~

[1"200nN TECHNION
219120 (19N u Israel Institute
TN of Technology

4 A

[1'1200 NIM90
The Technion Libraries

017" XIAI ['1NX "V D'D>NOoIN 'TIN'?77 1901 N'a
Irwin and Joan Jacobs Graduate School

\

©
All rights reserved to the author

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or
other electronic means, except for "fair use" of brief quotations for
academic instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©
n/nann? nnme nrpTm 7

IX N7 112'N ,01702°X2 Y'ON7 ,UT'1 1AXNA [ONX7 ,01IN7 ,0'9TN7 ,('"NW7d N'TN1) 7'NYN7 |'X
IX N7 ,NXIN ,TIA'YZ NN0AY 112NN [N DIX7 D'WOZA "an win'w" oyn? ,11nn j77n 72
.07nNN2a 1IoX AT AN 71750 AN "Non wIN'Y 7NN



Distributed Event-Triggered
Control for Multi-Agent Systems
with Second-Order Dynamics

Mayank Sewlia



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Distributed Event-Triggered
Control for Multi-Agent Systems
with Second-Order Dynamics

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Aerospace Engineering

Mayank Sewlia

Submitted to the Senate
of the Technion — Israel Institute of Technology
SIVAN 5780 Haifa June 2020



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



This research was carried out under the supervision of Prof. Daniel Zelazo, in the

Faculty of Aerospace Engineering.

Some results in this thesis have been published as an article by the author and
research collaborators in a conference during the course of the author’s masters research

period, the most up-to-date versions of which being:

[1] M. Sewlia and D. Zelazo, "Distributed event-based control for second-order
multi-agent systems,” in 2019 27th Mediterranean Conference on Control and
Automation (MED), pp. 310-315, IEEE, 2019.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Daniel
Zelazo for his continuous support towards my M.Sc studies and research. His guidance

helped me in all the time of research, administrative tasks and writing of this thesis.

Besides my advisor, I would like to thank the rest of my exam committee: Prof.
Leonid Mirkin and Prof. Yaakov Oshman, for their time, insightful comments and hard

questions.

I also acknowledge the generous financial help of the Technion - Israel Institute of

Technology.



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Contents

List of Figures
Abstract
Abbreviations and Notations

1 Introduction
1.1 Literature Review . . . . . .. .. . oo o
1.1.1 Event-triggered Control . . . . .. .. ... ... ... ......
1.1.2 Event-triggered Consensus Control . . . . . .. ... .. ... ..
1.1.3 Event-triggered Formation Control . . . . . . . ... .. ... ..
1.2 Thesis Contribution . . . ... ... ... . o
1.3 Thesis Organization . . . . .. .. .. ... .. .. .. .. .. ...

2 Event-Triggered Control
2.1 Classifications . . . . . . . . .. L
2.1.1 Sampled-data Control . . . . ... ... ... ... .. ......
2.1.2  Event-triggered Control . . . . . . ... .. ... ... ...,
2.1.3  Self-triggered Control . . . . . . ... ... ... ...
2.2 Approaches to Event-triggered Control Design. . . . . . ... ... ...

2.3 Zeno-behavior . . . . .. L

3 Event-triggered Consensus Control
3.1 Problem Statement . . . . . . .. ...
3.2 Event-triggered Design . . . . . . .. .. ... oL
3.2.1 Event Triggered Control for Average Consensus . . . . . . . . ..
3.2.2  Event Triggered Control for Zero Velocity Consensus . . . . . . .
3.3 Simulation results . . . . .. .. L L oL
3.3.1  Average CONSENSUS . . . . v v v v v vt e e e

3.3.2 Zero velocity consensus . . . . ... ..o oL

4 Event-triggered Formation Control

4.1 Bearing-only Formation Control . . . . . . . .. .. .. ... ... .. ..

© 00 N N g O

10

11
11
12
12
14
16
17

21
21
23
24
28
32
32
33

35



4.2 Problem Statement . . . . . . ..o Lo Lo 37
4.3 Node Triggering . . . . . . . . .. 38
4.3.1 Event-triggered Design . . . . . . . ... ... oL 38

4.3.2 Simulation Results . . . . . . . .. .. ... .. L. 41

4.4 Edge Triggering . . . . . . . . . . e 42
4.4.1 Event-triggered Design . . . . . . . . ... o oL 43

4.4.2 Simulation Results . . . . . . .. ... oo 45

4.5 Alternative Edge Triggering . . . . . . . . . .. . ... ... 46
Closing Statement 51
5.1 Conclusion . . . . .. e 51
5.2 Future Work . . . . . .. 52
Appendix A Basic Algebraic Notions 53
Appendix B Graph Theory 55
Appendix C Stability of Dynamical Systems 57
Appendix D Bearing-based Formation Control 59
D.1 Bearing Rigidity Theory . . . . . . . . . .. . . oo 59

D.2 Distributed Bearing-only Formation control . . . . . . .. .. ... ... 62



List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

B.1

D1
D.2
D.3
D.4
D.5
D.6

Signal reconstruction using ZOH. . . . . . .. .. ...
Consensus under the ETC )2.7(. . . ... .. ... .. ... ... ....

Types of sequences of event-times . . . . . .. .. ... ... ... ...,

Agent i with controller )3.6( and event triggered condition )3.5(.

Agent i with controller )3.12( and event triggered condition )3.5(.
Communication graph G of the multi-agent system. . . . . . . .. .. ..
Average consensus results showing position and velocity convergence
along with instants when an event is triggered. . . . . . . .. ... ...
Results pertaining to the average consensus problem. . . . . . . . . . ..

Results pertaining to zero-velocity consensus problem. . . . . .. .. ..

Mlustration of node triggering ETC from the perspective of agent i. . . .
Communication graph for the example.. . . . . . . .. ... ... ....
Results pertaining to the node-triggering case . . . . . . . .. . ... ..
Mlustration of edge triggering ETC from the perspective of agent 7. . . .
Results pertaining to the edge-triggering case . . . . . . ... ... ...
Dependence of convergence on o. . . . . . . .. .. ...

Results pertaining to the alternative edge-triggering condition . . . . . .
A directed graph G1 . . . ..o

Two equivalent but non-congruent frameworks G(p) and G(p') . . . . . .
Two congruent frameworks G(p) and G(p) . . . . . . . .. ... ...
An infinitesimally bearing rigid framework . . . . . . . . ... ... ...
Simulation of the system in )D.1(. . . .. ... ... ... ... .. ..
An undirected graph . . . . . .. ...
Simulation of the system in )D.2(. . . .. ... ... ... ... ...

33
34
34

38
41
42
43

46



Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Abstract

The focus of this thesis is to study distributed event-triggered control for multi-agent
systems (MAS). In event-triggered control, periodic task execution is replaced with
deliberate, opportunistic, and aperiodic task execution, thereby reducing the load on
communication and computation resources. We consider mainly two problems in this
field, event-triggered consensus control and event-triggered formation control.

In event-triggered consensus control, we propose state-dependent event triggering
conditions to achieve consensus for a team of agents modeled with double-integrator
dynamics. We study two event-based consensus algorithms. In the first algorithm we
guarantee the agents reach position consensus with a non-zero constant final velocity.
The second algorithm guarantees that the agents reach position consensus with a zero
final velocity.

In event-triggered formation control, we study bearing-based event triggering con-
ditions to achieve formation stabilization for systems with double-integrator dynamics.
First, we design a controller that makes use of local agent state measurements along
with the measured bearing states to achieve a stationary final formation. On this newly
designed controller, we propose an event-triggered condition (ETC) which drives the
sensing and control updates of the agents along with a proof that the inter-event time
is strictly positive. Second, we restrict ourselves to only relative states and design an
ETC that is edge dependent and drives the control updates of the agents.

All the proposed schemes are distributed in the sense that no global parameter is
required and agents locally determine and evaluate trigger conditions. We use Lyapunov
theory to provide convergence and stability proofs for the above problems and verify

the results using simulation examples.
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Abbreviations and Notations

Set of real numbers

Set of non-negative real numbers
Set of natural numbers

A graph

Set of graph edges

Set of graph nodes (vertices)
Graph Laplacian

mE NN zZ @R
o

Incidence matrix
Real dot product

e
=

Euclidean norm(2-norm)

1, n-dimensional vector with all entries 1
I, n-dimensional identity matrix

® Kronecker product

inf(-) Infimum

min(-) : Minimum

Z0OH . Zero Order Hold

ETC :  Event-Triggered Control
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Chapter 1

Introduction

Multi-agent systems (MAS) are systems composed of multiple dynamic units that in-
teract with each other and are characterized by their autonomy, local perspective,
adaptability and decentralization. An agent is an entity that takes the shape of the
problem it is defined in, such as a human in a population study, an autonomous robot
in a multi robot systems, a cell in an organism or an interface agent in a user-computer
interaction. The collective behavior of multiple interacting agents come with an advan-
tage of large-scale spatial distribution, ease of deployment, robustness, high scalability
and low cost. These systems are recently gaining traction due to their broad application
in several fields such as control theory, distributed computation, nanosystems, social
networks, power systems, microeconomics theory, operational research and embedded
systems. Specifically in control theory, the applications are in formation flying, task
allocation problem, optimization and estimation, coverage control, attitude alignment
among multiple spacecrafts and sensor management problems [1-5].

