equal to κei − zi, for some vectors zi
satisfying ||zi|| = O(κ2), making them linearly independent for κ small enough,
meaning that A is a basis (with probability 1).

As for the case in which ∇k−1(y0) = 0, we note that EGN∇g(E>G y0)E>G pre-
serves the space orthogonal to 1n. Moreover, when restricted to that subspace, it
is an invertible map. As δy1, ..., δyn−1 are orthogonal to δyn = κ1n, it’s enough
to show that the former are linearly independent. As the map EGN∇g(E>G y0)E>G
is invertible on the space 1⊥n , this is the same as saying that the vectors on the
left hand side of equation (6.13) are linearly independent. However, these vec-
tors are of the form κ(ei− en)−O(κ2), which are clearly linearly independent if
κ is small enough. Thus A is a basis for Rn (with probability 1). This concludes
the proof.

Remark 6.12. In the proof above, we used the fact that if k−1 and g are twice
differentiable at y0 and E>G y0, then δyi = O(‖δwi‖). In particular, the error
rate in Proposition 6.8 is O(‖δwi‖2). Moreover, we note that Remark 6.8 still
holds for nonlinear systems, so we may use switching inputs again.

We wish to conclude this subsection with a proper description and analysis
of the algorithm. The algorithm can be read in Algorithm 5.

Note 6.1. We changed the query Mij 6= 0 from the original algorithm to
Mij < −ε in the augmented algorithm. This is much more robust to the in-
herent noise in M , arising not only from numerics, but also from the negligence
of the unknown quadratic term in (6.11).

It’s clear that this time this is an approximate algorithm, as the quadratic
error term will have an effect on the coupling coefficients. However, we can
still use it to reconstruct the underlying graphs well, as will be shown later
by examples. We can bound the error of algorithm, and determine its time
complexity.

Theorem 6.8. Consider a diffusively coupled system (Gν ,Σ, g). Suppose that
the agents are MEIP, and that the static nonlinearity g is output-strictly MEIP.
Moreover, suppose that Assumptions 6.1, and 6.3 all hold. Then:

i) Let M be the matrix calculated by Algorithm 5, and define

M = ∇k−1(y0) + EGN∇g(E>G y0)E>G .

Then for any i, j ∈ V, we have

|Mij −Mij | ≤ O
(√

nκ
(

1 + max
i,j

(νijdij)λmax(G)
))

,

with probability 1, where λmax(G) is the maximal eigenvalue of the graph
Laplacian of G. Thus, Algorithm 5 outputs an approximation of the graph
and coupling coefficients, with probability 1.
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Algorithm 5 Network Reconstruction Scheme for MEIP agents and controllers

1: Randomly choose w0 as a standard Gaussian vector. Change the value of
w(t) to w0.

2: Wait for the diffusively coupled network to converge (see Remark 6.9). Mea-
sure it’s steady-state output and denote it as y0

3: if ∇k−1(y0) = 0 then
4: Define δwi = κ(ei − en) for i = 1, · · · , n− 1.
5: Put δyn = 1n and δwn = κ1n
6: Put NumOfRuns = n− 1.
7: Put J = Idn − 1

n1n1
>
n

8: Put Q = 1
n1n1

>
n

9: else
10: Define δwi = κei for i = 1, · · · , n.
11: Put NumOfRuns = n.
12: Put J = Idn
13: Put Q = 0.
14: end if
15: for i = 1 to NumOfRuns do
16: Change the value of w(t) to w0 + δwi.
17: Wait for the diffusively coupled network to converge (see Remark 6.9).

Measure its steady-state output and denote it as yi.
18: Define δyi = J(yi − y0).
19: end for
20: Define the matrix δY as the n×n matrix having δy1, ..., δyn as its columns.

21: Define the matrix δW as the n×n matrix having δw1, ..., δwn as its columns.

22: Compute M ′ = δWδY −1.
23: Compute M = M ′ −Q.
24: Define an empty graph H on n nodes.
25: for i, j = 1 to n do
26: if Mi,j < −ε and i 6= j then
27: Add the edge {i, j} to the graph H.

28: Define pij = − Mij
dgij
dζij

((y0)i−(y0)j)

29: end if
30: end for
31: Output the graph H and the coupling coefficients {pij}.

ii) The time complexity of the Algorithm 5 is O(nω).

We first prove the following lemma:

Lemma 6.4. Let δW be the matrix computed by Algorithm 5. Then the operator
norm of δW−1 is bounded by 2/κ.
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6.3. NETWORK IDENTIFICATION WITH MINIMAL TIME
COMPLEXITY

Proof. If ∇k−1(y0) 6= 0, then the matrix δW is equal to κIdn, meaning that its
inverse is κ−1Idn, and the result is clear. If ∇k−1(y0) = 0, however, then δW
is equal to κF , where F ’s columns are given by ei− en for i = 1, · · · , n− 1, and
1n. Thus, the inverse of δW is equal to κ−1F−1, so it’s enough to show that
the operator norm of F−1 is bounded by 2. Consider the Gaussian elimination
procedure applied to F , as described in the proof of Proposition 6.7. There, we
used row operations to transform F to Idn. The matrix F−1 can be computed
by applying the same row operations on Idn, in the same order. This yields a
closed form for F−1.

Indeed, we follow the same process, this time on Idn. First, we apply the
row operations Rn → Rn +Rj for j = 1, · · · , n− 1. This leaves all rows but the
last unaltered, and the last row becomes [1, · · · , 1]. Then, we apply the map
Rn → 1

nRn, dividing the last row by n. Lastly, we applied the row operations
Rj → Rj −Rn for j = 1, · · · , n− 1, adding 1

n [1, · · · , 1] to each of the rows but
the last. Thus, the matrix F−1 is the sum of two matrices. The first is 1

nξ1
>
n ,

where ξ = [−1, ...,−1, 1]>. The second is the diagonal matrix I = Idn − ene>n ,
having all diagonal entries equal to 1, but the last, which is equal to 0. Thus,
we have

‖F−1‖ ≤ 1

n
‖ξ1>n ‖+ ‖I‖ ≤ 1

n
‖1n‖‖ξ‖+ 1 = 1 + 1 = 2.

This completes the proof.

We can now prove Theorem 6.8

Proof. The proof for the time complexity of the algorithm is identical to the
proof of Theorem 6.6. Thus we focus on the error estimate.

By definition, the matrix M ′ satisfies M ′δyi = δwi for i ∈ V. Using Corol-
lary 6.4 and Remark 6.12, we conclude that for any i ∈ V, ‖δwi −M′δyi‖ =
O(‖δwi‖2), where M′ = ∇k−1(y0) + EGN∇g(E>G y0)E>G + Qy0. Thus, we con-
clude that for any i ∈ V, we have ‖(M ′ −M′)δyi‖ ≤ O(maxk ‖δwi‖2) = O(κ2).
Hence the operator norm satisfies:

‖(M ′ −M′)δY ‖ ≤
√∑

i∈V
O(κ2)2 = O(

√
nκ2).

Now, by submultiplicativity of the operator norm [66], we have that ‖M ′ −

M′‖ ≤ ‖(M ′−M′)δY ‖‖δY −1‖. Thus, we have ‖M ′−M′‖ ≤ O
(
√
nκ2‖δY −1‖

)
.

We note that M ′−M′ = M−M, meaning that ‖M−M‖ ≤ O
(
√
nκ2‖δY −1‖

)
,

implying the same inequality for all entries |Mij −Mij |.
Now, we wish to estimate ‖δY −1‖. We define δvi =M′δyi for i = 1, · · · , n,

so equation (6.13) reads δvi = δwi − O(κ2). We define the matrix δV as the
matrix whose columns are δvi. Then δV = δW − O(κ2). In particular, by
multiplying by δW−1 and using Lemma 6.4, we conclude that δW−1δV = Idn−
O(κ), or equivalently, by taking inverses, δV −1δW = Idn +O(κ).
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Chapter 6. Applications of the Network Optimization Framework in Network
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Now, we note that δY −1 = MδV −1. Thus, by submultiplicativity of the
operator norm, we conclude that:

‖δY −1‖ ≤ ‖M‖ · ‖δV −1‖ ≤ ‖M‖ · ‖δV −1δW‖ · ‖δW−1‖

We can now estimate each factor on its own. Lemma 6.4 implies that ‖δW−1‖ =
O(κ−1). Moreover, δW−1δV = Idn − O(κ) implies that ‖δV −1δW‖ = O(1),
namely ‖δV −1δW‖ = 1 + O(κ). Lastly, we can estimate the norm of M as
following:

‖M‖ ≤ ‖∇k−1(y0)‖+ ‖EGN∇g(E>y0)E>G ‖+ ‖Q‖
≤ O(1) + max

i,j
(νijdij)λmax(G) +O(1),

where we use Q = 0 if ∇k−1(y0) = 0, and Q = 1
n1n1

>
n otherwise, implying

‖Q‖ ≤ 1
n‖1n‖

2 = 1. This completes the proof.

Remark 6.13. As with Algorithm 4, we can reduce the complexity of the com-
putation of M ′ from O(nω) to O(nω1). As before, this is done by considering
(M ′)−1 = δW−1δY . As the matrix δW is the product of O(n) elementary ma-
trices, we can compute (M ′)−1 in O(n2) time by applying the corresponding row
operations on δY . This time, unlike in Algorithm 4, the matrix (M ′)−1 need
not be positive-definite, or even symmetric, due to the quadratic error term in
(6.13). To remedy this problem, we symmetrize (M ′)−1 by defining (M ′)−1

sym =
1
2 ((M ′)−1 +((M ′)−1)>), which is symmetric. Moreover, (M ′)−1

sym is close to the

inverse of the positive definite-matrix ∇k−1(y0) + EGN∇g(E>G y0)E>G + Q, and
eigenvalues are continuous functions. Thus, the eigenvalues of (M ′)−1

sym are pos-
itive, meaning it is a positive-definite matrix, so inverting it only costs O(nω1)
time.

Theorem 6.8 prescribes an estimate for the error in the elements of the
matrix M . However, we want a clearer estimate on the error of the weighted
graph computed by the algorithm. We conclude this chapter by relating between
the estimate on |Mij −Mij |, the estimates {pij} on the weights {νij} , and the
estimate H on the graph G.

Proposition 6.9. Suppose the same assumptions as in Theorem 6.8 hold. Sup-
pose further that for any i, j ∈ V, |Mij − Mij | ≤ m, and that m ≤ 1

4ρ =
1
4 mini,j(νijdij) . If the number ε used in Algorithm 5 is equal to 2m, then the
graph H computed by the algorithm is identical to G, and for all {i, j} ∈ E, the
difference of the computed weights pij from the true weights νij is bounded by

d−1
ij m, where dij =

dgij
dζij

((y0)i − (y0)j).

Proof. Suppose first that {i, j} 6∈ E. ThenMij = 0, meaning that Mij ≤ m < ε.
In particular, the algorithm does not add the edge {i, j} to the graph H, as
required.

Now suppose that {i, j} ∈ E. ThenMij = −dijνij . Thus |Mij | > dijνij−ε ≥
dijνij − 1

2dijνij = 1
2dijνij ≥ ε. Thus the algorithm correctly chooses to add the
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6.4. ROBUSTNESS AND PRACTICAL CONSIDERATIONS

edge {i, j} to H. Moreover, Mij = −pijdij and Mij = −νijdij , meaning that
the inequality |Mij −Mij | ≤ m implies |pij − νij | ≤ d−1

ij ε0.

Theorem 6.8 and Proposition 6.9 show that Algorithm 5 is able to approx-
imate the underlying weighted graph. Moreover, it shows that its time com-
plexity is O(nω), where Remark 6.13 shows it can be reduced to O(nω1). In the
next subsection, we’ll discuss about the robustness of the algorithm, and in the
following subsection, we’ll ask ourselves whether a faster algorithm solving the
network reconstruction problem exists.

6.4 Robustness and Practical Considerations

The algorithm presented in the previous subsection solves the network identifica-
tion under some strong assumptions. First, the algorithm assumes the network
is noiseless and disturbance-free, so the network converges to a constant steady-
state. Second, the algorithm assumes that the measurements taken are perfect
and are not subject to noise or disturbances. Lastly, the algorithm assumes that
the exogenous input can be applied to all agents. This sub-subsection is dedi-
cated to discuss all these points, and to give a brief comparison of the algorithm
to other methods described in literature.

6.4.1 Robustness to Noise and Disturbances

We begin by studying how noise and/or disturbances affect the output of the
diffusively-coupled network. Generally, if we make no passivity assumption on
the network, then it might not converge in the presence of noise. One example of
this phenomenon is the consensus protocol [107], in which noise does not disturb
the asymptotical convergence to consensus (almost surely), but it does make the
consensus value to be volatile. The consensus protocol can also be viewed as
the diffusively coupled system with single-integrator agents and static gain con-
trollers, with passive agents, and output-strictly passive controllers. However,
we can still use passivity to obtain some form of noise- and disturbance-rejection:

Proposition 6.10. Consider a diffusively-coupled system (G,Σ, g) with steady-
state (u, y, ζ,µ). Suppose that the agents are output-strictly passive with respect
to (ui, yi) with parameters ρi > 0, and that the controllers are passive with
respect to (ζe,µe). We let S be the sum of the agents’ storage functions, and
denote R = diag(ρi) > 0. Consider a parasitic exogenous input d(t) to agents, so
that the input is u(t) = d(t)−EGµ(t). Assume that at any time, ||R−1/2d(t)|| ≤
∆. Let A = {x : ‖R1/2(h(x)− y)‖ ≤ ∆}, and let Ξ = maxx∈A S(x). Then for
any initial conditions, there exists some T such that if t > T , then ‖y(t)− y‖ ≤
maxx: S(x)≤Ξ ‖h(x)− y‖

Proof. Let v(t) = −EGµ(t), so that the input is u(t) = v(t) + d(t). By passivity,
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we have 0 ≤
∑
e∈E(ζe − ζe)(µe − µe), and

d

dt
S(x) ≤

∑
i∈V

(−ρi‖yi − yi‖2 + (di + vi − ui)(yi − yi)).

Summing the equations and using the connections v = −EGµ, ζ = EGy and their
steady-state counterpart yields,

d

dt
S(x) = −(y − y)>R(y − y) + d(t)>(y − y) (6.14)

= −||R1/2(y − y)||2 + (R−1/2d(t))>R1/2(y − y)

≤ −||R1/2(y − y)||2 + ∆‖R1/2(y − y)‖

We note that if ‖R1/2(y(t)−y)‖ ≤ ∆+ε does not hold, then the right-hand side
is strictly negative, and is bounded from above by −(ε + ∆)ε. If this happens
indefinitely, then we will eventually have S(x) < 0, which cannot hold. Thus for
some T > 0 we have ‖R1/2(y(T )− y)‖ ≤ ∆ + ε, so x(T ) ∈ A, and S(x(T )) ≤ Ξ.
If there’s some t > T such that S(x(t)) > Ξ, then x(t) 6∈ A, and Ṡ < 0.
In particular, S(x(t − δ)) > S(x(t)) > Ξ for δ > 0 small enough. Repeating
this argument shows that S(x(t1)) > Ξ for all times t1 < t, which is false as
S(x(T )) ≤ Ξ. This completes the proof.

The proposition above shows that even in the presence of a disturbance or
noise, the algorithm can sample the output y such that its not too far the true
steady-state output. This will intertwine with Proposition 6.11, in which the
effects of measurement errors will be accounted for.

Remark 6.14. The proposition above does not distinguish between disturbances
and random noises. In practice, the bound is approximately of the right order of
magnitude for disturbances, but is a gross overestimate for noise. For example,
consider the single agent of the form ẋ = −x+ u, y = x, where u is chosen as a
random white noise, bounded by C, and with variance σ2. A similar proposition
to the one above shows that the system converges to an output with |y(t)| ≤ C (as
ρ = 1). However, writing x(t) as a convolution integral and applying Itô calculus
[106], e.g. the Itô isometry, shows that E(x(t)) = 0 and that Var(x(t)) ≤ σ2/2.
Thus, Chebyshev’s inequality gives a high-probability bound on where x(t) can
be, which is much better than the proposition bound if σ� C.

We now shift our focus to measurement errors. Measurement errors give
parasitic terms when defining the matrices δW , δY in Algorithm 5. We prove
the following:

Proposition 6.11. Suppose Algorithm 5 builds the matrix δY + ∆Y instead
of δY . If ||∆Y || � ||δY ||, then the algorithm outputs a matrix M whose dis-
tance from M = ∇k−1(y0)+EGN∇g(E>G y0)E>G in the operator norm is bounded

by O

(
√
n
(

1 + maxi,j(νijdij)λmax(G)
))
‖∆Y δY −1‖, plus the error term from

Theorem 6.8.
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6.4. ROBUSTNESS AND PRACTICAL CONSIDERATIONS

Proof. It’s enough to bound ‖δW (δY −1 − (δY + ∆Y )−1)‖. Using the submul-
tiplicativity of the operator norm, we can bound each factor on its own. The
first factor can be bounded by O(κ

√
n), as δW can be written as κ(Idn −

en1
>
n + 1ne>n ). As for the second factor, we can bound it as ‖δY −1‖‖Idn −

(Idn + ∆Y δY −1)−1‖. The assumption ||∆Y || � ||δY || implies that (Idn +
∆Y δY −1)−1 ≈ Idn −∆Y δY −1 up to a second order error, which in turn gives
the desired bound, as ‖δY −1‖ ≤ O(κ−1(1 + maxi,j(νijdij)λmax(G))), as shown
in the proof of Theorem 6.8.

Remark 6.15. Proposition 6.11 gives a viable way to bound the algorithm error
if a relative measure error is known. In some cases, we have an absolute error
bound, e.g. Proposition 6.10. In that case, we can use it to bound the relative
error, as ‖∆Y δY −1‖ ≤ ‖δY −1‖‖∆Y ‖, and we can again use the same bound
‖δY −1‖ ≤ O(κ−1(1 + maxi,j(νijdij)λmax(G))).

6.4.2 Probing Inputs Supported on Subsets of Nodes

The previous sub-subsection shows that the algorithm is somewhat resistant
to noise, either in the dynamics or the measurement. We now move to the
last major assumption, namely that the exogenous input can be applied on all
agents. There are two possible ways to try and relax the assumption. First, we
can try and use compressed sensing methods, using the sparsity of the matrix
M ′, which corresponds to a relatively low number of edges in the network G,
similarly to [56, 81]. Namely, the sparse matrix M ′ ∈ Rn×n is recovered from
r < n equations of the form δwi = M ′δyi for i = 1, · · · , r with high probability.
This is done by considering M ′ as a sparse vector of size n2, such that each
equation δwi = M ′δyi is translated to n one-dimensional constraints. One
then solves the minimization problem minimizing the `1-norm of the vectorized
matrix under these constraints. Under a certain assumption on the matrix M ′

(namely the restricted isometry property), a total of O( |E|n log(n2/|E|)) samples
are enough to achieve a reconstruction with high probability, as each sample
gives n different constraints. See [9, 42] for more on compressed sensing.

Another approach is to still try and use n different measurements, with
exogenous inputs supported only on ` nodes. Indeed, in order to reconstruct
the matrix M ′, we need that the vectors δy1, · · · , δyn will span all of Rn. If the
steady-state equation (6.4) is inherently nonlinear, then even when the inputs
are restricted to a subspace of dimension `, the outputs can span all of Rn.
Abstractly, we can prove the following:

Proposition 6.12. Let F : Rk → Rn be any function which is ` + 1-times
differentiable function at x0 ∈ Rk. Suppose that the dimension of the subspace
spanned by all partial derivatives of F at x0 up to order ` is r, and denote
the number of all partial derivatives up to order ` by s. Let P be any prob-
ability measure on Rk which is supported on a small ball around x0, and let
x1, · · · , xs be i.i.d. samples according to P. Then, with probability 1, the vectors
F (x1) − F (x0), · · · , F (xs) − F (x0) span a subspace of dimension r inside Rn.
In particular, if r = n then they span all of Rn.
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Proof. Suppose that P is supported inside a ball around x0 of radius κ� 1. By
Taylor’s theorem, we can write ΦF = DFW up to an error of order O(κ`+1),
where ΦF is the matrix whose columns are F (xi) − F (x0), DF is the matrix
whose columns are all the partial derivatives of F at x0 up to order `, and W is a
square matrix consisting of polynomials of the entries of xi−x0 for i ∈ {1, · · · , s}.
We need to show that the rank of ΦF is equal to n, where we know that the rank
of DF is equal to n. This follows immediately if we know that W is invertible,
so we want to show that the probability that W is not invertible is 0. Indeed,
consider the map p : (Rk)s → Rn defined by p(x1, · · · , xs) = detW . This is
a non-zero polynomial of x1, · · · , xs, and W is invertible if and only if p 6= 0.
However, it is known that the collection of zeros of a non-zero polynomial is a
zero-measure set [25], and thus p 6= 0 with probability 1, which implies that W
is invertible with probability 1. This concludes the proof.

The proposition above can be applied for the map F mapping w to y accord-
ing to (6.4). In many occasions, it’s hard or impossible to compute the rank r
defined in the theorem. However, it’s possible to use the proposition in a more
data-based fashion - take s random samples w0 + δwi near w0, and compute
the s steady-state outputs y0 + δyi. The rank r can now be computed using
δyi, and one can find the connecting matrix M ′ using the compressed sensing
approach.

To conclude this subsection, we saw that the presented algorithm can be
applied in real-world scenarios, in which noise and measuring errors can hap-
pen, and not all nodes are susceptible to controlled exogenous inputs. Other
algorithms which use probing inputs, or similar methods, rely on linearizing the
dynamics instead of the steady-state equation, or using higher-order terms in the
Taylor approximation [56,81]. These methods thrive in dynamics-rich networks,
but will oversample and work very slowly in fast converging networks. On the
contrary, the presented algorithm will work poorly in dynamics-rich networks,
but will operate well on fast converging networks, or in cases where sampling the
system is expensive. Examples of such networks include, for example, networks
of autonomous vehicles trying to coordinate their velocity for platooning. The
network cannot have rich dynamics due to safety reasons, and the perturba-
tions from the desired platooning velocity should be very small. Understanding
these networks is essential for traffic management, and can form a first step in
predicting traffic jams and accidents. Other application examples with similar
conditions include multi-satellite arrays, UAVs, drones, and robots.

Note 6.2. The network model and presented algorithm were introduced for the
case of SISO agents and controllers. If the agents and controllers are MIMO,
with q inputs and q outputs, the network model and algorithm still work with
a slight modification of the assumptions. This is mainly because the network
optimization framework holds also for MIMO agents, if we switch the MEIP
assumption by MEICMP.
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6.4. ROBUSTNESS AND PRACTICAL CONSIDERATIONS

6.4.3 Time Complexity Bounds for the Network
Reconstruction Problem

In the previous subsections we presented an algorithm solving the network re-
construction problem in O(nω1) time using specifically constructed inputs. We
ask ourselves if we can improve on that. We first need to discretize our problem
in order to fit into the standard complexity theory framework.

