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Abstract

Cooperative control and multi-agent networks have been subject to extensive
research over the last few years, exhibiting both a rich theoretical framework
as well as a wide range of applications. In this venue, researchers have tried
to establish a unified theory for networks of dynamical systems. Two recurring
themes that appear in many theories include graph theory and energy-based
control, i.e. the notion of passivity. Passivity was first applied to the world of
multi-agent systems by Arcak, and since then many different variants of passiv-
ity were suggested to tackle cooperative control problems, including incremental
passivity and equilibrium-independent passivity (EIP).

In 2014, Biirger, Zelazo and Allgéwer introduced the notion of maximally
equilibrium-independent passive systems (MEIP), in which passivity with re-
spect to all steady-state inputs is assumed, and the collection of all steady-state
input-output pairs is a monotone relation. They showed that the steady-state
limit of a diffusively-coupled multi-agent network, with MEIP agents and con-
trollers, can be found by solving a pair of dual network optimization prob-
lems, known as the optimal potential and optimal flow problems, which have
been studied in the field of network optimization for decades. Thus a network
optimization framework for analysis of multi-agent systems was established.
However, it has a few main drawbacks. First, it requires the agents to be
single-input-single-output systems, limiting the application to many real-world
systems. Second, it requires that the agents are passive with respect to any
steady-state they possess, excluding systems like generators and other passive-
short systems. Lastly, the result they present is purely an analysis result, giving
no method for synthesizing controllers.

The research presented in this thesis confronts all three problems. First,
the notion of MEIP is extended to include multiple-input-multiple-output sys-
tems by applying the notion of cyclically monotone relations introduced by
Rockafellar, and a generalized version of the network optimization framework is
presented. Second, networks with passive-short agents are treated. In this case,
the associated network optimization problems are non-convex, and it is shown
that convexifying them results in a passivizing transformation for the agents,
validating the augmented network optimization framework. Lastly, we apply
the framework to solve various problems in cooperative control, including final-
value synthesis, model-free synthesis, network identification, and fault detection
and isolation.



Table of Notation

In this dissertation, we will also use the following notation:

Notation Meaning

|A] The cardinality (size) of the set A.

R The set of real numbers.

Q The set of rational numbers.

/A The set of integers.

0, 04 The all-zero vector of length d.

1,14 The all-one vector of length d.

e The i-th standard basis vector.

1dy The identity matrix of size d X d.

ker(A) The kernel of the linear transformation A.

Im(A) The image of the linear transformation A.

Ut The orthogonal complement of the linear subspace U.

Proj,; The orthogonal projection operator on U.

A® B The Kronecker product of the matrices A and B.

[|z|] The Euclidean norm of the vector x.
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A>B The matrix A — B is positive-definite.

a(A) The minimal singular value of A
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Amax The maximal eigenvalue of A
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A2(G) The algebraic connectivity of the graph G.

3 The i-th agent in a multi-agent system.

% The collection of all agents in a multi-agent system.

ITe The e-th controller in a multi-agent system.

II The collection of all controllers in a multi-agent system.

(G,%,1I) A diffusively coupled system with agents 3, controllers II, and in-
teraction graph G.

MY, XM The cascade of the dynamical system ¥ and the linear map M.

VF The gradient of the function F.

Hess(U) The Hessian matrix of the function U

oF The subgradient of the function F'.

Cc? The space of functions which are continuously differentiable g times.

Ip The indicator function of the set D, defined as {0 re D.

©x x¢D
I. The indicator function of the set D = {c}.
K* The Legendre transform of the function K, defined as K*(y) =

supu{yTu — K(u)}.




Notation

Meaning

o(f)

A function g growing no faster than f in the specified limit, i.e.

lim sup fE ; < oo or lim sup f% ; < o0, depending on the context.

T—00 T—x(
A function g growing strictly slower than f in the specified limit,
; i 9@ i 9(x)
ie. zli}ngof - =0or zlifilo ) =

A function g growing no slower than f in the specified limit, i.e.

0, depending on the context.

hm 1nfﬁ >0 or hrn 1nffc

A function g growing strictly faster than f in the specified limit,
; (@) _ g(@) _
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A function g growing as fast as f in the specified limit, i.e.
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Moreover, italicized letters (e.g. y;(t) or y;) will denote time-dependent signals,
whereas normal font letters (e.g. y;) will denote constant vectors. We will also
use the following acronyms:

Acronym Meaning

CM Cyclically Monotone

EIP Equilibrium-Independent Passive (or Passivity)

EIPS Equilibrium-Independent Passive Short
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FDI Fault Detection and Isolation
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HROPP Hybrid Regularized Optimal Potential Problem

1/0 Input/Output
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NROPP Network-Regularized Optimal Potential Problem

ODE Ordinary Differential Equation

OFP Optimal Flow Problem
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TF Transfer Function
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Chapter 1

Introduction

1.1 Introduction and Focus

The study of cooperative control and multi-agent networks has been in the pin-
nacle of control research for the last few years, exhibiting both a rich theoretical
framework as well as a wide range of applications [83}/105,/107]. Examples in-
clude robotics [68], neural networks and neuroscience [18,[115/|127}/130], power
grids [2,/157], traffic engineering [8], gene regulation [54}|74], communication
networks [29/112], physics [141/156], ecology [94,[159], and even behavioral sci-
ences [126,/177] and finance [87}[102].

In this venue, researchers have tried to establish a unified theory for networks
of dynamical systems. Two recurring themes that appear in many theories in-
clude the study of graph theory, which emerged as an important tool in the
modeling and analysis of these systems [92], and passivity theory [75,/133], as
it brings a powerful framework to analyze the dynamic behavior of these inter-
connected systems. Passivity theory, a system-theoretic notion which is related
to energy conservation, is a widespread tool to synthesize controllers for a wide
range of control problems [4]/10,(78//93/147/1511/160,166], including cyber-physical
systems, energy systems and robotics. It enables an analysis of the networked
system that decouples the dynamics of the agents in the ensemble, the struc-
ture of the information exchange network, and the protocols used to couple
interacting agents [6}7].

Passivity for multi-agent systems was first pursued in [5], where it was used
to study group coordination problems. Several variants of passivity theory were
used in various contexts like coordinated control of robotic systems [32}/62],
synchronization problems [129}[148], port-Hamiltonian systems on graphs [162],
distributed optimization [154], cyber-physical systems [4}|151], micro-grid con-
trol [40] and teleoperation of unmanned aerial vehicle (UAV) swarms [50].

One important variant of passivity particularly useful for the analysis of
multi-agent systems is equilibrium-independent passivity (EIP), introduced in
[64]. For EIP systems, passivity is verified with respect to any steady-state

5



1.1. INTRODUCTION AND FOCUS

input-output pair, allowing one to show convergence results without specify-
ing the limit beforehand [144]. A generalization of this property, known as
mazimal equilibrium-independent passivity (MEIP), was introduced in 23] for
single-input single-output (SISO) systems, allowing one to prove convergence
using energy methods for a much wider class of systems, including nonlinear
first-order integrators and other marginally-stable systems, which are not EIP.

The main result of [23] showed that the asymptotic behavior of these net-
worked systems is (inverse) optimal with respect to a family of network opti-
mization problems. In fact, the steady-state input-output signals of both the
dynamical systems and the controllers comprising the networked system can be
associated to the optimization variables of either an optimal flow or an optimal
potential problem; these are the two canonical dual network optimization prob-
lems described in [122]. Thus, [23] built a network optimization framework for
understanding problems in cooperative control and multi-agent systems, which
can give network-level intuition for handling these problems.

Although promising, the network optimization framework suggested in [23]
has several important drawbacks. First, it can only be applied to single-input-
single-output systems, and not to multiple-input-multiple-output (MIMO) sys-
tems, as the definition of MEIP relied on the notion of monotonicity, which
is not canonically extendable to multiple dimensions. Second, it requires the
agents to be passive (or even output-strictly passive) with respect to all steady-
state input-output pairs they possess, thus restricting the application of the
framework for many important cases. Third, the paper [23] describes an anal-
ysis result. For such analysis to be practically useful, one must also develop
synthesis procedures to design controllers for networked systems to achieve the
desired coordination goals.

This thesis aims to extend the network optimization framework for cooper-
ative control in order to cope with the challenges described above. There are a
few main tools that are used throughout the thesis. The tools of convex analysis
are repeatedly applied to move between steady-state equations for the multi-
agent systems and the associated network optimization problems. Namely, strict
convexity is used to verify uniqueness of the steady-state, subdifferential calcu-
lus is used to simplify nested optimization problems, and convex regularization
terms are used to cope with lack of passivity. Graph theory and algebraic graph
theory are also used throughout the thesis, as analyzing the underlying net-
work structure is vital for understanding the behavior of a multi-agent system.
Other tools are used in specific chapters of the thesis to solve specific problems.
First, the notion of cyclic monotonicity, which was first introduced by Rockafel-
lar in [119] is used to generalize the network optimization framework to MIMO
agents. Second, the notion of system transformation and feedback passivation
(or passification) is repeatedly used when dealing when passive-short agents.
Third, the notions of randomization and absolute continuity are used together
in some application examples, namely network detection and fault detection
and isolation, as it can be proved that certain algorithms work “with almost
any input,” but constructing a deterministic input that is valid for the algorithm
can be near-impossible and time-consuming. Other tools which are used more



CHAPTER 1. INTRODUCTION

sparingly include group theory, field theory, computational complexity theory,
iterative control, Lyapunov stability, and matrix analysis.

Notation

First, we use some standard notation from set theory, as used in [44] . The
cardinality (or size) of a set A is denoted by |A|. The set R denotes the real
numbers, the set Q denotes the rational numbers, and the set Z denotes the
integers.