In centralized systems, a single entity executes a series of tasks to obtain a desired
result, whereas in distributed systems the same goal is accomplished by multiple entities
communicating with each other and working in parallel. The need for distributed
systems arises because many real world systems are too large and complex and require
a multitude of processors, none of which possess entire system knowledge, to obtain
desired results. Additionally, there are limitations on the amount of information shared
between these agents and it might be impractical to share all available information and
convert the problem to a centralized one [6].

Consensus problems, first studied in control theory in [7], is defined as the process
to reach an agreement on a quantity of interest that depends on the state of all agents.
A consensus protocol is an interaction rule that defines the information exchange be-
tween an agent and its neighbors. Consensus protocols provide a direct connection
between graph theory and dynamical systems which has come as a handy tool in per-
forming distributed computation over networks [8]. Consensus problems also provide
a platform to study how the underlying graph topology directs the evolution of the

dynamical system over it. It finds application in problems such as flocking, swarming



and rendezvous [2,9].

Formation control problems, a specialized version of the consensus problem, aims
to achieve a target geometric formation shape by defining constraints on the relative
states of the agents. These problems are interesting in the sense they exhibit and
generate complex behavior and patterns via simple interaction between agents. Such
problems are generally characterized by the sensing capabilities of each agent: such as
agents equipped with position sensors, displacement sensors, distance sensors and/or
bearing measuring sensors. In position-based control, agents sense their own posi-
tions to achieve a desired formation and in displacement-based control, agents sense
their relative positions with respect to their neighbors. In distance-based control, sim-
ilar to displacement-based control agents sense their relative positions with respect to
their neighbors but in their own local coordinate systems, and finally in bearing-based
control, agents sense the relative bearings with respect to their neighbors in a global
frame [10,11]. In bearing-based formation control, the focus of this work, the target
formation is specified by inter-agent bearings, the sensing measurements are relative
bearing vectors and the agents actively control their accelerations. As seen in [12]
and [13], bearing measurements are often cheaper to sense and a formation specified by
bearings is invariant to translation and scaling, thereby providing easy maneuverability
in these aspects. Most recently, [14] proposed several bearing-only control laws for var-

ied agent models including single-integrator, double-integrator and unicycle dynamics.

In the study of MAS, an assumption of continuous communication between agents
and continuous actuator updates is very common. However, in real world implemen-
tations on digital beds with wireless communication such assumptions can lead to
inefficient utilization of resources or worse, failure to execute said tasks. For example,
consider a sensor-actuator system regulating the temperature of a room. Here, the
sensor can be asked to obtain new sensing measurements as fast as possible and the ac-
tuator can act accordingly. But once the temperature is brought to a desired level, such
fast sensing is not required as it is a waste of resource. This can be mitigated by sensing
as fast as possible when the situation demands and slow the sensing frequency at other
times. In another example, consider the temperature regulation of a mega facility that
requires multiple sensors placed at various locations and a single centralized actuation
(air-conditioning) mechanism. These sensors communicate wirelessly with each other
and agree on a common temperature reading which is then communicated to the ac-
tuator. In this scenario, the shared network may be overloaded when all the sensors
transmit at the same time resulting in delays, packet losses and overall degradation of
system performance. To avoid such situation, the sensors need to sense at certain in-
tervals and communicate with the neighboring sensors only when the need arises. But
how do we design such intervals? This question is answered by event-triggered control
where we determine an upper bound for worst case execution time by observing the

state trajectories of the system [15-17].



1.1 Literature Review

While the field of event-triggered control of multi-agent systems is rapidly growing, our
focus is on applying this mechanism to solve problems of communication and actuation
between agents to achieve a common goal. The two main areas of focus here are to

solve the consensus and formation control problems using event-triggered schemes.

1.1.1 Event-triggered Control

In the existing literature, the assumption of very high sampling frequency and actuation
rate is very common. This is difficult to maintain as real world implementations on
digital beds have limited communication and processor capabilities [15]. Additionally,
once the update rate crosses a certain threshold, there is no improvement in the final
convergence accuracy. As a result, we need to find a suitable update frequency while
still achieving a desired accuracy. Moreover, this update frequency also depends on
the current states of the system and varies throughout the evolution of the agents.
Hence, it is intuitive to sample and update states at higher frequencies only when the
situation demands, and sample at lower frequencies otherwise. To solve this problem, we
make use of event-triggered control (ETC) where we opportunistically and deliberately
find sampling and update instants without compromising the final results [18]. In
[19], there is an extensive review on the topic of event-triggered control studying the
motivation, methodology, challenges and applications of such a control in distributed
systems. We use ZOH to generate a piecewise continuous signal from discrete values
of control at event-times. ZOH is the most commonly used hold in the event-triggered
literature, but there are other types of hold such as system-matched hold studied in [20].
System-matched hold is a generalized hold that matches the system dynamics with the
dynamics of the hold. Although higher order holds are seldom used in the event-
triggered literature, different types of holding mechanisms can be found in Chapter 5
of [21] and [22].

Chapter 2 provides an extensive review about the field of event-triggered control.

1.1.2 Event-triggered Consensus Control

Event-triggered consensus control, first studied in [15] where a time dependent event
based condition is presented for a centralized controller and later extended to a dis-
tributed case. Related to this chapter are [23-25]. In particular [23] proposes a time
dependent event-triggering function for first and second order dynamics to achieve
average velocity consensus. In [24], event-based protocols on single integrator dynam-
ics involving both fixed and switching topology is analyzed. In addition, it provides
bounds on the sampling period in terms of eigenvalues of the graph Laplacian. The
work [25] investigates the problem of synchronization in complex networks and pro-

vides conditions to ensure that infinitely frequent triggering is excluded by providing



lower bounds on inter-event times. Furthermore most of the current work on event-
based control focuses on time-dependent thresholds instead of state-dependent ones.
This approach requires the system to have prior knowledge of the smallest non-zero
eigenvalue of the graph laplacian matrix and the event triggered condition (ETC) is
updated continuously [26]. This, however, may not be practical when the graph has
switching topology or if an agent is disconnected from the system. In [27], the authors
study event-triggered consensus control of multi-agent systems with double-integrator
dynamics. Here the information graph for position and velocity sharing are heteroge-
neous and event-triggered conditions for centralized and distributed cases are presented.
The authors in [28] study event-triggered consensus problem in the presence of packet
losses and communication delays, whereas the authors in [29] study the formation con-
trol problem with connectivity constraints. In [27-29], the event-triggered conditions
depend on the eigenvalues of the Laplacian matrix and they share an identical structure
where the sampling error functions are bounded by an exponential threshold function
thereby also requiring synchronized clock data. The discussion in [30] is solely to study
event-triggered and self-triggered consensus for MAS with double-integrator dynam-
ics. Here the proposed event-triggered schemes rely heavily on the underlying graph
topology, and each agent evaluates multiple triggering functions and violation of any
one of these will result in an event. In Chapter 5 of [31], the author studies consensus
in a leader-follower network of Euler-Lagrange agents. There are mainly 3 algorithms
studied, the first algorithm is built on variable-gain approach, the second algorithm
assumes directed graph topology with semi-globally exponential convergence and the
third algorithm incorporates gravitational forces. The work in this thesis, on the other
hand, aims to avoid any knowledge of parameters depending on the graph topology,
such as eigenvalues of the Laplacian matrix, as such parameters are bound to change

if the underlying graph changes.

1.1.3 Event-triggered Formation Control

There has been little work in applying event-triggered control to solve formation control
problems. Notably, [32] studies bearing-based encirclement formation control using
event-triggered schemes for single integrator dynamics. The authors demonstrate global
asymptotic stability and prove the avoidance of zeno behavior. However, the event
triggering is centralized in the sense that all agents sample and perform control updates
at the same instance. The work by [33] provides dynamic event-triggered conditions
to solve the formation control problem for agents with linear dynamics. The ETC
condition is dynamic in the sense that the event variable ‘o’ is gradually reduced closer
to 0 from a certain initial value as time progresses. Here, the sensing variables are
the states of neighboring agents along with bearing vectors in a global reference frame.
Additionally, [34] studies position-dependent event-triggered formation control problem

for agents with single integrator dynamics and proposes an algorithm to solve the



multitarget selection problem. A generalized gradient based control law is proposed
in [35] for agents with single-integrator dynamics and exponential convergence is shown
for this controller. Here, the ETC is a function of the smallest eigenvalue of a matrix
which is a property of the graph. This is sometimes undesired as it is a global property
of the network, and can not cope with communication or agent losses. In Chapter
6 of [31], the author discusses distance-based event-triggered formation control for
agents modeled with single-integrator dynamics. The author proposes centralized and
distributed event-triggered control laws with the avoidance of zeno-behavior and proves

exponential convergence of the distance error system.