Problem 6.3. We are given some diffusively coupled system (Gν ,Σ, g) where the
agents Σ and the static controllers g are known. We are also given some integer
q > 0, such that if the input to the network is a Cq+1 signal, then the output is
a Cq signal.2 Our goal is to find the weighted graph Gν using measurements of

the node outputs yi = hi(xi) and their derivatives dk

dtk
yi up to order q. We are

allowed to choose the exogenous input signal w(t) as a Cq+1 signal. Furthermore,
accessing the measurements y(t) or changing the function describing w(t) can
not be performed faster than at ∆t > 0 second intervals. Moreover, the measured
outputs y(t) are accurate up to a relative order of magnitude no larger than ε

After discretizing the problem, limiting the rate of measurement and change
in input, we prove the following theorem.

Theorem 6.9. Any (possibly randomized) algorithm solving Problem 6.3, es-
timating {νij} with some finite error (with probability 1), must make n − 1
measurements in the worst case. Moreover its worst-case complexity is at least
Ω(nω1).

Corollary 6.5. By Remark 6.13, Algorithm 5 is optimal in terms of computa-
tional time complexity

Before proving the theorem, we need the following lemma:

Lemma 6.5. Let P ∈ R(n−1)×(n−1) be a positive definite matrix, let EKn be the
incidence matrix of the complete graph on n edges, and let V ∈ R(n−1)×n be any
matrix such that V V > = Idn−1 and V 1n = 0. Then there exists a positive-semi
definite matrix Q ∈ Rn×n such that:

i) There exists a positive-definite diagonal matrix N such that Q = EKnNE>Kn .

ii) The equality P = VQV > holds.

Proof. We define Q = V >PV ∈ Rn×n. The matrix Q is positive semi-definite
as P is positive definite. Moreover, we have:

VQV > = V V >PV V > = Idn−1P Idn−1 = P

which proves the second part. As for the first part, define the matrix N as
follows - for each edge e = {i, j} in Kn, we define the e-th diagonal entry of

2This is weaker than assuming that the functions f, q, g, h appearing in the dynamics are
all smooth
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N to be −Qij = −Qji. It is easy to check that the off-diagonal entries of Q
are equal to the off-diagonal entries of EKnNE>Kn , as the latter is a weighted

Laplacian. As for the diagonal entries, 1n is in the nullspace of both EKnNE>Kn
and Q = V >PV . Thus the sum of the elements in each row of both matrices is
zero, meaning that:

Qii = −
∑
j 6=i

Qij , (EKnNE>Kn)ii = −
∑
j 6=i

(EKnNE>Kn)ij .

Therefore the diagonal entries are also equal. This implies that Q = EKnNE>Kn
and completes the proof of the lemma.

We now prove Theorem 6.9.

Proof. We first deal with a similar problem. We assume we have a single agent
with m inputs and m outputs, evolving according to the equation ẋ = −f(x) +
w, y = h(x). We are again allowed to measure the output and its derivatives up
to order q, or change the Cq+1 function defining the input, no faster than once
every ∆t seconds. Moreover, all measurements are accurate up to a relative
order of magnitude no larger than ε. Specifically, choose any positive-definite
matrix P ∈ Rm×m a large enough arbitrary scalar % > 0. Consider the following
single agent with m inputs and outputs,

ΣP : ẋ = −%Px+ w, y = x.

We claim any algorithm computing P with some finite error (with probability 1)
must take at least m measurements in the worst case, and that if the algorithm is
deterministic, then its worst case complexity is at least Ω(mω1). We will prove it
below, but first show that it is enough to prove the theorem. Consider a network
reconstruction problem with agents ẋi = ui, static controllers gij(x) = x, and
an underlying graph G = Kn., where the coupling matrix N is unknown. The
dynamics of the system can be written as ẋ = −EKnNE>Knx+w. We note that

this system has two decoupled subsystems - one for the scalar 1>n x, and one for
the vector Proj

1⊥n
x. We shall focus on the latter. More specifically, we consider

the matrix V ∈ R(n−1)×n having the following vectors as rows:

vk =
1√

k2 + k
[1, · · · , 1︸ ︷︷ ︸
k times

,−k, 0, · · · , 0︸ ︷︷ ︸
n− k − 1 times

], k = 1, ..., n− 1.

It’s easy to check that V >V = Idn−1 and that 1n ∈ ker(V ). The vector z = V x
satisfies the ODE ż = −V EKNE>KV >z + V w. By the lemma, we conclude
that different choices of N yield all possible (n− 1)× (n− 1) positive-definite
matrices, so we get a general system of the form ΣP , where P can be any
positive definite matrix, and reconstructing P = V EKNE>KV > is equivalent to
reconstructing N . This completes the proof of the theorem, as here m = n− 1.

Now, return to the system identification problem for the system ΣP . Con-
sider any measurement made by the algorithm. Let T1 be the time of the
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6.4. ROBUSTNESS AND PRACTICAL CONSIDERATIONS

measurement, and let T0 be the last time the function describing the input w(t)
was changed. We shift the times to assume that T0 = 0, without loss of gen-
erality, and note that T1 ≥ ∆t. The output y(t) at any time t ∈ [0, T1] can be
written as a convolution integral,

y(t) =

∫ t

0

e−%ξPw(t− ξ)dξ.

By assumption, w is continuously differentiable q + 1 times, so by Lagrange’s
form of the remainder in Taylor’s theorem, we write w(t− ξ) as:

w(t− ξ) =

q∑
j=0

(−1)j
djw(t)

dtj
ξj

j!
+ (−1)q+1 d

q+1w(t̃)

dtq+1

ξq+1

(q + 1)!
, (6.15)

for some point t̃ ∈ [t − ξ, t]. We plug this expression inside the integral de-
scribing y(t). For the first q summands, we end up with integrals for the form∫ t
T0
e−%ξP d

jw(t)
dtj

ξj

j! . The following formula appears in [180, Formula 2.321.2]:∫
xnecxdx = ecx

n∑
i=0

(−1)n−i
n!

i!cn−i+1
xi, (6.16)

which will be used to compute the said integrals.
The matrix P is positive-definite, so we can write it as P =

∑m
k=1 λkvkv>k ,

where λk > 0 are P ’s eigenvalues and vk are its eigenvectors and ||vk|| = 1.
Then for any ξ, %, we have that e−%ξP =

∑m
k=1 e

−%λkξvkv>k . Thus, we have
that: ∫ t

T

e−%ξP
djw(t)

dtj
ξj

j!
dξ =

m∑
k=1

vkv>k
j!

djw(t)

dtj

∫ t

0

e−%λkξξjdξ =

m∑
k=1

vkv>k
j!

djw(t)

dtj

[
e−%λkξ

j∑
i=0

(−1)j−ij!

i!(−%λk)j−i+1
ξi
]t
ξ=0

=

m∑
k=1

vkv>k
j!

djw(t)

dtj

[
− e−%λkξ

j∑
i=0

j!

i!(%λk)j−i+1
ξi
]t
ξ=0

=

m∑
k=1

vkv>k
djw(t)

dtj

[
1

(%λk)j+1
− e−%λkt

j∑
i=0

ti

i!(%λk)j−i+1

]
.

We can use functional calculus to compute the sums written above. For example,

m∑
k=1

vkv>k
(%λk)j+1

djw(t)

dtj
=

1

%j+1
P−(j+1) d

jw(t)

dtj
.

Thus, we get that∫ t

0

ξje−%ξP

j!

djw(t)

dtj
=

[
P−j−1

%j+1
−

j∑
i=0

tie−%tPP i−j−1

i!%j−i+1

]
djw(t)

dtj
.
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

By (6.15), we get:

y(t) ≈
k∑
j=0

(−1)j
[
P−j−1

%j+1
−

j∑
i=0

tie−%tPP i−j−1

i!%j−i+1

]
djw(t)

dtj
, (6.17)

with an error of the form
∫ t

0
e−%ξP d

q+1w(t̃)
dtq+1

ξq+1

(q+1)! . We claim that if % is large

enough, then y(T1) = 1
%P
−1w(T1) up to a relative error of magnitude no larger

than ε.
Indeed, we note that T1 ≥ ∆t, so if %σ(P )� ∆t, then

1

%
P−1 ≈

k∑
j=0

(−1)j
[
P−j−1

%j+1
−

j∑
i=0

T i1e
−%tPP i−j−1

i!%j−i+1

]
,

up to a relative error of magnitude no larger than ε/2. Indeed, for j 6= 0, the
first element inside the outer sum behaves as O( 1

%j+1σ(P )j+1 ), and the second

element decreases exponentially fast with % (for fixed P, T1). Moreover, the error
term in (6.17) can also be bounded similarly - we know that w is a Cq+1 signal,

meaning that dq+1w
dtq+1 is a continuous function on the compact interval [0, T1].

Thus, the norm of the vector dq+1w(t)
dtq+1 is bounded by M for all t ∈ [0, T1]. Then,

the norm of the error term in (6.17) is bounded by:

M

∫ T1

0

ξq+1‖e−%ξP ‖
(q + 1)!

dξ ≤M
∫ T1

0

ξq+1e−%σ(P )ξ

(q + 1)!
dξ

=
M

(q + 1)!

[
e−%σ(P )ξ

q+1∑
i=0

(−1)q+1−i(q + 1)!

i!(−%σ(P ))q+1−i+1
ξi
]T1

ξ=0

=

[
− e−%σ(P )ξ

q+1∑
i=0

M

i!(%σ(P ))q+1−i+1
ξi
]T1

ξ=0

=
M

(%σ(P ))q+2
− e−%σ(P )T1

q+1∑
i=0

M

i!(%σ(P ))q+1−i+1
T i1.

The first element is of order O( 1
%q+2 ), and the second decays exponentially with

% (for fixed M,P, T1). Thus, if ρ is large enough, then y(T1) = 1
%P
−1w(T1), up

to a relative error of order of magnitude no larger than ε. More specifically, this
happens for any ρ > ρ0, where ρ0 is a threshold depending on the matrix P , the
sample time T1 ≥ ∆t, and the signal w(t) (through M). As for derivatives of
y(t) at t = T1, one can use the higher-order estimates of (6.17) together with the
error estimate and ẏ = −%Py+w to conclude that dy

dt (T1) = −%Py(T1)+w(T1) =
1
%P
−1 dw

dt (T1) up to a relative error of magnitude no larger than ε, provided that

% exceeds some threshold. Similarly, one can get that djy
dtj = −%P dj−1y

dtj−1 + dj−1w
dtj−1

for all integers 0 ≤ j ≤ q, allowing one to prove by induction that djy
dtj (T1) =
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6.5. CASE STUDIES

1
%P
−1 djw

dtj (T1) up to a relative error of magnitude no larger than ε, provided
that % is large enough.

Until now, we saw that if % is chosen sufficiently large, the results of all
measurements made by the algorithm will be of the form zi = 1

%P
−1τi, where τi

is some vector depending on the input signal w(t), and can be calculated exactly.
We first assume that less than m measurement were made. Let z1, ..., zr be the
measurements corresponding to inputs τ1, ..., τr, where r < m. We can find
some nonzero vector τ? which is orthogonal to all of τ1, ..., τr. It’s clear now
that the systems ΣP and ΣPα where Pα = (P−1 + ατ?τ

>
? )−1 will yield the

same measurements, so we cannot differentiate them. Moreover, the error can
be arbitrarily large for different values of α. Thus any (possibly randomized)
algorithm solving the problem, estimating {νij} up to some finite error with
probability 1, should change the value of w at least m − 1 times, and measure
the output at least m times.

Now, we note that the relation between 1
%τi and the measured output zi

is linear at each measurement, with the connecting matrix being P−1 . Thus
taking more than m measurements does not yield any additional data. In other
words, the algorithm has measurements of P−1 times some m vectors, and it
must return the value of P . Thus, the algorithm solves the matrix inversion
problem for positive-definite matrices, and thus has complexity of Ω(mω1).

6.5 Case Studies

We present two case studies. One for first-order LTI agents and static gain
controllers, and one for a neural network.

6.5.1 Linear Agents and Controllers

We consider a random Erdős-Rényi graph on n = 100 agents, where each edge
exists with probability p = 0.15 independently from all other edges. Each agent
i is LTI with transfer function Gi(s) = 1

s+ai
, where ai is chosen according to a

log-uniform distribution between 1 and 100. Moreover, the controllers on each
edge are static gains, chosen log-uniformly between 0.1 and 1. The unknown
weights νe were chosen log-uniformly between 0.3 and 10.

Algorithm 4 was run. Instead of waiting for convergence, the switching
signal changed its value every 10 seconds. Moreover, instead of checking whether
Mij 6= 0, we checked whether |Mij | > 0.01 = ε, dealing with numerical issues
better. The adjacency matrix of the graph that was randomly chosen is available
in Figure 6.2(a). The algorithm correctly identified all edges that exist in the
graph G, and Figure 6.2(b) shows the absolute and relative errors calculating the
weights νe. The maximal absolute error is about 1.2× 10−8, and the maximal
relative error is about 8.9× 10−9. It should be noted that we showed that,
theoretically, Algorithm 4 should have no errors at all. The small errors in this
simulation arise due to numerical errors, as well as using the output after 10
seconds for each switch, instead of taking the theoretical steady-state value. A
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification
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(a) Adjacency matrix of the graph in
the first case study. Yellow entries are
equal to 1, and blue entries are equal
to 0.
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(b) Estimation errors of coupling
strengths, as achieved by Algorithm 4.

Figure 6.2: Network reconstruction of an LTI network.

comparison of the errors achieved for different switching times is available in
the table below:

Switching Time
(in seconds)

Maximal Absolute
Error

Maximal Relative
Error

2.5 1.7176× 10−4 1.8141× 10−4

5 1.5342× 10−7 1.6204× 10−7

10 1.1621× 10−8 8.8682× 10−9

25 3.4505× 10−9 1.6210× 10−9

Table 6.1: Network detection algorithm performance for LTI systems

6.5.2 A Neural Network

We consider a continuous neural network, as appearing in [130], on n = 50
neurons of one species. The governing ODE has the form,

V̇i = − 1

τi
Vi + bi

∑
j∼i

νi,j(tanh(Vj)− tanh(Vi)) + wi, (6.18)

where Vi is the voltage on the i-th neuron, τi > 0 is the self-correlation time of
the neurons, bi is a self-coupling coefficient, νi,j = νj,i are the coupling strengths
between pairs of neurons, and the external input wi is any other input current to
neuron i. We run the system with 50 neurons, where the correlation times were
chosen log-uniformly between 3sec and 30sec, and the self-coupling coefficient bi
were chosen log-uniformly between 1 and 5. We consider an unknown random
Erdős-Rényi graph on n = 50 agents, where each edge exists with probability
p = 0.25 independently from all other edges. Moreover, the unknown coupling
coefficients νi,j were chosen log-uniformly between 1 and 10.

169

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



6.6. CONCLUSIONS
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(a) Adjacency matrix of the graph in
the second case study. Yellow entries
are equal to 1, and blue entries are
equal to 0.
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(b) Estimation errors of coupling
strengths, as achieved by Algorithm 5.

Figure 6.3: Network reconstruction of a neural network.

Algorithm 5 was run with κ = 1× 10−3 and ε = 0.01. As with the previous
case study, instead of waiting for convergence, the switching signal changed its
value every 200 seconds. The adjacency matrix of the graph that was randomly
chosen is available in Figure 6.3(a). The algorithm correctly identified all edges
that exist in the graph G, and Figure 6.3(b) shows the absolute and relative er-
rors calculating the weights νe. The maximal absolute error is about 2.4× 10−6,
and the highest relative error is about 1.9× 10−6. The algorithm was also run
for different values of κ. A comparison of the errors achieved is available in
the table below. We also ran the algorithm with κ = 0.1, which resulted in
an erroneous reconstruction of the underlying graph - all existing edges were
identified, but a few more non-existing edges were falsely declared as a part of
the graph.

Value of κ Maximal Absolute
Error

Maximal Relative
Error

1× 10−2 6.3376× 10−6 5.0690× 10−6

3× 10−3 4.8747× 10−6 3.8989× 10−6

1× 10−3 2.3563× 10−6 1.8846× 10−6

3× 10−4 2.2407× 10−6 6.4591× 10−7

Table 6.2: Network detection algorithm performance for neural networks

6.6 Conclusions

In this chapter, we explored the problem of network reconstruction. Namely,
we studied two different problems - one regarding differentiation between net-
works with the same agents and controllers, but different subgraphs, and one
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Chapter 6. Applications of the Network Optimization Framework in Network
Identification

regarding reconstruction of the underlying network with no prior knowledge on
it, but only on the agents and the controllers. This was done by injecting pre-
scribed exogenous signals. For network differentiation, we prescribed various
methods of finding such constant exogenous signals. For network identification,
we presented a procedure operating on a networked system that allows for the
reconstruction of the underlying network by injecting a prescribed switching
signal, achieved for general maximally equilibrium-independent passive agents,
allowing for detection of the underlying network in a very general case. The
resulting algorithms for network identification had sub-cubic time complexity.
We also presented a lower bound on the complexity of any algorithm solving the
network reconstruction problem, proving that the presented algorithm is opti-
mal in sense of time complexity. We demonstrated the results in a simulation,
showing it can be applied for large networks.
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Chapter 7

Applications of the
Network Optimization
Framework in Fault
Detection and Isolation

This section is a review of [139]. We apply the network optimization framework
to study the problem of network fault detection and isolation, in which the un-
derlying graph can change throughout the run, modeling a communication fault
or a cyber attack. Our goal is to design the network controllers to either detect
the existence of a fault, or overcome it completely, depending on how serious
the fault is. This is done using graph-theoretic guarantees, and requires very
few assumptions beyond the standard ones used for the network optimization
framework.

7.1 Introduction

As we saw in previous chapters, multi-agent systems have been widely studied
in recent years, as they present both a variety of applications, as well as a deep
theoretical framework [105,107,129]. One of the deepest concerns when consid-
ering applications of multi-agent systems is communication failures, which can
drive the agents to act poorly, or fail their task altogether. These communica-
tion failures can either be accidental or planned by an adversary, and there is a
need of detecting communication faults and dealing with them in real-time for
the network to be secure.

The classical problem of fault detection can be dealt with limit checking,
signal models or process-identification methods [70]. Other approaches for deal-
ing with fault detection in multi-agent systems include more complex methods
of limit or threshold checking [39, 114, 155], mixed H∞/H2 synthesis [82], and
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7.2. PROBLEM FORMULATION AND ASSUMPTIONS

switched observer or sliding mode observer methods [91,103]. These usually re-
quire either a deep physical understanding of the system, or a state-space model.
We aim to give a fault detection scheme for a wide range of systems relying on
another concept widespread in multi-agent systems, namely passivity. Passivity
was first used to address faults by [170] for control-affine systems, although only
fault-tolerance is addressed, and no synthesis procedures are suggested. Other
works tried to expand on that idea, although only for linear systems [31,41,79],
or for specific applications, e.g. robotics [80, 97], teleoperation [98], and hy-
draulic systems [99].

We aim to use the network optimization framework in order to provide a
network fault detection scheme. We also focus on solving adversarial games
regarding communication faults. We strive to give graph-theoretic-based results,
showing that fault detection and isolation (FDI) can be done for any MEIP
multi-agent system, so long that the graph G satisfies certain conditions. We
show that if the graph G is “connected enough,” then we can solve the FDI
problem. Namely, we show that if G is 2-connected, then detecting the existence
of any number of faults is possible, and if G is r-connected with r > 2 then we
can isolate r − 2 faults.

The rest of this chapter is as follows. Section 7.2 presents the problem
formulation and the standing assumptions throughout the chapter. Section 7.3
presents the first technical tool used for building the fault detection schemes,
namely edge-indication vectors, and shows how to construct them. Section
7.4 uses edge-indication vectors to design FDI schemes, as well as strategies for
adversarial games, assuming the existence of a “convergence assertion protocol”,
a data-driven method of asserting that a given multi-agent system converges to
a conjectured limit. Section 7.5 studies these convergence assertion protocols,
prescribing two data-driven model-based approaches for such protocols. Lastly,
we present two case studies demonstrating the constructed algorithms.

7.2 Problem Formulation and Assumptions

This section presents the problem we aim to solve, and states the assumptions we
make to tackle it. We consider a diffusively-coupled network of the form NG =
(G, {Σi}i∈V, {Πe}e∈EG ), where G = (V,EG) is the interaction graph, Σi are the
agents, and Πe are the edge controllers. For any subgraph H = (V,EH) of G, we
can consider another diffusively-coupled networkNH = (H, {Σi}i∈V, {Πe}e∈EH).
We can think of NH as a faulty version of NG , in which the edge controllers
corresponding to the edges EG \ EH have malfunctioned and stopped working.
Edges can fault mid-run, but we assume that once an edge has malfunctioned,
it remains faulty for the remainder to the run. If we let G be the collection of
all nonempty subgraphs of G, then one can think of the closed-loop diffusively-
coupled system as a switched system, where the switching signal ς : [0,∞)→ G
designates the functioning edges at each time instant. The assumption that
faulty edges remain faulty throughout the run can be described using the switch-
ing signal ς. Namely, we require that the switching signal ς is monotone de-
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

scending, in the sense that for all times t1 < t2, ς(t2) is a subgraph of ς(t1).
We’ll denote the number of faulty edges at time t by ς̂(t)

Now, consider a collection of agents {Σi} and a graph G. Fix some constant
vector y? ∈ R|V|. Our goal is to design a control scheme for which the closed-loop
network will converge to the steady-state output y?. In the absence of faults, we
can solve the synthesis problem as in Theorem 4.1 and Theorem 4.3. However,
designing our controllers while ignoring faults might prevent the system from
achieving the control goal. We now formulate the problems of fault detection
and isolation:

Problem 7.1 (Network Fault Detection). Let {Σi}i∈V be a set of agents, G be
a graph, and y? be any desired steady-state output. Find a synthesis for the edge
controllers such that,

i) if no faults occur, i.e., the switching signal is ς(t) = G, ∀t, then the closed-
loop diffusively-coupled system converges to the steady-state output y?;

ii) if faults do occur, the system declares that a fault was found. More pre-
cisely, this should happen for any monotone-descending switching signal ς
such that for some time t, ς(t) 6= G.

Problem 7.2 (Network Fault Isolation). Let {Σi}i∈V be a set of agents, G
be a graph, and y? be any desired steady-state output. Given some r < |EG |,
find a synthesis for the edge controllers such that for any monotone-descending
switching signal ς such that ς̂(t) ≤ r, ∀t, the closed-loop system converges to the
steady-state output y?.

We now state the assumptions used throughout the chapter, made in order
to tackle the problem. For the remainder of the chapter, we fix the agents {Σi},
and make the following assumption:

Assumption 7.1. The agent dynamics {Σi} are MEIP, and the chosen con-
troller dynamics {Πe} are output-strictly MEIP (or vice versa). Moreover, the

relations k−1
i , γe are C1 functions. Furthermore, the derivative

dk−1
i

dyi
is positive

at any yi ∈ R.