Second, we use standard notation from linear algebra and matrix analysis
[66]. The vector 04 denotes the d-dimensional zero vector. The vector 1, denotes
the d-dimensional all-ones vector. In both cases, the subscript may be omitted
when the dimension is clear. The vector e; will denote the i-th standard basis
vector, i.e., e; € R" and (e;); = d;5, where §;; is Dirac’s delta. The identity
matrix of size d x d will be denoted Idy. Given a linear map A, we will denote
its kernel by ker(A) and its image as Im(A). If A is a map from a linear space
to itself, then we denote its minimal singular value by g(A), and its maximal
singular value by 7(A4). Similarly, if all of A’s eigenvalues are real, we’'ll let
Amin(A) be the minimal eigenvalue of A, and A\pax(A) be the maximal value of
A. For two matrices A, B, we'll let A ® B denote the corresponding Kronecker
product. If A, B are both square matrices of the same dimension, we’ll write
A > B if A— B is positive semi-definite. Moreover, we’ll write A > B if
A — B is positive-definite. If U is a linear subspace of R, we’ll let UL be
its orthogonal complement, and Proj;; be the orthogonal projection on it .The
Euclidean norm of a vector « will be denoted by ||z||. Moreover, if X,Y are
two sets inside the same vector space, we let X 4+ Y be their Minkowski sum,
definedas X +Y ={x+y: 2z € X,y e Y}

Next, we use some nomenclature from graph theory [15,[57]. A graph G is a
pair G = (V,E), where V is the set of nodes and E is the set of edges. Each edge
e € [ consists of two vertices i, j € V, and will be oriented arbitrarily, say from
i to j; we write e = (7, 7) in this case. If there is an edge between i and j, we’ll
write i ~ j. The incidence matrix &g of G is a |V| x |E| matrix such that for each
edge e = (4,7), (£g)ie = —1,(Eg)je = 1 and all other entries in e’s column are
zero. In some cases, we’ll omit the subscript and refer to the matrix as £. Given
some positive integer d, the incidence operator &; 4 is defined as the Kronecker
product & 4 = £ ®1d4. The Laplacian of the graph G is defined as the matrix
EgggT . This is a positive semi-definite matrix, and its second lowest eigenvalue
is denoted as A2(G), which is known as the algebraic connectivity of the graph
g.

We also use notation from analysis and convex analysis [17,|{121]. For a
smooth function F', we let VF be its gradient. We denote the collection of
all function which are ¢ times continuously differentiable by C?. If K is a
convex function, we let 0K denote its subgradient, and let K* be its Legendre
transform, defined as K*(y) = sup, {y "u — K(u)}. Moreover, for a set D we let

7
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Ip be the corresponding indicator function, i.e.,

D
ID(I){go iZD'

For the set D = {c}, the corresponding indicator function will be denoted I..

Lastly, if T is some dynamical system and M is a linear map, we’ll denote
the cascade of M and YT by MY or Y M, where the rightmost operator is applied
first.

We also go over several acronyms repeatedly used throughout the thesis.
Namely, “ordinary differential equation” will be abbreviated as ODE, and “in-
put/output” will be abbreviated as I/0. Single-input single-output systems will
be called SISO systems, where multiple-input multiple-output systems will be
called MIMO systems. Lastly, linear and time-invariant systems will be denoted
as LTI systems, and their transfer function will be abbreviated as TF.

1.2 Background

In this section, we present the subject of network optimization, introduce the
network dynamic model used throughout the thesis, and present an overview of
the role of passivity in cooperative control.

1.2.1 Network Optimization

The field of network optimization is one of the gems of mathematics, lying at
the intersection of two major subjects - namely graph theory and optimization
theory. Network optimization deals with algorithmically finding optimal solu-
tions to optimization problems defined on graphs, e.g. shortest path problems,
maximal flow problems and routing problem [11,[122]. Network optimization is
widely used in theoretical computer science, supply chain management, opera-
tions research and communication networks. This section presents the network
optimization notions required for this thesis .

Consider a graph G = (V, E) with an incidence matrix £. One classic example
of a network is an electrical network, in which the nodes are devices and the
edges are wires. A flow on a network is a vector p = [uy, .., um]T, which can
be thought of as a vector of electrical currents running through the edges. In
a similar fashion, we look at u = [uy, ...,uM]—r as a divergence vector, which
adds up the in/out flow through each node. In that setting, Kirchhoff’s current
law is represented by u+ £ = 0. We can also think about y € RVl as the
potential of the network. To each edge e = (i, ) one can associate a potential
difference (. = y; — y;. The stacked potential difference vector ¢ € RIE can
also be expressed by ( = £ "y. These connections yield the conversion formula,
relating all four variables by y'u = —¢ .

We consider a few important optimization problems over networks that will
each be given an interpretation in the cooperative control setting. The first
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attempts to optimize the flow and divergence in a network, subject to a con-
servation of flow constraint. We present a flow tariff, giving a cost Co%(p,)
to a flow of volume ., and a divergence tariff, giving a cost C3V(u;) to each
divergence u;. In this case, one tries to minimize:

min YO8 () + ¥ 00 (1)
eV eckE
s.t. u+&pu=0

which is known as the optimal flow problem. If the tariffs are convex functions,
one can consider the dual problem, in the convex optimization sense. Indeed, if
one defines tariffs for tension and potential using the Legendre transform, one
obtains

P (y) = (CH¥)*(y) = min, (0] ys - c:“vmn);
CEon(,) = (C1Y*(¢,) = ming, (1 Ce - cﬁowme)).

This gives the dual problem, known as the optimal potential problem:

min Y CP(y;) + 3 CE(Ce)
eV eckE .
s.t. Ely=¢

Both of these problems are convex, and can be easily solved using gradient
descent or other convex optimization techniques. See Appendix [A] for more
details.

1.2.2 Diffusively Coupled Networks

We now present the network model used throughout this thesis, for which we will
find a connection to network optimization. We consider a population of agents
interacting over a network, described by the graph G = (V,E). The agents are
represented by the vertices V, and pairs of interacting agents are represented by
edges E. Each specific edge contains information about the coupling (i.e., the
controllers), which are allowed to be dynamic. We assume a diffusive coupling
structure, where the inputs to the edge controllers are the differences between
the outputs of the adjacent agents, and the control input of each agent is the
(directed) sum of the edge controller outputs.

Each agent in the network is modeled as a multiple-input multiple-output
(MIMO) dynamical system of the form

5. {mw = fulai(t). ui(t), w),

yi (t) = hi(zi(t), ui(t), w;) iev, (1.1)

where z;(t) € RPi is the state, u;(t) € R? is the input, y;(t) € R? is the out-
put, and w; is a constant exogenous input. Note that each agent need not

9
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Figure 1.1: Block diagram of the diffusively-coupled network (G, %, II).

have the same state dimension, but we require all agents have the same num-
ber of inputs and outputs, d. Let u(t) = [us(t)",...,uy(t)T]" and y(t) =

[yi(t)", ...,y ()] be the concatenation of the input and output vectors.

Similarly, z(t) € RE:: 71 s the stacked state vector, and w the stacked exoge-

nous input.

The agents are diffusively coupled over the network by dynamic systems that
we consider as the network controllers. For the edge e = (4, ), we denote the
difference between the outputs of the adjacent nodes as (.(t) = y;(t)—v:(t). The
stacked vector ((t) can be compactly expressed using the incidence operator of
the graph as ((t) = &5 4y(t). These, in turn, drive the edge controllers described
by the dynamics

) = Ge(me(t): (1)),
e {'ue(t) = ¢e(ne(t),<e(t)) €L (12)

These edge controllers regulate the relative output of the corresponding agents,
and can be implemented either by the agents, or using a central server commu-
nicating with the agents, e.g. using cloud computing. The output of these con-
trollers will yield an input to the nodal dynamical systems as u(t) = —&g qpu(t),
with u(t) the stacked vector of controller outputs. We denote the complete
network system by the triple (G, ¥, 1), where ¥ and II are the parallel intercon-
nection of the agent and controller systems, and G is the underlying network;
see Figure

The diffusive coupling structure includes many types of networks, including
the Kuramoto model [43], traffic models [8], and neural networks [65]. We

10
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illustrate possible uses of diffusively-coupled networks in the following example.

Example 1.1. Consider the gradient system @ = —V F(x), where

Fe)= ) Fywi—a)),

(i,7)€E

and F;; are smooth C* functions. This is an example of a diffusively coupled
network, where the agents are single integrators &; = u;, y; = x;, and the con-
trollers are static nonlinearities VIFy;. This system drives the agents to minimize
the function F(x), and the agents converge to a local minimum of F'.

First, consider the consensus problem, in which we want the agents converge
to a state in which x; = x;, Vi,j € V [107]. It can be achieved using the described
diffusively-coupled network by choosing Fy;(C.) = ||Cc||*>. The functions Fy; are
convex, meaning that the agents must converge to a global minimum, in which
consensus s achieved.

Second, consider the distance-based formation control problem, in which we
want the agents converge to a state in which ||x; — ;|| = d;j, Vi,j € V, where
the distances d;; are given. It can be achieved using the described diffusively-
coupled network by choosing F;;(C.) = i(HCeHQfd?j)Q. This is the distance-based
formation control protocol described in [105].

Lastly, suppose that the states x; are real numbers, and we wish to force
the agents to have the same phase, i.e., v; = x; mod 2m. This can be achieved
using the described diffusively-coupled network by choosing F;;(C.) = 1—cos(Ce),
which gives the Kuramoto model for the case in which oscillators revolve at the
same velocity, i.e., w; =0 [45].

1.2.3 The Role of Passivity in Cooperative Control

Passivity theory has taken an outstanding role in the analysis of cooperative
control systems, and in particular those with the diffusive coupling structure of
Figure[I.1] We dedicate this section to consider a few variants of passivity used
to prove various analysis results for multi-agent systems. For an introduction
to passivity and its relation to stability, we refer the reader to Appendix [C]
The main advantage of using passivity theory is that it allows to decouple the
system into three different layers - namely the agent dynamics, the coupling
dynamics, and the network connecting the two. This concept is clearly seen in
the following theorem:

Theorem 1.1 ([23]). Consider the network system (G, X, 1) comprised of agents
and controllers. Suppose that there are constant vectors i, yi, (e and W such
that

i) the systems X; are oulput strictly-passive with respect to u; and y;;
i1) the systems Il are passive with respect to (e and He;

iii) the stacked vectors u,y, C and p satisfy u = —Eg gy and ( = Egdy,'

11
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where u = [u]—7...,u‘—\r/|]—r, y = [yi'—,...,y&']—r, ¢ = [CI,...,C‘E]T, and u =
[u?, RN u‘El]T, Then the output vector y(t) converges toy ast — oo.

The first condition involves the agent dynamics, the second the controllers,
and the third the underlying network. We note that the version of the theorem
proved in [23] deals with SISO systems, but the exact same argument also proves
the result for MIMO systems.

The first paper to fully embrace passivity theory to analyze cooperative con-
trol problems was [5]. It led to many variants of passivity in the literature proven
to be useful for the analysis of cooperative control problems. Incremental passiv-
ity (IP), introduced in [110], allows one to consider the passivity property with
respect to certain trajectories, rather than fixed equilibria. Indeed, incremental
passivity was used in [129]/148] to prove various synchronization and analysis
results for multi-agent systems. However, IP is restrictive, as it demands the
passivation inequality to hold for any two trajectories.

Other variants of passivity focus on the collection of all equilibria of a system.
In this direction, the notion of steady-state input-output maps is useful. In the
following, we focus on dynamical systems of the form

. {s’c(t) = f(x(t),u(t)) (1.3)

y(t) = h(z(t), u(?))