1.2 Thesis Contribution

In this section we present a statement of the thesis contributions to event-triggered
control of second-order multi-agent systems. This thesis studies and applies event-
triggered control strategies to two of the most researched problems in multi-agent sys-
tems: consensus and formation control. In consensus, we use these strategies to drive a
team of agents to agree on a common value by communicating and sharing information
with the neighbors aperiodically. This aperiodic communication is determined by an
event-triggering condition which if violated initiates a data transfer between agents. In
formation control, we study specifically event-triggered control of bearing-based for-
mation stabilization where the control actions are event driven.

We begin by deriving a state-dependent event-triggered control strategy to solve
consensus problems for a continuous time double-integrator dynamics MAS over an
undirected network. Firstly, we use Lyapunov theory to arrive at an ETC which solves
the average consensus problem. This ETC is used to determine the control updates
and communication instants between agents. Secondly, we use this ETC to achieve
zero-velocity consensus where the agents agree on a common position with a final zero
velocity. This is important when you want to convert a consensus problem to a ren-
dezvous problem. As we will see further in this thesis, converting a consensus problem
to a rendezvous problem is done by updating the piecewise continuous controller to a
continuous time controller while still operating under the same ETC. Unlike the lit-
erature discussed in Section 1.1.2 where agents require some form of global data, all
the ETC mechanisms proposed here are distributed i.e., agents locally determine and
evaluate trigger conditions. These results are presented in Chapter 3 of this thesis.

We then proceed to solve the bearing-based formation stabilization problem using
event-triggered control where we take two approaches in doing this: edge triggering
and node triggering. In the first approach, we make use of the bearing-only control law
proposed in [14] to arrive at an ETC that is dependent on the relative measurements

1

applied to both agents incident to that edge.” Here, the post-trigger response is to

! An edge between two agents indicates that a bearing measurement is available.



update the controller when the ETC is violated. In the second approach, we propose
a new control law based on the one proposed in [14] to achieve a stationary final
formation. Here the ETC is designed over an agent, that along with its self-states
uses the collective relative measurement from all its neighbors to evaluate the trigger
condition. We further prove that inter-event times are strictly greater than zero. The
post-trigger response in this case is to acquire new state measurements and update the
controller. All agents are designed with double-integrator dynamics and the proposed
control inputs along with the ETC are distributed. These results are presented in
Chapter 4.

1.3 Thesis Organization

This work is organized as follows, in Chapter 2, we present an introduction to event-
triggered control and review different approaches in designing event-triggered control
systems. We then start our main contributions in Chapter 3 where we apply the tools of
event-triggered control to the consensus problem. In Chapter 4, we apply these results
to the bearing-based formation control problem and in Chapter 5 we conclude the work
presented and provide directions for future research. In Appendices we present prelim-
inaries used throughout the thesis, specifically, basic algebraic notions in Appendix A,
graph theory is introduced in Appendix B, stability notions of dynamical systeems are
introduced in Appendix C and finally, bearing-based formation control is introduced

in Appendix D.
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Chapter 2
Event-Triggered Control

For a long time, execution of feedback control loops were performed in a periodic manner
on digital platforms. With the advent of modern computers, such loop execution in
periodic manner has gone out of fashion since modern processors execute multitude of
tasks and computation power allotted to each task is limited [17]. This gave rise to
aperiodic control or need-base control to address the importance of resource saving in
computation, communication and energy. Another motivation as highlighted in [36],
comes from implementing hybrid controllers that switch between different algorithms
where each algorithms operates at a different frequency. Here the author presents three
significant reasons to resort to event-based control. First, it is argued that event-based
control is closer to how a human would behave as a controller rather than time-triggered
control. Second, event-based control is a natural choice when actuators are on/off in
nature, and third, control calculations performed on CPU are performed only when

needed thereby saving crucial CPU time usage.

The common approach to designing an event-triggered mechanism is the perturba-
tion approach. The fundamental question asked is how far can the system be perturbed
while still guaranteeing some desired behavior? However, we will review various ap-
proaches to event-trigger condition design and also classify them based on execution
times. In this chapter, we start by classifying common update mechanisms encountered

in the literature in the next section.

2.1 Classifications

This section studies types of controller update mechanisms and is built on the re-
sults and discussions from [15-17]. These mechanisms are classified into 3 categories:

sampled-data control, event-triggered control, and self-triggered control.

11



2.1.1 Sampled-data Control

Sampled-data control refers to control which takes periodic action irrespective of the

current states of the system. Consider the system,

T = f(,I,’LL),

which is stabilized by a controller u = k(x). The controller is designed to update at a

constant period, say T seconds. Then,
&= f(x(t), k(z(t))) t € [titig),
for | € Z>¢ and t;4; —t; =T for all [.

ft)4

AASS

>

T

v

(a) Constant time sampling. (b) Event-triggered sampling.

Figure 2.1: Signal reconstruction using ZOH.

Here the controller is updated at a constant frequency % and any hardware designed
to work faster than this frequency can be used for implementation. This can be seen
in Figure 2.1a where the continuous time signal f(t¢) is sampled every ‘T’ seconds and
is kept constant between these samples using a zero order hold (ZOH). This sampling
frequency is a function of the system and so we naturally ask the question how do we
choose such a frequency? For many years the answer was “fast enough” to guarantee a
desired final result, however, this notion of “fast enough” keeps changing on the current
states of the system. So it makes sense to chose a faster frequency when the situation
demands and resort to slower frequency otherwise to save resources, this principle is

captured in event-triggered control which is the topic of discussion in the next section.

2.1.2 Event-triggered Control

This section introduces event-triggered control with a basic example from [15]. Event-
triggered control, as noted earlier, is reactionary in nature and takes action only when
the current state of the system reaches the boundary of a pre-specified region. Unlike
sampled-data control, here the sampling time is not constant and keeps varying. This is

visualized in Figure 2.1b. The non-uniform event-times are designed based on an event

12



triggering condition and the signal is kept constant between events using a ZOH. Let
us illustrate this process with an example. Consider a multi-agent system represented

by a graph G(V, ) where each agent has the following single-integrator dynamics,
zi(t) = ui(t) i€V, (2.1)

where z; € R and u; € R. The ensemble states of all agents can be written as concate-

nation of each agent states as follows,

() = u(t), (2.2)

where n is the number of agents. Given L is a Laplacian matrix of the graph G(V, &),
defined in Appendix B, the ideal controller to achieve consensus for the system in (2.2)
is,

u(t) = —Lx(t), (2.3)
and the closed-loop dynamics of the system as seen in [2] are,

i(t) = —La(t), (2.4)

where consensus is defined as follows,

Definition 2.1 ( [2]). Consensus occurs when a collection of agents agree on a com-
mon state value, that is, the dynamics (2.4) asymptotically converges to an agreement
set M C R"™ defined below,

M= {$ S Rn|$z = Ty, v Z,]}

Now consider the digital implementation of the controller (2.3) and the resulting piece-

wise continuous controller is,
u(t) = —Lx(ty) t € [ti,ti),
where the interval [t;,¢,41) length is non-uniform for [ € Z>(. Define by
e(t) = x(t)) — (1), (2.5)
which is the measurement error in state, and the resulting closed-loop dynamics are,
x(t) = —Lax(t;) = —L(e(t) + z(t)). (2.6)

Now our goal is to design event-triggering conditions, such that the system in (2.6)
achieves multi-agent consensus. We will use stability theory like ‘Lyapunov stability’
presented in Appendix C to design such conditions. We chose a candidate Lyapunov

function V(z) and examine it along the trajectories of the system and enforce some

13



conditions (ETC) on the error function defined in (2.5) such that V(z) is negative
semi-definite. Ensuring V < 0, we know V() will decrease along the solutions of (2.2)
and that these conditions guarantee stability in the sense of Lyapunov. So as long as
such conditions are satisfied the control is kept constant using a ZOH and no event is

generated, when violated an event is generated and post-trigger response follows.

In this direction, based on the discussion in [15], consider the following Lyapunov

function,
V(z) = %xTLx,
whose time derivative is,
V(z) =2"Li = 2T L(~L(e + x)) = —||Lz||* — 2" LLe.
In the above derivative, the first term “ — || Lz||?” is always non-positive and to ensure

V < 0, we use the submultiplicative property of the spectral norm to arrive at,
V < —|[La|? + | L] || L]lle]l

Now, enforcing the following condition on the error,

|| L]
1L

lell <o (2.7)

for o € (0,1) we arrive at,

V < (0= 1) La|f?

which is negative-definite for all Lx # 0. The condition in (2.7), when met, an event is
triggered and the states are sampled and controller updated. The error function “||e||”
is a non-negative and non-decreasing function. The error function rises from 0 until it
meets (equals) the threshold function a%, at this point, an event is triggered. Then
the error function is set to zero and continues to evolve. This can be visualized in
Figure 2.2 where the consensus protocol (2.3) is run for 6 agents over a connected and
undirected graph. Figure 2.2a shows the states of the agents and Figure 2.2b shows
how an event is triggered. As stated earlier, once the condition (2.7) is satisfied, the
| L]

error function is set to 0 and this process repeats as long as A is non-zero.