The passivity assumption assures that all the systems NH will globally
asymptotically converge to some limit. The added smoothness assumptions, to-
gether with the positive derivative assumption, are technical assumptions that
are needed to apply tools from manifold theory that will be used later. In some
cases, we’ll need to sense the state of the system, including the state of the con-
trollers. In some cases, the control model is such that the controller state has
a physical meaning that can be measured even for non-connected agents. For
example, in the traffic control model in [8], the state ηe is the relative position of
the two vehicles. However, the controller state of some systems might not have
a physical meaning. For example, consider a collection of robots trying to syn-
chronize their positions, where the output y(t) is the position of each robot and
the edge controllers are some PI controllers. In that case, the controller state
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7.3. ASYMPTOTIC DIFFERENTIATION BETWEEN NETWORKS

η(t) has no physical meaning, and thus cannot be defined for non-connected
agents. Some of the techniques developed later require us to be able to sense
the state of the system, which also contains the state of the controllers. Thus,
we will sometimes make the following assumption:

Assumption 7.2. The controllers Πe are static nonlinearities given by the
functions ge, i.e., µe = ge(ζe). In this case, the steady-state relation γe is equal
to the function ge, and the closed-loop system is ẋ = f(x,−EGg(E>G h(x)))

In one of the methods below, we’ll want to have a clear relationship between
the measurements hi(xi) and the storage functions Si(xi). To achieve this, we
follow Proposition 5.1 and Remark 5.1 and assume that the agents are control-
affine:

Assumption 7.3. Assumption 7.2 holds, and the agents have the form ẋi =
−fi(xi)+qi(xi)ui; yi = hi(xi). In this case, the steady-state relation γe is equal
to the function ge, and the closed-loop system is governed by:

ẋi = −fi(xi) + qi(xi)
∑

e={i,j}

ge(hj(xj)− hi(xi)). (7.1)

In the next section, we’ll start heading toward a solution to the FDI prob-
lems. We do so by exhibiting a method for asymptotically differentiating be-
tween the nominal dynamical system NG and the faulty dynamical systems NH,
in a manner similar to Theorem 6.1. Later, we’ll see how this asymptotic dif-
ferentiation can induce a finite-time differentiation of the systems.

7.3 Asymptotic Differentiation Between
Networks

In this section, we develop the notion of edge-indication vectors, which will be
used for fault detection later. In Section 6.2, the notion of indication vectors was
developed. These are constant exogenous inputs used to drive the closed-loop
system, chosen appropriately to give different steady-state limits for systems
with identical agents and controllers, but different underlying graphs. The idea
of using constant exogenous inputs to drive the system into favorable steady-
state outputs was also used in Section 6.3 to give a network reconstruction
algorithm with optimal time complexity, although it considers sets of multiple
constant exogenous inputs applied in succession. Here, we opt for a slightly
different strategy.

In Chapter 6, the problem of network reconstruction was considered, in
which we cannot affect the agents, controllers, or the underlying graph. In FDI,
we are doing synthesis, so we can manipulate the controllers and (in most cases)
the underlying network. For that reason, we opt for a slightly different idea,
in which we add a constant exogenous signal to the output of the controllers,
that is, we consider u(t) = −EG(µ(t) + w). A system implementing this control
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

law is said to have the interaction protocol (Π,w). Analogously to the notion of
indication vectors, we desire that networks with identical agents and controllers,
but different underlying graphs, will be forced to converge to different steady-
state outputs. This is because we can monitor the output y of the system and
use it to detect changes in the underlying graph, i.e., network faults. For that,
we first determine what the steady-state limit is for systems (G,Σ, (Π,w)).

Proposition 7.1. Consider a diffusively-coupled system NH = (H,Σ,Π) satis-
fying Assumption 7.1. Suppose that w ∈ R|EH| is any constant signal added to
the controller output, i.e., the loop is closed as u(t) = −EH(µ(t) + w). Then y
is a steady-state output of the closed-loop system if and only if

k−1(y) + EHγ(E>Hy) = −EHw. (7.2)

Proof. Follows from Proposition 2.2, as the new steady-state relation for the
controllers is given as γ̃(ζ) = γ(ζ) + w.

In our case, the constant signal w will be in R|EG |, as we determine the
exogenous controller output on each edge of G. If one then considers the system
NH for some H ∈ G, then the exogenous controller output will be different from
w, as it will only have entries of w corresponding to edges in H. To formulate
this, take any graph H ∈ G, and let PH be the linear map R|EG | → R|EH|

removing entries corresponding to edges absent from H. In other words, this
is a R|EH|×|EG | matrix with entries in {0, 1}, whose rows are the rows of the
identity matrix Id ∈ R|EG |×|EG | corresponding to the edges of H.

We can now define the notion of edge-indication vectors.

Definition 7.1. Let (G,Σ,Π) be a closed-loop system satisfying Assumption
7.1. Let w ∈ R|EG | by any vector, and for any graph H ∈ G, we denote the
solution of (7.2) with underlying graph H and exogenous input PHw by yH.

i) The vector w is called a (G,H)-edge-indication vector if for any H′ ∈ G,
if H′ 6= H then yH 6= yH′ .

ii) The vector w is called a G-edge-indication vector if for any two graphs
H1 6= H2 in G, yH1

6= yH2
.

Note 7.1. An edge-indication vector is a bias chosen on each edge in G. This
bias can be programmed into the controllers and nodes, and need not be changed
nor computed on-line. In this light, for any w ∈ R|EG |, (7.2) transforms into

k−1(y) + EHγ(E>Hy) = −EHPHw, (7.3)

We wish to find a G-edge-indication vector for given agents and controllers,
or at least a (G,G)-edge-indication vector. As in Section 6, we use randomiza-
tion. We claim that random vectors are G-edge-indication vectors with proba-
bility 1.
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7.3. ASYMPTOTIC DIFFERENTIATION BETWEEN NETWORKS

Theorem 7.1. Let P be any absolutely continuous probability measure on R|EG |.
Let w be a vector sampled according to P. Then

P(w is a G-edge-indication vector) = 1.

Proof. From the definition, w is not a G-edge-indication vector if and only if
there are two graphs G1,G2 ∈ G such that the same vector y solves equation
(7.3) for both graphs. We show that for any G1,G2 ∈ G, the probability that
the two equations share a solution is zero.

Let n be the number of vertices in G. For each graphH ∈ G, define a function
FH : Rn × R|EG | → Rn by FH(y,w) = k−1(y) + EHγ(E>Hy) + EHPHw. The set of
steady-state exogenous input and output pairs for the system NH is given by the
set AH = {(y,w) : FH(y,w) = 0}. We note that the differential dFH always
has rank n. Indeed, it can be written as [∇k−1(y) + EH∇γ(E>Hy)E>H, EHPH],
where ∇γ(E>Hy) ∈ R|EH|×n and we note that the first matrix, of size n × n, is
positive-definite by Assumption 7.1, hence invertible.

Thus, by the implicit function theorem, AH is a manifold of dimension |EG |.
Moreover, by Assumption 7.1, for any w there is only one corresponding steady-
state output, meaning that P gives rise to an absolutely continuous probability
measure on each manifold AH. Thus, it’s enough to show that for any G1 6= G2,
the intersection AG1

∩ AG2
has dimension ≤ |EG | − 1.

To show this, we take any point (y,w) ∈ AG1
∩ AG2

. As both AG1
,AG2

are
of dimension |EG |, it’s enough to show that they do not have the same tangent
space at (y,w). The tangent space of the manifold AH is given by the kernel
of the differential dFH(y,w) : Rn × REG | → Rn, so we show that if G1 6= G2, the
kernels ker dFG1

, ker dFG2
are different at (y,w). As G1 6= G2, we can find an

edge existing in one of the graphs and not the other. Assume without loss of
generality that the edge e exists in G1 but not in G2, and let v = (0,1e), where
1e is the vector in REG | with all entries zero, except for the e-th entry, which
is equal to 1. Then v ∈ ker dFH if and only if 1e ∈ ker(EHPH). It’s clear that
1e 6∈ ker(EG1

PG1
), as PG1

1e = 1e, and thus EG1
PG1

1e = EG1
1e 6= 0. Moreover,

1e ∈ ker(EG2
PG2

), as PG2
1e = 0. Hence ker dFG1

6= ker dFG2
at (y,w). Thus

AG1
∩ AG2

is of dimension ≤ |EG | − 1, meaning that it is a zero-measure set
inside both AG1 ,AG2 .

Theorem 7.1 presents a way to choose a G-edge-indication vector, but does
not deal the control goal. One could satisfy the control goal by using Theorem
4.1 and Theorem 4.3 to solve the synthesis problem for the original graph G, but
we cannot assure we get an edge-indication vector. Note that any w ∈ ker EGPG
gives a solution of (7.3) identical to the solution for w = 0. Thus, choosing an
exogenous control input in ker EGPG does not change the steady-state output of
the system NG . However, it does change the steady-state output of all other
systems NH. This suggests to search for an edge-indication vector in ker EGPG .
We show that this is possible if G is “sufficiently connected.” We first explore
this notion of sufficient connectivity.

Proposition 7.2 (Menger’s Theorem [15]). Let G be any connected graph. The
following conditions are equivalent:
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

(a) A 2-connected graph on 8 nodes. (b) A 3-connected graph on 8 nodes.

(c) Another 3-connected graph on 8
nodes.

(d) A 4-connected graph on 12 nodes.

Figure 7.1: Examples of r-connected graphs.

i) Between every two nodes there are r vertex-disjoint simple paths.

ii) For any r − 1 vertices v1, · · · , vr−1 ∈ V, the graph G − {v1, · · · , vr−1} is
connected.

Graphs satisfying either of these conditions are called r-connected graphs.

Examples of r-connected graphs can be seen in Figure 7.1. In general, there
exists r-connected graphs on n nodes with

⌈
rn
2

⌉
edges, but not with fewer [60].

We will take special interest in 2-connected graphs. Specifically, we can state
the following theorem about edge-indication vectors in ker EGPG .

Theorem 7.2. Let P be any absolutely continuous probability distribution on
ker EHPH. Suppose that H is 2-connected. Suppose furthermore that w is a
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7.3. ASYMPTOTIC DIFFERENTIATION BETWEEN NETWORKS

vector sampled according to P. Then

P(w is a (G,H)-edge-indication vector) = 1.

We first need to state and prove a lemma:

Lemma 7.1. Let H be a 2-connected graph. Suppose we color the edges of H
in two colors, red and blue. If not all edges have the same color, then there is a
simple cycle in H with both red and blue edges.

Proof. Suppose, heading toward contradiction, that any simple cycle in H is
monochromatic. We claim that for each vertex x, all the edges touching x have
the same color. Indeed, take any vertex x, and suppose that there are two
neighbors v1, v2 of x such that the edge {x, v1} is blue and the edge {x, v2}
is red. We note that v1 → x → v2 is a path from v1 to v2, meaning there is
another path from v1 to v2 which does not pass through x . Adding both edges
to the path yields a simple cycle with edges of both colors, as {x, v1} is blue
and {x, v2} is red. Thus, each node touches edges of a single color.

Let Vred be the set of nodes touching red edges, and Vblue be the set of nodes
touching blue edges. We know that Vred and Vblue do not intersect. Moreover, if
we had an edge between Vred and Vblue, it had a color. Assume, without loss of
generality, it is blue. That would mean some vertex in Vred would touch a blue
edge, which is impossible. Thus there are no edges between Vred and Vblue. By
assumption, there is at least one edge of each color in the graph, meaning that
both sets are nonempty. Thus we decomposed the set of vertices in H to two
disjoint, disconnected sets. Thus H is disconnected, arriving at a contradiction
and completing the proof.

We can now prove Theorem 7.2.

Proof. We denote m1 = dim ker EHPH. The proof is similar to the proof of
Theorem 7.1. We again define functions FG1 for graphs G1 ∈ Gn as FG1(y,w) =
k−1(y) + EG1

γ(E>G1
y) + EG1

PG1
w, but this time we consider the function FG1

as

defined on the space ker EHPH ⊂ R|EG |. As before, we define AG1
= {(y,w :

FG1(y,w) = 0}. As before, we use the implicit function theorem to show that
AG1 are all manifolds, but their dimension this time is m1 = dim ker EHPH.
This time, we want to show that if H 6= G1, then AH ∩ AG1

is an embedded
sub-manifold of dimension ≤ m1− 1, as we want to show that (with probability
1), the solutions (7.3) with graph G1 and graph H are different. As before, it’s
enough to show that if (y,w) ∈ AG1

∩AH then the kernels ker dFG1
and ker dFH

are different at (y,w). We compute that for any graph G1,

dFG1
= [∇k−1(y) + EG1

∇γ(E>G1
y)E>G1

, (EG1
PG1

)|ker EHPH ],

where ·|ker EHPH is the restriction of the matrix to ker EHPH. Thus, if G1 is any
graph in G which is not a subgraph of H, it contains an edge e absent from H.
Following the proof of Theorem 7.1 word-by-word, noting that 1e ∈ ker EHPH,
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

we conclude that the ker dFG1 and ker dFH are different at (y,w). Thus we
restrict ourselves to non-empty subgraphs G1 of H.

For any collection E of edges in EH, we consider v = (0, 1E), where 1E is
equal to

∑
e∈E 1e. If E is a the set of edges of a cycle in H, then the vector v

lies in the kernel of dFH. We show that there is some cycle in H such that v
does not lie in the kernel of dFG1

, completing the proof.
The graph G1 defines a coloring of the graph H - edges in G1 are colored in

blue, whereas edges absent from G1 are colored in red. Because G1 is a non-
empty proper subgraph of H, this coloring contains both red and blue edges.
By the lemma, there is a simple cycle in H that touches both red and blue
edges. Let E be the set of the edges traversed by the cycle. We claim that
EG1PG11E 6= 0, which will complete the proof of the theorem. Indeed, because
the simple cycle contains both red and blue edges, we can find a vertex touching
both a red edge in the cycle and a blue edge in the cycle. We let v be the vertex,
and let e1, e2 be the corresponding blue and red edges. Recalling the cycle is
simple, these are the only cycle edges touching v. However, by the coloring, we
have that e1 is in G1, but e2 is not. Thus,

(EG1
PG1

1E)v = (EG1
)ve1(PG1

)e1e1 + (EG1
)ve2(PG1

)e2e2 = (EG1
)ve1 = ±1 6= 0,

and in particular, 1E 6∈ ker EG1PG1 .

7.4 Network Fault Detection and Isolation

In this section, we consider two applications of the developed framework, namely
fault detection and isolation, and defense strategies for adversarial games over
networks. We first present a simple algorithm for network fault detection. Then,
we’ll discuss defense strategies for adversarial games over networks, which will
require a bit more effort. Lastly, we exhibit a network fault isolation protocol,
which will be a combination of the previous two algorithms. These algorithms
will be used for case studies in Section 7.6. In order to apply the framework of
edge-indication vectors, we need an algorithm which can improve the asymptotic
differentiation we achieved in the previous section to an on-line differentiation
scheme. Thus, we make the following assumption:

Assumption 7.4. There exists an algorithm A which gets a model for a
diffusively-coupled network (G,Σ,Π) and a conjectured limit y? as input, and
takes measurements of the network in-run. The algorithm stops and declares
“no” if and only if the network does not converge to y?, and otherwise runs
indefinitely. A is called a convergence assertion algorithm.

For this section, we assume that such algorithm exists. We will discuss the
existence of such algorithm in Section 7.5.

7.4.1 Fault Detection Over Networks

The problem of fault detection and isolation has concerned engineers for a long
time. It deals with the detection of faults in a controlled plant, and overcom-
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7.4. NETWORK FAULT DETECTION AND ISOLATION

ing them by applying certain procedures. We focus on a communication fault
scenario, in which the edges from the nominal underlying graph G may fault,
resulting in a smaller underlying graph G̃, modeling communication faults be-
tween certain pairs of agents (see Problems 7.1 and 7.2). We focus on Problem
7.1 in this subsection.

To tackle the problem, we use the notion of edge-indication vectors from Sec-
tion 7.3. Suppose we have MEIP agents {Σi}. We first take any output-strictly
MEIP controllers {Πe} solving the classical synthesis problem, i.e., forcing the
closed loop system to converge to y? (see Theorem 4.1 and Theorem 4.3). As
we noted, if w ∈ R|EG | lies in the kernel of EG , then the solution of the following
equations is the same:

k−1(y) + EGγ(E>G y) = −EGPGw, k−1(y) + EGγ(E>G y) = 0.

Thus, if w lies in ker(EGPG), running the interaction protocol (Π,w) does not
change the steady-state output of the system. However, by Theorem 7.2, a
random vector in ker(EGPG) gives a (G,G)-edge-indication vector, as long as G
is 2-connected. In other words, if we use the interaction protocol (Π,w), where
w ∈ ker EGPG is chosen randomly, then, with probability 1, all faulty systems
converge to a steady-state output different from the steady-state output of the
nominal faultless system, which is y?. Applying the algorithm A allows an on-
line, finite time distinction between the nominal faultless system and its faulty
versions. We explicitly write the prescribed algorithm below:

Algorithm 6 Network Fault Detection in MEIP Multi-Agent Systems

1: Find a controller Π̃ solving the synthesis problem with graph G, agents Σ,
and control goal y? (see Theorem 4.1 and Theorem 4.3).

2: Find a basis {b1, ..., b`} for the linear space ker EGPG
3: Pick a Gaussian vector α ∈ R` and define w =

∑`
i=1 αibi

4: Define the interaction protocol as (Π̃,w).
5: Run the system with the chosen interaction protocol.
6: Implement the algorithm A for the system (G,Σ,Π) with limit y?. Declare

a fault in the network if A declares that the system does not converge to
the prescribed value.

Theorem 7.3 (Fault Detection). Suppose that n agents {Σi} and a base graph
G are given, and that {Σi} satisfy Assumption 7.1. Suppose furthermore that the
graph G is 2-connected. Then Algorithm 6 synthesizes an interaction protocol
(Π,w) solving Problem 7.1, i.e., the algorithm satisfies the following properties:

i) If no faults occur in the network, the output of the closed-loop system
converges to y?.

ii) The algorithm detects any number of network faults.
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

Proof. Follows from the discussion preceding Algorithm 6. Namely, Theorem 7.2
assures that w is a (G,G)-edge-indication vector, so long that G is 2-connected.
In other words, the output of the closed-loop system with graph G converges to
y?, and for any graph G 6= H ∈ G, the output of the closed-loop system with
graph H converges to a value different from y?. It remains to show that the
algorithm declares a fault if and only if a fault occurs. If no faults occur, then
algorithm A does not declare a fault, so the same goes for Algorithm 6.On the
contrary, suppose that any number of faults occurs in the network, and let H be
the current underlying graph. The output of the closed loop system converges
to a steady-state value y 6= y?, meaning that A eventually stops and declares
a problem, and the existence of faults is detected.

7.4.2 Multi-Agent Synthesis in the Presence of an
Adversary

Consider the following 2-player game. Both players are given the same n SISO
agents Σ1, · · · ,Σn, the same graph G on n vertices and m edges, and the same
vector y? ∈ Rn. There is also a server that can measure the state of the agents
at certain intervals, and broadcast a single message to all agents once. The
planner acts first, and designs a control scheme for the network and the server.
The adversary acts second, removing at most r edges from G. The system is
then run. The planner wins if the closed-loop system converges to y?, and the
adversary wins otherwise. Our goal is to show that the planner can always win
by using a strategy stemming from edge-indication vectors, assuming the agents
are MEIP.

Namely, consider the following strategy. We consider all possible
∑r
`=0

(
m
`

)
underlying graphs. For each graph, the planner solves the synthesis problem as
in Theorem 4.1 and Theorem 4.3. If the planner finds out the adversary changed
the underlying graph to H, he could notify the agents of that fact (through the
server), and have them run the protocol solving the synthesis problem for H.
Thus the planner needs to find a way to identify the underlying graph after the
adversary took action, without using the server’s broadcast. This can be done
by running the system with a G-edge-indication vector, and using the server to
identify the network’s steady-state. Namely, consider Algorithms 7, 9 and 8,
detailing the synthesis procedure and in-run protocol for the planner. We can
prove that they form a winning strategy for the planner.

Theorem 7.4. Consider the game above. Algorithms 7, 9 and 8 describe a
winning strategy for the planner. Moreover, if r is independent of n (i.e., r =
O(1)), the synthesis algorithm has polynomial time complexity. Otherwise, the
time complexity is O(ncr) for some universal constant c > 0. Moreover, the size
of the message broadcasted by the server is O(r log n).

Proof. Suppose that the adversary changed the underlying graph to H, which
has entry j in Graphs. We first show that the server correctly identifies the
graph. Assumption 7.4 assures that A never declare a fault if and only if the
closed-loop system converges to the conjectured steady-state. We note that w
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7.4. NETWORK FAULT DETECTION AND ISOLATION

is a G-edge-indication vector by Theorem 7.1. Thus, the instance of conver-
gence assertion protocol for SSLimits(j) never returns a fault, and the instances
for other entries in SSLimits must eventually declare a fault. Thus the server
correctly guesses the underlying graph. It then broadcasts the index j to the
agents, allowing them to change the interaction protocol and run the solution
of the synthesis problem with desired output y? and underlying graph H. Thus
the closed-loop system will converge to y?, meaning that the planner wins.

We now move to time complexity. Note that N = O(mr+1). The first
for-loop has N iterations, and in each of them there are no more than O(mn)
actions done (where we save a graph in memory by its incidence matrix, which
is of size ≤ m× n). Thus the first for-loop takes a total of O(mr+2n) time.

The second for-loop is a bit more complex. Solving the synthesis problem
for H revolves around solving an equation of the form EHv = v0 for some
known vector v0 and an unknown v. We can solve this equation using least-
squares, which takes no more than O(max{m,n}3) time. As for finding the
steady-state, it can be found by minimizing the equation (OPP), which takes a
polynomial amount of time in n,m (e.g. via gradient descent). Recalling that
m ≤

(
n
2

)
= O(n2), we conclude that if r is bounded, the total time used is

polynomial in n. Moreover, if r is unbounded, the bottleneck is the first for-
loop which takes O(mr+2n) time. Plugging m ≤ n2 gives a bound on the time
complexity of the form O(n2r+5). The complexity bound is now proven where
we note that n5 = O(n2r).

Lastly, we deal with communication complexity. The message broadcasted
by the server is a number between 1 and N . Thus, a total of O(log2N) bits
are needed to transmit the message. Plugging in N = O(mr+1) gives that the
number of bits needed is O(r log2m) = O(r log n).
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

Algorithm 7 Planner Strategy in Adversarial Multi-Agent Synthesis Game
with MEIP agents - Synthesis

1: Define N =
∑r
`=0

(
m
`

)
. Let Graphs be an array with N entries, and let

j = 1.
2: for ` = 0, · · · , r do
3: for 1 ≤ i1 < i2 < · · · < i` ≤ m do
4: Insert the graph H = G − {ei1 , · · · , ei`} to the j-th entry of Graphs.