Definition 1.1. Consider the dynamical system (1.3) with input v € U and
output y € Y. The steady-state input-output relation associated with (1.3)) is
the set k C U x Y consisting of all steady-state input-output pairs (u,y) of the
system.

Remark 1.1. FEven if the relation k is not a function, we can always think of
it as a set-valued function. Namely, for a steady-state input u, let k,(u) = {y :
(u,y) € k}, and for a steady-state output y, let k=1(y) = {u: (u,y) € k}.

Example 1.2. We consider the following four SISO dynamical systems:

o {at:—:r—i—u Ny {:'U:u
y=z y=2z

Sy T=—-x+u . =2 +u
y = tanh(z) y=z

We compute the steady-state input-output relation for each of the systems. For
Y1, in steady-state, we have * = 0, so y = x = u. Thus the steady-state input-
output relation is k1 = {(n,y) : u =1y € R}. For 3o, in steady-state, we
have £ = 0, so u = 0. Moreover, the corresponding steady-state output y can
take any value, depending on initial conditions. Thus the steady-state input-
output relation is ke = {(u,y) : u = 0,y € R}. For X3, in steady-state, we
have & = 0, so y = tanh(x) = tanh(u). Thus the steady-state input-output
relation is ks = {(w,y) : y = tanh(u) € R}. Lastly, for X4, in steady-state,

12
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Figure 1.2: The steady-state input-output relations considered in Example

we have & = 0, soy = x = /u. Thus the steady-state input-output relation is
ks = {(u,y) : y = ¥u € R}. The relations ki, ks, k3 and k4 can be seen in

Figure[I.3

With this definition, we now introduce the next variant of passivity termed
equilibrium-independent passivity (EIP) [64]. A key feature of EIP is the as-
sumption that for any steady-state input u there is exactly one steady-state
output y. This implies that the steady-state output y can be expressed as a
function of the steady-state input u, which is assumed to be continuous. Thus,
with a slight abuse of notation we can consider the the relation k, as a function
ky:ury,ie,y=ky(u). In general, this is less restrictive than IP, and allows
to prove analysis results for MIMO systems. However, there are IP systems
which are not EIP. The epitome of these kind of systems is the single integra-
tor, which can be verified to be IP, but not EIP. The steady-state input u = 0
has multiple different steady-state outputs (depending on the initial condition
of the system), and thus the input-output relation is no longer a function.

The last variant of passivity we review is mazimal equilibrium-independent
passivity (MEIP) [23]. It is a variant of EIP that attempts to remedy the
exclusiveness of the single integrator and similar systems. However, it is only
defined in the case of SISO systems, as it relies on the notion of monotone
relations:

Definition 1.2 ([23]). Consider a relation R C R x R. We say that R is a
monotone relation if for every two elements (uy,y1) and (u2,y2), we have that
(ug—uy)(y2 —y1) > 0. We say that R is maximally monotone if it is monotone
and is not contained in a larger monotone relation.

In other words, increasing the first component u implies that the second
component y cannot decrease. We now present the definition of MEIP.

Definition 1.3 ([23]). The SISO system (L.3) is said to be (output-strictly)
maximal equilibrium-independent passive (MEIP) if:

13
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i) The system is (output-strictly) passive with respect to any steady-state
input-output pair (u,y) it has.

i) The collection k, of all steady-state input-output pairs (u,y) is mazimally
monotone.

This is indeed a generalization of EIP, as the function &, of an EIP system is
monotone ascending [64]. It can also be shown that the single SISO integrator is
MEIP. However, the problem of finding a MIMO analogue of MEIP, or a variant
of EIP that will include marginally-stable systems like the single integrator, has
not been addressed in the literature.

The main result of [23] showed that a diffusively-coupled system (G, ¥, IT) in
which the agents are output-strictly MEIP and the controllers are MEIP must
converge to a closed-loop steady-state, which is the minimizer of two dual convex
instances of the optimal potential problem and the optimal flow problem. This
is a generalization of Theorem that allows one to check for convergence of a
multi-agent system without specifying an a priori limit. Thus, one can compute
the steady-state limit of (G, X, II) with relative ease.

More precisely, it is known that any maximal monotone relation in R? is equal
to the subgradient of some convex function R — R, which is unique up to an
additive constant [121]. Thus, if we let k; and 7. be the agents’ and controllers’
steady-state input-output relations, then there exist convex functions K;, T,
such that 0K; = k; and OI'c = 7.. The functions K;,I'. are said to be the
integral functions of k; and ., respectively. We also define the convex functions
K(u) =3 ey Ki(u;) and T'(C) = > g Te(Ce), and let K*, T™* be their Legendre
duals. It is straight forward to check that 0K = k and OI' = ~, where k and
~ are the stacked relations achieved from concatenating k; and ~., respectively.
The following theorem is proved in [23]:

Theorem 1.2. Consider a diffusively-coupled system (G,¥,1I), and assume
that the agents are output-strictly MEIP and that the controllers are MEIP.
Let K and T be the sum of the integral functions for the agents and for the
controllers, respectively. Then the signals u(t), y(t), C(t), u(t) converge to steady-
states 1,7y, é, i, which are optimal primal-dual solutions of the following pair of
network optimization problems:

Optimal Potential Problem Optlmal Flow Problem

(OPP) (OFP)
m’icn K*(y)+T(0) mln ( )+ I (w)
st. ETy=¢ = -

It should be noted that the network optimization framework allows for more
than just finding the steady-state of a diffusively-coupled system, as it gives
“network-level intuition” for problems in multi-agent systems. One example of
this network-level intuition can be seen below:

Example 1.3. Consider a collection of output-strictly MEIP agents interacting
over a graph G = (V,E). We fix arbitrary vectors v, ..., v|g|, and consider the
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single integrator controllers with these biases, i.e., the controller on the edge
e € E is given by ne = (e — Ve, te = Ne. We ask ourselves whether or not the
closed-loop diffusely-coupled network (G, %, II) will converge to a steady-state.
Intuitively, one could guess that the closed-loop system converges to a steady-
state if and only if the agents have a steady-state output y such thaty; —y; = ve
for all e = (i,j) € E. To prove this claim classically, one needs to consider a
Lyapunov function which is the sum of the storage functions for the agents and
the controllers, prove that it is a Lyapunov function, and then invoke LaSalle’s
invariance principle, which is quite cumbersome as we do not know the steady-
state output in advance. Alternatively, one could use the network optimization
framework to prove the claim with ease. Indeed, the integral function of the
controllers is easily computed as T'e(Cc) = Iy, (Cc). Thus (OPP) is just the
minimization problem of K*(y) 4+ I,(C), where ( = EJy and v = [v{ ...,V‘—l[—El]T
1s the stacked bias vector. To have a non-infinite value, we must have { = v,
so we demand that v € Im(SgT). Moreover, if we restrict the variable y by
demanding that EgTy = (, then (OPP) has a non-infinite value if and only if
K*(y) is finite, i.e., the agents have the steady-state output y. Thus the closed-
loop system (G, %, 1) converges if and only if there’s a steady-state output y
such that Sgy = v, which is exactly as conjectured.

1.3 Contributions and Thesis Outline

The following overview presents the outline of this thesis and briefly summarizes
its contributions. The first two chapters deal with theoretical extensions to the
network optimization framework, while the following chapters deal with various
applications of the framework to problems in multi-agent systems.

Chapter [2- A Network Optimization Framework for MIMO
Systems

In this chapter we introduce a generalization of the network optimization frame-
work of [23] to diffusively-coupled systems with MIMO agents and controllers.
This is done using the notion of cyclically monotone relations. Namely,

e We use the notion of cyclically monotone relations to define mazimally
equilibrium-independent cyclically-monotone passive systems (MEICMP),
which is a generalization of MEIP to MIMO systems.

e We derive a network optimization framework for diffusively-coupled sys-
tems with output-strictly MEICMP agents and MEICMP controllers, gen-
eralizing the network optimization framework of [23], using a different
approach than the one presented therein.

e We explore the notion of MEICMP systems. Namely, we show that it
holds for a large class of gradient systems with oscillatory terms, as well
as classifying which linear systems possessing this property.
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Chapter (3| - A Network Optimization Framework for
Passive-Short Agents

In this chapter we introduce a generalization of the network optimization frame-
work to passive-short systems. It is shown that regularization of the network
optimization problems corresponds to passivation of the non-passive agents, val-
idating the network optimization framework. Namely,

e It is shown that the original network optimization framework of [23] fails
for passive-short agents, and three main causes for the failure are identi-
fied.

e It is shown that for output-passive short agents, the network optimiza-
tion problem can still be defined, but it is no longer convex. It is also
shown that convexifying the optimization problem corresponds to pas-
sivizing the multi-agent system, where the regularizing term gives rise to
a corresponding feedback term. Three different regularization approaches
are presented.

e For the case of general passive-short agents, the network optimization
problem might no longer be defined. The convexification technique is
replaced by a monotonization approach, which is shown to also passivize
the agents, rendering the network optimization framework valid in this
case as well.

Chapter [4/ - A Network Optimization Framework for
Controller Synthesis

In this chapter, we introduce a first possible application of the analysis result of
the framework, studying the final-value synthesis problem. In this problem, we
are given agents and the underlying interaction graph, and wish to design edge
controllers to force the closed loop diffusively-coupled system to some desired
steady-state. We will also consider a problem in which only the agents are given,
and we can also design the underlying interaction graph.

e It is shown that the general final-value synthesis problem can be solved
for any desired steady-state and for any underlying interaction graph, and
an efficient algorithm for its solution is presented. Moreover, it is shown
that given any collection of MEIP controllers, one can slightly augment
them to achieve a solution to the final-value synthesis problem.

e The special case of clustering is studied, where it is shown that steady-state
clusters can be understood using symmetries of the multi-agent system
through the notion of exchangeability.

e The problem of cluster synthesis, i.e., forcing the system to cluster with
prescribed cluster sizes at prescribed locations, is studied. We focus on
the case of homogeneous networks, in which the agents are identical to
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one another and the controllers are also required to be identical. We show
that graphs forcing the agents to a desired clustering structure exist, and
give bounds on the number of edges needed for their construction.

Chapter [5| - Applications of the Network Optimization
Framework in Data-Driven Control

In this chapter, we show that the network optimization framework can be used
to derive data-driven control algorithms for multi-agent systems. Namely, we
consider the problem of final-value synthesis for given relative outputs from the
previous chapter, but now assume that exact models for the agents are unknown.
We show how measured data can be used to derive a data-driven solution to the
problem, without estimating a model for the agents. Our approach is through
amplification, cascading fixed edge controllers with adjustable positive gains.

e We first discuss methods for determining passivity and MEIP without
exact models. We present known results for verifying passivity using data,
and show that even an obscure model can be enough to prove MEIP.

e It is shown that for a vast class of controllers, a solution for the final-
value synthesis problem is achieved for large enough gains. This is done
by essentially recasting one of the network optimization problems as a
robust optimization problem. It is then shown that for large gains, the
closed-loop system behaves similarly to an augmented diffusively-coupled
system, where the agents are replaced by single integrators.

e Two data-driven approaches for choosing the gains are studied. The first
uses experiments on each agent to calculate a uniform gain on the edges,
while the second is an iterative scheme augmenting the gains in-run using
data from the closed-loop system. Convergence and stability guarantees
are presented for both approaches. The two approaches are compared for
two case-studies.