2.1.3 Self-triggered Control

Self-triggered control, first introduced in [37], is proactive in nature and computes the
(¢ + 1)th sampling time at the ith event time. This is done by making predictions
based on the history of states received and knowledge of the system. This process
can be illustrated with the following example. Consider a system with general linear
dynamics,

z(t) = Ax(t) + Bu(t), (2.8)
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(a) Consensus of 6 agents. (b) Event-triggering condition.

Figure 2.2: Consensus under the ETC (2.7).

and the ideal linear controller which renders the above system asymptotically stable is,
u(t) = Kxz(t).
The closed-loop dynamics are,
&(t) = (A+ BK)z(t),

and following from the discussions in Section 2.1.2, the closed-loop dynamics under the

event-triggered scheme are,
#(t) = Az(t) + BKz(t;) = Az(t) + BK(z(t) + e(t)) = (A+ BK)x(t) + BKe(t). (2.9)

An ETC can be designed for the system in (2.9) that decides when to sample the states
and update the controller. Here however, at triggering time ¢; the triggering mechanism
evaluates the ETC of the states for ¢ > ¢;. In the example of linear systems and under

the assumption of ideal dynamics, the state trajectory can be given explicitly by,

t

2(t) = exp ((A+ BE)(t —1))a(t) + | exp ((A+ BE)(t — 1)) BKe(r)dr,

t
which can be used to determine when the future violation of the error function takes
place and the system executes post-trigger actions. This is a simple example of deter-
ministic nature and as real-world irregularities are introduced the analysis gets com-
plicated. However, since the future states are predicted the requirement of continuous
sensor measurements is relaxed. Moreover, as shown in [38], the average inter-event

times of self-triggered schemes are often lower than that of event-triggered schemes.

To overcome the conservativeness of self-triggered approach and to avoid costly

computation resources usage in event-triggered approach, the authors in [39] make

15



the best of both worlds by proposing a scheme in a multi-agent setting that relies on
agents making promises to their neighbors about their future states. Consider the task
of designing a condition for agent ¢« where the condition is used to decide instants when
agent 7 samples its states to its neighbors. In [39] this is accomplished by having agent
1 transmit its current state along with its future states to its neighbors and schedules
when to transmit/request next update information. This comes from the self-triggered
paradigm. Now, if a promise is broken, i.e., states weren’t received at the promised
times, an event is triggered and new states are immediately demanded which comes
from the event-triggered control side.

This thesis focuses on event-triggered control and we proceed in this direction by
introducing some approaches commonly encountered in the literature and build upon

the tools necessary for the remainder of this thesis.

2.2 Approaches to Event-triggered Control Design

The first approach and most commonly found in the literature is presented in [40].
This approach, commonly called the discrete-time perturbed linear system approach is
modeled after the perturbation approach to stability analysis presented in [41]. Here,
an error in control is introduced and stability analysis follows to bound the deviations
of this error. The discussion in Section 2.1.2 is based on this approach and the rest of
the work is also modeled after this approach. The results obtained are very conservative
and the assumption is that the controller renders the system Input-to-State stable (ISS).

The next approach is performance based design or optimization-based methods.
The pioneering work of [42] showed that Lebesgue sampling! can outperform periodic
control for some quadratic costs in linear plants with Gaussian disturbances. Lebesgue
sampling, where the sampling intervals are not canonical, involves forcing the states
of a system to a confined region and generating a control signal when the state leaves
such said region. This was one of the first works to provide not only a qualitative but a
quantitative result on what came to be known, event-triggered sampling mechanisms.
In [43], the requirements of full-state feedback is relaxed and partial output-based feed-
back is used to schedule tasks. Performance is defined by an average quadratic cost
and the note guaranteed fewer transmissions compared to traditional optimal periodic
executions and additionally, by forgoing 10% of performance the authors obtained 72%
of reduction in network usage. The work in [44] characterizes internally stabilizing
controllers that guarantee a certain H., performance level and thus the proposed ETC
system outperforms optimal time-triggered control except for some atypical cases. By
doing this, the authors augment the feedback controllers by enforcing certain perfor-

mance criterion and stability of the controlled tasks.

!Lebesgue sampling refers to a sampling scheme when the system is sampled only when the output

has changed by a specified amount.
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A large part of recent research is dedicated to reducing conservatism in event-
generators and increasing inter-event times while still maintaining stability. This brings
us to our next approach in event-trigger design: dynamic-triggering mechanisms. Static
event generators, for example (2.7), often exhibit zeno-behaviors in the presence of even
the slightest disturbances [45], where zeno-behavior is a phenomenon when infinite
events are triggered in finite time (see Section 2.3). To circumvent this, dynamic-
triggering mechanisms, as presented in [46], introduce an internal dynamic variable that
acts as a filter on the threshold function. In contrast to static ETCs, which is analyzed
by choosing an appropriate decreasing Lyapunov function V(t), here V(t) need not
be a decreasing function rather just upper-bounded by another augmented function
W (t) which is a decreasing function. In [45] too, the authors work in the lines of [46],
but first they add a minimum inter-event time to each event (time-regularization) to
ensure zeno-behavior is avoided and then design a dynamic variable to achieve larger
inter-event times.

In [47] the authors take an interesting hybrid-systems approach. Here, as in [45], the
authors add a minimum inter-event time h to the mechanism but unlike any previous
methods, when an ETC is violated here, the event-generator waits h seconds before
taking any action and after the end of the waiting period it continuously takes in new
sensor measurements until the ETC is violated again and this process continues. This
switching between periodic sampling and continuous event-detection is said to have
reduced the workload significantly.

Theoretically, any approach guaranteeing bounds on the states of the system while
still maintaining stability can be used to design an event-triggered condition, provided
the approach is justified in regards to conservativeness of the regions, ease of imple-

mentation on digital beds, complexity of calculations, and so on.

2.3 Zeno-behavior

This section introduces the zeno-phenomenon based on the references [19,48,49].
Zenoness® describes a phenomenon when a system undergoes an unbounded number of
discrete events in a bounded length of time. One common issue in implementing the
trigger design is to ensure the exclusion of zeno-behavior, meaning to ensure infinite
events are not triggered in finite time.

Denote the sequence of event times by {t;};ez.,. Figure 2.3 captures the essence
of zenoness by observing the varied sequences of inter-event times. The sequence of

event-times can be characterized into following four categories:

i) Sampled-data control: Following our discussion from Section 2.1.1, in a a

sampled-data control with constant sampling, as shown in Figure 2.3 be blue

2 After the Greek philosopher Zeno of Elea who proposed the Achilles and tortoise paradox, which
said, ‘In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach

the point whence the pursued started, so that the slower must always hold a lead’ [50].
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Figure 2.3: Types of sequences of event-times

markers ’+’, inter-event times are constant irrespective of the current state of

the system. For example, consider the following sequence,
i1 — i = ¢,

for some ¢ > 0 which is the first marker in Figure 2.3. Any controller designed
to operate at a frequency higher than the inter-event sampling frequency can be

implemented on hardware.

Zeno behavior: Consider the marker sequence number two, '+, in Figure 2.3

where the inter-event times are given by,

5
tn—t = ma

for | € Z>p. As | — oo, the event-time ¢; < 72 which means there exists an ac-

3
cumulation time before which infinite events will have occured and zeno-behavior
is observed. Systems exhibiting such phenomenon cannot be implemented for

t> %2 and hence the need to exclude such behaviors from the trigger design.

Non-zeno behavior without a minimum inter-event time (A): In the
marker sequence number three in Figure 2.3, , the inter-event time is given
by,
by —t = i,
[+1

for | € Z>¢. As | — oo, the event-time ¢; — oo, which means theoretically such a

controller can be implemented but it needs to act infinitely fast.
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iv) Non-zeno behavior with a minimum inter-event time (A): The final
category is to exclude zeno behavior by finding a strictly non-zero lower bound
on inter-event times i.e., A > € where ¢ > 0 and is uniform over all consecutive
events. The lower bound must also not be a function of time or the states of the

’. where the

system. This is represented by the fourth marker in Figure 2.3, -+
lower bound is A = 0.1 which can be implemented by any device operating faster
than the frequency of %. Finding a non-zero lower bound on inter-event time is

a stronger condition than avoiding zeno-behavior.

To circumvent the existence of zeno-behavior, periodic event-triggered control has been
proposed in the literature [51]. Here, instead of evaluating the trigger condition contin-
uously it is evaluated at a constant period, say ‘h’. The next-event time is then given

by the following rule,

tir1 = min{t; +ih | i € N, m(e(t)) > n(z(t; +ih))},
where the error-term is,

e(t) =z(t; +ih) —z(t;) t € [ti+ih, t;+ (i +1)h),

for ¢ € N. This execution scheme guarantees that the inter-event time is at least h
seconds and zeno phenomenon is avoided. Nevertheless, this analysis should be followed
by an upper bound on A to ensure the trigger condition is not violated in the interval
[ti,t; + h) and if violated the system is still guaranteed to remain stable and achieve

the said goals.
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Chapter 3

Event-triggered Consensus

Control

In Chapter 2 we introduced event-triggered controller design and various approaches to
stabilize a system. In this chapter we use these tools and apply them to one of the most
studied problems in multi-agent systems, the consensus protocol. More specifically,
we are interested in using these strategies to drive the communication and control of
agents. We use Lyapunov-based event-triggering strategy to solve the average consensus

problem and the zero-velocity consensus problem.