Advance j by 1.
5: end for
6: end for
7: Define two arrays Controllers,SSLimits of length N .
8: Choose w as Gaussian random vector of length m.
9: for j = 1, · · · , N do

10: Solve the synthesis problem for agents Σ and underlying graph Graphs(j)
with affine controllers using Theorem 4.1 and Theorem 4.3. Insert the
result into Controllers(j)

11: Compute the steady-state limit of the closed-loop system with agents
Σ, underlying graph Graphs(j), and interaction protocol (Π,w), where
Πe : µe = ζe . Insert the result into SSLimits(j)

12: end for

Algorithm 8 Planner Strategy - In-Run Protocol for Server

1: Define HasFaulted as an array of zeros of size N .
2: while HasFaulted has at least two null entries do
3: Run N instances of the algorithm A simultaneously, with conjectured

steady-states from SSLimits.
4: for j = 1 to N do
5: if The j-th instance declared “no” then
6: Change the value of HasFaulted(j) to 1.
7: end if
8: end for
9: end while

10: Find an index j such that HasFaulted(j) = 0. Broadcast the message j to
the agents.

Algorithm 9 Planner Strategy - In-Run Protocol for Agents

1: Run the interaction protocol (Π,w) where the controllers Π are the static
nonlinearities µe = ζe.

2: When a message j is received, run the interaction protocol described by
Controllers(j).
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7.4. NETWORK FAULT DETECTION AND ISOLATION

7.4.3 Network Fault Isolation in Multi-Agent Systems

We now deal with the problem of fault isolation, in which we wish to deal with
faults occurring throughout the run. This time, unlike fault detection, we do
not only want to identify the existence of faults, but also overcome them and
allow the system to achieve its goal. This problem can be thought of as a
tougher hybrid of the previous two problems - in Subsection 7.4.1, the faults
could appear throughout the run, but we only needed to find out they exist. In
Subsection 7.4.2, all of the faults occur before the system starts running, but we
had to figure out a way to overcome them, not just identify them. Motivated
by this view, we can offer a hybrid solution.

Ideally, the interaction protocol will have two disjoint phases - a first, “sta-
ble” phase in which the underlying graph is known and no extra faults have
been found, and a second, “exploratory” phase in which extra faults have been
found, and the current underlying graph is not yet known. The first phase
can be solved by using the Fault Detection Algorithm 6, as long as the cur-
rent underlying graph is 2-connected. The second state can be solved by the
pre-broadcast stage of the planner strategy described in Algorithms 7, 9, and 8.

The main issue with this algorithm as it stands is what happens if the un-
derlying graph changes again once we are in the exploratory phase. Suppose we
entered the exploratory phase with underlying graph H1, but before identifying
the graph as H1, it changed to H2. Recall that in the exploratory phase, we
run an instance of A on all of the possible graphs simultaneously, continuing
until no more than one instance has yet declared a fault. If the instance related
to graph H2 has not declared a fault yet, then it will not display a fault from
now on, unless another fault occurs before the exploratory phase is done. If the
same instance has already declared a fault, then we have a problem - all other
instances will eventually also declare a fault. There are two possibilities in this
case.

The first option is that one instance will declare a fault last, meaning that
we find a time in which all but one instances have declared a fault. In this
case, we identify the graph as some H3. However, when we return to the stable
phase and run the system with interaction protocol (Π,w) corresponding to
H3, a fault will be declared and we’ll return to the exploratory phase. Indeed,
the vector w synthesized for the said interaction protocol is a (G,H3)-edge-
indication vector, meaning that the de-facto steady-state limit (with graph H2)
will be different than the conjectured steady-state limit (with graph H3), and
A will declare a fault. The second option is that the last few instances of the
convergence assertion protocol declare a fault together, reaching a stage in which
all instances have declared a fault. We deal with this situation by restarting the
exploratory phase. Thus, we get the synthesis algorithm and in-run protocol
presented in Algorithms 10 and 11. We claim that these solve the fault isolation
problem. We prove:

Theorem 7.5. Let Σ1, · · · ,Σn be agents satisfying Assumption 7.1, and let G
be a k-connected graph for k ≥ 3 on n vertices and m edges. Then algorithms
10 and 11, run with r = k − 2, can detect and isolate up to r faults.
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

Proof. We refer to steps 2 to 3 of Algorithm 11 as the stable phase of the
algorithm, and to steps 4 to 13 as the exploratory phase. We claim it’s enough
to prove the following claims:

i) If we are in the stable phase, the graph H = Graphs(j) is the current
underlying graph, and no more faults occur throughout the run, then the
closed-loop system converges to y?.

ii) If we are in the stable phase, but the graph H = Graphs(j) is not the
current underlying graph, then we will eventually move to the exploratory
phase.

iii) Each instance of the exploratory phase eventually ends.

iv) If an instance of the exploratory phase is executed after the last fault of
the run happened, it correctly identifies the current underlying graph.

We first explain why the theorem follows from these claims, and then show that
they are true. Suppose a total of ` ≤ r faults occur throughout the run. Let
T <∞ be the time at which the last fault occurs. We look at the phase of the
system at times t > T . If we arrive at the stable phase with the correct graph,
then the system converges to y? (claim 7.4.3 If we start an exploratory phase,
then it eventually ends and the stable phase starts with the correct graph (claims
7.4.3 and 7.4.3), implying the system converges to y?. If we are in the stable
phase with a wrong graph, then we eventually leave it and start an exploratory
phase (claim 7.4.3), which, as we saw, implies that the system converges to
y?. Lastly, we could be in the middle of an instance of the exploratory phase.
In that case, the instance eventually ends (claim 7.4.3), after which we either
apply a new instance of the exploratory phase, or the stable phase (either with
a correct or with an incorrect graph). In both cases, we saw that the system
converges to y?. As these are all the possible cases, the system must converges
to y?.

We now prove the claims. Note that if H can be yielded by removing no
more than r edges from G, then it is 2-connected. Indeed, if the removed edges
are e1, ..., e`, choose a vertex vi for each of them, so that H contains the graph
H1 = G − {v1, · · · , v`}. For any vertex v 6= v1, · · · , v`, because ` ≤ r and G is
(r + 2)-connected, H1 − {v} = G − {v1, · · · .v`, v} is connected. Thus H1, and
hence H, is 2-connected.

By Theorem 7.2, for each j, the vector wj from the interaction protocol
IP(j) is a (G,Graphs(j))-edge-indication vector. As all graphs achieved by
removing no more than r edges from G are non-empty, we conclude that for
every j1, j2, if the system is run with interaction protocol IP(j1), the system
with underlying graph Graphs(j1) will converge to a different value from the
system with underlying graph Graphs(j2). We thus conclude by Assumption
7.4, that claims 7.4.3 and 7.4.3 are true.
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7.4. NETWORK FAULT DETECTION AND ISOLATION

Algorithm 10 Synthesis for Network Fault Isolation

1: Define N =
∑r
`=0

(
m
`

)
. Let Graphs be an array with N entries, and let

j = 1
2: for ` = 0, · · · , r do
3: for 1 ≤ i1 < i2 < · · · < i` < m do
4: Insert the graph H = G − {ei1 , · · · , ei`} to the j-th entry of Graphs.

Advance j by 1.
5: end for
6: end for
7: Define two arrays IP,SSLimits of length N .
8: Choose w as a Gaussian random vector of length m.
9: Choose controllers {Πe}e∈E satisfying Assumption 7.1.

10: for j = 1, · · · , N do
11: Run steps 1-4 of Algorithm 6. Insert the resulting interaction protocol

into IP(j).
12: Compute the steady-state limit of the closed-loop system with the inter-

action protocol (Π,w). Insert the result into SSLimits(j)
13: end for

Algorithm 11 In-Run Protocol for Network Fault Isolation

1: Find the index j for which Graphs(j) = G.
2: Command the agents to change their interaction protocol to the one de-

scribed in IP(j). Define H = Graphs(j).
3: Run A for the closed-loop system with graph H and interaction protocol

IP(j). Only if the algorithm declares a fault, continue to step 4.
4: Define HasFaulted as an array of zeros of size N .
5: Change the agents’ interaction protocol to (Π,w).
6: while HasFaulted has at least two null entries do
7: Run N instances of the convergence assertion protocol A simultaneously,

with conjectured steady-states from SSLimits.
8: for j = 1 to N do
9: if The j-th instance has declared a fault then

10: Change the value of HasFaulted(j) to 1.
11: end if
12: end for
13: end while
14: if HasFaulted has no entries equal to zero then
15: Go to step 4.
16: end if
17: Find an index j such that HasFaulted(j) = 0. Set H = Graphs(j). Go to

step 2.
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

We now prove claims 7.4.3 and 7.4.3. By Theorem 7.1, the chosen vector
w is a G-edge-indication vector. Thus, for any two different graphs Graphs(j1)
and Graphs(j2), the steady-state output will be different. Thus, by Assumption
7.4, at least N − 1 instances of A must eventually declare a fault (as there is
only one true steady-state), even if the underlying graph changed while running
this phase. This proves claim 7.4.3. Moreover, suppose that the last fault of
the run happened before we started executing this instance of the exploratory
phase. The true underlying graph appears in Graphs, as it is achieved from
G by removing no more than r edges. If it the true underlying graph is equal
to Graphs(j), then by Assumption 7.4, the j-th instance of the convergence
assertion method will never declare a fault. Thus, the last remaining non-
zero entry of HasFaulted is the j-th, meaning that we correctly identify the
current underlying graph. This proves claim 7.4.3 and completes the proof of
the theorem.

Remark 7.1. We can use a similar protocol to isolate more complex faults. We
consider the collection of subgraphs H of G in which there is a set of vertices of
size ≤ r, so that each edge in G −H touches at least one vertex in the set. This
observation allows us to offer similar FDI algorithms for more complex types of
faults. For example, we can consider a case in which each agent communicates
with all other agents by a single transceiver, and if it faults, then all edges
touching the corresponding vertex are removed from the graph. We can even
use a hybrid fault model, in which faults correspond to certain subsets of edges
touching a common vertex are removed from the graph. For example, suppose
there are two distant groups of agents. Agents in the same group are close, and
communicate using Bluetooth communication. Agents in different groups are
farther, and communicate using Wi-Fi (or broadband cellular communication).
When an agent’s Bluetooth transceiver faults, all inter-group edges are removed,
and when the Wi-Fi transceiver faults, all intra-group edges are removed.

7.5 Online Assertion of Network Convergence

In the previous section, we used the notion of edge-indication vectors, together
with Assumption 7.4, to suggest algorithms for FDI. The goal in this section
is to propose algorithms A satisfying Assumption 7.4. This will be achieved
by using convergence estimates, relying on passivity. First, we revisit a result
from [23].

Proposition 7.3 ([23]). Let (u, y, ζ,µ) be a steady-state of (G,Σ,Π). Suppose
that the agents Σi are passive with respect to (ui, yi) with passivity index ρi ≥ 0,
and that the controllers Πe are passive with respect to (ζe,µe), with passivity
index νe ≥ 0. Let Si(xi) and We(ηe) be the agents’ and the controllers’ storage
functions. Then S(x, η) =

∑
i∈V Si(xi) +

∑
e∈EWe(ηe) is a positive-definite C1-

function, which nulls only at the steady-states (x,η) corresponding to (ui, yI)
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7.5. ONLINE ASSERTION OF NETWORK CONVERGENCE

and (ζe,µe), and satisfying the inequality:

dS

dt
≤ −

∑
i∈V

ρi(yi(t)− yi)
2 −

∑
e∈E

νe(µe(t)− µe)
2. (7.4)

Proof. The proof follows immediately from Si,We being positive-definite C1-
functions nulling only at xi,ηe, from summing the following inequalities:

dSi
dt
≤ (ui(t)− ui)(yi(t)− yi)− ρi(yi(t)− yi)

2

dWe

dt
≤ (µe(t)− µe)(ζe(t)− ζe)− νe(µe(t)− µe)

2,

and using the equality (u(t) − u)>(y(t) − y) = −(µ(t) − µ)>E>(y(t) − y) =
−(µ(t)− µ)(ζ(t)− ζ).

The inequality (7.4) can be thought of as a way to check that the system is
functioning properly. Indeed, we can monitor x, y, η, and µ, and check that the
inequality holds. If it doesn’t, there must have been a fault in the system. This
idea has a few drawbacks, linked to one another. First, as we commented in
Section 7.2, in some networks, the controller state ηe(t) can be defined only for
existing edges, so using η(t) requires us to know the functioning edges, which is
absurd. Thus, in some cases, we must use Assumption 7.2. Second, in practice,
even if we have access to x, we cannot measure it continuously. Instead, we
measure it at certain time intervals. One can adapt (7.4) to an equivalent
integral form:

S(x(tk+1), η(tk+1))− S(x(tk), η(tk)) ≤ −
∫ tk+1

tk

(
∑
i∈V

ρi∆yi(t)
2 +

∑
e∈E

νe∆µe(t)2)dt,

(7.5)

where ∆yi = yi(t) − yi and ∆µe = µe(t) − µe. However, this gives rise to
the third problem - unlike the function S, we can’t assure that the functions
(yi(t) − yi)

2 and (µe(t) − µe)
2 (or their sum) is monotone. Thus, we cannot

correctly estimate the integral appearing on the right-hand side of the inequality.

We present two approaches to address this problem. First, we try and esti-
mate the integral using high-rate sampling, by linearizing the right hand side of
(7.5) and bounding the error. Second, we try to bound the right-hand side as
a function of S, resulting in an inequality of the form Ṡ ≤ −F(S), which will
give a convergence estimate.

7.5.1 Asserting Convergence Using High-Rate Sampling

Consider the inequality (7.5), and suppose tk+1− tk = ∆tk is very small. Thus,
the functions yi(t)− yi and µe(t)− µe are roughly constant in the time period
used for the integral. More precisely, recalling that y = h(x) and µ = φ(η, E>y),
and assuming these functions are differentiable near x(tk), η(tk), we expand the
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

right-hand side of (7.5) to a Taylor series,∫ tk+1

tk

(∑
i∈V

ρi∆yi(t)
2 +

∑
e∈E

νe∆µe(t)
2

)
dt = (7.6)(∑

i∈V
ρi∆yi(tk)2 +

∑
e∈E

νe∆µe(tk)2

)
∆tk +O(∆t2k).

We wish to give a more explicit bound on the O(∆t2k) term. We consider
the following function G, defined on the interval [tk, tk+1] by the formula

G(t) =
∑
i

ρi(yi(t)− yi)
2 +

∑
e

(µe(t)− µe)
2. (7.7)

The equation (7.6) is achieved from the approximation G(t) = G(tk)+O(|t−tk|)
which is true for differentiable functions. Using Lagrange’s mean value theorem
for t ∈ [tk, tk+1], we find some point s ∈ (t, tk+1) such that G(t) = G(tk) +
dG
dt (s)(t − tk). If we manage to bound the time derivative dG

dt in the interval
[tk, tk+1], we’ll be able to find a computational way to assert convergence. By
the chain rule, the time derivative of G is given by

dG

dt
=
∑
i∈V

ρi(yi(t)− yi)ẏi +
∑
e∈E

νe(µe(t)− µe)µ̇e. (7.8)

In order to compute the time derivative of yi, µi, we recall that both are functions
of x and η, namely y = h(x) and µ = φ(η, E>y) = φ(η, E>h(x)). Thus, we have
that {

ẏ = ∇xh(x(t))ẋ

µ̇ = ∇ηφ(η(t), ζ(t))η̇ +∇xφ(η(t), ζ(t))E>∇h(x(t))ẋ,
(7.9)

where ζ(t) = E>h(x(t)), ẋ = f(x, u) = f(x,−Eφ(η, ζ)), and η̇ = ψ(η, ζ) =
ψ(η, E>h(x)).

Thus we can write the time derivative of G as a continuous function of
x(t), η(t), as we plug the expressions for ẏ, µ̇ into (7.8). However, we do not
know the value of x(t), η(t) between measurements.

To tackle this problem, we provide a bound for dG/dt. We do this by
noticing that we have some information on where x(t), η(t) can lie. Namely,
we have equation (7.4), showing that S(x(t), η(t)) is a monotone descending
function. Thus, we know that x(t), η(t) lies in the set B = {(x, η) : S(x, η) ≤
S(x(tk), η(tk))}. More precisely, we can show the following.

Proposition 7.4. Assume the functions hi, fi, φe, ψe are all continuously dif-
ferentiable. Then for any time t ∈ [tk, tk+1], the following inequality holds:∣∣∣∣dGdt (t)

∣∣∣∣ ≤ (ρ?M∆yMẏ + ν?M∆µMµ̇,x)Mẋ + ν?M∆µMµ̇,ηMη̇,
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7.5. ONLINE ASSERTION OF NETWORK CONVERGENCE

where

Mẋ = max
(x,η)∈B

‖f(x,−EGφ(η, E>G h(x))‖,

Mη̇ = max
(x,η)∈B

‖ψ(η, E>G h(x))‖,

Mδy = max
(x,η)∈B

‖h(x)− h(x)‖,

Mδµ = max
(x,η)∈B

‖ψ((η, E>G h(x))− µ‖,

Mẏ = max
(x,η)∈B

‖∇xh(x)‖,

Mµ̇,x = max
(x,η)∈B

‖∇ζφ(η, E>G h(x))E>G ∇xh(x)‖,

Mµ̇,η = max
(x,η)∈B

‖∇ηφ(η, E>G h(x))‖,

ρ? = maxi ρi, νe = maxe νe, and B = {(x, η) : S(x, η) ≤ S(x(tk), η(tk))}.

Proof. We fix some t ∈ [tk, tk+1], so that (x(t), η(t)) ∈ B. We use the expressions
for ẋ, η̇, ẏ, µ̇ found in (7.9). First, the conditions ‖ẋ‖ ≤ Mẋ and ‖η̇‖ ≤ Mη̇

are obvious. Equation (7.9) shows that ‖ẏ‖ ≤ MẏMẋ and ‖µ̇‖ ≤ Mµ̇,xMẋ +

Mµ̇,ηMη̇. Thus, by using Cauchy-Schwartz inequality on (7.8), we obtain

∣∣∣∣dGdt ∣∣∣∣ ≤
ρ?Mδy‖ẏ‖+ ν?Mδµ‖µ̇‖, concluding the proof.

Remark 7.2. Suppose that Assumption 7.3 holds, so that the agents are given
by ẋi = −fi(xi)+qi(xi)ui; yi = hi(xi) and the controllers are given by µ = g(ζ).
In that case, ẋ = −f(x)+u = −f(x)−EGg(E>G x) and µ = g(E>h(x)), so we can
get a slightly more comprehensive bound by applying the same analysis. Namely,∣∣∣∣dGdt (t)

∣∣∣∣ ≤ (ρ?MδyMẏ + ν?MδµMµ̇)(MqMu +Mf )

where

Mu = max
x∈B
||EGg(E>G h(x))||,

Mf = max
x∈B
||f(x)||,

Mq = max
x∈B

max
i∈V
|qi(x)|,

Mδy = max
x∈B
||h(x)− h(x)||,

Mδµ = max
x∈B
||g(E>G h(x))− g(E>G h(x))||,

Mẏ = max
x∈B
||∇h(x)||,

Mµ̇ = max
x∈B
||∇g(E>G h(x))E>G ∇h(x)||,

, ρ? = maxi ρi, νe = maxe νe, and B = {x : S(x) ≤ S(x(tk))}.
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

Corollary 7.1. Fix any two times tk < tk+1, and consider the notation of
Proposition 7.4. Then the following inequality holds:

S(x(tk+1))− S(x(tk)) ≤ −

(∑
i

ρi∆yi(tk)2 +
∑
e∈E

νe∆µe(tk)2

)
∆tk +

M

2
∆t2k,

(7.10)

where

M = (ρ?M∆yMẏ + ν?M∆µMµ̇,x)Mẋ + ν?M∆µMµ̇,ηMη̇.

Proof. Recall that G(t) =
∑
i∈V ρi(yi(t) − yi)

2 +
∑
e∈E νe(µe(t) − µe)

2. By
Proposition 7.4, for every t ∈ [tk, tk+1] we have G(t) ≤ G(tk+1) + M |t − tk+1|.
Thus (7.5) implies that S(x(tk+1))− S(x(tk)) ≤ G(tk+1)∆tk + M

2 ∆t2k.

The proposes a mathematically-sound method for asserting convergence of
the output y(t) to y. One samples the y(t), x(t), η(t), and µ(t) at times
t1, t2, t3, . . .. At every time instance tk+1, one checks that the inequality (7.10)
holds. We show that when ∆tk → 0, this method asserts that the output of the
system converges to the said value. In other words, assuming we sample the
system at a high-enough rate, we can assert that it converges very closely to the
supposed steady-state output. Indeed, we prove the following.

Proposition 7.5. Let t1, t2, · · · , be any monotone sequence of times such that
tk → ∞, and suppose that the inequality (7.10) holds for any k. Then for
any ε > 0, there are infinitely many N > 0 such that

∑
i∈V ρi∆yi(tN )2 +∑

e∈E νe∆µe(tN )2 < M
2 ∆tN +ε. More precisely, for any two times tN1 ≤ tN2 , if

tN2 ≥ tN1 +ε−1S(x(tN1), η(tN1)), then there exists some k ∈ {N1, N1+1, · · ·N2}
such that

∑
i∈V ρi∆yi(tk)2 +

∑
e∈E νe∆µe(tk)2 < M

2 ∆tk + ε.

The proposition can be thought of as a close-convergence estimate. The left-
hand side, viewed as a function of x, η, is a non-negative smooth function, which
nulls only at the steady-state (x,η). Thus it is small only when x(t), η(t) are
close to (x,η), and because we know that S(x(t), η(t)) is monotone descending,
once the trajectory arrives near (x,η), it must remain near (x,η). One might
ask why “infinitely many times” is more useful in this case. Indeed, it does
not add any more information if the time intervals ∆tk are taken as a constant
(i.e., we sample the system at a constant rate). However, we can measure the
system at an ever-increasing rate, at least theoretically. Taking ∆tk → 0 (while
still having tk → ∞, e.g. tk = 1/k), we see that we must have x(t) → x and
η(t) → η, meaning we can use the proposition to assert convergence. We now
prove the proposition.