Chapter [6] - Applications of the Network Optimization
Framework in Network Identification

In this chapter, we study the problem of network identification. In this problem,
we are given a diffusively-coupled system (G,3,II), with known agents and
controllers, and are required to compute the graph G. We also discuss the
related problem of network differentiation, where it is required to differentiate
between two networked systems having the same agents and controllers, but
different underlying graphs

e We discuss the notion of indication vectors for multi-agent systems, which
are constant exogenous inputs forcing systems with different underlying
graphs to different steady-state outputs. We show different ways of con-
structing them, using randomization and algebraic methods.
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e A network identification algorithm for networks with MEIP agents and
controllers is suggested, with a polynomial time complexity in the number
of agents. It is first built for networks of LTI agents and controllers,
where the connection between exogenous inputs and steady-state output
is given by a matrix, whose off-diagonal entries correspond to edges in
the underlying graph. We later generalize it to general MEIP agents and
controllers using linearization, and bounds on the error are derived.

e We use complexity theory methods to derive a lower bound on the time
complexity of any algorithm solving the network identification problem
with probability p > 0 and a bounded error, showing that the developed
algorithm is optimal in sense of time complexity.

Chapter [7] - Applications of the Network Optimization
Framework in Fault Detection and Isolation

In this chapter, we study the problem of network fault detection and isolation.
In this problem, one must achieve some control goal (in this case, final-value
synthesis), while faults may occur throughout the network. We study the case
of network faults, in which the underlying graph changes, which can happen
due to malfunctioning communication systems or a cyber attack on the agents.

e We first define the notion of edge-indication vectors, which are close rela-
tives of the indication vectors from Chapter [6] We show that they can be
found using randomization, while also exhibiting their ability to provide
a solution to the synthesis problem

e We show how these edge-indication vectors can be applied to solve the fault
detection and fault isolation problems, while also providing a solution to
an adversarial game. The solutions are developed under the assumption of
the existence of a “convergence assertion protocol”, which checks whether
a diffusively-coupled system converges to a conjectured steady-state.

e Finally, We use the passivity of the agents and controllers to show how
convergence assertion protocols can be built. Two methods are presented,
one relying on high-rate sampling and the other relying on a numerical
connection between the output y; and the storage function S; of each of
the agents.

Chapter |8 - Conclusions and Outlook

This final chapter provides some conclusive remarks, both summarizing the the-
sis and hinting at possible future directions of research.

Supplementary material is provided in several appendices, referenced at ap-
propriate places, with the aim to make this thesis as self-contained as possible.
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Chapter 2

A Network Optimization
Framework for MIMO
Systems

This section is a review of [138]. We present a variant of passivity generalizing
MEIP for MIMO systems, culminating in a network optimization framework
for MIMO multi-agent systems. This generalization will allow us to extend the
applications presented later from SISO to MIMO systems, provided the passivity
requirements hold. Namely, this generalization will allow us to generalize the
results of Section [3.3] and of Chapters [4] [6] and [7] to MIMO systems, with little
to no effort required.

2.1 Introduction

As we saw in Section[I.2] the notion of EIP is defined for multiple-input multiple-
output (MIMO) systems, but does not apply to the single integrator, even
though it is passive with respect to any steady-state it has. EIP does not
hold also for other marginally-stable systems, e.g. nonlinear integrators. More-
over, the results of [64] prove that a network of EIP systems is stable only for
a positive linear feedback law of the form u = (K ® Id,,)y, and they do not
suggest a method of computing the closed-loop steady-state without running
the closed-loop system.

The notion of MEIP tries to generalize EIP. It holds for some marginally
stable systems such as the single integrator and other nonlinear integrators. The
results of [23] proves that a network of output-strictly MEIP systems is stable
under a feedback of general MEIP controllers, and the network optimization
framework provides a way to compute the steady-state of the network by solving
the corresponding network optimization problems, either analytically or using
any appropriate numerical algorithm, such as gradient descent.
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However, MEIP, as presented in 23], is only defined for SISO agents, mean-
ing that we cannot apply it for general MIMO agents. The main reason that
MEIP is undefined for MIMO systems is that it requires that the steady-state
relations to be monotone (see Definition [1.2)). The notion of monotonicity has
no clear generalization for MIMO relations (or multi-variate functions), meaning
that generalizing MEIP to MIMO systems is non-trivial.

The main analytic tool required to study MIMO systems in this context is
the notion of cyclically monotone (CM) relations, first defined in [119]. The key
result due to |[119] shows that CM relations are contained in the sub-gradient of
a convex function. These provide the “correct” generalization of monotonicity
from scalar functions to multi-variate functions, allowing a complete generaliza-
tion of the results of [23] to square MIMO systems.

For the rest of this chapter, we consider a diffusively-couple network (G, ¥, II),
with agents X; and edge controllers II, governed by the equations:

~—

7. &i(t) = filwi(t), ui(t), wi), I - Ne(t) = Ge(ne(t), Ce(t)),
C i) = halwi(),wi(t), wi) T | pe(t) = Ye(ne(t), Ce(1))

where the dimensions of the input wu;, output y;, controller input (. and con-
troller output u. are all equal to d. The agents and edge controllers are cou-
pled by the equations ((t) = &g qy(t) = (£ ® Ida)y(t) and u(t) + Eg au(t) =
u(t) + (€ @ Idg)p(t). The chapter is composed of two sections. The first stud-
ies the notion of CM relations, and links it to systems theory by defining the
notion of maximal equilibrium-independent cyclically monotone passive (ME-
ICMP) systems, which are the MIMO generalization of MEIP systems. It then
proves that a diffusively-coupled network comprised of (MIMO) agents that are
(output-strictly) MEICMP with (MIMO) controllers that are also MEICMP
converges to a steady-state. Moreover, we show that the steady-states of the
system are the optimal solutions of a pair of dual network optimization prob-
lems. The second section gives examples of systems with cyclically monotone
input-output relations, and presents a case study.

2.2 Cyclically Monotone Relations and
Cooperative Control

In [23], the concept of monotone relations is used to provide convergence results
for a networked system (G, X, II) comprised of SISO agents. However, many
applications deal with MIMO systems, necessitating a need to extend this work
for network systems consisting of MIMO agents. We consider a MIMO multi-
agent network (G, 3,II), with each agent having an input and an output of
dimension d. We begin by considering the steady-states of the system.
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2.2.1 Steady-States and Network Consistency

Consider a steady-state (u,y, ¢, p) of the closed loop system (G, 3, IT), presented
in Figure We know that for every ¢ = 1,...,|V|, (u;,y;) is a steady-state
input-output pair of the i-th agent ¥,;. Similarly, for every e € E, (e, lte) is
a steady-state input-output pair of the e-th controller II,. The network in-
terconnection between the systems 3 and II imposes an additional consistency
constraint between these steady-state values. This motivates us to consider the
steady-state input-output relations for each of the agents and the controllers.

In this direction, we denote the steady-state input-output relation of the i-th
agent by k;, and the relation for the e-th controller by v.. That is, k; C R? x R?
and 7, C R% x R%. We denote the stacked relation for the agents and controllers
as k and +y, respectively. As in Remark we can consider these input-output
relations as set-valued functions. The consistency constraints for the steady-
state of the closed-loop system can be written as follows:

Proposition 2.1. Let u € R4y € RV ¢ € RUE e RUE be any four

constant vectors. Then (u,y,(, 1) is a steady-state of the closed-loop system
(G, %,10) if and only if

(w,y) ek, (G e,

(2.1)
C= 5;—,11}’7 u=—&g aM.

Proof. Follows directly from the interconnection of the network, and from the
definitions of k and ~. O

We wish to manipulate the conditions in to reduce the steady-state
characterization from a system with four constraints to one. This can be done
by trying to compute u from y in two different methods. First, we “go around
the loop”, taking the direct path of the block diagram in Figure[1.I] Second, we
can take the “inverse” route and use the inverse relation k~!. Similarly, we can
compute ( from p in two different methods, going around the loop or using the
inverse relation y~!. This idea can be seen in Figure We use this intuition
to prove the following proposition.

Proposition 2.2. Let y € RN be any vector. Then the following conditions
are equivalent:

i) The zero vector O belongs to the set k=1(y) + 5g,d7(8g’dy).

it) There exists vectors u, { and pn such that (u,y, {, 1) is a steady-state of the
closed-loop network (G, %, I1).

Proof. First, assume the existence of u, { and u. By Proposition [2.1] it follows
that u € k=(y), (= E_Cj:dy, n e (), and u= —&g qp. Thus,

0=u+&an € k™ (y) + Eg.av(0) = k™ (y) + Eg.av(EG a)-

Conversely, if 0 € k~'(y) + £g.a7(&g 4y), then we know that there are some
ue€k(y)and ne 'y(é';:dy) such that u+&g gu = 0. Thus, by Proposition
the 4-tuple (u,y, (= S;:dy, u) is a steady-state of the closed-loop system. [
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Figure 2.1: Converting Proposition into one condition. Going around the
loop in the direct path, and taking the “inverse” path using the inverse relation,
must give the same result.

By the same methods, we can also reduce the conditions (2.1)) to an inclusion
in the edge-variables L.

Proposition 2.3. Let u € RUE be any vector. Then the following conditions
are equivalent:

i) The zero vector O belongs to the set v~ (u) — E;dk(—gg’du).

it) There exists vectors u,y and  such that (u,y, ¢, 1) is a steady-state of the
closed-loop network (G, %, II).

Proof. Same as the proof of Proposition O

2.2.2 Connecting Steady-States to Network Optimization

So far, we showed that the steady-states of the closed-loop system can be un-
derstood using the following two conditions:

{0 € k™ y) + Eg.a7(E4 4¥)

3 (2.2)
0 €y (1) — & gk(—Eg,an)-

These conditions highlight the connection between agents, the controllers, the
underlying network structure, and their impact on the steady-states of the
closed-loop system. However, these conditions are highly nonlinear, and would
be difficult to solve even if they were equations instead of inclusions. One
method of dealing with nonlinear equations of the form g(x) = 0 for some func-
tion g, is to consider its integral function instead. Suppose there is a function
G such that ¢ = VG. In that case, we can find a solution to g(z) = 0 by
solving the unconstrained minimization problem, min, G(x). If, in addition,
the function G is convex, the solution to the minimization problem can often be
computed efficiently (i.e., in polynomial time), e.g. by using gradient descent
methods.
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In general, convex functions need not be smooth, or even differentiable. In
this case, the notion of the subdifferential of a convex function can be employed.
The subdifferential of the convex function G at the point z is denoted G (x),
and consists of all vectors v such that

Gy) > Gz)+v' (y —z), Vy.