3.1 Problem Statement

We consider a group of N agents having double integrator dynamics described as,

Oi(t) = ui(t), (3.1)

where i € {1,...,N}, z;(t) € R, v;(t) € R and u;(t) € R are position, velocity, and
control inputs of agent i, respectively. Note that in this study, the states z(¢) and Z(t)
are called position and velocity respectively. However, in general, they need not be
position and velocity as their definitions can depend on the considered system. Each
agent has the ability to sense its states and transmit them to its neighbors over a com-
munication network. Such a network is captured by a static and an undirected graph
G with its corresponding laplacian matrix L(G). A perfect information sharing network
is assumed where the transmitted and received states are instantaneously available to
the actuators of every agent.

We are interested in distributed control strategies that drive the team of agents to
consensus in their states. In this direction, we define two notions of consensus for the

multi-agent system comprised of agents with dynamics (3.1).
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Definition 3.1. A second order system is said to have achieved average consensus, if
for all 2;(0), #;(0) € R, where i =1,2,..., N,

. t 1Y
tligo(:zz(t) -~ 2 vi(O)) =~ ;mz(()) and
N
tli)rgovi(t) - N Z vi(0)-

=1

Definition 3.2. A second order system is said to have achieved zero velocity consensus,
if for all z;(0), #;(0) € R, where i =1,2,..., N,

tlgrolo xi(t) =c and t131010 v;i(t) =0,

where ¢ € R is a scalar constant.

Definition 3.1 states that all agents synchronize their positions and move at a uniform
constant velocity which is the average of their initial velocities. Definition 3.2 defines a
type of consensus where agents asymptotically agree on a common position with zero
velocity i.e., all agents rendezvous to a common point. To achieve the consensus defined
in the above definitions, consider the distributed control law proposed in [52] and [53]

given by,

wi(t) = =D aij[(wi(t) — () + pvi(t) — v;(t))], (3.2)
j=1

where a;; is the {i, j} entry of the adjacency matrix A € R™*" associated with graph g,

and p is a positive scalar. Refer to Appendix B for more information on these matrices.
T T

Denote x(t) = {561 To ... xN} and v(t) = [vl vy ... UN} , then the-closed

loop dynamics can be written as,

(t x 0 I

() =T , where I' = N

0(t) v —L —uL
The above system reaches average consensus for an appropriate choice of gain p and a
connected graph G, as shown in [52, Lemma 4.1].

Now we are ready to design the event-triggered scheme for the proposed problem.
The broad gist of an event-triggered scheme is to sample the states (z;(t),v;(t)) as
(2i(t},), vi(t},)) where the sampled states are constant between the event times [}, ], ).
That is, a zero-order-hold (ZOH) is applied in between the event times. The difference

between the last sampled states and the current states of agent i are captured by the

following error definitions,

(3.3)



Agent 7 broadcasts its latest states to its neighbors and updates its controller at event
times {t§,#},t5,...}. For notational convenience, we use the notation (#;,?;) for the
sampled states (z;(t1),v;(t1)), and (x; (ti,), vj(ti,)) can be equivalently represented as
(j,0;). These event times are determined by the violation of an event triggered con-
dition,

fi(ei(t), 62)(15), mi(ti:)v Ul(tﬁc)) >0,

for some function f;(-). Such an event triggered condition, along with driving the
actuation and communication between agents must also ensure the stability and thereby
convergence of the states of agents to a desired goal. This notion is incorporated in the
design of the said condition by using the Lyapunov stability approach to guarantee the
trajectories of the agents are bounded and convergent.

In this direction, we would like to consider an event triggered strategy for imple-

menting the second-order consensus control law in (3.2).

Problem 3.1 (Consensus Control) Consider a multi-agent system where the agents’
dynamics is described by (3.1). Construct, for each agent i € V), a state-dependent event
triggered condition f; (el (t), el (t), zi(th), vi(th)) > 0, and a distributed control such that

the systems achieves,

i) average consensus where the communication and control updates are event-driven,

ii) zero velocity consensus where the communication between agents is event-driven.

The difficulty here lies in the fact that we aim to design a single event-triggering
condition to solve both the problems i.e., we design a single event-triggering condition
with different bounds on its parameters to solve two problems: average consensus
and zero-velocity consensus. In the former problem, we design an ETC to drive the
communication and control updates of the agents and in the latter part, first we design
a continuous time controller to solve the zero-velocity consensus problem and then use
the ETC from average consensus problem to drive the communication between agents.
In the next section we outline the process of obtaining the ETC and present the main

results of this chapter.

3.2 Event-triggered Design

In this section, we solve the second order multi-agent system consensus problem with
the presentation of an event triggered condition (ETC). The general notion of event
based sampling is to define a function that guarantees the error function of a system
to always be less than some pre-specified threshold. Such functions generally take the

form below,
f(€7 6) = g(e) - h(é)a §= [i‘| )€ = [ex‘| > (34)
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where g(e) is some function of the error and h(§) is a threshold that in our case is
dependent on the states of the system. The proposed scheme closes the loop every time
the error function crosses the pre-specified threshold, i.e., when f(z,e) = 0 as defined
in (3.4).

The ETC we propose is defined as follows,

(o7

d;

Fileh(8), eb (1), 2(0), 0:(t)) = ((eb)? + p(eh)?) + (S (—p + dics + pdicv)?), (3.5)
where e and e! are sampling errors defined in (3.3), d; is the number of neighbors
of agent i, o; and o are positive constants, and 7; is the {i} element of the vector
n(t) = Lo(t). We now use the ETC in (3.5) to achieve average consensus and zero-

velocity consensus as defined in Section 3.1.

3.2.1 Event Triggered Control for Average Consensus

To minimize the controller updates, the controller in (3.2) is modified as,
ui(t) = = ag[(zi(ty) — z;(t])) + ulvilti) — v;(t))]; (3.6)
j=1

for t € [t},t;,,) and K'(t) = arg ming g, 1t — t‘Z} denotes the last event instant of
=T

agent j. The closed-loop dynamics of agent i are,
Bi(t) = =Y agl(xi(th) — 2;(t)) + mlvi(ty) — v (#))]-
j=1

The sequence {t}g} ren are the time instants when agent ¢ samples its states, while agent
j samples its states at {¢],}ren. This is an asynchronous condition, i.e., agent i can
sample its states without receiving/requesting its neighbors to sample their states, and
continues to evolve with the last received information from its neighbors. However,
agent ¢ will update its controller as soon as it receives any new information from its
neighbors. The exchange of information for the system (3.1) with controller (3.6) is
shown in Figure 3.1.

In Figure 3.1, the event-triggered condition (ETC) has access to the true state
{z,v;} of the plant and when the ETC condition is violated, the state is sampled and
provided to the controller ({Z;,0;}). These states are available in a sample and hold

fashion until the next updated states arrive.

We now provide a result showing that the trigger condition (3.5) with control law

(3.6) achieves average consensus for the system.

Theorem 3.1. Consider the system in (3.1) with control (3.6), and assume that the

communication graph is connected and undirected. Suppose the event-triggered condition
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Figure 3.1: Agent ¢ with controller (3.6) and event triggered condition (3.5).

is given by

(o)e %

d;

(L) + p(el)? = ———(—p + dic; + pdic;) 77, (3.7)

where €}, and €}, are sampling errors defined in (3.3), Ay = 3 e, (0i—05), and p > 0 Vi.

Then for o > 0,61 > 0 and % < < % and for any initial conditions,

the system (3.1) with control (3.6) achieves average consensus.

Proof. Consider the following candidate Lyapunov function,
A L 7
Viz,v) = 3% Lz + 3V Lv,

where z € R", v € R™ and L is a symmetric positive semi-definite Laplacian matrix
corresponding to the graph G as defined in Appendix B. Then the time derivative of

V(z,v) can be expressed as,

V(z,v) = 2T L% + v Lo,
= 2T %% 4+ v L(— L& — pLo).