Proof. It’s enough to show that for each ε > 0 and any N1 > 0, there’s some
N > N1 such that

∑
i∈V ρi∆yi(tN )2 +

∑
e∈E νe∆µe(tN )2 < M

2 ∆tN + ε. Indeed,
suppose that this is not the case. Then for any k > N1, the right-hand side of
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7.5. ONLINE ASSERTION OF NETWORK CONVERGENCE

(7.10) is upper-bounded by −ε∆tk. Thus we can sum the telescopic series and
show that for any k > N1,

S(x(tk))− S(x(tN1)) ≤ −
k∑

j=N1+1

ε∆tj = −ε(tk − tN1), (7.11)

meaning that as k → ∞, we get that S(x(tk), η(tk)) → −∞. This is absurd,
as S ≥ 0. Thus there must exist some N > N1 such that

∑
i∈V ρi∆yi(tN )2 +∑

e∈E νe∆µe(tN )2 < M
2 ∆tN + ε. The second part of the proposition follows

from (7.11) and the demand that S(x(tk)) ≥ 0.

Proposition 7.5 can be used for convergence assertion. We can consider the
following scheme - begin at time t0 and state x0, η0. We want to show that
S(x(t), η(t)) → 0. We instead show that G(t), defined in (7.7), gets arbitrarily
close to 0. As we said, this is enough as G(t) is a C1 non-negative function of
the state x(t), η(t) that is only small when x(t), η(t) is close to the steady-state
(x,η). We prove:

Theorem 7.6. Consider the algorithm A , defined in the following form. Sam-
ple the system at times t1, t2, · · · , and check whether the inequality (7.10) holds.
If it does, continue, and if does not, the stop and declare “no.” Then there exists
a sequence t1, t2, · · · , depending on the system and the initial conditions, such
that A satisfies Assumption 7.4.

Proof. By the discussion above, and the fact that S(x(t), η(t)) is a monotone
descending function, it’s enough to show that lim infk→∞G(tk) = 0. We present
the following method of choosing t1, t2, · · · . We first choose t0 = 0, an arbitrary
δ1 > 0, compute M as in Proposition 7.4, and choose ∆1t = δ1

M and ε = δ1
2 .

Sample the system at rate ∆1t until time tN1
> t0 + ε−1(S(x0, η0)). Now define

δ2 = δ1/2 and repeat the process above. We claim that A , with this choice
of sample times, satisfies Assumption 7.4. If the diffusively-coupled network
(G,Σ,Π) converges to (x,η), then Corollary 7.1 implies that the algorithm never
stops, as required. It remains to show that if the algorithm never stops, then
the system (G,Σ,Π) converges to the conjectured limit. Indeed, we first show
at some point, G(t) < δ1. By choice of ∆1t, if the inequality (7.10) holds at
each time, then when we reach time tN1

, we know that at some point, we had
G(t) ≤ M

2 ∆t + ε = δ1. Reiterating shows that at some times t?k, G(t?k) ≤ δk,

where δk = δ1
2k

, so lim infk→∞G(tk) = 0.

The term “High-Rate Sampling” comes from the fact that if M is not up-
dated when we re-iterate with smaller δ, then eventually, tk+1−tk → 0, which is
impractical in real-world cases. However, we note that the number M decreases
as S(x(t), η(t)) decreases, as shown in Proposition 7.4. Thus, if M is updated
between iterations, we might have ∆t 6→ 0.

Remark 7.3. There is a trade-off between the time-steps ∆t and the time it

takes to find a point in which G(t) < M
2 ∆tN+ε, which is t = S(x(0),η(0))

ε . On one
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

hand, we want larger time-steps (to avoid high-rate sampling) and shorter over-
all times, however, increasing both ∆t and ε creates a worse eventual bound on
G(t). We can choose both by maximizing an appropriate cost function C(∆t, ε),
monotone in both ∆t and ε, subject to M

2 ∆t+ ε = δ1, ε ≥ 0,∆t ≥ 0. Choosing
C(∆t, ε) as linear is inadvisable, as the maximizing a linear function with linear
constraints always leads to the optimizer being on the boundary, which means
either ∆t = 0 or ε = 0. The choice ∆t = δ1

M and ε = δ1
2 mentioned above corre-

sponds to the geometric average cost function C(∆t, ε) =
√

∆tε. Other choices
of C can express practical constraints, e.g. relative apathy to large convergence
times relative to high-rate sampling should result in a cost function penalizing
small values of ∆t more harshly than small values of ε.

7.5.2 Asserting Convergence Using Convergence Profiles

For this subsection, we now assume that Assumption 7.3 holds and that the
agents are output-strictly MEIP, i.e., that ρi > 0. Consider (7.4) and suppose
there is a non-negative monotone function F such that for any t, the right-hand
side of (7.4) is bounded from above by −F(S). In that case, we get an estimate
of the form Ṡ ≤ −F(S). This is a weaker estimate than (7.4), but it has a more
appealing discrete-time form,

S(x(tk+1))− S(x(tk)) ≤ −
∫ tk+1

tk

F(S(x(t)))dt ≤ −F(S(x(tk+1))) · (tk+1 − tk),

(7.12)

where we use the monotonicity of F and the fact that S(x(t)) is monotone non-
ascending. Recalling that S is a sum of the functions Si(xi), due to Assumption
7.3, we focus on the elements of the right-hand side of (7.4) corresponding to
the agents, and neglect the ones corresponding to controllers. As the controllers
are passive, we have νe ≥ 0, so removing the said term does not change the
inequality’s validity.

In order to find F , it’s natural to look for functions Ωi satisfying Ωi(Si) ≤
(yi(t)−yi)

2. We define the existence of the functions Ωi properly in the following
definition.

Definition 7.2. Let Ω : [0,∞) → [0,∞) be any function on the non-negative
real numbers. We say that an autonomous system has the convergence profile
(ρ,Ω) with respect to the steady-state (u, y) if there exists a C1 storage function
S(x) such that the following inequalities hold:

i) dS(x(t))
dt ≤ (u(t)− u)(y(t)− y)− ρ(y(t)− y)2,

ii) Ω(S(x(t))) ≤ (y(t)− y)2.

Example 7.1. Consider the SISO system Σ defined by ẋ = −x + u, y =
x, and consider the steady-state input-output pair (0, 0). The storage function
S(x(t)) = 1

2x(t)2 satisfies

Ṡ(x(t)) =x(t)ẋ(t) = (u(t)− 0)(y(t)− 0)− (y(t)− 0)2.
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7.5. ONLINE ASSERTION OF NETWORK CONVERGENCE

Thus Σ has convergence profile (1,Ω) for Ω(θ) = 1
2θ.

More generally, when considering an LTI system with no input-feedthrough,
both functions S(x) and (y(t)−y)2 are quadratic in x. Thus there is a monotone
linear function Ω such that the inequality Ω(S(x(t)) ≤ (y(t) − y)2 holds. In
particular, the function Ω exists in this case. We can show that the functions
Ω exist for general cases.

Theorem 7.7. Let Σ be the SISO system of the form ẋ = −f(x) + q(x)u, y =
h(x). Suppose q is a positive continuous function, that f/q is C1 and mono-
tone ascending and that h is C1 and strictly monotone ascending. Let (u =
f(x)/q(x), y = h(x)) be any steady-state input-output pair of the system. Then

i) using the storage function S(x) =
∫ x

x
h(σ)−h(x)

q(σ) dσ, the system Σ has the

convergence profile (ρ,Ω) for a strictly ascending function Ω and ρ =

infx
f(x)−f(x)
h(x)−h(x) ≥ 0;

ii) suppose there exists some α > 0 such that the limit limx→x
|h(x)−h(x)|
|x−x|α

exists and is finite. Then the limit limθ→0
Ω(θ)
θβ

exists and is finite, where

β = 2α
α+1 .In other words, if h behaves like a power law near x, then Ω

behaves like a power law near 0.

Proof. We build the function Ω in the following way. For every θ ≥ 0, we
define the set Aθ = {x ∈ R : (h(x) − h(x))2 ≤ θ}. We want that x ∈ Aθ
would imply that Ω(S(x)) ≤ θ. Because h is continuous and monotone, it’s
clear that Aθ is an interval containing x. Now, let ω be the function on [0,∞)
defined as ω(θ) = supx∈Aθ S(x). We note that ω can take infinite values (e.g.
when h is bounded, but S is not). However, we show that the restriction of
ω on {θ : ω(θ) < ∞} is strictly monotone. If we show that this claim is
true, then ω has an inverse function which is also strictly monotone. Define
Ω = ω−1 as the strictly monotone inverse function. By definition, for any
x ∈ R we have that x ∈ Aθ for θ = (h(x) − h(x))2, so S(x) ≤ ω(θ). Thus
Ω(S(x)) ≤ Ω(ω(θ)) = θ = (h(x)− h(x))2, concluding the first part of the proof.

We now prove that the restriction of ω on {θ : ω(θ) < ∞} is strictly
monotone. It’s clear that if 0 ≤ θ1 < θ2 then the interval {x : (h(x)− h(x))2 ≤
θ1} = Aθ1 is strictly contained in the interval {x : (h(x)−h(x))2 ≤ θ2} = Aθ2 , as
h is strictly monotone. Moreover, It’s clear that S is strictly ascending in [x,∞)

and strictly descending in (−∞, x], as the function h(x)−h(x)
g(x) is positive on (x,∞)

and negative on (−∞, x). Thus we have ω(θ1) < ω(θ2), unless ω(θ1) =∞, which
is what we wanted to prove.

We now move to the second part of theorem, in which we show that if h
behaves like a power law near x, then Ω behaves like a power law near zero. We
use big-O notation (in the limit x→ x). By assumption and strict monotonicity
of h, we have:

h(x)− h(x) = Csgn(x− x)|x− x|α + o(|x− x|α), (7.13)
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

for some constant C > 0, implying

(h(x)− h(x))2 = C2|x− x|2α + o(|x− x|2α).

By definition, we conclude that for θ > 0 small enough, Aθ is an interval centered

at x and has radius θ1/2α/C1/α+o(θ1/2α). We recall that S(x) =
∫ x

x
h(σ)−h(x)

q(σ) dσ.

We write q(x) = q(x)+o(1) as q is continuous, so (7.13) implies that h(σ)−h(x)
q(σ) =

1
q(x) (Csgn(x− x)|x− x|α + o(|x− x|α)). We conclude that S(x) = C

q(x)(α+1) |x−
x|α+1 + o(|x − x|α+1). We can now compute ω(θ) by definition, using our
characterization of Aθ. We get:

ω(θ) = max
x∈Aθ

S(x) = max
x∈Aθ

(
C

q(x)(α+ 1)
|x− x|α+1 + o(|x− x|α+1)

)
=

C

q(x)(α+ 1)

(
θ

1
2α

C1/α

)α+1

+ o((θ
1

2α )α+1) = (D + o(1))θ
α+1
2α

for D = 1
q(x)(α+1)C1/α > 0. Thus, the inverse function Ω(θ) is given as Ω(θ) =

(D−
2α

1+α − o(1))θ
2α

1+α , as plugging this expression gives ω(Ω(θ)) = θ. This com-
pletes the proof.

Example 7.2. Consider a system with g(x) = 1, h(x) = 3
√
x and a steady

state u = x = y = 0. h(x) behaves like a power law with power α = 1
3 . Part

7.7 of Theorem 7.7 implies that Ω also behaves like a power law, with power
β = 2α

α+1 = 1
2 . We exemplify the computation of Ω as done in the proof, and

show it behaves like a power law with β = 1
2 , as forecasted by the theorem.

Indeed, we have S(x) =
∫ x

0
3
√
σdσ = 3

4x
4/3, and (h(x) − h(x))2 = x2/3. For

every θ ≥ 0, we have Aθ = {x : x2/3 ≤ θ} = [−θ1.5, θ1.5]. Thus

ω(θ) = sup
x∈Aθ

S(x) = sup
|x|≤θ1.5

3

4
x4/3 =

3

4
(θ1.5)4/3 =

3

4
θ2,

implying that Ω, the inverse function of ω, is given by
√

4
3θ, and one observes

that actually (h(x)− h(x))2 = Ω(S(x)).

Remark 7.4. Theorem 7.7 gives a prescription to design the function Ω. How-
ever, some steps, namely the inversion of ω, are computationally hard. For
example, if h(x) = 1− e−x and g(x) = 1, then ω(θ) = loge

1
1−
√
θ
−
√
θ for θ < 1

and ω(θ) = ∞ for θ ≥ 1, which is almost impossible to invert analytically. To
solve this problem, we can either precompute the different values of Ω numeri-
cally and store them in a table, or approximate them on-line using the bisection
method. The strength of Theorem 7.7 is that it shows that a function Ω can
always be found, implying this method is always applicable.

Up until now, we managed to transform the equation (7.5) to the equation
dS
dt ≤

∑
i−ρiΩi(Si), for some non-negative monotone functions Ωi. This is
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7.5. ONLINE ASSERTION OF NETWORK CONVERGENCE

closer to an inequality of the form Ṡ ≤ −F(S), but we still cannot use it
without high-rate sampling, as we cannot assume that Si(xi(t)) are monotone
decreasing. We want to transform the right hand side into a function of S. We
note that Ωi(θi) = 0 only at θi = 0, as Si = 0 happens only at xi. We claim the
following:

Proposition 7.6. Let ρ1, ..., ρn be any positive numbers, and let Ω1, ...,Ωn :
[0,∞)→ [0,∞) be any C1 strictly monotone functions such that Ωi(θi) = 0 only
at θi = 0. Suppose further that for any i there exists some βi > 0 such that

the limit limθi→0
Ωi(θi)

θ
βi
i

exists and is positive. Define Ω? : [0,∞) → [0,∞) as

Ω?(θ) = mini Ωi(θ). Then for every D > 0, there exists some constant C > 0
such that for all D ≥ θ1, · · · , θn ≥ 0, we have

∑n
i=1 ρiΩi(θi) ≥ C ·Ω?(

∑n
i=1 θi).

Proof. Without loss of generality, we assume that Ωi = Ω? for all i. Indeed,
we note that

∑n
i=1 ρiΩ?(θi) ≥ CΩ?(

∑n
i=1 θi) implies the desired inequality.

We also assume that ρi = 1 for all i, as
∑
i Ωi(θi) ≥ C · Ω?(

∑
i θi) implies∑

i ρiΩi(θi) ≥ C mini ρi · Ω?(
∑
i θi). Define F : [0, D]n\{0} → R as

F (θ1, · · · , θn) =

∑n
i=1 Ω?(θi)

Ω?(
∑n
i=1 θi)

,

where the claim is equivalent to F being bounded from below. For any r > 0,
F is continuous on the compact set [0, D]n\{x : ||x|| > r}, so its minimum
is obtained at some point. As F does not vanish on the set, the minimum is
positive, so F is bounded from below on that set by a constant greater than zero.
It remains to show that limθ1,··· ,θn→0 inf F (θ1, · · · , θn) > 0. Let β = maxi βi, so

that limθ→0
Ω?(θ)
θβ

> 0. Then

F (θ1, · · · , θn) =

∑n
i=1 Ω?(θi)

Ω?(
∑n
i=1 θi)

=

∑n
i=1 Ω?(θi)

(
∑n
i=1 θi)

β
·

(
∑n
i=1 θi)

β

Ω?(
∑n
i=1 θi)

.

We want to bound both factors from below when θ1, · · · , θn → 0. It’s clear that
the second factor is equal to 1

limθ→0
Ω?(θ)

θβ

, which is a positive real number by

assumption. As for the first factor, we can bound it as

lim
θ1···θn→0

∑n
i=1 Ω?(θi)

(
∑n
i=1 θi)

β
≥ lim
θ1···θn→0

Ω?(maxi θi)

(nmaxi θi)β
> 0

as
∑n
i=1 θi ≤ nmaxi θi and

∑
i Ω?(θi) ≥ Ω?(maxi θi) by monotonicity of Ω?.

This completes the proof.

Corollary 7.2. Let S1, ..., Sn be the storage functions of the agents, let S =∑
i Si, and let Ω1, · · · ,Ωn be C1 strictly monotone functions such that Ωi(θi) = 0

only at θi = 0. Suppose that for any i there exists some βi > 0 such that the limit

limθi→0
Ωi(θi)

θ
βi
i

exists and is positive. Moreover, Suppose that Ṡ ≤
∑
i ρiΩi(Si).

Then for every bounded set B ⊂ Rn there exists a constant C > 0 such that for
any trajectory of the closed-loop system with initial condition in B, the inequality
Ṡ ≤ −C · Ω?(S) holds, where Ω?(θ) = mini Ωi(θ).
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

Proof. Use θi = Si and D = S(x(0)) in Proposition 7.6.

Proposition 7.6 and Corollary 7.2 show that an inequality of the form (7.12)
can be achieved, so long that the functions Ωi from Theorem 7.7 “behave nicely”
around 0, namely don’t grow faster nor slower than a power law. This condi-
tion is very general, and only excludes pathologies as Ω(θ) = 1

log(1/θ) , growing

faster than any power law, and Ω(θ) = exp(−1/θ2), growing slower than any
power law. Note that Theorem 7.7 shows that if h behaves like a power law
near x, then so does Ω, so pathological functions Ω? can only come from patho-
logical measurement functions hi. We show it’s enough to check the discretized
equation (7.12) to assert convergence.

Proposition 7.7. Let Ω? : [0,∞) → [0,∞) be any continuous function such
that Ω?(θ) = 0 only at θ = 0. Let S̃(t) be any time-dependent monotone decreas-
ing function S̃ : [0,∞) → [0,∞). Let t1, t2, t3, · · · be any unbounded sequence
of times such that liminfk→∞(tk+1 − tk) > 0, and suppose that for every k, the
inequality S̃(tk+1)− S̃(tk) ≤ −Ω?(S̃(tk+1))(tk+1 − tk) holds. Then S̃(t)→ 0 as
t→∞.

Proof. By assumption S̃(tk) is monotone decreasing and bounded from below,
as S̃(tk) ≥ 0. Thus it converges to some value, denoted S̃∞. Using S̃(tk+1) −
S̃(tk) ≤ −Ω?(S̃(tk+1))(tk+1 − tk) and taking k → ∞ gives that 0 ≤ −Ω?(S̃∞).
However, Ω? is non-negative, so we must have Ω?(S̃∞) = 0, and thus S∞ = 0,
meaning that S̃(tk) → 0. By monotonicity of S̃, we conclude that S̃(t) → 0 as
t→∞.

We want to use S̃(t) = S(x(t)). The results above suggest an algorithm for
convergence assertion.

Algorithm 12 Convergence Assertion using Convergence Profile

Input: A diffusively-coupled system (G,Σ,Π), an initial condition x(0) and a
conjectured steady-state x̂.

1: Define Si(xi) =
∫ xi

x̂i

hi(σi)−hi(x̂i)
q(σi)

dσi
2: Let S(x) =

∑
i∈V Si(xi).

3: Use Theorem 7.7, Proposition 7.6 and Corollary 7.2 to find a function Ω
such that Ṡ ≤ −Ω(S) for all times t, with initial condition x(0).

4: Choose δ0 = S(x(0)) and t0 = 0
5: for k = 1, 2, 3, · · · do
6: Define δk = δk−1/2.;
7: Define M = minx: S(x)≥δk Ω(S(x))

8: Take some tk > tk−1 + S(x0)
M

9: Sample the system at time tk+1.
10: if S(x(tk+1))− S(x(tk)) 6≤ −Ω(S(x(tk+1)))(tk+1 − tk) then
11: Stop and return “no”;
12: end if
13: end for
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7.6. CASE STUDIES

Theorem 7.8. Algorithm 12, taking the system (G,Σ,Π), the initial state x(0),
and the conjectured steady-state x̂ = h−1(y) as input, satisfies Assumption 7.4.

Proof. We denote the true limit of the system (G,Σ,Π) by x. We first assume
that the algorithm never stops, and show that x̂ = x . We show that S(x(tk)) ≤
δk, which would suffice as δk → 0 and S(t) → 0 implies that x(t) → x̂, and
thus x = x̂. Suppose, heading toward contradiction, that S(x(tk)) 6≤ δk. Then
Ω(S(x(tk))) ≥M , meaning that the right-hand side of the checked inequality is
larger than −S(x(tk)). Thus, if the inequality holds then S(x(tk+1)) < 0, which
is absurd. Thus S(x(tk)) ≤ δk, and x̂ = x. On the contrary, if the conjectured
limit x̂ is the true limit of the network, then Theorem 7.7, Proposition 7.6 and
Corollary 7.2 show that S(x(tk+1)) − S(x(tk)) ≤ −Ω(S(x(tk+1)))(x(tk+1) −
x(tk)) always holds, so the algorithm never stops, as expected.

Remark 7.5. Although we can prove convergence with this method using very
seldom measurements, we should still sample the system at a reasonable rate.
This is because we want to detect faults as soon as possible. If we sample the
system in too large intervals, we won’t be able to sense a fault until a large
amount of time has passed.

We conclude this section with a short discussion about the perks and draw-
backs of the two presented convergence assertion methods. The convergence
profile method allows the designer to sample the system at any desired rate,
allowing one to prove convergence using very seldom measurements. Moreover,
it gives certain rate of convergence guarantees before running the system. On
the contrary, the high-rate sampling method can require a long time to assert
convergence to a δ-ball around the desired steady-state, unless one is willing to
increase the sampling rate, perhaps arbitrarily. However, it’s main upshot over
the convergence profile method is that we need not assume that Assumption 7.3
holds, and that the method is computationally easier, as one can avoid function
inversion which is needed to compute the function Ω.

7.6 Case Studies

We consider two case studies. First, we apply our FDI scheme for a network
of LTI systems. Second, we apply the FDI scheme for a network of velocity-
coordinating vehicles.

7.6.1 Network FDI for LTI First Order Systems

We consider a network satisfying Assumptions 7.1 and 7.3, where the agents
are first order systems of the form Gi(s) = 1

τis+1 with correlation times τi > 0,
the edge controllers are static gains of the form µe = beζe, and the interaction
graph G is as described by Figure 7.2(a). We note the graph G is 4-connected [19,
Graph ID = 32659]. The parameters τi were chosen as log-uniformly between
0.1 and 10, and the parameters be were chosen log-uniformly between 0.1 and
10.
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

We wish to solve the synthesis problem, augmenting the control protocol
so that the closed-loop system converges to y? = [0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2]>,
allowing up to 2 edges to fault. We run our FDI protocol, where we implement
the profile-based convergence assertion scheme, and sample the system at 2Hz
(i.e., a modified version of Algorithm 12). We consider four scenarios. Each
scenario 100 seconds long.

i) A faultless scenario

ii) At time t = 20sec, the edge {3, 8} faults, and at time t = 50sec, the edge
{1, 11} faults.

iii) At time t = 20sec, the edge {3, 8} faults, and at time t = 21sec, the edge
{1, 11} faults.

iv) At time t = 1sec, the edge {3, 8} faults, and at time t = 4sec, the edge
{1, 11} faults.

The first scenario tests the nominal behavior of the protocol. The second tests
its ability to handle single faults at a time. The third tests its ability to handle
more than one fault at a time. The last tests its ability to deal with faults
before the system converged. The results of the four scenarios are available in
Figures 7.3(a), 7.3(b), 7.4(a), and 7.4(b). It can be seen that we achieve the
control goal for all four scenarios. Moreover, in all scenarios and at all times, the
state of the agents is not too far from the values found in y?, meaning that this
protocol cannot harm the agents by demanding them to have very wild states.
In the second and third scenario, the exploratory phases begins at the first
measurement after the fault occurred. On the contrary, in the fourth scenario,
it takes the exploratory phase begins only at t = 3.5sec, 2.5 seconds after the

(a) Graph in LTI case study. (b) Graph in vehicle case study.