See [121] and Appendix [A| for more on subdifferentials. Note that the subdif-
ferential OG is a set-valued map. Also, analogously to the differentiable case,
2 is a minimum point of G if and only if 0 € dG(x). Thus, if we are able
to require that k; and -, are gradients of convex functions (i.e., their integral
functions are convex), then the nonlinear inclusions in may be solved us-

ing convex optimization. In fact, such relations have been characterized due to
Rockafellar [119]:

Definition 2.1 (Cyclic Monotonicity). Let d > 1 be an integer, and consider a
subset R of R xR?. We say that R is a cyclically monotone (CM) relation if for
any N > 1 and any pairs (u1,y1), ..., (un,yn) € R of d-vectors, the following
inequality holds,

N
Zy?(ui —u;-1) > 0. (2.3)
i=1

Here, we use the convention that ug = uy. We say that R is strictly cyclically
monotonic (SCM) if the inequality 1s strict whenever at least two u;-s are
distinct. We term the relation as maximal CM (or maximal SCM) if it is not
strictly contained in a larger CM (SCM) relation.

Remark 2.1. This is a generalization of the concept of monotone relations for
SISO systems. We note that for all dimensions d, cyclic monotonicity implies
monotonicity. Indeed, taking N = 2, the inequality (2.3) can be written as:

0<y/(w —u)+yy(uz—w)=(y2—y1) (12 —uy),

which holds for all pairs (u1,y1),(u2,y2), coinciding with the definition of a
monotone relation (121|].

We now present Rockafellar’s result establishing the connection between
cyclic monotonicity and convex functions.

Theorem 2.1 ([119]). A relation R C R™ x R™ is the subgradient of a convex
function if and only if it is maximal CM. Moreover, it is the sub-gradient of a
strictly convez function if and only if it is mazximal SCM. The convex function
18 unique up to an additive scalar.

Remark 2.2. If R is maximally CM, and f is a convex function such that
R = 0f, then f is the integral function of R.
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Remark 2.3. If R is a maximally CM relation, an integral function f can be
found as [119]:

f(u) = sup { > v (Wi - ui)}, (2.4)

=0

with the convention that u,,+1 = ug, and the supremum is taken over all integers
m > 0 and all pairs (Wo,¥0), s (Um,ym) € R. Another method is to use an
analogue of the path integral formula for a potential function, namely choosing
some ug arbitrarily, and defining

fluw) = /sup{y -dl: (u,y) € R}, (2.5)

where v is a curve defined on [a,b] connecting ug to u. Formally, the integral is
defined as

b
fw) = / sup{y 7/(s) : (u,y) € R}ds, (2.6)

Rockafellar’s Theorem gives us a way to check that a relation is the subdif-
ferential of a convex function. If we want to state the conditions in as the
solutions of convex minimization problems, we need to assume that the input-
output relations appearing are CM. This, together with Theorem [1.1] motivates
the following system-theoretic definition:

Definition 2.2. A system Y is maximal equilibrium-independent cyclically
monotone (output strictly) passive (MEICMP) if

i) for every steady-state input-output pair (u,y), the system X is (output
strictly) passive with respect to u and y;

1) the set of all steady-state input-output pairs, R, is maximally (strictly)
cyclically monotonic.

If the relation is strictly cyclically-monotone, then we say that the system is
maximal equilibrium-independent strictly cyclically monotone (output strictly)
passive (MEISCMP).

Remark 2.4. It can be shown that when d = 1, a relation is cyclically monotone
if and only if it is monotone. Thus, a SISO system is MEIP if and only if it is
MEICMP [119,|121).

Now, suppose that the agents X; and the controllers II, are all MEICMP
with steady-state input maps k; and v.. We let K; and I'. be the associated
integral functions, which are convex functions, as a result of Theorem [2.1] We
let K =5, K;and I' =) TI'c be their sum, so that 0K =k and 0" = . As
these are convex functions, we can look at the dual convex functions K* and
'™, namely

K*(y) = —inf K(u) =y,
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and similarly for I'* . These are convex functions that satisfy OK* = k~! and
OT* = 471 (see Appendix|A]). The functions K, K*,T','* allow us to convert the
conditions (2.2)) to the unconstrained minimization problems of K* (y)—i—F(S; ay)
and K (—&g q1) +T*(n). Recalling that u = —&g it and that { = &7 4y, we can
state the minimization problems in the following form:

Optimal Potential Problem Optlmal Flow Problem
(OPP) (OFP)
micn K*(y)+T(0) mln K(u) 4+ T™*(w)

)

S.t. Egdy =( = —&g,dlL.

These static optimization problems, known as the optimal potential problem
and optimal flow problem, are two fundamental problems in the field of network
optimization, which have been widely studied in computer science, mathematics,
and operations research for many years [122]. A well-known instance of these
problems is the mazimum-flow/minimum-cut problems, which are widely used
by algorithmists and by supply chain designers [36].

We conclude this subsection by stating the connection between the steady-
states of the closed-loop network and the network optimization problems.

Theorem 2.2. Consider a network system (G,%,II) and suppose that both
the agents and controllers are mazximally equilibrium-independent cyclically-
monotone passive. Let K and T' be the sum of the integral functions for the
agents and for the controllers, respectively. For any 4-tuple of vectors (u,y, (, 1),
the following conditions are equivalent:

i) (u,y, 1) is a steady-state of the closed-loop;

i) (u,u) and (v, Q) are dual optimal solutions of (OFP) and (OPP) respec-
tively.

Proof. We know that a convex function F'is minimized at a point z if and only
if 0 € OF(x). Applying this to the objective functions of (OPP) and (OFP)
implies that they are minimized exactly when the following inclusions hold,
0 €k y)+E.av(E] 4y) 2.7)
0 €y (1) — &G 4k(—Eg.an).

Thus, Propositions and imply that if (u,y, ¢, 1) is a steady-state of the
closed-loop, then (u, ) and (y, ¢) are optimal solutions of (OPP) and (OFP).
The duality between them follows from y = k(u), 0 = v({). Conversely, if
(u,n) and (y, ¢) are dual optimal solutions, then y minimizes K*(y) + F(Sg aY)
and p minimizes K(—&g qu) + I'*(1). Again, a convex function is minimized
only where 0 is in its subdifferential, so we get the same inclusions (2.7)). By
Propositions and we get that (u,y,{, 1) must be a steady-state of the
closed-loop. O
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Remark 2.5. The problems (OPP) and (OFP) are special as they are convex
duals of each other; the cost functions K*(y) + I'(Q) and K(u) + I'*(u) are
dual [121)]. Consequently, if (y, () is an optimal solution of (OPP), then (u, p)
is an optimal solution of (OFP) if and only if w € ¥(C), u € k~(y) and
u = —&gan. Thus, solving (OPP) and (OFP) on their own gives a viable
method to understand the steady-states of (G, %, II).

2.2.3 Convergence to the Steady-State

Up to now, we dealt with the steady-states of the closed-loop system, but we
did not prove that the system converges to a steady-state. We now address this
point.

Theorem 2.3. Consider the network system (G,%,II), and suppose all node
dynamics are maximally equilibrium-independent cyclically monotone output-
strictly passive and that the controller dynamics are mazximally equilibrium-
independent cyclically monotone passive. Then there exists constant vectors
u,y, 1, ¢ such that lim; oo u(t) = u, imy oo y(t) = y, limy oo p(t) = 1, and
lim o0 ¢(t) = {. Moreover, (u,i) and (y,C) form optimal dual solutions to
(OPP) and (OFP).

We will give a proof of Theorem for the case in which the controllers are
given by the following form:

. Te = Ce
e {ue — o). 25

The proof for the general case is analogous but more involved, and is not con-
sidered here to improve streamlining and readability.

Proof. Our assumption implies that the optimization problems (OPP) and (OFP)
have dual optimal solutions, meaning that a steady-state solution exists. The

equilibrium-independent passivity assumption implies that there are storage

functions S; (for i € V) and W, (for e € E), such that

Si < =pillyi(t) = vil* + (1) — i) " (wa(t) — i) (2.9)

We < (ne(t) = g (Ge(t) = Ce) ' '

Theorem implies that y(t) converges to y, implying that {(t) converges to
0 == _¢"y, as the integral function of the controllers is Iy (see Example .
Integrating implies that n(t) converges to some n, as ) = ¢. In turn, this implies
that p(t) converges to p = 1p(n) and that u(t) converges to u = —Ep. It is clear
that (u,y) is a steady-state input-output pair, and furthermore that (u,y, ¢, )
satisfy the conditions in Proposition 2.1} meaning that it is also a steady-state of
the closed-loop and thus gives rise to an optimal solution of (OPP) and (OFP).
This concludes the proof of the theorem. O
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u(t) P y(®)

p(2) Q (@)

Figure 2.2: Block diagram of a general feedback interconnection.

Remark 2.6. As a consequence of Remark Theorem also holds for
output-strictly MEIP SISO agents and MEIP SISO controllers, which is the
analysis result of Theorem |1.2. The result presented here is therefore more
general, and the proof derivation, relying on integrating steady-state equations
(or inclusions), provides a different approach than what was presented in [25].

Remark 2.7. The proof of Theorem[2.3 consisted of two parts. The first shows
that if there is a steady-state I/0 pair (u,y) for the agents 3, a steady-state 1/0
pair (¢, 1) for the controllers 11, and { = EgT’dy,u = —&g ql, then the closed-
loop system converges. This part is based on the output-strict passivity of 3, the
passivity of 11 and Theorem , The second part (for (OPP)) shows that the
steady-state equation 0 € k_l(y)—i—gg,dv(é';dy) is equivalent to the minimization
of K*(y) +F(Sady). This part is based on the convezity of the integral function
K*(y) +T(EG 4v)-

The feedback configuration in Figure[1.1] can be thought of more abstractly as
the symmetric feedback configuration of two MIMO systems P and Q with the
matriz M, as shown in Figure[2.3, This added layer of abstraction, in which we
treat the stacked agents and controllers as stacked dynamical systems and study
their 1/O steady-state behavior, will be of great importance later. The reason
is that P, in one case, will be a feedback connection of the agents ¥ with some
network control law, coupling the agents together, and forcing us to consider
them as a single, indecomposable system.