Making use of the error definitions in (3.3), £ = e, + = and 0 = e, + v, along with the
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notation n = Lv, we arrive at,

V(z,v) = 2T L% — v L% — uoT L%,
=27 L% — v L2(ey + ) — o' L (e, + v),
=27 % — UTL2€x — oLy — ,thL2ev — UTL21),
TL2

= —v v — UTL2€x — ;wTLQeU,

= —unTn —nTLe, + pe,),
=3 S el —ed) a3 S el — el)
i JEN; i jed;

= —un n—Zdn,e —|—ZZn,e’— Zdnze —i—,uZane]

i jEN; i jEN;

Using Young’s inequality [54], which states that for a given z,y € R and for any € € R+,

2
lzy| < 5+ g we can bound V as,

. dicin? d;(el)? d;aumn (e2)?
VS_“Z"’ZJr(Z 2 T2 o, )+(Z ZZ 20,

) ) i jeN;

‘051'712 iei 2 1O TY
oSG ) e n( S 5 )

(2

o)

—Z —p+ dijoy + pdiag)n? +Z ( 2+ (el ))

Now we will upper bound the error function, %(( 2%+ ple z)2> by another non-
negative function (—u+d;o;+pd;a;) 12, such that as long as this error function satisfies
the bound the derivative of the Lyapunov function can be proved to be negative semi-
definite. This condition need not always arise from strictly enforcing the derivative
to be negative semi-definite rather can be chosen conveniently as long as the stability
proof stands. This idea is explored in [55]. The condition now reads,

oo, o0y , 2

(eh)? + p(e,)® < —#(—M + dio; + pdijcy) 7 = — o it (3.8)

A

where 8; = —pu + d;a; + pd;o; and e, = 7; — n;, arriving at,

V<Z/an _Zaﬁzn —Zﬁz n; enl Zaﬁiﬁ?)
—Zﬁz 1_0 TL +Z/81 22617%67“7
2
S ITEOIES SIS ol G )

2
=3 (A1 - o)+ )iz + 5+ Dred (39)

26



is negative semi-definite V {z,v} given ¢ > 0, ¢ > 0 and (¢ — 1)1 < 2f; < —€1
which translates to bounds on «; as %7_/;2? < oy < %. With the above
Lyapunov function, we now can define the compact set 2 = {(z,v) |V (z,v) < ¢} and
let S = {(z,v) € QV(z,v) = 0}. Note that V = 0 in (3.9) is possible only when
n; = 0 and e,;, = 0 = n; = n; meaning that the velocities are in agreement (i.e.,
v € span{1l}). We now show that S cannot contain any trajectories where Lz # 0.
To prove this by contradiction, let there be an agent k € A; such that x; > z; which

ensures Lz # 0. Then
n n
’L')i = — Za”[(i‘z — :ﬁj) + ,u(@i — @J)] = — Z aij(i‘i — i’j) > —aik(:ﬁi — i‘k) > 0,
Jj=1 j=1

due to our assumption that x; > x;, which is a contradiction because any trajec-
tory in S must have v; = 0. Therefore, S must be of the form S = {(z,v) €
QN (span{1},span{1})}. Invoking LaSalle’s invariance principle [41], we conclude

that all trajectories starting in {2 must converge to S as t — oc. |

When the error grows and the condition in (3.8) is violated, an event is triggered,
i.e., when,
(067

T (—p e+ dioi + pud;oe) ;.

(eh)? + pael)? = -

At this instant, z;(t) = z;(t}) and v;(t) = v;(t}) thus resetting the error function
to 0. This process of error function evolving from 0 to a positive value continues
until consensus is achieved. Notice that even though the vector n(t) is a function

il

of continuous time ’t’, the neighbors provide agent ¢ only with the sampled states
{xj(t{),vj(t{)}leN and we can either set the ETC to receive z;(t) or z;(ti) without

undermining the results. This is explored in the sequel.

We now take a moment to talk about the error dynamics as defined in (3.7). In

vector form we can re-write (3.7) as,

E, + pE, = B diag(n7, a3, ..., i),

T T
where F, = [(e1)? ... (eX)2], By =[(e})? ... (e))?] ,and B =diag(y,...,Bn)
with 3; = —‘Tdof (—p+dia; 4+ pd;a;). Then when consensus is achieved, v = ¢l with ¢ be-

ing a constant hence n; = 0 fori € V. We obtain E,+uFE, = 8 diag(h3,73,...,7%) = 0.

As the error function is always non-negative, we have E, + uFE, = 0. Concluding that

when consensus is achieved the error function goes to 0.

Reducing the communication load in a network comes at a cost of a slower conver-

gence rate. To prove this, define the convergence rate of V' (z,v) as [56],

p = %inf{ — V(z,v) :(z,v) € S}.



Let pe be the convergence rate with event-based sampling and p,, without event-based

sampling and our goal is to show pe < p,. Then,

S (= Bi(1 — o) — )2

1.
pe=in { LT L% ¢ Lol Lo (z,v) € S/0}, (3.10)
and,
L. pvl Lo
Pw = 5 lnf { %xTL2ZU + %UTLU’ (x,’l}) € S/O}v (311)

and from the conclusion of Theorem 3.1 we infer that 0 < >°,(1—0)(u—dia; — pd;og) —
2
25 (1= 0)(pu—dio; — pd;cv;) and it can be shown that 3, n? = v? L?v. Therefore,

€1

pe < (1 —0)py implying pe < pu.

3.2.2 Event Triggered Control for Zero Velocity Consensus

To achieve zero velocity consensus, we propose a modification to the controller proposed
in (3.6). In this case, we provide both the ETC and the controller access to continuous
time self-states {x;(t), v;(t)}, which renders the controller to be continuous as opposed
to that presented in Section 3.2.1 which is piecewise continuous. This can be noticed
in Figure 3.2, which in contrast to Figure 3.1 provides continuous self-states to the

controller. The control law is now defined as,
wit) = =3 agl(@i(t) — @j(t)) + pvit) — vi(6))); (3.12)
j=1

where {z; (ti,), vj (ti,)} are the last received states from the neighboring agent j and

the closed-loop dynamics are,
n . .
Fi(t) = = Y agjl(wi(t) — 25(t,)) + poit) — v; (). (3.13)
j=1
The control in (3.12) can be represented in vector form as,

u(t) = —(AG)a(t) = AG)a(th)) — n(AG)v(t) — AG)v(H.)),

where A(G) and A(G) are the degree and adjacency matrices of the graph G defined in
Appendix B. The following theorem shows that ETC (3.7) indeed achieves consensus
for the system (3.13).

Theorem 3.2. Consider the system in (3.1) with control (3.12), and assume that the
communication graph is connected and undirected. Suppose the eveni-triggered condition
is given by (3.7), then for e > 0, ; > %;2%) and y; < —e€3/2 and for any initial
conditions, the system achieves consensus.
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Figure 3.2: Agent i with controller (3.12) and event triggered condition (3.5).

Proof. Consider the following candidate Lyapunov function,

1 1
Viz,v) = §:ETL2."L‘ + §UTLU,

where L is a symmetric positive semi-definite Laplacian matrix corresponding to the

graph G. Then we have,
V(z,v) = 2T L% + o7 Lo,
= 2T L0 + 0T L[ (Az — A%) — p(Av — AD)],
= — T L2v + v LAe, + pv’ L Ae,,

—n e S S >

i JjEN; i JEN;

Using Young’s inequality to bound the above equation and using the condition (3.7),

we arrive at,
. d;a; d;
V(:E,U)SZ(—,U/—F#;X < ) Z ﬁz Z’V@ Z ,81

- ZZ:%(m — enl Z Bz (% 0251' . 4% )ﬁ + (%- + %)eii

2€9

> M and Yi < —62/2. We have

oeg
V =0 if and only if n; = 0 which is possible only when the velocities are in agreement

which is negative semi-definite for es > 0, j;

(i.e., v € span{l}), hence using LaSalle’s invariance principle [41] and the similar

arguments posed at the end of Theorem 3.1, we can conclude that consensus is achieved
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ie., |z; —2;| = 0 and |v; —v;| = 0 as t = oo. [

Using the preceding theorem, we would like to determine that the consensus achieved

is indeed zero-velocity consensus. In this direction, consider the control in (3.12) and

denote,
& =lwiv]" and & =[# a)],
leading to
§=C&—BK > a;j(&— &) — BF Y a;;(& — &), (3.14)
J€Ed; JE€d;
0 1 0 .
where C = [O O]’ B = L], K = [0 M} and F = [1 O] Then in state space form,

the system can be represented as,

£(t) = Zg £(1) + g £(1), (3.15)

where
E¢=INn®C—-AQ®B(K+F),0¢g=Ax B(K+F).

Lemma 3.3. The matrix Zg is Hurwitz and exp(Zgt) — 0 as t — oo.

Proof. Denoting the eigenvalues of Zg as A\; < Ay < -+ < Aoy and expressing the

matrix Zg as,

Eg = Iy ® C — diag{d;,ds,...,dy} ® (BK + BF)
= diag{C — diBK — d\BF,C — dyBK — dsBF,...,C — dyBK — dyBF}.

The above matrix =g is a block diagonal matrix and we can study its individual blocks

to gain more perspective on its spectral properties. In particular,

0 1
det(C — d;BK — d; BF) = det —d; 40,
—d; —pd;

which shows that rank(C' — d;BK — d; BF') = 2. It follows that,

N
rank(Zg) = > rank(C — d;BK — d; BF) = 2N,
i=1
hence the matrix =g is full rank and consists of only non-zero eigenvalues. The char-
acteristic equation corresponding to the matrix (C' — d;BK — d;BF) fori=1,...,N
is,
—5 1

2
= 5"+ dz‘8+di,
4 ds s (nd;)

-
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and the roots of the above polynomial are,

—,U,di + \/uzd? - 4dl

S = s

2

Vu,d; > 0, the matrices C — d;BK — C;BF for i = 1,2,..., N are Hurwitz stable,
implying the matrix =g is Hurwitz. Since Zg is Hurwitz, exp(Egt) - 0ast —oco. W

Theorem 3.3. Consider a connected and undirected graph G, then under the event

triggered condition (3.7) control in (3.12) achieves zero velocity consensus.