Figure 7.2: Graphs for case studies.
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7.6. CASE STUDIES

first fault. This is because the steady-states of the faulty and nominal closed-
loop systems are relatively close, so it takes a little extra time to find that a
fault exists. The same scenario was run with the high-rate sampling convergence
assertion protocol as well. The faults were identified slightly quicker, but the
sampling rate peaked at about 120Hz in some cases.

(a) Results of first scenario. (b) Results of second scenario.

Figure 7.3: First set of scenarios in fault detection and isolation for LTI systems.

(a) Results of third scenario. (b) Results of fourth scenario.

Figure 7.4: Second set of scenarios in faulty detection and isolation for LTI
systems.

7.6.2 Network FDI for Velocity-Coordinating Vehicles

We consider a diffusively-coupled network satisfying both Assumptions 7.1 and
7.3. The network consists of n = 10 vehicles trying to coordinate their velocity.
Each agent is modeled as ẋi = κi(−xi +V i0 +V i1ui), where κi > 0 is an internal
gain, V i0 is the “preferred” velocity, and V i1 > 0 is the “sensitivity” to other
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Chapter 7. Applications of the Network Optimization Framework in Fault
Detection and Isolation

vehicles [8, 23]. Unlike in [8], the planner tries to force the agents’ velocities
to a certain steady-state. The edge controllers are static nonlinearities given
by sigmoid functions of the form µe = tanh(ζe). The interaction graph G is as
described by Figure 7.2(b). We note that the graph G is 4-connected [19, Graph
ID = 21063]. The gains κi were chosen as log-uniformly between 0.3 and 10,
the sensitivities V i1 were chosen log-uniformly between 0.1 and 1, and the pre-
ferred velocities V i0 were chosen as normal with mean µ = 60km/h and standard
deviation σ = 15km/h. The initial velocity of the agents was chosen to be Gaus-
sian with mean µ = 70km/h and standard deviation σ = 20km/h. We wish
to solve the synthesis problem, forcing the closed-loop system to converge to
y? = [60, 70, 50, 60, 70, 50, 60, 70, 50, 60]>km/h, allowing up to 2 edges to fault.
We run our FDI protocol, where we implement the profile-based convergence
assertion scheme, and sample the system at 2Hz(i.e., a modified version of Al-
gorithm 12). We consider four different scenarios. Each scenario has length of
100 seconds.

i) A faultless scenario

ii) At time t = 20sec, the edge {3, 5} faults, and at time t = 50sec, the edge
{6, 9} faults.

iii) At time t = 20sec, the edge {3.5} faults, and at time t = 21sec, the edge
{6, 9} faults.

iv) At time t = 1sec, the edge {3, 5} faults, and at time t = 4sec, the edge
{6, 9} faults.

The scenarios were chosen for similar reasons as in the previous case study. The
results of the four scenarios are available in Figures 7.5(a), 7.5(b), 7.6(a), and
7.6(b). It can be seen that we achieve the control goal for all four scenarios.
Moreover, in all scenarios and at all times, the velocities of the agents are not
too far from the values found in y?, meaning that this protocol cannot harm the
agents by demanding them to have very wild states. In the second and third
scenario, the exploratory phases begins at the first measurement after the fault
occurred. On the contrary, in the fourth scenario, it takes the exploratory phase
begins only at t = 2sec, a second after the first fault. As before, this is because
the steady-states of the faulty and nominal closed-loop system are relatively
close, meaning it takes a little extra time to find that a fault exists.

7.7 Conclusions

We considered multi-agent networks in which the agents are output-strictly
MEIP and the controllers are MEIP. We considered a protocol in which the
nominal controller output µ(t) is added an exogenous constant signal w. We
showed that if w is chosen randomly, no matter what the underlying graph G
is, then we can asymptotically differentiate between any two versions (faulty
or faultless) of the system. We also showed that if w is chosen randomly in
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7.7. CONCLUSIONS

(a) Results of first scenario. (b) Results of second scenario.

Figure 7.5: First set of scenarios in fault isolation for vehicle systems.

(a) Results of third scenario. (b) Results of fourth scenario.

Figure 7.6: Second set of scenarios in FDI for vehicle systems.

the correct subspace, we can asymptotically differentiate the faultless version of
the system from its fault version, while also solving the synthesis problem for
the faultless version, assuming G was connected enough. We then showed that
this asymptotic differentiation allows a solution of the network detection and
isolation problems for graphs G which are connected enough. We also discussed
an adversarial problem in which an attacker tries to sabotage the underlying
network. In order to developed said algorithms, we assumed the existence of
“convergence assertion protocols”, which are algorithms receiving a multi-agent
network and a conjectured limit, and checking whether the multi-agent system
converge to the conjectured limit using on-line measurements. We then studied
two methods of constructing these convergence assertion protocols. Lastly, we
demonstrated our protocols by case studies.

204

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 8

Summary

In this chapter, we conclude the research about cooperative control and passivity
presented in this thesis. We begin with a brief summary of the contributions,
followed by suggestions for future research paths.

8.1 Conclusions

The research in this thesis addresses both theoretical and practical problems in
the fields of multi-agent systems and cooperative control, both being fundamen-
tal tools in understanding natural distributed systems, as well as in designing
novel engineered systems. Several examples of these application domains were
presented throughout the thesis, including vehicle and traffic models, neural
networks, and oscillators. The main tools driving both the theoretical advance-
ments and the application domains were passivity theory and network opti-
mization, due to the connection between network optimization and multi-agent
systems, creating a dictionary between the fields.

The first part of the thesis extended the network optimization framework
of [23] to a wider range of systems. In Chapter 2, we used the notion of cyclically
monotone relations to extend the network optimization framework to MIMO
systems, using the work of Rockafellar [119]. This was done by defining the ap-
propriate system-theoretic property, namely maximal equilibrium-independent
cyclically monotone passive systems, reformulating the steady-state equation for
the diffusively-coupled system as an optimization problem, and using subdiffer-
ential calculus to prove duality between the two network optimization problems.
We have also shown that two general classes of nonlinear systems are maximal
equilibrium-independent cyclically-monotone passive. The following Chapter 3
focused instead on passive-short systems. We showed that the network opti-
mization framework cannot hold for these systems unless augmented appropri-
ately, and classified three possible reasons for the failure. We showed that for
equilibrium-independent output passive-short systems, the network optimiza-
tion problems can still be defined, although they are no longer convex. Con-
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8.1. CONCLUSIONS

vexifying the network optimization problems led to a natural system-theoretic
transformation, namely output feedback, which passivized the system and ren-
dered the network optimization framework valid for this class of systems. In
other words, in the context of the dictionary between network optimization and
cooperative control, convexification corresponds to passivation. We then focused
on general passive-short systems, for which the network optimization frame-
work might not even be defined. In that case, the convexification problem is
converted with a monotonization problem for the steady-state input-output re-
lation. We showed that the steady-state relation of an equilibrium-independent
general passive-short can always be monotonized using a linear transformation,
and used the notion of elementary matrices to understand the induced aug-
mentation on the plant, which happens to passivize it. In this more general
context, monotonization of the steady-state input-output relation corresponds
to passivizing the dynamical system.

The second part of the thesis applies the network optimization framework
to solve classical problems in control for a wide range of (nonlinear) multi-agent
systems. In Chapter 4, we used the network optimization framework to present
a very general solution to the final-value synthesis problem, relying only on the
passivity of the agents. We then studied the effects of network symmetries on
the clustering of the steady-state, and showed that clusters can be understood
in terms of the induced group action on the graph. Focusing on statically homo-
geneous networks, We presented a graph synthesis process forcing the steady-
state to cluster in prescribed sizes, and demonstrated how to solve the cluster
placement problem. In the following Chapter 5, we reconsidered the final-value
synthesis problem, but sought for a data-driven solution scheme this time. The
main idea used in the solution is considering a cascade of nominal controllers
with adjustable positive gains. In that case, data can be used to reformulate
the network optimization problems as robust optimization problems, which are
easier to analyze. We showed that as the value of the gains increases to ∞, the
closed-loop steady-state approaches the desired steady-state. We then showed
two data-driven techniques to compute gains for which the closed-loop steady-
state is ε-close to the desired steady-state, the first revolved around conducting
experiments before connecting the agents to the network, and the second relied
on an iterative adjustment scheme that was shown to converge. Both techniques
have convergence and stability guarantees.

The remaining chapters took advantage of the reliance of the network op-
timization problems on the underlying graph. Chapter 6 studied the problem
of network detection and the sub-problem of network differentiation. We first
presented the notion of indication vectors, which are constant exogenous inputs
forcing any two networks with identical agents and controllers but different un-
derlying graphs to converge to different steady-state outputs, giving a solution
to the network differentiation problem. We presented two approaches for con-
structing such indication vectors, the first using randomization, and the second
using algebraic methods. We then moved on to network detection. We first pre-
sented a sub-cubic-time algorithm for identifying the network of a multi-agent
system for networks with LTI agents and controllers. The algorithm relied on
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Chapter 8. Summary

linearity of the relation between constant exogenous inputs and steady-state
outputs, for which the off-diagonal entries indicate the edges in the graph. The
algorithm was then adapted to general non-linear MEIP networks using lin-
earization, and an error estimate was given. We then showed that the algorithm
is optimal in terms of time complexity, meaning any algorithm solving the net-
work detection problem with positive probability and finite error cannot run
asymptotically slower than the presented algorithm. The main leverage point
in all proofs was the connection between constant exogenous inputs and steady-
state outputs, which can be understood (and shown to behave nicely) using the
network optimization framework.

Lastly, Chapter 7 dealt with the problem of network fault detection and
isolation. The main tool was the notion of edge-indication vectors, which are
a variant of indication vectors. The network optimization framework was cou-
pled with manifold theory and graph theory to construct these edge-indication
vectors in a manner which still allows to solve the synthesis problem, mean-
ing that we can “asymptotically” identify the existence and type of network
faults. We assumed the existence of “convergence assertion protocols”, which
are algorithms asserting that a diffusively-coupled system converges to a con-
jectured limit, and used them to give graph-theoretic solutions to the problems
of fault detection and fault isolation, as well as an adversarial game. Lastly, we
presented two model-based data-driven convergence assertion algorithms.

8.2 Outlook

The network optimization framework was significantly extended in Chapters 2
and 3 to include diffusively-coupled networks of square MIMO systems, output-
and input-passive short systems, and SISO general passive-short systems. One
major avenue for future research includes extending the range of the network
optimization framework to a bigger range of systems. One possible extension
is to non-square MIMO systems, which might be connected to restrictions of
convex functions on subspaces through the subdifferential. Another interest-
ing extension deals with MIMO general passive-short systems, which require a
more delicate analogue of cursive relations. Another option is discrete-time sys-
tems. Other extensions to the theory include a better understanding of MEIP
and MEICMP, which can be achieved by proving certain closure properties, as
feedback- and parallel connection, or a variant of the Hill-Moylan lemma, as
done in [144] for EIP.

Another theoretical aspect that follows from the research in this thesis is the
study of the steady-state input-output relation of more general systems. Section
3.4 deals with monotonizing transformations, which are guaranteed to exist for
any equilibrium-independent general passive-short system, or any equilibrium-
independent finite L2-gain system. Monotone relations are geometrically simple,
e.g. they can always be embedded inside a maximal monotone relation, which
is, topologically, a simple line. These topological properties are preserved un-
der linear maps (or homeomorphisms in general). This simple observation can
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8.2. OUTLOOK

be used to prove that SISO equilibrium-independent general passive-short sys-
tems cannot have pitchfork bifurcations, or other extremely non-linear phenom-
ena, meaning that very simple topological arguments can give strong system-
theoretic results.

The applicability of the network optimization framework is also a possible
avenue for research. For data-driven methods, one could consider harder prob-
lems (e.g. final-value synthesis for the output vector, or attack/fault detection).
Another approach is to try and extend the existing work to include MIMO sys-
tems, as one of the approaches relies heavily on the agents being SISO. For
clustering, one can research the cluster synthesis problem, giving an efficient
synthesis procedure also for the controller. However, perhaps the most impor-
tant obstacle to overcome heading toward application is the existence of delays
in the loop. It can be shown that, apart from very pathological cases, systems
with delay cannot be passive. These delays obviously do not change the con-
stant steady-states of the closed-loop system, but can hinder convergence of
the networked system, invalidating the network optimization framework. Some
methods of dealing with delays in the repetitive control, preview control and
loop shifting [37, 53, 58]. One recent method of dealing with delays in a net-
worked setting is the wave variable transformation [4]. Extending the network
optimization framework to include delays will probably exploit the wave variable
transformation, but lies outside the scope of this thesis.

Chapter 7 deals with network fault detection and isolation using passivity.
Natural continuations to this problem are other questions in secure systems. Ex-
amples include resilience to “spoofing”, resilience to eavesdropping, and avoiding
detection. Spoofing might be treated using similar ideas to the ones presented in
Chapter 7, namely convergence assertion methods and using connectivity to de-
tect the rebellious agent. Other approaches might include the use of monotone
control systems [3] to try and outright ignore inputs from other agents which
are illogical. As for eavesdropping, the network optimization framework can be
used together with graph symmetries to show indistinguishability between some
states of the network due to symmetry.
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Appendix A

Convex Analysis and
Optimization Theory

The concept of convexity is a cornerstone of modern optimization theory. As
stated by R.T. Rockafellar, “...in fact, the great watershed in optimization isn’t
between linearity and nonlinearity, but convexity and nonconvexity” [120]. This
appendix is dedicated to reviewing some basic notions in convex analysis, opti-
mization theory, and related topics. See also [121] and [17] for more on convex
optimization.

A.1 Convex Sets and Convex Functions

A set C ⊆ Rn is called convex if the line segment between any two points in
C is also contained in C. In another words, if x, y ∈ C and t ∈ (0, 1) then
tx + (1 − t)y ∈ C. Important examples of convex sets include the empty set,
Rn, a ball {x ∈ Rn : ||x− x0|| ≤ r} with respect to any norm, and half-spaces
{x ∈ Rn : a>x − b ≤ 0} for some a ∈ Rn, b ∈ R. A function f : Rn → R

is called convex if the epi-graph {(x, h) ∈ Rn+1 : f(x) ≤ h} is a convex set.
Equivalently, the following inequality holds for all x, y ∈ Rn and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

If the inequality is strict whenever x 6= y and t 6= 0, 1, we say that f is strictly
convex. Important examples of convex functions include affine functions f(x) =
a>x+b, any norm f(x) = ||x||, quadratics f(x) = x>Ax for A ≥ 0, and indicator
functions IC(x) whenever C is a convex set.

The notion of convexity is important in optimization theory, as it usually
allows to solve optimization problems relatively easily using gradient descent
or other, modern, optimization techniques, e.g. alternating direction method of
multipliers (ADMM) [55]. Other techniques can also be used to solve most inter-
esting convex optimization problems, e.g. cone programming and interior-point

209

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



A.1. CONVEX SETS AND CONVEX FUNCTIONS

methods. Most modern techniques for solving optimization problems with non-
convex elements rely on some convexifying tool, allowing to restate the problem
in a convex form using additional variables. To understand why convexity is
an important factor in optimization, we consider the problem of finding the
minimum of a function f : Rn → R, which we assume to be twice differentiable.
In order to show that x0 ∈ Rn is an optimal solution of the problem, we need
to show that for any x ∈ Rn, f(x) ≥ f(x0) holds. Obviously, this can be very
tricky to check even if we have a perfect description of f , and impossible if we
only partial information about it. One possible approach is to look for critical
points, in which ∇f = 0. If the gradient of f can be described simply enough,
one can solve the equation and find all extremum points, checking them one-
by-one to see which one is the global minimizer. The main problem with this
approach is its computational complexity. Even if solving ∇f = 0 can be done
effortlessly, there still might be a huge, possibly even infinite number of critical
points. For example, the function f : R→ R defined by f(x) = (sin(x)+x)2 has
a unique global minimum at x0 = 0, but an infinite number of critical points
given by the solutions of cos(x) = −1. Thus there is no “local” method of even
asserting that a given point x0 ∈ Rn is the global minimum. However, if we
assume that f is convex, the problem is much easier.

Theorem A.1. Suppose that f is a convex function. If x0 is a local minimizer
of f , then it is also a global minimizer.

Proof. By assumption, there exists some ε > 0 such that if ||x − x0|| < ε then
f(x) ≥ f(x0). Let y ∈ Rn be any point, and consider x = ty + (1 − t)x0.
By continuity, if t > 0 is small enough then ||x − x0|| < ε, meaning that
f(x) ≥ f(x0). Thus, by convexity,

f(x0) ≤ f(x) = f(ty + (1− t)x0) ≤ tf(y) + (1− t)f(x0).

Shifting (1− t)f(x0) to the left-hand side and dividing by t proves that f(y) ≥
f(x0). Because y was chosen arbitrarily, we conclude that x0 is a global mini-
mum.

Thus, if f is twice differentiable, it’s enough to check that ∇f(x0) = 0
and that the Hessian Hf(x0) is positive-semi definite to prove that x0 is a
global minimizer. However, it is known that for twice-differentiable convex
functions, the Hessian is always positive semi-definite, so any critical point is
a global minimum. Recalling that gradient descent always converges to a local
minimum, we conclude that gradient descent always finds the global minimum
when applied to a differentiable convex function. Before moving on to non-
differentiable convex functions, we state and prove three lemmas that will be
needed in the main text.

Lemma A.1. Let f : Rn → R be a convex function, and let S : Rn → Rd be a
linear operator. We define the function h : Im(S)→ R by

h(x) = min
r: Sr=x

f(r),
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Chapter A. Convex Analysis and Optimization Theory

assuming the minimum is always attained. Then:

i) h is a convex function.

ii) If f is strictly convex, then so it h.

Proof. Let V = Im(S). Take some x, y ∈ V and t ∈ [0, 1]. We want to show
that h(tx+ (1− t)y) ≤ th(x) + (1− t)h(y). We pick some rx, ry ∈ Rn such that
h(x) = f(rx) and h(y) = f(ry), which exist by assumption. Then S(trx + (1−
t)ry) = trx + (1− t)ry, meaning that h(tx+ (1− t)y) ≤ f(trx + (1− t)ry). On
the other hand, by convexity,

f(trx + (1− t)ry) ≤ tf(rx) + (1− t)f(ry) = th(x) + (1− t)h(y).

Moreover, if f is strictly convex, x 6= y and t 6= 0, 1 then we get a strict
inequality, as rx 6= ry. Combining the two inequalities completes the proof.

Lemma A.2. Let f : Rn → R be a convex function. Fix x0, y ∈ Rn and define

a function g : (0,∞) → R by g(λ) = f(x0+λy)−f(x0)
λ . Then g is non-decreasing.

Moreover, if f is strictly convex, then g is increasing.

Proof. Take any two numbers 0 < µ < λ. We want to show that g(µ) ≤ g(λ).
The point x0 + µy can be written as a convex combination of x0 and x0 + λy.
Indeed,

x0 + µy =

(
1− µ

λ

)
x0 +

µ

λ
(x0 + λy)

where 0 < µ
λ < 1 by choice of µ and λ. Thus, by convexity,

f(x0 + µy) ≤
(

1− µ

λ

)
f(x0) +

µ

λ
f(x0 + λy)

Dividing the equation by µ gives:

1

µ
f(x0 + µy)− 1

µ
f(x0) ≤ 1

λ
f(x0 + λy)− 1

λ
)f(x0)

which reads g(µ) ≤ g(λ). Moreover, if f is strictly convex, the first inequality
is strict, implying that g(µ) < g(λ).

Lemma A.3. Let C ⊆ Rn be a convex set and let f : C → R be convex. Suppose
that f achieves a minimum m in C, and let M = {x : f(x) = m} be the set of
f ’s minima. Then M is convex

Proof. Let x, y ∈M and t ∈ [0, 1]. We want to show that z = tx+(1− t)y ∈M .
Because z ∈ C, we have that f(z) ≥ m. However, by convexity:

f(z) ≤ tf(x) + (1− t)f(y) = tm+ (1− t)m = m.

Thus f(z) = m and z ∈ M . As x, y and t were chosen arbitrarily, we conclude
that M is convex.
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A.2. SUBDIFFERENTIALS

A.2 Subdifferentials

In the previous section, we saw that gradient descent can be used to solve con-
vex optimization problems with differentiable cost functions and constraints.
However, some convex functions are not differentiable, e.g. the absolute value
function |x| or the Euclidean norm ||x||. Actually, many problems in opti-
mization theory model their cost functions and constraints as piece-wise linear
functions, which are not everywhere differentiable. Moreover, their minimum is
always at a point in which they are not differentiable. Thus, a treatment for
non-differentiable convex functions is needed.

As a motivation, consider a convex function f which is twice differentiable.
Because the Hessian Hf(x) is positive semi-definite at any point, the first-order
approximation f(x0)+∇f(x0)(x−x0) underestimates f(x). Motivated by this,
we make the following definition:

Definition A.1. Let f be a convex function, and let x0 ∈ Rn. We say that
v ∈ Rn is a subdifferential of f at x0 if the inequality f(x) ≥ f(x0)+v>(x−x0)
holds for any x ∈ Rn. The subgradient or the subdifferential set of f at x0,
denoted ∂f(x0) is defined as the set of all subdifferentials of f at x0.

One can show some basic facts about subdifferentials. First, one can prove
that ∂f(x) is not the empty set, by using the separating hyperplane theorem [34].
Moreover, if f is differentiable at x then ∂f(x) = {∇f(x)}, and more precisely,
f is differentiable at x if and only if ∂f(x) contains only one point. Furthermore,
the set ∂f(x) is always convex and closed. Lastly, by definition, x0 is a global
minimum of f if and only if 0 ∈ ∂f(x0). One can run the standard gradient
descent algorithm, replacing the gradient with any element in the subgradient
set, and get a simple algorithm for computing the minimizer of the convex
function f . Note that, by definition, f is strictly convex if and only if ∂f
contains no horizontal lines.

The subdifferential is related to the notion of duality for convex functions.
The Legendre transform, or the dual function, of a convex function f : Rn → R

is defined via f?(y) = supy∈Rn{y>x − f(x)} [121]. By solving the supremum,
it’s possible to show that ∂f? is the inverse relation of ∂f , i.e. y ∈ ∂f(x) if
and only if x ∈ ∂f?(y). In particular, using the properties of the subgradient
described above, duality maps differentiable convex functions to strictly convex
functions, and vice versa.