To conclude this section, we showed that under certain passivity require-
ments, the analysis problem for multi-agent systems can be solved - the sys-
tem converges to a steady-state dictated by the network optimization problems
(OPP) and (OFP). This connection gives a novel network interpretation to
multi-agent systems, allowing for network-motivated intuition of multi-agent
systems. In the next section, we’ll consider different examples for MIMO sys-
tems with CM input-output steady-state relations.
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2.3 Examples of MEICMP Systems

In this section, we focus on giving examples for MEICMP systems, showing
that this property holds for many systems found in the literature. We focus on
two classes of examples, the first being convex-gradient systems with oscillatory
terms, generalizing reaction-diffusion systems, gradient descent algorithms and
more, and the second being oscillatory systems with damping, which are a
natural extension of oscillators like springs and pendulums. We conclude the
section with a simulation of a network of oscillatory systems with damping.

2.3.1 Convex-Gradient Systems with Oscillatory Terms

Many systems can be divided into two parts - an oscillatory term and a damping
term. These include physical systems such as reaction-diffusion systems, Euler-
Lagrange systems and port-Hamiltonian systems, as well as examples coming
from optimization theory, in which gradient descent algorithms play a vital
role [17,/161,|162,|175]. Incremental passivity of these system has been studied
in [71]. Mathematically, these systems can be represented as

& =-Vy(z)+ Jr + Bu, (2.10)

where x € R™ is the state of the system, u € RP is the input, representing various
forces (both control and exogenous ones) acting on the system, ¢ : R” — R is
a function representing the gradient part (and the sign is chosen to give ¢ a
potential-energy interpretation), J is a skew-symmetric matrix representing the
oscillatory part, and B € R"*P is the input matrix. Our goal is to show that
for a wide class of measurements y = h(x, u), this system is MEICMP. We first
focus on stability of this system.

On many occasions, the function v is convex, and even strictly convex. For
example, ¢ = %xQ gives a linear damping term.

Theorem 2.4. Assume that the system is given, and that v is a strictly

elz) _

convex function such that lim 5 = 0o (i.e., Y(z) = o(||z]|) as z — o0).

lafl—oo |
Suppose furthermore that u is constant. Then there exists a unique xg, which
depends on u, such that all solutions converge to xy ast — co.

Remark 2.8. The function i in can be given the interpretation of po-
tential energy. One might ask if assuming that ¥ is radially unbounded is not
enough, using intuition from Lyapunov theory [75]. We consider the system
(2.10) in dimension n = p = 1, where Y(x) = fox tanh(s)ds, J =0 and B = 1.
In this case, the closed-loop system can be written as & = —tanh(x) + u. It
is clear that if uw > 1 is any constant input, then any solution xz(t) will con-
verge to oo. Moreover, we note that in this case i is radially unbounded, as
Y(x) > 0.1|x| —c for some constant c. Thus, the assumption that () = o(||z||)
as x — oo is essential in Theorem [2.]}
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The proof of the theorem is quite convoluted, so it will be postponed for the
time being. We now deal with the question of cyclic monotonicity. Consider
the system

{j; = —Vi(z) + Jz + Bu (211)

y=Cxz+p(u),
(z)

2 = oo and J is a

where 1 is a strictly convex function such that lim i
|zl —o0

skew-symmetric matrix. By Theorem [2.4] the state of the system converges as
t — oo whenever u is constant, so the steady-state input-output relation can be
defined.

Theorem 2.5. Consider a system of the form . Suppose that B and
C' are invertible, and that 1 is a strictly convex function. Then the function
B=IVyC—1—B~1JC! is invertible, and the input-output relation of the system
is CM if the function (B~1VyC~1 —B~1JC~Y) "4 p is the gradient of a convex
function. Furthermore, if this map is the gradient of a strictly convex function,
then the input-output relation is SCM.

Proof. We first explain why the function B~'VyC~! — B~1JC~! is invertible.
As B, C are invertible matrices, we show that Vi — J can be inverted, i.e. that
it is one-to-one. First, we assume that there are two points z,y € R™ such that
Vi(x) — Jx = Vi(y) — Jy, which is equivalent to Vy)(z) — Vip(y) = J(x —y).
Recalling that J is skew-symmetric, multiplying both sides by (z — %) on the
left implies that (x—y) T (Vi (x) — Vi (y)) = 0. However, as 9 is strictly convex,
V1 is strictly monotone, so we conclude that z =y [121].

As for the second part of the theorem, in steady state we have & = 0.
Thus, if the steady-state input is uss and the state is xs5, then they relate by
Vi)(xss) — Jxss = Bugs. As B is invertible, we have

B7'Wih(xss) — B x5 = Usgs.
However, if p is the zero function, we have y?9 = Cx,s, so we have the relation
B7'Vy(CTyes%) = BTHICT Y = g

Thus,
yol = (B7'Vy¢C™t = BTLICT) T (ug).

In the case of general p, we have the following input-output relation:
Vos = (B7'VYC™ — B71ICT)  (ugs) + plUss). (2.12)
O

Corollary 2.1. Consider a system of the form (2.11). If C = BT =1d and p
satisfies (Vip—J) =t +p = Vx for some convex function x, then the steady-state
input-output relation is CM.

Proof. This follows directly from (2.12) and C' = BT = Id. O
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Corollary 2.2. Consider a system of the form R.11). If J = 0,B = CT
and p(u) is the gradient of a convex function, then the steady-state input-output
relation is CM.

Proof. The only thing that needs to be shown is that B~V (C~1u) is the
gradient of a convex function. Note that this is enough, as the inverse of the
gradient function of a convex function is itself the gradient of a convex function
(due to duality of convex functions). To do this, we define pu(z) = (C~1x).
Then g is convex as 9 is, and the gradient of y is given by the chain rule. Its
i-th entry is given by

o <= O ACz); O, N
o Z ax]< o) = = Z g, (O (€7
= (O () = ()TN ) = [BTVHO ),
j=1 J
meaning that Vu(z) = B~V (C~1z), proving the last part. O

Remark 2.9. Theorem[2.5 can be stated more easily for linear systems. Suppose
that B, C and J are as above. Suppose further that 1 has the form ¢(z) = 2T Az
where A > 0, and suppose we only seek for linear maps p of the form p(u) = Tu
for some matriz T. The dynamical system now has the form,

{f: —(A—J)z + Bu (213)

y=Cx+Tu
We now require p to satisfy
(B~'vyC™ ' =B LJC ) 4 p=Vy,

for some convex function x. If we again seek linear p(u) = Tu, then the left-
hand side of the equation is a linear map, so Vx must also be a linear map.
Due to convexity of x, this is only possible if Vx(u) = Du for some D > 0. We
end up with following equation, (B~*AC~t—B~YJC~YH~=1+T > 0. After some
algebraic manipulation, we obtain

CA-J)'B+T >0, (2.14)

Thus we conclude that a linear system

{m = Az + Bu (2.15)

y=Cx+Tu

where A is Hurwitz, is MEICMP if and only if —CA~™'B+T is a positive-definite
symmetric matrix.
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To conclude this subsection, we return to the proof of Theorem [2.4] The
proof is rather lengthy, and requires two lemmas. The idea is to try and con-
struct a quadratic Lyapunov function of the form V(z) = 1 (z — )" (z — 20),
where the point x¢ is a fixed point of the flow. Thus, we need to find a point
xo which satisfies Vi(z¢) — Bu = Jxg. The following two lemmas will assure
that such a point exists.

Lemma 2.1. Let x be a strictly convex function, and suppose that % — 00
as ||z|| = oo. Then there exists some p > 0, such that for every point x € R

satisfying ||x|| = p, the inequality (x,Vx(x)) > 0 holds.

Proof. Fix some arbitrary unit vector § € R™, and consider the convex function
fo(r) = x(r6) and its derivative Cfi—f = Vx(rf) 6. Note that because x grows
faster than any linear function, the same can be said about fy, and in particular,
it’s derivative tends to infinity. Furthermore, the function fy is strictly convex,

SO "g—f is strictly ascending, Thus there is some ry such that %? >0ifr>mry

and%<01fr<rg.

Our task now is to show that 7y is a bounded function of . Suppose not,
and let 6, be a sequence of unit vectors such that ry, — oco. Passing to a
sub-sequence, we may assume without loss of generality that 6,, — 6 for some
unit vector # € R”. There is some N such that if n > N then rg, >rg+1=1.
In particular, d];”r" lr=¢t < 0 for n > N but %\T:t > 0. This is impossible,
as the first expression is equal to Vx(t,) "6, which converges to the second
expression, which is Vx(¢0) 6. Thus, there is some p > 0 such that ry < p for
all unit vectors 6, meaning that if « is a vector of norm p, then for = H"LTH

(Vx(z),z) = p(Vx(p9),0) (p) > 0. (2.16)

O

Lemma 2.2. Let Q) : R" — R" be a continuous vector field, and let p > 0.
Suppose that for any vector x satisfying ||x|| = p, the inequality (Q(x),x) > 0
holds. Then there exists some point y satisfying ||ly|| < p such that Q(y) = 0.

In order to prove the lemma, we use a theorem from algebraic topology.

Theorem 2.6 (Brouwer’s Fixed Point Theorem [63]). Let D be a closed ball
inside R™, and let f : D — D be a continuous map. Then f has a fixed point.

We now prove the lemma.

Proof. Suppose, heading toward contradiction, that @ does not vanish at any
point in the ball D = {||z|| < p}. We define a map F' : D — D by

QW
Fo) =~ re@n @.17)

33



2.3. EXAMPLES OF MEICMP SYSTEMS

This is a continuous map (as @ never vanishes), and the norm of F(z) is
always equal to p, so F'(x) is indeed in D. Thus, we can apply Brouwer’s fixed
point theorem to F' and get a fixed point, called y.

We know that y satisfies F(y) = vy, ie., fp% = y. On one hand,
taking the norm of the last equation implies that ||y|| = p. On the other hand,
rearranging it implies that Q(y) = —Wy = Ay where \ is some negative
scalar (as Q(y) # 0). Thus, we found a point y of norm p such that (Q(y),y) =
Ally||> < 0 for some A < 0, which contradicts our assumption. Thus @ has a

zero inside the ball D = {||z|| < p}. O
We are now ready to prove Theorem

Proof. First, because u is constant, we can absorb the constant term Bu inside
the gradient Vi (z) by adding the linear term (Bu)'z to ¥ (x). This does not
change the fact that 1 is strictly convex, nor the fact that it ascends faster than
any linear function. Thus we may assume that Bu = 0 for the remainder of the
proof.