Proof. From Theorem 3.2 we know that the system achieves consensus i.e., z;(t) —
x;j(t) and v;(t) = v;(t). Now to prove that this is a zero-velocity consensus, consider

the general solution to the state space equation in (3.15) as,
t A
€(t) = exp(Egt)<(0) +exp(Egt) | exp(~Zgm)Ogé(r)ar
N t
= exp(Eg1)¢(0) + exp(Egt) ( — exp(~Eg7)E5"OgE(r)]|
t X
- | exp(~2g7)(—=0) 0t (r)ar)
= exp(Egt)€(0) — Eg'OgE(1) + exp(Egt) =g O6€(0)
t X
+ exp(Egt) /O exp(—EgT)25' Ogé (r)dr.

For a very large t, since Z¢g is Hurwitz, exp(Zgt) — 0 as t — 0o and since consensus is

achieved, & — 0 and the above equation reduces to,

A

lim £(t) = lim —E5'0g¢(1). (3.16)

t—o00

The matrix =g is a block diagonal matrix with blocks

0 1
—d;  —pd;

as shown in Lemma 3.3. We see that it’s inverse is also a block diagonal matrix with

blocks
- —1/d;
1 0 |

0 0
The matrix ©g¢ is also composed of blocks with components [ ] and the product
X X

I

X X
of 25 !and ©¢ will be matrices with blocks of lo 0]. Hence, we see that all the

even numbered rows of (3.16) which correspond to the velocities of the agents are 0 as

t — oo. Therefore lim;_,o, v;(t) = 0 and it follows that lim;_,~ z;(t) = constant. [ |
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Figure 3.3: Communication graph G of the multi-agent system.

The conclusion about convergence rate for zero-velocity consensus problem is in lines
with that presented at the end of Section 3.2.1 and we conclude that convergence with

event-triggered control is slower than without it.

3.3 Simulation results

In this section, we illustrate the theoretical results through simulations for a network

of 4 agents with communication graph G and Laplacian matrix

3 -1 -1 -1
-1 2 0 -1

L= :
1 0 2 -1

-1 -1 -1 3

as seen in Figure 3.3. The constants chosen are =2, a; = ag = ag = a4 = 0.1 and
o = 0.9. If ¢ is chosen closer to 1 will result in fewer triggers but slower convergence

and o value closer to 0 will result in higher number of triggers with faster convergence.

3.3.1 Average consensus

Figure 3.4 simulates the average consensus case for 4 agents communicating over a
network shown in Figure 3.3. The results in Figure 3.4 are consistent with Theorem 1
as all the agents asymptotically reach position consensus with constant final velocity.
Since the control law is piecewise continuous, this event based scheme makes use of
lesser computing power compared to traditional periodic sampling. The evolution of
error and trigger functions for agent 1 is shown in Figure 3.5a. As discussed earlier,
the error function increases from 0 in the positive direction until equality is attained
in (3.8) and subsequently the error function is reset to zero and this process repeats
until consensus is achieved. The threshold function, as indicated in Figure 3.5a is re-
evaluated any time new information is received from the neighbors. Figure 3.5b shows
the evolution of the Lyapunov function as defined in Theorem 3.1 and we note that

V(x,v) — 0 as consensus is achieved.
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Figure 3.4: Average consensus results showing position and velocity convergence along
with instants when an event is triggered.

3.3.2 Zero velocity consensus

The simulation results for agents with closed-loop dynamics (3.13) are shown in Figure
3.6a where we conclude that velocities of all agents converges to zero and positions
converge to a constant value consistent with the results of Theorem 3.3. The continuous
time controller inputs to individual agents as defined in equation (3.12) is shown in

Figure 3.6b and u; — 0 as the states converge.
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Figure 3.5: Results pertaining to the average consensus problem.
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Figure 3.6: Results pertaining to zero-velocity consensus problem.
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Chapter 4

Event-triggered Formation
Control

This chapter studies event-triggered bearing-based formation control problems for agents
with double-integrator dynamics. Our goal is to derive event-triggered conditions which
drive the control and/or sensing updates of the agents. In this chapter we start by pre-
senting a novel controller that solves the bearing-based formation problem. Then we
design event-update schemes to solve the bearing-only and bearing-based formation

problems.

4.1 Bearing-only Formation Control

In formation control problems, the aim is to drive an ensemble of agents to a desired
geometric pattern determined by constraints on their states. These constraints can
be specified using relative states between the agents, as is the case in bearing-based
formation control. Here, the constraints are defined in the form of inter-agent bearings
and the formation is achieved when the measured bearing vector g;;, expressed in a
global coordinate frame, arrives at a desired bearing vector gz*j Bearing only formation
control, studied excessively here, defines the desired geometric pattern using bearing
measurements. Bearings are d-dimensional vector quantities with unit magnitude that
defines the orientation of two connected agents in a global coordinate frame. For more
information we refer the reader to Appendix D where we present an introduction to
bearing-only formation control and some results from [14].
In this work, we consider multi-agent systems having double integrator dynamics
described as,
pi(t) = vi(t), vi(t) =ui(t) i=1,...,n, (4.1)

where p;(t) € RY, v;(t) € R? and u;(t) € R? are position, velocity and control inputs of
agent i, respectively. While working with double integrator models, it is not sufficient

to only sense the relative bearing vectors, as we also need some information on the
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relative velocities of the agents. This information, in some part, is provided by sensing
the rate of bearings { gij}(m) ce. Although the velocities of agents need not synchronize,
the rate of bearings do i.e., {gi;}jen; — 0 as t — co. Consider the bearing-only control
law presented in [14] for the system defined in (4.1) as,

wi(t) = kp Y (9i5(t) = gi5) + ko D Gis (1), (4.2)

JEN; JEN;

where &, and k, are positive position and velocity gains respectively, {gi;}( j)ee are
the relative bearings and {gij}(iyj)eg are the rate of bearings. The closed-loop system
is,

i(t) = —kpH(g(t) — g*) — ke Hi(2). (4.3)

As seen in [14], the system in (4.3) has an equilibrium when g;;(t) = g5;, §i;(t) = 0 and
vi(t) = const i € V, i.e., the final formation moves at a constant velocity.
However, since the focus of the latter half of this paper is to find an ETC for a

stationary final formation, we propose the modified control law,

ui(t) = kp Y (9i(t) — g5) + ko Y Gij(t) — kpvi(t), (4.4)

JEN; JEN;

where v; € R? is the velocity of agent 4. In matrix form, the control law (4.4) is,

u(t) = —kyH(g(t) = g*) — ko Hg(t) — kou(t). (4.5)

Before we provide the stability and convergence proof of the proposed controller (4.5),

we present an assumption following our discussion in Section D.1 and introduce a lemma
from [14]:

Assumption 4.1. Assume the target formation specified by the bearings {gfj}(i,j)es

is unique.

Lemma 4.1. Suppose none of the agents coincide, i.e., p; # p; ¥V i,j € V, then
pT H(g(t) — ¢g*) > 0 and equality exists if and only if g(t) = g*.

Theorem 4.1. Consider the dynamics in (4.1) under the action of control law (4.4).
Under Assumption 4.1, g(t) — g* and v;(t) = 0 ast — oo fori=1,--- ,n, from any

initial conditions, i.e., the system is globally asymptotically stable.

Proof. Define V : R?" — R, a continuously differentiable candidate Lyapunov function
as,

_ 1
V(p,v) = kpp" H(g = g") + 50" v,

Using Lemma 4.1 and the norm property v’v > 0V v € R™ — {0,4x1}, we note that
V (p,v) is positive definite and radially unbounded since V' (p,v) — oo as || {pT UT} | —
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oo. It’s time derivative is,
V(p,0) = kylg — ) B0+ kyp" Hg + 70, (4.6)

and from the definition of the orthogonal projection matrix presented in Appendix D.1,

we also have e’ = 0, giving us,
V(p,v) = ky(g — ¢") H" v+ 0"0,

= ky(g —g") " H v+ 0" (=kpyH (g — g*) — ko Hg — kyv),
=~k Hg — kT,

_ P, \ -
= —k;vuTHdiag( HegZJH )HTU — k‘vaU
ij

kol (ﬁdiag( H]:i;jll )HT + I)v <0, (4.7)

where the last inequality is due to diag(%) being positive-semi definite and hence
ij
(f[ diag(ﬁgf?”)ﬁ Tyr ) is positive definite. With the above Lyapunov function, we
ij
define a compact set , = {(p,v) € RV (p,v) < c} and let S = {(p,v) € |V = 0}.
From (4.7) we note that V = 0 if and only if v(t) = 0 which implies the formation is
stationary and hence ¢(t) = 0. Additionally, v(¢) = 0 = o(¢t) = 0 and from (4.5) we

obtain —k,H(g(t) — g*) = 0. Left multiplying this expression by p”, we arrive at the

result of Lemma 4.1 which is true if and only if g(t) = ¢g*. The proof is complete by

invoking Lyapunov’s stability theorem. |

4.2 Problem Statement

The control laws (4.2) and (4.4) are continuous time controllers. To design an event
triggered scheme we need to define discontinuous states that exist only during the event
times. These states are denoted by {g;;(t¥), 3;;(t¥)} where t¥ is the time when an event
is triggered for agent i. The problem we study is when to use these discontinuous states
and solve the bearing-based formation control problem, i.e., a problem where the final
formation is specified by bearings between agents. We divide this problem into two
sub-problems. In the first sub-problem we achieve bearing-based stabilization where
the final formation is stationary and in the second sub-problem, we achieve bearing-
based stabilization using only relative states where the final formation moves with a

constant velocity. Formally, these two problems can be posed as follows:

Problem 4.1 Design an event-triggered condition for each agent ¢ € V, that drives
both the sensing and the control updates using the measured self states {p;, v;} and the
bearing states {g;;, §;;} such that v; = 0V i €V, gij = g5, gij — 0 for all (4,5) € € as
t — oo.
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Problem 4.2 Design an event-triggered condition using continuously sensed rela-
tive measurements between agents i,j € V that drives the control updates using the
measured bearing states {g;;, §i;} and the measured relative velocities {é;;} such that

9ij — gi; and g;; — 0 for all (i,7) € £ as t — oo.