Calculating the subgradient set can be cumbersome on some occasions. One
method is to use the known subdifferential for one function to compute the
subdifferential of another function. For example, if α > 0 then ∂(αf)(x) =
α∂f(x) follows immediately from the definition. It’s also possible to show that if
f = f1+· · ·+fn then ∂f(x) = ∂f(x1)+· · ·+∂f(xn), and that if h(x) = f(Ax+b),
then ∂h(x) = A>∂f(Ax+ b). We state and prove one specific result needed in
the main text:

Proposition A.1. Let f : Rn → R be a convex function, and let S : Rn →
Rd some linear transformation. Fix some ζ ∈ Im(S), and define a map g :
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Chapter A. Convex Analysis and Optimization Theory

{y : Sy = ζ} → R by g(x) = f(x). Then g is a convex function, and its
subdifferential is given by ∂g(x) = ProjIm(S)(∂f(x))

Proof. Let X = {y : Sy = ζ}, V = kerS and U = Im(S>). We know that
Im(S>) = ker(S)⊥, so we can identify Rn as a direct sum of U and V , giving
a function F : U × V → R by F (u, v) = f(u + v). In [121], it is proved that if
χ : R → R s convex, then ∂χ(t) = [χ′−(t), χ′+(t)], where χ′± are the one-sided
derivatives of χ. It’s also proved in [121] that if ρ : Rn → R is convex, and we
fix w0, w1 ∈ Rn and define χ(t) = ρ(w0 + tw1), then χ’s one-sided derivatives
are given by:

χ′+(t) = max
α∈∂ρ(w0+tw1)

α>w1, χ′−(t) = min
α∈∂ρ(w0+tw1)

α>w1.

These facts, together with convexity of the subdifferential set, imply that ∂χ(t) =
w>1 ∂ρ(w0 + tw1s).

Now, by assumption, there’s some y0 such that Sy0 = ζ. Decompose y as
u0 + v0 for some u0 ∈ Im(S>) and v0 ∈ kerS. The set X is equal to u0 + V .
Thus the map g can be described as g(v) = F (u0, v). Take some v0, v1 ∈ V .
Restricting g to the line {v0 +tv1 : t ∈ R} is identical to restricting F to the line
{(u0, v0 + tv1) : t ∈ R}. Thus they yield the same differential sets at t = 0. By
above, we get that: v>1 ∂g(v0) = v>1 ∂F (u0, v0) = v>1 ProjV (∂F (u0, v0)), implying
that the sets ∂g(v0) and ProjV (∂F (u0, v0)) look the same when hit by a linear
functional on V . However, both sets are convex and closed, thus the separating
hyperplane theorem [34] implies that they are equal. Recalling the definitions
of V and F , we get that for any x ∈ Im(S), ∂g(x) = ProjIm(S)(∂f(x)).

A.3 Rockafellar’s Theorem and Cyclically
Monotone Relations

In the previous section, we defined the notion of subdifferentials. In basic cal-
culus, one can ask which functions are derivatives of some other function, which
are exactly integrable functions. We ask an analogous basic question, namely
which set-valued maps, or relations, are subdifferentials of convex functions.

It is known that in R, the derivative of a differentiable convex function is
monotone. Moreover, if φ : R→ R is a monotone function, then it is integrable,
and one can easily show that f(t) =

∫ t
0
φ(s)ds is a convex integral function of

φ, which answers the question for derivatives of differentiable convex functions.
One can extend this idea to non-differentiable functions by considering the no-
tion of monotone relations, which are set-valued maps k defined on R, such that
if u0, u1 ∈ R and y0 ∈ k(u0), y1 ∈ k(u1), then (u1 − u0)(y1 − y0) ≥ 0. A
maximal monotone relation is a monotone relation which is not contained in a
larger monotone relation. One can easily show that the subgradient of a convex
function R→ R is maximally monotone, and that if φ is a maximally monotone
relation (or set-valued function), then f(t) =

∫ t
0

maxu∈k(s){u}ds is a convex
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A.3. ROCKAFELLAR’S THEOREM AND CYCLICALLY MONOTONE
RELATIONS

function whose subdifferential is equal to φ [121]. Thus, in one dimension, the
subdifferentials of convex functions are exactly maximally monotone relations.

When considering the same problem in multiple dimensions, the solution
becomes trickier. This is because the notion of monotonicity can be defined
in multiple different ways in more than one dimension, and it’s unclear which
works best. In [119], Rockafellar introduced the notion of cyclically monotone
relations:

Definition A.2 ([119]). Let d ≥ 1 be an integer, and consider a subset R of
Rd×Rd. We say that R is a cyclically-monotonic (CM) relation if for any m ≥ 1
and any pairs {(uj , yj)}mj=1 ⊆ R of d-vectors, the following inequality holds:

m∑
i=1

y>i (ui − ui−1) ≥ 0, (A.1)

where we use the convention that u0 = um. We say that this relation is strictly
cyclically-monotone (SCM) if the inequality (A.1) is sharp whenever at least two
ui-s are distinct. We term the relation as maximal CM (or maximal SCM) if it
is not strictly contained in a larger CM (SCM) relation.

Remark A.1. As was shown in the main text, cyclically monotone relations
are always monotone relations, no matter the dimension, but the converse is
not true. Indeed, one can show that the relation {(x, Jx) : x ∈ R2}, where
J =

[
0 1
−1 0

]
, is monotone but not cyclically monotone.

Remark A.2. The name “cyclic monotonicity” is derived from the cyclic shift
operator σm : Rm → Rm defined by σm([x1, x2, · · · , xm]>) = σm([x2, · · · , xm, x1]>).
Indeed, if one defines u = [u>1 , · · · , u>m]> and y = [y>1 , · · · , y>m]>, the inequality
(A.1) can be written as y>((Idm − σm)⊗ Idd)u ≥ 0 for all positive integers m.
As we noted before, the case m = 2 coincides with the definition of monotonic-
ity [121].

The connection of cyclically monotone relations to convex functions is due
to Rockafellar:

Theorem A.2 ([119]). A relation R ⊆ RN × RN is CM if and only if it is
contained in the subgradient of a convex function RN → RN . Moreover, R
is SCM if and only if it is contained in the subgradient of a strictly convex
function. A relation R is maximally CM (or SCM) if and only if the inclusion
above is equality, and in that case the convex function is unique up to an additive
constant.

Rockafellar’s theorem allows to immediately show that the affine relation
k(u) = Su+v is CM if and only if S is positive semi-definite. It’s possible to also
show this fact without Rockafellar’s theorem, using the Cholesky decomposition.
We shall not go into details in this appendix.
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Appendix B

Graph Theory and
Algebraic Graph Theory

This appendix is devoted to presenting some basic concepts in graph theory [15]
and algebraic graph theory [57].

As defined in the introduction, a graph G is a pair G = (V,E) where V is the
set of vertices and E is the set of edges. Each edge consists of two nodes i 6= j
from V, called the ends of the edge, and we write e = {i, j}. We will orient the
edge arbitrarily, say from i to j, and write e = (i, j) or e = i → j in that case.
The out-degree dout(i) of a node i is the number of edges leaving i, i.e. edges of
the form e = i→ j for some j ∈ V. Similarly, the in-degree din(i) of a node i is
the number of edges entering i, and the degree d(i) of the node is the sum of the
out-degree and the in-degree, i.e. the number of edges touching the node. The
number of edges in the graph G can be counted using the degrees of its nodes,
as |E| =

∑
i∈V dout(i) =

∑
i∈V din(i) = 1

2

∑
i∈V d(i).

One can consider the notion of inclusion between graphs. A graph H =
(VH,EH) is called a subgraph of H = (VG ,EG) if VH ⊆ VG and EH ⊆ VH. The
induced subgraph of G on a set of nodes S ⊆ VG is H = (S,EH), where the set
EH consists of all edges of G with both ends are in S.

We can also discuss the connectivity of a graph. A path is a sequence
i1, i2, · · · , ik of nodes, such that any two consecutive nodes are connected by
an edge. The length of a path is the number of edges it traverses. A path is said
to be simple if no nodes appears more than once in it, except possibly for the
first and last vertex. A cycle is a path which starts and ends at the same node.
An unoriented graph is said to be connected if there exists a path between any
two nodes. An oriented graph is said to be weakly connected if its unoriented
version is connected, and said to be strongly connected if there exists a path
between any two nodes that obeys the orientation. A tree is a connected graph
which contains no cycles. A graph G on n nodes is a tree if and only if it is
connected and it has exactly n− 1 edges. Each connected graph has a spanning
tree, which is a tree subgraph having the same set of nodes as G.
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If the unoriented graph G is not connected, we can define a relation on the
nodes - i is connected to j if there exists a path between i and j. This is an
equivalence relation, meaning that the set of nodes can be written as a disjoint
union of sets, in which any two nodes are connected to one another. These sets
are known as the connected components of the graph G. The distance between
two nodes i and j is defined to be the length of the shortest path between i and
j, or ∞ if there is not path between them. The diameter diam(G) is defined as
the maximal distance between two nodes in the graph G.

Graph theory has benefited greatly throughout the years from linear algebra,
as graphs can be neatly described using matrices in various ways. For example,
the relation between nodes and edges in the graph G = (V,E) can be read
from the incidence matrix EG , defined as a matrix of size |V|× |E| with elements

(EG)ie =


−1 ∃j, e = (i, j)

1 ∃j, e = (j, i)

0 else

. One can also consider the degree matrix D = DG ,

which is a diagonal matrix with entries equal to the degrees of the different nodes
in G, and the adjacency matrix AG , which is a |V|×|V|matrix defined as (AG)ij ={

1 {i, j} ∈ E
0 else

. The Laplacian matrix LG is defined as DG −AG = EGE>G . The

Laplacian matrix can be shown to be positive semi-definite. If G is connected,
then the eigenvalue 0 is simple, and has 1 as a corresponding eigenvector. Thus
all other eigenvalues λ2 ≤ λ3 ≤ · · · ≤ λn are strictly positive.

The Laplacian matrix LG appears often in multi-agent systems and coopera-
tive control due to the consensus protocol, defined as ẋi =

∑
j∼i(xj−xi), which

can be concisely written as ẋ = −LGx [107]. The consensus protocol forces the
agents of a multi-agent system toward agreement, and the rate of convergence to
agreement is dictated by the the second smallest eigenvalue λ2 of the Laplacian
LG . In discrete-time processes, like discrete-time agents or random walks on
graphs, the Laplacian is usually replaced with the incidence matrix AG or with
its scaled version D−1

G AG , but we will not focus on this case in the thesis. The
reader is referred to [107] or [84] and references therein for more on the subject.
We conclude this appendix by noting that the second smallest eigenvalue of the
graph Laplacian cannot be arbitrarily close to zero, as the following theorem
suggests:

Theorem B.1 ([116]). Let G be a connected graph on n nodes, and let λ2 be
the second smallest eigenvalue of the Laplacian. Then λ2 ≥ 1

(n2)
.

The reader is referred to [116] for a proof of the theorem.
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Appendix C

Dynamical Systems,
Passivity and Stability

This appendix is devoted to presenting some basic concepts in systems theory,
namely stability, passivity, and related technical tools such as Lyapunov func-
tions and Barbalat’s lemma. It is based on [75], in which all omitted proofs are
available. We focus on the case of continuous-time systems on Rn, but most def-
initions and theorems can be adapted to discrete-time systems and more general
(continuous or discrete) spaces.

C.1 Stability and Lyapunov Theory

A continuous-time control system is defined using two continuously differentiable
functions f : R×Rnx×Rnu → Rnx , h : R×Rnx×Rnu → Rny , where nx, ny, nu are
three positive integers. The threesome (u(t), x(t), y(t)) is called a trajectory of
the control system, where x : [0,∞) → Rnx ,u : [0,∞) → Rnu , and y : [0,∞) →
Rny are functions, if the ODE ẋ(t) = f(t, x(t), u(t)) holds, and the relation
y(t) = h(t, x(t), u(t)) also holds. Similarly, we can consider a dynamical system,
parameterized by a function f : R× Rnx → Rnx , for which a trajectory consists
of a single function x : [0,∞)→ Rnx satisfying the ODE ẋ(t) = f(t, x). In this
thesis, we only consider time-invariant systems, in which the functions f and h
do not explicitly depend on the time variable t.

One important notion used throughout the thesis is equilibria. A point x0

is called an equilibrium of a dynamical system if the constant signal x(t) ≡ x0

is a trajectory of the dynamical system, or equivalently f(x0) = 0. For control
systems, an equilibrium is a threesome (u0, x0, y0) such that the corresponding
constant signals form a trajectory of the control system. Again, this can be
reformulated as 0 = f(x0,u0), y0 = h(x0,u0). An input-output steady-state pair
is a pair (u0, y0) such that there exists some signal x(t) such that (u0, x(t), y0)
form a trajectory of the system. Steady-state input-output pairs are essentially
a model-free version of equilibria, as they remove the dependency on the state
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C.1. STABILITY AND LYAPUNOV THEORY

x of the system. Moreover, it allows to avoid a discussion about controllability
and observability for nonlinear systems, as it does not require the state x(t) to
be constant as well.

One important notion regarding dynamical systems is the notion of stability:

Definition C.1 (Stability). Let ẋ = f(x) be a dynamical systems, and let S be
a set in Rnx .

i) The set S is called stable (for the dynamical system ẋ = f(x)) if for any
open set V ⊇ S there exists an open set W ⊇ S such that any trajectory
x(t) with x(0) ∈ V satisfies x(t) ∈W, ∀t ∈ [0,∞). If S is not stable, we’ll
say it’s unstable.

ii) S is called locally asymptotically attractive (for the dynamical system ẋ =
f(x)) if there is a an open set V ⊇ S such that for any trajectory of the
dynamical system with initial condition x(0) ∈ V , the distance d(S, x) =
inf
s∈S
‖x− s‖ between S and x(t) converges to 0 as t→∞. We say that S is

globally asymptotically stable if W = Rnx . If S is a single point S = {x0},
we will also say that the dynamical system locally (globally) asymptotically
converges to x0.

One of the most useful ways to prove convergence is using Lyapunov theory,
namely, Lyapunov’s second method for stability:

Theorem C.1 (Lyapunov’s Theorem). Consider a time-invariant dynamical
system ẋ = f(x) with an equilibrium x0. Suppose there exists a continuously
differentiable function V : Rnx → R, such that V (x) > 0 for all x 6= x0 and
V (x0) = 0. Suppose that for any trajectory x(t) of the system, d

dtV (x(t)) =
∇V (x(t))ẋ(t) ≤ 0.

i) If the function V is radially unbounded, i.e. lim||x||→∞ V (x) = ∞, then
any bounded set is stable.

ii) If d
dtV (x(t)) < 0 for any trajectory for which x(t) 6= x0, then the system

globally asymptotically converges to x0.

Lyapunov theory can also give local asymptotical convergence if the domain
of V is changed to some arbitrary open set containing x0. Moreover, Lyapunov
theory can also be used to prove that almost all trajectories converge asymptot-
ically to x0. For example, one can show that d

dtV (x(t)) holds for all trajectories
except for the equilibrium x0, and a few unstable equilibria. Thus, if the initial
conditions x(0) of the trajectory x(t) is not one of these unstable equilibria, is
must converge to x0. An example of this approach can be seen in [176].

Lyapunov theory and the related LeSalle’s invariance theorem give very
strong methods for proving that a time-invariant dynamical system locally (glob-
ally) asymptotically converges to some set. However, in some occasions, as we’ll
see below, we are forced to consider time-dependent systems, or time-dependent
inequalities on the derivative of the function V . The main tool for proving con-
vergence of said systems is Barbalat’s lemma:
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Chapter C. Dynamical Systems, Passivity and Stability

Theorem C.2 (Barbalat’s Lemma). Let φ : R → [0,∞) be any uniformly

continuous function. Suppose that limt→∞
∫ t

0
φ(s)ds exists and is finite. Then

φ(t)→ 0.

For linear time-invariant dynamical systems, it’s easy to characterize stabil-
ity:

Proposition C.1. Let A ∈ Rn×n be any matrix. The dynamical system ẋ = Ax
globally asymptotically converges to 0 if and only all of A’s eigenvalues have
negative real part.

C.2 Passivity

We now turn our attention to control systems. We consider a square control
system, in which the input dimension nu and output dimension ny are equal.

Definition C.2 (Passivity). Consider a control system ẋ = f(x, u), y = h(x, u),
and let (u, y) be any steady-state input-output pair. We say that:

i) the system is passive with respect to (u, y) if there exists a positive semi-
definite function continuously differentiable function S(x) (called a storage
function) such that the inequality d

dtS(x(t)) ≤ (u(t)− u)>(y(t)− y) holds
for any trajectory.

ii) the system is output-strictly passive with respect to (u, y) if there exists
a positive semi-definite function continuously differentiable function S(x)
and some ρ > 0 such that the inequality d

dtS(x(t)) ≤ (u(t) − u)>(y(t) −
y)− ρ(y(t)− y)2 holds for any trajectory.

iii) the system is input-strictly passive with respect to (u, y) if there exists
a positive semi-definite function continuously differentiable function S(x)
and some ν > 0 such that the inequality d

dtS(x(t)) ≤ (u(t) − u)>(y(t) −
y)− ν(u(t)− u)2 holds for any trajectory.

The motivation for passivity theory stems from SISO electrical components.
There, the input u(t) is the voltage exerted on the system, and the output
y(t) is the current induced by the voltage. In this case, u(t)y(t) is the power
exerted on the electrical component. In that case, the storage function S(x)
can be thought of as a measure of the stored energy inside the component, and
passivity then translates into the demand that the component does not generate
energy. Strict passivity expands on that idea by prescribing rates at which the
energy dissipates. This idea of passivity-based (i.e. energy-based) measures can
be generalized to other nonlinear systems, and it is one of the cornerstones of
nonlinear control. Another reason for its significance is that it implies stability:

Theorem C.3. Let ẋ = f(x, u), y = h(x, u) be a time-invariant control system,
and assume f, h are locally Lipschitz. Let (u0, x0, y0) be an equilibrium of the
system.
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C.2. PASSIVITY

(a) Parallel interconnection. (b) Feedback interconnection.

Figure C.1: Interconnections preserving passivity.

i) If the system is passive, then x0 is stable for the dynamics ẋ = f(x, u0).

ii) If the system is output-strictly passive, and the system ẋ = f(x,u0) is
zero-state observable for (x0, y0)1, then the system ẋ = f(x,u0) locally
asymptotically converges to x0.

iii) If, along with the conditions of the previous case, the associated storage
function is radially unbounded, then the system globally asymptotically
converges to x0.

One important property of stability is that, unlike stability, it is preserved
under interconnection of systems:

Theorem C.4. Let Σ1 : u1 7→ y1 and Σ2 : u2 7→ y2 be passive systems, where
the dimension of u1, u2, y1, y2 is equal to n.

i) The parallel interconnection, with input u and output y defined by y =
y1 +y2, where one takes u1 = u2 = u, as seen in Figure C.1(a), is passive.

ii) The feedback interconnection, with input v = [v1, v2] and output y =
[y1, y2], where u1 = v1 − y2 and u2 = v2 + y1, as seen in Figure C.1(b), is
passive.

iii) Given a matrix M ∈ Rn×n, the symmetric transformation of Σ1, MTΣ1M ,
is passive.

Example C.1. Consider the systems ẋ = A1x + u and ẋ = A2x + u for
A1 =

[−1 8
0 −1

]
and A2 =

[−1 0
8 −1

]
. Both systems are stable fixed input u = 0, as

the eigenvalues of A1 and A2 are both equal to −1. However, A1+A2 =
[−2 8

8 −2

]
has eigenvalues λ1 = −10 and λ2 = 6 > 0, so the parallel interconnection,
ẋ = (A1 +A2)x+ u, is not stable with fixed input u = 0.

1i.e., any trajectory (u0, x(t), y(t)) such that y(t) = y0 for all times must have x(t) ≡ x0.
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Chapter C. Dynamical Systems, Passivity and Stability

Another important advantage that passivity has over stability is that it
implies a connection between the size of the input and the size of the output
through a linear bound:

Theorem C.5. Let ẋ = f(x, u), y = h(x, u) be a time-invariant control system,
and assume f, h are locally Lipschitz. Suppose that (0, 0, 0) is an equilibrium of
the system. If the system is output-strictly passive with parameter ρ > 0, then
it has finite L2 gain lower or equal than 1

ρ .2

If one focuses on linear systems, there are a few different (but related) ap-
proaches to characterize passivity. The first deals with the transfer function,
and the second deals with the state-space representation. The first requires the
notion of positive-real transfer functions.

Definition C.3. Let G(s) be an n × n proper transfer function matrix. Then
G(s) is called positive real if

i) the poles of of G(s) are in Re(s) ≤ 0.

ii) for all real ω such that jω is not a pole of G(s), G(jω) + G(ω)> is a
positive semi-definite matrix.

iii) any pure imaginary pole jω of G(s) is a simple pole, and the residue matrix
lims→jω(s− jω)G(s) is positive semi-definite.

We say that G(s) is strictly positive real if there’s some ε > 0 such that G(s−ε)
is positive real.

Proposition C.2. Consider a linear time-invariant system with transfer func-
tion G(s). If G(s) is positive-real, then the system is passive. Moreover, if G(s)
is strictly positive-real, then the system is strictly passive.

Another, equivalent formulation of the property is given by the Kalman-
Yakubovich-Popov lemma:

Theorem C.6 (Kalman-Yakubovich-Popov). Let ẋ = Ax+Bu, y = Cx+Du
be a minimal state-space realization of a linear time-invariant system Σ, and let
G(s) be the corresponding transfer function. Suppose there exists some ε ≥ 0,
and some matrices P = P> > 0 , L and W such that the following conditions
hold:

PA+A>P =− L>L− εP
PB =C> − L>W

W>W =D +D>

Then the transfer function G(s) is positive real. If ε > 0, then the transfer
function is strictly positive real.

2Recall that a system Σ : u 7→ y is said to have finite L2 gain if there exists some β > 0
such that ||y(t)|| ≤ β||u(t)|| for all inputs u(t) and outputs y(t) with finite norm, where

||a(t)|| =
√∫∞

0 |a(t)|2dt indicates the power of the signal. The smallest parameter β is called

the L2 gain of the system.
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C.2. PASSIVITY
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Appendix D

Complexity Theory for
Matrix Multiplication and
Inversion

Complexity theory is a field dealing with the amount of resources required to
solve problems or to run certain algorithms [36]. It is one of the pinnacles of
modern research in computer science and algorithmics, dealing with problems
like P = NP , which asks whether its true that problems for which a solution
can be efficiently verified, it can also be efficiently found. One important mea-
sure in complexity theory is time complexity, describing the running time of an
algorithm. Usually, the time complexity of an algorithm is written using the
big-O notation, using the size of the input as a parameter. The reason for this
notation is the dependence of some basic operations on the hardware running
the algorithm, e.g. multiplying two numbers is quicker on Intel Core i5 than
on Pentium 4. The theory differentiates between deterministic algorithms and
various kinds of probabilistic algorithms, e.g. algorithms which are correct with
probability 1, algorithms which are correct with high probability (dependent on
n), and algorithms which are correct only with probability > 1/2.