Now, we define the vector field Q(z) = V¢ (z) — Jz. Note that because J is
skew-symmetric, for all z € R,

(V(z) — Jz, ) = (Vi(2), ). (2.18)

Thus, by the Lemma there’s some p > 0 such that (Q(z),z) > 0 for any
vector x satisfying ||z|| < p, and by Lemma we can find some point zy € R
such that Q(x¢) = 0, or equivalently, Jxg = Vi)(zo). We claim that any solution
to the ODE converges to zo. Indeed, define F(z) = 1|l — zo[[*>. Then F is
non-negative, vanishing only at xg, and furthermore,

F=(x—x)d=(x—mz) (~Vip(z)+ Jx)
= (z —20) " (=V(2) + V(o) + J(z — 20))
= (& —w0) " (Vi(x) — Vib(x0)) <0, (2.19)

where the last inequality is true because ¥ is convex and Theorem Fur-
thermore, F is negative if 2 # xo because 1 is strictly convex and Theorem [2.1
The uniqueness of xg follows from the fact that the flow globally asymptotically
converges to xg. This completes the proof. O

2.3.2 Oscillatory Systems with Damping

We consider a damped oscillator with a linear forcing term of the form & + (& +
w?x = Bu where B is a constant matrix, u is the input vector, and ¢ > 0 is the
damping factor. This system can also be represented via the set of first order

ODEs:

1=p . (2.20)
p=—wqg—(p+ Bu
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One can easily generalize this formulation to more complex methods of

damping:
4= Mp . . (2.21)
p=-M"q—Vi(p)+ Bu

We are usually interested in the position as the output, i.e., y = ¢ for this
system. We wish to find a condition that will assure this system is stable and
MEICMP. We first prove the following result.

Theorem 2.7. Consider a system of the form (2.21), and suppose that M s

invertible. Suppose furthermore that ¢ is a strictly convex function such that

tﬁf”) = 00. Then the system is stable for constant inputs. Furthermore,

lim
llzl| =00
if the system is injected with the constant input signal u, then there is some qq
such that all trajectories of the system satisfy ¢ — qo,p — po = 0 as t — oo.

Even further, qo = (M ") Bu — (M ")~ V4 (po)

Proof. As above, the assumption on ¢ allows us to absorb the linear term inside
1, so we can assume Bu = 0. Now, we take pp = 0 and gy = —(M ")~V (po).
We note that the following relations hold:

Mpo =0, M"qo=—V(py), pg Vib(po) = 0. (2.22)

Now, consider the following Lyapunov function candidate,

1 1

F(p,q) = 5(1’ —po)' (p—po) + 5(‘1 —q) " (q— q)- (2.23)

It’s clear that ' > 0 and that FF = 0 if and only if p = py and ¢ = qo.
Furthermore, the derivative of F' along the trajectories is given by:

F=(p-p) p+(a—aq)"d

=(p—po) (-M"q—Ve(p)) + (¢ —q0) Mp
—(p—po) ' VY(p) — (Mpo) "q— (M q0) " p
Y —(p—p0) V() + p ' Vb(po) — pg Vei(po)
=—(p—po) " (Vi (p) — Vi(po)).

2.

[l

The last expression is non-positive, and furthermore is strictly negative if p # pq
(as ¢ is strictly convex). Thus, it follows from Barbalat’s lemma that p —
po = 0 as t — oo, because F' is non-negative. Now, the equation driving p is
p=—MTq— Vi(p), which can be rewritten as

g=—(M")"(p+Vi(p)). (2.24)
As t — oo, the right hand side tends to —(M )™ (V(py)) = qo, concluding
the proof of the claim. O
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Not only have we proved that the system is stable, we also found the input-
output steady-state relation, which turns out to be linear. Thus, we can apply
Remark [2.9] to conclude the following corollary.

Corollary 2.3. The system (2.21)) is MEICMP if and only if the matriz (M ")~ B
is positive semi-definite. Furthermore, it is MEISCMP if and only if this matriz
18 positive definite.

2.3.3 Example: A Network of Planar Oscillators

We now demonstrate these results for oscillatory systems with damping by a
simulation. We consider a network of six damped MIMO oscillators,

T1| Qo
Sig |d2|  |-Diw2 —Qf (21— &) + Q7w
y=x1

where &; is the equilibrium point of the oscillator, €2; is a matrix consisting of
the self frequencies, and D; is a damping matrix, which is positive-definite. The
values of &; were chosen as normally distributed random variables with mean

[8] and covariance [8 (5)] . Moreover, the matrices D; were chosen as random

positive-definite matrices by writing D; = U;S;U,", where S; is a diagonal matrix
whose diagonal entries distributed according to a Rayleigh distribution, and
U, is a random orthogonal matrix chosen according to the Haar probability
measure on the space of unitary matrices [46]. Similarly, the connecting matrix
Q; was chosen to be diagonal with Rayleigh-distributed diagonal entries. The
underlying graph is the complete bipartite graph on 6 vertices, meaning that
two agents i, j are connected if and only if 7 is odd and j is even or vice versa.

The steady-state input-output relation of ¥; is given by k; (u;) = (;Q, ) " tu+
x;, so that k7 '(y) = (29 )(y — x;). The corresponding integral function is
K (y;) = %yTQZQIy —y7Q;Q[x;, which is strictly convex. Moreover, we con-
sider network controllers of the form:

77.8 = e + Ce
Ce = ’(/}(776)'

The function v is given as

log? (ezjl)sgn(aﬁ)>
o ) 11 )

where sgn(z) is the sign function. This function was chosen to demonstrate that
the network optimization framework holds even for highly-nonlinear systems.
One can verify that ¢(0) = 0 and that 1 is a monotone ascending function, and
that the associated integral function is given by:

Ce 1 2 [e®41
Fe(Ce) = / arcsin < o8 2( 2.T+ngn($))d1‘.
0 log® (<5+) +1

(z) = arcsin (
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Figure 2.3: Positions of the oscillators in the case study.
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Figure 2.4: Distance of the oscillators’ positions from the projected steady-state
value.

We run the system for a total of 300 seconds, checking that its limit corre-
sponds to the minimizer of (OPP). The output of the system in the first 100
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seconds can be seen in Figure exhibiting the positions of the agents y(t).
We omit the behavior after the first 100 seconds, as no real change in the posi-
tion can be seen with the naked eye. The blue line represents first coordinate,
and the red one represents the second coordinate. We also solve (OPP) using
gradient descent, running the algorithm with random initial conditions and a
total of 8000 steps of varying step-sizes. The distance of the positions of the
oscillators can be seen in Figure [2.4] where we see that the network converges
to the forecasted value, up to minuscule errors arising from stopping both the
network system and the gradient descent algorithm after finite time.

2.4 Conclusions

We have found a profound connection between passivity-based cooperative con-
trol of MIMO systems and network optimization theory in the spirit of Rock-
afellar [122]. This was done by introducing the notion of maximal equilibrium-
independent cyclically monotone passive systems, and showing that such sys-
tems converge to a solution of a collection of network optimization problems,
bonded by duality. In other words, we have established inverse optimality and
duality results for general networks of maximal equilibrium-independent cycli-
cally monotone passive systems. This connection creates a dictionary between
system signals (like outputs and inputs) and network optimization variables (po-
tentials and node divergences, respectively). We have also studied two classes
of nonlinear systems, proving that they are maximal equilibrium-independent
cyclically monotone passive under certain coercivity assumptions, and exem-
plified the connection between the network optimization framework and multi-
agent systems by a case study of planar damped oscillators. This significant
extension of the framework connecting multi-agent systems and cooperative
control to network optimization will allow us to consider the applications ap-
pearing in Chapters [4 [6] and [7] also for MIMO systems, with little to no effort
required.

In the next chapter, we’ll consider another extension of the network opti-
mization framework of [23], this time to Passive-short systems.
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Chapter 3

A Network Optimization
Framework for
Passive-Short Agents

This section is a review of [72,[134}/140]. We demonstrate that the presented
network optimization framework cannot be used for passive-short agents, either
because it is undefined, or because it predicts a wrong limit for the closed-loop
system. The failure of the network optimization framework can be understood
by the integral function for the agents being non-convex (when defined), or by
the steady-state input-output relation for the agents being non-monotone. We
will use this motivation to generalize the network optimization framework by
augmenting the network optimization problems associated with the closed-loop
system, and interpret the augmentation as a transformation of the agents.

3.1 Introduction

As we saw in Section the notion of passivity is vital for different approaches
studying large-scale multi-agent systems, including the network optimization
framework. In practice, however, many systems are not well-behaved, and pos-
sess a shortage of passivity (or non-passiveness) in their operation [61}/113}/158,
167]. Motivated by this fact, we consider dynamical systems that do not fulfill
the passivity requirements, and are characterized by their shortage of passivity.
In the literature, passivity indices are used to quantify the excess or shortage
of passivity in a system and are often compensated using passivatiorﬂ methods
such as feedback, feed-forward, or a combination of such schemes [24,/168,/179].

However, the methods of dealing with shortage of passivity only consider
passivity with respect to a specific steady-state input-output pair (u,y). These
methods give no way of asserting that the multi-agent system converges without

L Also referred to as feedback passification [47,48].
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specifying a specific steady-state limit. We want to use the network optimization
framework presented in Sections and assuming we have an equilibrium-
independent shortage of passivity. However, the network optimization frame-
work does not apply for passive-short systems unless augmented, as we’ll see in
Section 3.2l The failure of the framework can be understood in terms of non-
convexity of the integral functions for the agents, if they are defined, and by the
non-monotonicity of the steady-state input-output relations of the agents oth-
erwise. Thus, one might try and convexify the integral functions, or monotonize
the steady-state relations, and understand what the system-theoretic meaning
of these augmentations are. The goal of this chapter is to present the methods of
augmenting the network optimization framework, validating it for passive-short
agents, and to give these augmentations a system-theoretic meaning.

The structure of this chapter is as follows. In Section [3.2] we show three ex-
amples of the failure of the network optimization framework. In Section [3.3] we
consider augmentations of the network optimization framework for networks
of output-passive short agents. In this case, the integral functions are de-
fined, so we can discuss the network optimization problems and try to convexify
them. We show multiple methods of convexification, which translate into mul-
tiple system-theoretic transformations for the agents. In Section [3.4] we study
networks of agents with general shortage of passivity, for which the integral
functions need not be defined. In this case, we focus on monotonization of the
steady-state input-output relations, and present the equivalent system-theoretic
transformation for the agents. We conclude this section by a few case studies.

3.2 Shortage of Passivity and Failures of the
Network Optimization Framework

In this section, we first define and study the notions of shortage of passivity and
equilibrium-independent shortage of passivity, and then discuss some examples
in which the network optimization framework fails, highlighting the different
reasons which can cause the failure.

3.2.1 Shortage of Passivity

We first give a definition of shortage of passivity and equilibrium-independent
shortage of passivity.

Definition 3.1. A dynamical system X : u — y is output p-passive with respect
to the steady-state (u,y), for some number p € R, if there exists a non-negative
Ct-smooth function S(x) of the state x of ¥ such that the inequality

d .
55 (t) = VS(a(t)i(t)

IN

(y(®) =) " (u(t) = v) = plly(t) —y[* (3.1
holds for any trajectory (u(t),z(t),y(t)).
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We say that the system s input v-passive with respect to the steady-state
(u,y), for some number v € R, if there exists a non-negative Ct-smooth function
S(x) such that the inequality

o5 (w(t) ) (u(®) ) ~ vlju(t) ~u]> (32

holds for any trajectory (u(t), x(t),y(t)).

Lastly, we say the system is input-output (p,v)-passive short with respect
to the steady-state (u,y), for some numbers p,v € R such that pv < %, if there
exists a non-negative C'-smooth function S(x) such that the inequality

d

Z7S@(®) < (y() = y) " (u(t) =) = plly(®) = y|* = vlju) —u]*  (33)

holds for any trajectory (u(t), z(t),y(t)).

(z(t)) = VS(2(t))(t)

IN

Remark 3.1. It should be noted that the numbers p, v in the definition above are
not unique, as decreasing them makes the inequality easier to satisfy. This moti-
vates the definition of the equilibrium-independent passivity indices analogously
to the output-feedback passivity index (OFP) and the input-feedthrough passivity
index (IFP) in [167]. Moreover, the definition above unifies both strictly-passive,
passive, and passive-short systems. The case p,v > 0 corresponds to strict pas-
sivity, p,v = 0 corresponds to passivity, and p,v < 0 corresponds to shortage
of passivity. Thus, it will allow to consider networks of systems where some
are passive and some are passive-short, without needing to specify the exact pas-
swity assumption. Moreover, it allows to consider input-output (p, v )-passivity
systems for p >0 and v < 0 (or vice versa) with no additional effort needed.

Remark 3.2. The demand that pv < i is essential. Indeed, if pv > i, the
right-hand side of is always non-negative. For example, if p = v = —%,
then the right-hand side is equal to ||u(t) —u+ y(t) —y||> > 0. In that case,
any static nonlinearity would be input-output (p,v)-passive, which is obviously

too broad for such a definition.

Remark 3.3. Observe that input-output (p, v )-passive systems capture both out-
put p-passive and input v-passive systems by setting either p =0 or v = 0.

The notion of input-output (p, v)-passivity is quite extensive, and includes
many different systems. As a specific case, we claim that it includes all finite-
Lo-gain systems, which are defined below:

Definition 3.2. A dynamical system ¥ : u — y has finite Lo-gain with respect
to the steady-state (1,y) if there exists a number 3 > 0 and non-negative C*-
smooth function S(x) of the state x of ¥ such that the inequality

d
2 5(@(t) = VS((t)2(t) < —ly(t) - ylI? + B2[lu(t) —ull? (3.4)
holds for any trajectory (u(t), z(t),y(t)). The minimal number B for which the

inequality holds for any trajectory is called the Lo-gain of the system X, and is
it equal to the operator norm of ¥ : Lo — Lo.

41



3.2. SHORTAGE OF PASSIVITY AND FAILURES OF THE NETWORK
OPTIMIZATION FRAMEWORK

Theorem 3.1. Let ¥ : u — y be a finite Lo-gain system with gain B with
respect to the steady-state input-output pair (u,y). Then, ¥ is input-output
(p, v)-passive with respect to (u,y), with passivity indices p = —g(B) < 0,v <

- <1 + W), where g(B) is any positive function of the Lo-gain .

Proof. By definition, there exists a storage function S(z) > 0 such that

T 2
: u—1u —p* 0| l[u—nu
S(x) < .
()‘L/—y} {0 1] [y—y}
On the other hand, it follows from Definition [3.1] that ¥ is input-output (p, v)-
passive if there exists a storage function S(z) > 0 such that

. —ul' = 1 _
sw= [, 7 2] B
y—y 3 “TV]Y—Y
Wherep<0,u<0andpu<i.
Thus, it’s enough to show the existence of p < 0,v < 0 such that

—p i -2 0
E ]

and pv < 1, as we can choose S(z) = S(z). Indeed, we need to show that

[p +67 3

i —-v—1

|0
2

It is sufficient to show that both the upper left element —p + 32 and the de-
terminant are positive. Since p < 0, it is clear that —p + 3% > 0. As for the
determinant, we have

_ 2 1 1
det[ p-%i-ﬁ —y2— 1] :(—p—i—BQ)(—I/—l)—Z.

Assigning p = —g(8) < 0, where g(3) is any positive function of the gain 3, one
can see that the determinant is non-negative as long as v < —1 + m,
which proves the claim.

Remark 3.4. One can easily check that the result above is not true in the
opposite direction, that is, if the system X is input-output (p, v)-passive, it does
not necessarily have a finite Lo-gain. This is due of the fact that the 2 x 2 matriz
above cannot be negative semi-definite as —p + 8% > 0. See also the example
following this remark.

Example 3.1. Consider the (SISO) linear system ¥ : & = x +u; y = z. One
can easily verify using the storage function S(x) = %(x —x2) that this system is
output- p-passive with respect to any steady-state 1/0 pair (w,y), for p = —1.

However, the system does not have a finite Lo-gain and is not even Lo-stable.

42



Chapter 3. A Network Optimization Framework for Passive-Short Agents

1 t<1
Indeed, if we apply an input signal of the form u(t) = 0 t>1’ then the

output is given via the following convolution integral

t 1
y(t) = / e Tu(r)dr = / e~ Tdr = (e — 1)et_17
0 0

which is not even bounded and therefore y(t) ¢ Lo, even though the input u(t) €
Lo. Thus, the system X is output p-passive with respect to any equilibrium, but
does not have a finite Lo-gain with respect to any steady-state input-output pair.

To conclude this subsection, we define the notion of equilibrium-independent
input-output (p, v)-passivity, which will be our main focus throughout this chap-
ter.

Definition 3.3. A dynamical system X : u v+ y is said to be:

i) equilibrium-independent output p-passive (EI-OP(p)) if (3.1) holds with
respect to any steady-state input-output pair;

i1) equilibrium-independent input v-passive (EI-IP(v)) if (3.2) holds with
respect to any steady-state input-output pair;

iii) equilibrium-independent input-output (p, v)-passive (EI-IOP(p,v)) if pv <
i and (3.3) holds with respect to any steady-state input-output pair.

3.2.2 Failure of the Network Optimization Framework

We can now consider the network optimization framework for EI-IOP(p,v)
agents. We claim that the network optimization framework fails in this case.
We present three examples of this failure. The first shows that the closed-loop
system need not converge, no matter which controllers we choose. The second
shows that the integral functions for the agents need not be defined. The third
shows that even if the closed-loop system converges, and the integral functions
are defined, the limit predicted by the network optimization framework need
not be equal to the actual limit of the closed-loop system.

Example 3.2. Consider a collection of n agents, each having the model ; =
T+ uy, yi = x;. It’s easy to check that the agents are EI-OP(p) with parameter
p = —1. We claim that for any graph G and any collection of controllers 11,
the diffusively-coupled network (G, 3,11) diverges. Indeed, take any graph G and
network controllers 11, and consider an initial condition for which x;(0) = 1. Let
w(t) be the controller output, so that the closed-loop system has the dynamics
& = x — Eu(t). In particular, 1'% = 172, meaning that the mode 1"z is
equal to 17x(0) exp(t) = nexp(t). Thus the state x, and the output y, do not
converge.
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Example 3.3. Consider a SISO dynamical system ¥ given by
Y: &= —Yr+05x+05u; y=0.5z— 0.5u, (3.5)

where the input is u and the output is y. By using a change of variables of the

form
] |1 1] |u
g (1 2] [y’
we obtain the following system
Y d=—Vr4u j=uz, (3.6)

where @ and § are, respectively, the input and output of the transformed system
. The matriz transformation T = [} 1] also connects the steady-state relations
of the two systems, that is, if (U,¥) is a steady-state input-output pair for 3,
then (u,y) is a steady-state input-output pair of X, where

5 -7
Yy Yy
It is easy to verify that & is MEIP with storage function S(z) = Lz —x)?, with

X = ¥ for any steady-state 1/0 pair (0,¥). Let R(z) = %S(az) be the storage
function for the original system X, we obtain

R:%Sﬁ 1(ufﬁ)(§*}~’)_% B:;y[g (%) B:}:’]
SE1 7 Kl v e v R e
:(u—u)(y—y)+%(“_u)2+§(y_y)2’

i.e., the system X is EI-IOP(p,v) with passivity indices p = —2/3 andv = —1/3.
Utilizing the connection between the steady-state input-output relations of the
two systems, one can easily see that the steady-state relation of X is given by
the planar curve u = 20 — 0°; y = 0° — 0, parameterized by a variable o, as
shown in Figure 3.1} It is clear from Figure [3-1] that both steady-state input-
output relation and its inverse are mon-monotone, and furthermore that they
possess no integral function. In other words, ¥ is EI-IOP(p,v) for some p,nu,
but one cannot associate an integral function with it, so the network optimization
framework cannot be defined.

Example 3.4. Consider a class of networked nonlinear SISO gradient systems,
which are diffusively-coupled networks with agents described by

oU (z; )
Y i'i:_i(x) tuis yi=x, i=1,...,[V, (3.7)
8:@
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Figure 3.1: Steady-state relations of the system in Example

where U is a C* scalar potential function with U(c) >0, ¢ # 0 and U(0) = 0.
Moreover, we take identical static gains as controllers 1, : pe = G(., where
G > 0, meaning we have a control law of the form

ui=GY (vj—m), i=...,]V (3.8)

gri

Such classes of systems are important because of their applications in both bi-
ological and multi-agent systems, and are inspired from [131]. As discussed
in [131), loosely describes the dynamics of a group of bacteria performing
chemotaxis (where x; is the position of the bacteria) in response to the chemical
stimulus such as directing their movements according to the concentration of
chemicals in their environment to find food (for example, glucose) by swimming
towards the highest concentration of food molecules. Other possible applications
include networks of robots that must efficiently climb gradients to search for a
source by measuring its signal strength in a spatially distributed environment.

Proposition 3.1. Consider the gradient system (3.7)), where the Hessian matriz
Hess(U) of the potential U satisfies Hess(U) > pld)y| for some p. Then the
system is EI-OP(p).

Proof. Take any steady-state input-output pair (u,y) of the system. Consider

the storage function S(z) = 1|z — x||2. Taking the derivative of S along the

system dynamics yields S = (z —x)T (= f(z) +u), where we denote f(z) =
VU (x) for notational convenience. Defining p(z) = f(x) — px, we can write
S = (x —x)T(—p(x) — pr 4+ u). Adding and subtracting ¢(x) and px and using
the fact that 