The time complexity of deterministic matrix multiplication is one of the most
fundamental questions in complexity theory [36, 145]. The schoolbook matrix
multiplication algorithm solves the problem of multiplying two n × n matrices
in O(n3) time. For many years, it was believed that no faster algorithms ex-
ist. That changed in the late 1960s when Strassen released his seminal work
on matrix multiplication [150]. In this work, he exhibited a matrix multiplica-
tion algorithm that uses a divide-and-conquer method, splitting each of the two
matrices to four different n/2 × n/2 parts. Then, instead of multiplying these
matrices block-wise, the algorithm computes seven new products, and then uses
matrix addition to compute the product instead. This simple algebraic trick
gives a lower time complexity, namely O(nlog2 7) ≈ O(n2.807). When used in
practice, this algorithm is a little less numerically stable then the classical al-
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gorithm, but works faster when n & 100, allowing its implementation for large
matrices.

Over the next few years, algorithms with better asymptotic time complex-
ity were found using more complex divide-and-conquer techniques. The cur-
rent state-of-the-art algorithm is due to Le Gall [77], which is heavily-based
on the Coppersmith-Winograd algorithm [35]. Its time complexity is about
O(n2.3728639). However, the constant in front of n2.3728639 is extremely large,
namely the algorithm is worse than even the schoolbook matrix multiplication
algorithm on matrices that can be manipulated using modern-day hardware [69].

The essential time complexity of matrix multiplication is usually denoted
O(nω), where poly-logarithmic terms are neglected [145]. It is widely be-
lieved that ω = 2, namely that n × n matrices can be multiplied in about
O(n2p(log(n))) time for some polynomial p [145]. The current lower bound is
due to Raz [118], which proved that in a specific computational model, ma-
trix multiplication takes at least Ω(n2 log(n)) time. It should be noted that
faster probabilistic methods for asserting whether AB = C for three matri-
ces A,B,C are known, for example, Freivalds’s algorithm for asserting matrix
multiplication over the field of two elements, Z2 = {0, 1} [52] . It get some
integer parameters k > 0, randomly chooses k vectors ξ1, ...ξk ∈ Zn2 , and checks
whether A(Bξi) = Cξi for all i = 1, . . . , k. If the answer is “yes” for all oc-
casions, then the algorithm declares that AB = C, and if there is an occasion
for which A(Bξi) 6= Cξi, then the algorithm declares that AB 6= C. It’s easy
to verify that if AB = C, the algorithm always returns the correct answer,
and if AB 6= C, then the algorithm returns the correct answer with probability
≥ 1 − 2−k. Moreover, the time complexity is O(kn2), which is quadratic in n.
However, we focus on deterministic matrix multiplication, as, for the best of
my knowledge, there is no known probabilistic matrix multiplication algorithm
which is faster than the one found in Le Gall [77].

It is widely known that matrix inversion and matrix multiplication have the
same time complexity [36,145]. In Section 6.3, we take special interest in inver-
sion of positive-definite matrices. We suspect that the time complexity of this
restricted problem is the same as the time complexity of general matrix inver-
sion, but we did not manage to find any meaningful results in the literature in
this context, nor prove it myself. We denote the time complexity of the chosen
algorithm for inverting positive definite matrices by O(nω1), similarly neglect-
ing poly-logarithmic terms. This allows us to distinguish between real-world
applications (in which we use the classical algorithm or Strassen’s algorithm) to
theoretical complexity bounds (in which we can use Coppersmith-Winograd’s
or Le Gall’s algorithms). Moreover, the results of Section 6.3 still hold even if
inversion of positive definite matrices turns out to be easier than inversion of
general matrices. However, it should be noted that the inequality 2 ≤ ω1 ≤ ω
holds. Indeed, ω1 ≤ ω as any general matrix inversion algorithm can also be
applied to positive-definite matrices. Moreover, ω1 ≥ 2 as reading all of the
input’s entries requires n2 time.
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Appendix E

Tools From Algebraic
Number Theory

This brief appendix explains the concepts of transcendentality and linear inde-
pendence in number theory and field theory [44,49], as used in Section 6.2.

Fields are algebraic structures standing in the basis of linear algebra, as they
are the cornerstone of the definition of vector spaces and linear transformations.
Examples include Q,R,C with regular addition and multiplication, as well as
Zp = {0, 1, · · · , p − 1} with addition and multiplication modulo p, where p is
any prime number. A field extension K ⊇ F consists of two fields K,F, having
the same addition and multiplication, while K is a super-set of F. In that case,
one can consider K as a vector space over F, meaning that we can use standard
notions from linear algebra. Namely, we say that x1, · · · , xn ∈ K are linearly
independent over F if for any elements f1, · · · , fn ∈ F, if f1x1 + · · · fnxn = 0
then f1 = · · · = fn = 0. One example of a non-trivial linearly independent set
can be seen in the proposition below:

Proposition E.1. Let
√
p1, · · · ,

√
pn be a sequence of the square roots of any

distinct prime numbers. Then they are linearly independent over Q.

The reader is referred to [12] for a proof.
Field extensions are richer than vector fields, as they also allow multiplica-

tion, and as a result, exponentiation. If K ⊇ F is a field extension, an element
a ∈ K is called transcendental over F is the set {1, a, a2, a3, · · · } is linearly inde-
pendent over F. Equivalently, if p is any polynomial with coefficients in F, then
p(a) 6= 0. One can define F(a) as the smallest sub-field of K containing both F

and a. If F = Q, then transcendentality over F is often abbreviated to transcen-
dentality. Number which are not transcendental are called algebraic. Proving
that specific real numbers are transcendental, or even irrational, is a notoriously
hard problem. For example, it is known that at least one of e + π and eπ is
irrational, but it is not known which, not to mention transcendentality. A list
of known transcendental numbers can be found below:
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Theorem E.1. The following numbers are transcendental:

i) e and π.

ii) If x 6= 0 is algebraic, then ex is transcendental.

iii) If x 6= 1 is positive and algebraic, then the natural logarithm log(x) is
transcendental.

iv) If x 6= 0, 1 is algebraic and y is algebraic and irrational, then xy is tran-
scendental.

v) If x is non-zero and algebraic, then cos(x), sin(x), tan(x) are all transcen-
dental.

The reader is referred to [85] for proofs. This list is far from comprehensive,
but it includes most important examples of transcendental numbers, and ex-
cludes examples which are very rarely found in actual systems, e.g. Liouville’s
constant

∑∞
n=0 10−n!.
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data-driven inference of passivity properties. In Proc. IEEE 56th Con-
ference on Decision and Control (CDC), pages 6389–6394, Melbourne,
Australia, 2017.

[126] J. Sabater and C. Sierra. Reputation and social network analysis in multi-
agent systems. In Proc. the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems: Part 1, AAMAS ’02, pages
475–482. ACM, 2002.

[127] V. Sakkalis. Review of advanced techniques for the estimation of brain
connectivity measured with eeg/meg. Computers in Biology and Medicine,
41(12):1110 – 1117, 2011. Special Issue on Techniques for Measuring Brain
Connectivity.

[128] B. M. Sanandaji, T. L. Vincent, and M. B. Wakin. Exact topology identi-
fication of large-scale interconnected dynamical systems from compressive
observations. In Proc. 2011 American Control Conference, pages 649–656,
June 2011.

[129] L. Scardovi, M. Arcak, and E. Sontag. Synchronization of interconnected
systems with applications to biochemical networks: An input-output ap-
proach. IEEE Transactions on Automatic Control, 55(6):1367–1379, June
2010.

236

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



BIBLIOGRAPHY

[130] L. Scardovi, M. Arcak, and E. D. Sontag. Synchronization of intercon-
nected systems with an input-output approach. part ii: State-space result
and application to biochemical networks. In Proc. 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Con-
trol Conference, pages 615–620, Dec 2009.

[131] L. Scardovi and N. E. Leonard. Robustness of aggregation in networked
dynamical systems. In Proc. International Conference on Robot Commu-
nication and Coordination, pages 1–6, Odense, Denmark, 2009.

[132] A. Schnitzler and J. Gross. Normal and pathological oscillatory commu-
nication in the brain. Nature reviews. Neuroscience, 6:285–96, 05 2005.
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הבעיה לפתרון אלגוריתם מציגים אנחנו כאלה. גומלין יחסי מקיימים סוכנים של זוגות אילו ידוע לא
לגבול חיצוני קלט בין הקשר של לינאריזציה על המבוסס לסוכנים, חיצוניים אותות הזרקת בעזרת
אנחנו רשתות. על אופטימיזציה על המבוססת המסגרת על מבוסס שבתורו יציב, במצב המערכת
מראים אנחנו השגיאה. על חסם ונותנים מקורבת, בצורה הבעיה את פותר זה אלגוריתם כי מראים
ניתן לא בו במקרה גם להפעילו ניתן כי ומראים לרעש, מסוימת חסינות מידת בעל האלגוריתם כי גם
אופטימלי הוא שפותח האלגוריתם כי מראים גם אנחנו לבסוף, הסוכנים. לכל חיצוני אות להכניס
של הטופולוגי המבנה את למצוא למעשה מאפשר זה אלגוריתם הנדרשת. הזמן סיבוכיות מבחינת
ישנה בהם במקרים גם בו להשתמש שניתן כך נתון, יציב ממצב מאוד קטנות תזוזות באמצעות הרשת

אוטונומיות. מכוניות של רשתות דוגמת לבטיחות, חזקה דרישה
רשתות על אופטימיזציה על המבוססת המסגרת של באפליקציה עוסק התזה של השביעי הפרק
שחלק מניחים אנו הסופי, הערך לבעיית חוזרים אנו ברשתות. תקשורת תקלות על והתגברות לזיהוי
סייבר מתקפת או בסוכנים, חומרה תקלת עקב אם בין להישבר, עלולים ברשת הסוכנים בין מהקשרים
התקולות הגרסאות לבין הרשת של התקינה הגרסה בין להבדיל ניתן כי מראים אנו ראשית, עליהם.
במסגרת שימוש באמצעות נעשה הנ”ל הסופי. הערך בעיית פתרון כדי תוך אסימפטוטית, בצורה שלה
להפוךאת ניתן מראיםכיצד אנו גםשימושבתורתהגרפים. כמו רשתות, אופטימיזציהעל המבוססתעל
המקבלים התכנסות”, ”וידוא באלגוריתמי שימוש ידי על אמת בזמן להבדלה האסימפטוטית ההבדלה
ומשתמשים המשוער, לגבול מתכנסת המערכת האם ובודקים משוער וגבול סוכנים מרובת מערכת
פתרון תוך אמת, בזמן תקשורת תקלות על והתגברות לזיהוי אלגוריתמים לבנות כדי הזו בהבדלה
שתי ומציעים ההתכנסות, וידוא אלגוריתמי את חוקרים אנו לבסוף, בו-זמנית. הסופי הערך בעיית

זמן-אמת. ונתוני פסיביות על המתבססות כאלו אלגוריתמים לבניית חלופות
מצוידת התזה בנוסף, לעתיד. מחקר כיווני ומציג אותה מסכם התזה של והאחרון השמיני הפרק
החישוביות תורת המערכות, תורת הגרפים, תורת קמורה, אנליזה בנושאי שונים נספחים בחמישה
שלושתהנספחיםהראשוניםמסכמיםחומרמקדיםהנדרשלתזהבתחומים ותורתהמספריםהאלגברית.

בתזה. ספציפיות נקודות של הרחבות מהווים האחרונים הנספחים ושני מעלה, הנזכרים
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מרובות- רשתות על ספרות סקר וכולל הפרקים, לשאר מבוא מהווה התזה של הראשון הפרק
דיפוזיבי, צימוד בעלות רשתות רשתות, על באופטימיזציה נדרש רקע גם כמו ושימושיהן, סוכנים
פרקים בראשי סיכום גם מוצג גם זה בפרק סוכנים. מרובות מערכות עבור הפסיביות בתורת ושימושים

התזה. מפרקי אחד בכל הממצאים של
על שהוצעה רשתות על אופטימיזציה על המבוססת המסגרת בהרחבת עוסק התזה של השני הפרק
אנחנו ויציאותמרובות. כניסות והבקריםהםמערכותעם הסוכנים לרשתותבהן ואלגוור זלזו ברגר, ידי
ליחסיםמונוטוניים-ציקליתמקסימליים בנוגע (Rockafellar) רוקפלר משתמשיםבתוצאהקלאסיתשל
ל-MEIPהמתאימה הרחבה להציע כדי לפונקציותקמורות וקשרם (Maximal cyclicallymonotone)
מונוטונית-ציקלית פסיביות המוצעת, שההרחבה מראים אנו ויציאות. כניסות מרובות למערכות גם
independent cyclically monotone passivity, MEICMP) מקסימלית שיווי-משקל לא-מבוססת
המסגרתהמבוססת ,MEIPושהיאמאפשרתהרחבהשל של הרחבה היאאכן ,(Maximal equilibrium
של רחבה מחלקה עבור מתקיימת זו שתכונה מראים אנחנו מכן לאחר רשתות. על אופטימיזציה על
ויציאות כניסות בעלות מערכות עבור זו בתוצאה הנרחב השימושהאפשרי על מהשמעיד רבות, מערכות

מרובות.
עבור רשתות על אופטימיזציה על המבוססת המסגרת בהרחבת עוסק התזה של השלישי הפרק
מדגימים אנחנו ראשית, חוסר-פסיביות. בעלות מערכות אלא פסיביים, אינם הסוכנים בהם מקרים
הגורם את ומאפיינים כאלו, רשתות עבור נכשלת רשתות על אופטימיזציה על המבוססת המסגרת כיצד
זה. במקרה רשתות על האופטימיזציה בעיות של היטב מוגדרות חוסר או קמירות כחוסר לכישלון
לקמורה הבעיה את להפוך ניתן קמורות, אינן אך היטב מוגדרות אלו בעיות שאם מראים אנחנו שנית,
פידבק גורם משרה למעשה זה גורם כי מראים אנחנו המחיר. לפונקציית ריבועי גורם הוספת ידי על
המבוססת המסגרת של מותאמת גרסה ולהוכיח לנסח שמאפשר מה לפסיבית, להפוך למערכת הגורם
סוגי לשלושה המתאימות הריבועי, לגורם דוגמאות שלוש מראים אנחנו רשתות. על אופטימיזציה על
ומראים מוגדרות, אינן כלל האופטימיזציה בעיות בו המקרה את תוקפים אנחנו לבסוף, שונים. פידבק
הסוכנים. של יציב במצב הקלט-פלט זוגות כל אוסף של קיצונית מחוסר-מונוטוניות נגרם זה שמצב
זו שהעתקה ומראים למונוטוני, הנ”ל האוסף את ההופכת העתקה גיאומטרי באופן מציעים אנחנו
מותאמת גרסה ולהוכיח לנסח ומאפשרת לפסיביים, אותם ההופכת הסוכנים, של טרנספורמציה משרה
על אופטימיזציה על המבוססת המסגרת דהיינו, רשתות. על אופטימיזציה על המבוססת המסגרת של

ראויה. בצורה מותאמת היא עוד כל חוסר-פסיביות, בעלות למערכות להרחבה ניתנת רשתות
על המבוססת המסגרת בבסיס העומדת האנליזה בתוצאת בשימוש עוסק התזה של הרביעי הפרק
יש בה הסופי, הערך בבעיית מתמקדים אנחנו בקרים. של סינתזה לבצע כדי רשתות על אופטימיזציה
על המבוססות בשיטות משתמשים אנחנו מבוקש. לערך תתכנס שהמערכת כך מרושתים בקרים לסנתז
אנחנו מכן, לאחר הנ”ל. הבקרים את לבנות כדי ממש וקמירות (subgradients) תת-גרדיאנטים חשבון
סימטריות כי מראים אנחנו הסופי. הערך בעיית פתרון על ברשת סימטריות של ההשפעות את חוקרים
ומקומותשונים. בגדליםשונים הסוכניםמתכנסיםלצבירים בו ,(clustering) צבירי גוזרותמבנה ברשת
אנחנו מכן לאחר ברשת. הסימטריות לפי הצבירים ומבנה גודל את לחזות ניתן כיצד מראים אנחנו
הבקרים כל בה רשת לבנות ניתן כיצד ומראים זהה, בצורה מתנהגים הסוכנים כל בו במקרה מתרכזים

נתון. צבירי למבנה מתכנסת והיא לזה, זה זהים
הבקרה בתחום המתרכזת התוצאות, של הראשונה באפליקציה עוסק התזה של החמישי הפרק
המערכת של במודל להחזיק מבלי בקרה מערכות לבנות היא המטרה זה, בתחום מבוססת-נתונים.
חוקרים אנחנו למערכת. הקשור נתונים בסט רק אלא מעורפל, מאוד מודל ישנו כאשר או המבוקרת,
קבוע מבקר המורכב (cascaded) מדורג בקר כי מראים אנחנו זה. במקרה הסופי הערך בעיית את
המסגרת על מתבססת ההוכחה כאשר הבעיה, את פותר לשינוי שניתן והגבר מתאימה בצורה הנבחר
מתוך בפועל ההגבר ערך לבחירת דרכים שתי מציגים אנחנו רשתות. על אופטימיזציה על המבוססת

השיטות. שתי של הביצועים בין ומשווים נתונים,
נתונה זו, בבעיה הרשת. זיהוי בבעיית המתרכזת נוספת, באפליקציה עוסק התזה של השישי הפרק
אך השונים, הזוגות בין הגומלין ויחסי הסוכנים של מדויקים מודלים ישנם בה סוכנים מרובת רשת
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עברי תקציר

מסגרת הושגה בו האחרונות, בשנים למחקר פורה כר היוו מרובות-סוכנים ורשתות מבוזרת בקרה
הכוללים רבים, בתחומים שימושים של רחב מנעד עם בבד בד אלו, רשתות לניתוח רחבה תיאורטית
לוויינים. ומערכי חשמל, לייצור רשתות רובוטים, נחילי אוטונומיים, רכבים ציי ניורונים, רשתות
ממערכות המורכבות רשתות של אחיד לניתוח רבות מסגרות והציעו ניסחו חוקרים השנים, לאורך
הגומלין יחסי למידול המשמשת הגרפים, תורת הם כאלו רבות במסגרות שצצו נושאים שני דינמיות.
תורתהפסיביותמנסהלהשליך הידועהגםבשםפסיביות. ובקרהמבוססת-אנרגיה, הסוכניםברשת, בין
להספק. אנרגיה בין בקשר ומתרכזת כלליות, דינמיות למערכות החשמליות הרשתות מעולם מושגים
הרשתות לעולם לראשונה הוכנסה הפסיביות תורת לינאריות. לא מערכות לחקר רבות משמשת היא
פסיביות על המסתכל שלה, הסטנדרטי בנוסח אך ב-2007, (Arcak) ארצ’אק ע”י מרובות-הסוכנים
אך מסוים, גבול למצב מתכנסת שהרשת להוכיח למשל, מאפשר, זה נוסח מסוים. משקל לשיווי ביחס
ידע מבלי הרשת התנהגות של ניתוח ולאפשר זו, בעיה עם להתמודד כדי הגבול. את מראש לדעת יש
אינקרמנטלית פסיביות כוללים מהם שניים הוצעו. פסיביות של שונים נוסחים זו, התנהגות על מוקדם
,(Equilibrium independent passivity) לא-תלוית-שיווי-משקל ופסיביות ,(Incremental Passivity)

.EIP-כ לרוב המקוצרת
הנקרא פסיביות של חדש נוסח הציעו (Bürger, Zelazo & Allgöwer) ואלגוור זלזו ברגר, ב-2014,
,(Maximal equilibrium independent passivity,MEIP) פסיביותלא-תלוית-שיווי-משקלמקסימלית
בשיווי הקלט-פלט זוגות כל ושאוסף לה, שיש משקל שיווי לכל ביחס פסיבית שהמערכת מניחים בה
ההנחה בה ,EIP של הכללה מהווה זו תכונה מקסימלי. מונוטוני יחס מהווה המערכת של משקל
מקסימלי. מונוטוני יחס של פרטי מקרה שהיא מונוטונית, פונקציה הוא הנ”ל הזוגות שאוסף היא
הסוכנים בה (diffusively-coupled network) צימוד-דיפוזיבי בעלת רשת כי הראו ואלגוור זלזו ברגר,
שתי פתרון ידי על לחישוב ניתן וגבולה לאינסוף, מתבדר הזמן כאשר מתכנסת MEIP הם והבקרים
האופטימלית” הזרימה כ”בעיית ידועות אלו בעיות לזו. זו דואליות רשתות על אופטימיזציה בעיות
נחקרו והן ,(Optimal potential problem) האופטימלי” ו”בעייתהפוטנציאל (Optimal flowproblem)
לחקר ומומחים מחשב, מדעני מתמטיקאים, ידי על רשתות על האופטימיזציה תורת במסגרת רבות
אופטימיזציה באמצעות סוכנים מרובות מערכות של לאנליזה מסגרת למעשה יצר זה קשר ביצועים.
ראשית, חסרונות. כמה ישנם זו למסגרת זאת, עם התחומים. שני בין בסיסי מילון ויצר רשתות, על
input single output, SISO) בודדת ויציאה כניסה בעלי הם והבקרים שהסוכנים מניחה המסגרת
MIMO) מרובות יציאות כניסות עם אמיתיות מערכות עבור בה השימוש את שמגביל מה ,(Single
לכל ביחס פסיביים יהיו הסוכנים שכל דורשת המסגרת שנית, .(Multiple input multiple output,
shortage) חוסר-פסיביות בעלות ומערכות גנרטורים כמו מערכות שמדיר מה להם, שיש יציב מצב
בגבול רק דהיינו בלבד, באנליזה עוסקת ואלגוור זלזו ברגר, של התוצאה לבסוף, אחרות. (passivity
בקרה. בעיות לפתרון בקרים של לסינתזה שיטה נותנת אינה היא נתונים. ובקר סוכנים עם רשת של
שונות בעיות לפתרון שימושים ומציג הללו, הבעיות שלוש כל עם מתמודד זו בתזה המוצג המחקר
טופולוגייתהרשת זיהוי מבוססת-נתונים, הכולליםבקרה סוכנים, מרובות מערכות מבוזרתשל בבקרה

אמת. בזמן תקשורת תקלות על והתגברות וזיהוי נתונים, מתוך
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וחלל אווירונוטיקה להנדסת בפקולטה זלזו דניאל פרופ’ בהנחיית בוצע המחקר

הנדיבה הכספית התמיכה על מדעי ופיתוח למחקר ישראל-גרמניה לקרן מודה אני
בהשתלמותי
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על אופטימיזציה מבוססות שיטות
מבוזרת בבקרה רשתות
מבוססת-פסיביות

מחקר על חיבור
דוקטור התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה

שרף מיאל

לישראל טכנולוגי מכון - הטכניון לסנט הוגש
2019 אוקטובר חיפה, תש”ף, תשרי
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