In Problem 4.2, we make use of the double-integrator control law (4.2) to arrive at an
ETC that is dependent on the relative measurements between agents and we term such
a problem as edge triggering. In Problem 4.1, along with the relative measurements,
we use agents self states (p;,v;) in the double-integrator control law (4.4) to arrive at
an ETC which is node dependent and will drive the agents to a stationary formation.

We term this problem as node triggering.

4.3 Node Triggering

In this section, we design ETC for the node triggering case. As seen in Figure 4.1, the
ETC is designed over each node and every agent has access to bearing measurements
and its self states which is fed into the ETC. When this ETC is violated, the agent
acquires new state measurements from its sensors, updates its controller and sets the

error function to zero.

Figure 4.1: Illustration of node triggering ETC from the perspective of agent i.

4.3.1 Event-triggered Design

In node triggering, the sensing is discontinuous and driven by the ETC which is defined
over the collective information acquired from all the neighbors of agent 7. Here, the
trigger response is not only to update the controller but also to drive the sensing of the
neighboring states. The control law (4.4) is different from the one proposed in (4.2) as
it uses self velocity of the agents to achieve a stationary final formation.

The error dynamics in this case are defined with respect to the position and velocity
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of the agents and are as follows,
(1) £ Pi(t]) —pit) & 1o () £ 0i(87) — wilt), (4.8)

where t € [tF,t¥T1). The continuous controller in (4.4) is modified to the piecewise

continuous controller,

wi(th) = kp > (G(tF) — g55) + ko D7 Gij (tF) — kot (1), (4.9)
JjEN; JjEN;

and the resulting closed-loop dynamics are,

t)=kp Z (gij(ti gm + ky Z gij (7)) — K vl(tk) (4.10)
JEN; JEN;

The following theorem provides an ETC and presents convergence analysis for the

system in (4.10):

Theorem 4.2. Consider the system in (4.1) with control law (4.10), assume the com-
munication graph is undirected and connected, and that Assumption 4.1 holds. Suppose
the ETC is given by,

7o 1? = (2), (4.11)
where
2¢ 9 9
(1) = = (onllull” - u > (i — )P~ u > alP),  (412)
v JEN; JEN;

T, is the sensing error in velocity as defined in (4.8), € > 0, and k = k,(1 —€) — %
Then for o € (0,1), and for any initial conditions, the above ETC decides when to
generate the control input uz(tk) and when to measure the self- and bearing-states such
that 0;(tF) — 0, Qij(tz-) — g5, and gw( k) — 0, where g5 is the final bearing requirement
to achieve the desired formation. Furthermore, the inter-event times (tf'H th) are

lower bounded by a A given by,

_ (1)
A = (1/a)log (1 + W) , (4.13)

where o > 0.

Proof. Define V : R?" — R as V(p;,v;) = >.i-q svlv;. The function is a continu-
ously differentiable function on the set Q. = {(p,v) € R>"¥|V(p,v) < const.} which is

39



positively invariant to (4.1). Its time derivative is,

V(p,v) Zv U; = ZU ( Z Gij —gi*j) + ky Z .&z] —k‘v@z‘)
=1

JEN; JEN;
n
= va<kp Z (gz] - g;) + ky Z .&zy - kv(vi + T’Ui))'
i=1 JEN; JEN;

Using the error definitions of (4.8) and Young’s inequality for inner products defined

in Appendix A,we bound the above equation as,

' - eloill® | 11 Zen @i — 9511
V(p,v)SZ[kp( 2’ + J > ij )+
i=1
elloill® | I jen il 2 elloill® | lIrvl?
k(S + T ) — kil ke (T )]
Restricting ||7,,||? above to,
7o, < (8), (4.14)

with 9 (t) given in (4.12), results in,
n
Z o — 1)rk,|jvi||?,

which is negative semi-definite for o € (0,1) and k = k(1 —¢€) — k” € > 0. Invoking the
invariance principle, [41], define Sy = {(p,v) € R*™|V = 0}. Then V =0 implies v; =
0, which implies é;; = 0 and g;; = 0. From (4.10) we arrive at k, >=;cn;, (Gij — 955) = 0.
This is satisfied only when g;; = g;; which follows from Lemma 4.1.

The next event time for system (4.10) is,
=t pint {t ] ]2 = (1)},

and the above sequence of triggering instants {tf 122, is practically feasible only if we
can find a lower bound between two successive triggering instants. The inter-event time
A = tF*1 ¥ i the time taken for the error term ||y, || to rise from 0 to the threshold
present in (4.11) as discussed in [57]. For t € [tF, tF11),

177

d .
g = 2 (00) < (allru® + (/) [uil?),

where we used the Young’s inequality for inner products. Denoting y = ||rvz.||2, we
obtain § < ay + (1/a)||lu;||* and y satisfies y(t) < ¢(t) where ¢(t) is the solution of
¢ — ap = (1/a)]||ug]|?. The solution to this equation is,

o(t) = (1/a®)||uil*(exp(a(t — ) — 1),
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Figure 4.2: Communication graph for the example.

where ¢t € [tF, ¢} ;). Now using the equality (4.11), we arrive at the following bound for

t—tF > (1/a)log <1+O‘2w(t)>’

inter-event times,

i (2112
where 1(t) is given in (4.12).

Remark. While providing a lower bound on the inter-event times does not exclude
Zeno behavior, we note that in numerous simulations we do not observe this phe-

nomenon.

4.3.2 Simulation Results

The simulation results of Section 4.3.1 are presented here. We demonstrate the effec-
tiveness of the theoretical results presented in Section 4.3 by simulating an example for

a network of 6 agents with communication topology as shown in Figure 4.2.

In node triggering, the agents in Figure 4.2 are simulated with position and velocity
gains k, = 8 and k, = 4 respectively. The initial conditions are random and the event

variable ¢ is specified as 0.5.

In Figure 4.3a we observe that the desired formation is achieved with a convergence
time of t; = 32.28s, a final bearing error of 0.07 and the final formation is stationary as
concluded from the discussions in Theorem 4.2. It needs to be pointed that along with
control updates, the sensing is also event driven here. Figure 4.3b shows the instances
when an event is triggered using the ETC (4.14). Here, every marker represents an
instance when an agent updates its controller and acquires new bearing-state measure-
ments. The evolution of bearing error, defined as >>(; j)c¢ [19i; — 9751/ is shown in Figure
4.3c and the lower bound for the inter-event time calculated for agent 2 using (4.13)
and the actual inter-event time is shown in Figure 4.3d. Here we confirm the findings

that the actual inter-event time is indeed lower bounded by A presented in (4.13).
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Figure 4.3: Results pertaining to the node-triggering case

4.4 Edge Triggering

In Section 4.3.1 we designed conditions when trigger conditions are evaluated on the
states of each agent. In this section, the event-triggered conditions are dependent on
the information from each edge - that is relative state information and measurements
between neighboring agents. This can be well understood by observing Figure 4.4. In
traditional event-triggered schemes, agent ¢ monitors the states of all its neighbors and
uses this aggregated information to evaluate an ETC. However, in edge triggering, we
define the error dynamics on the relative bearings and rate of bearings. This means
that execution of a trigger response is no longer dependent on the states of all the
neighbors but on each edge. Edge (i,j) € £ has its trigger condition evaluated by
agent ¢ and agent j and if violated, the bearings and rate of bearings of that particular
edge is updated and a new control input is generated. Assuming perfect information,
agent ¢ and agent j trigger events at the same time. To summarize, ETC drives control
updates in edge triggering and ETC drives both sensing and control updates in node

triggering. The total number of event-triggered conditions to be evaluated here is 2|&|
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whereas node triggering network evaluates |V| = n conditions.

m -
~a

-

Figure 4.4: Illustration of edge triggering ETC from the perspective of agent .

4.4.1 Event-triggered Design

The aim of designing an ETC is to derive a threshold function which dictates how
far the error function can be allowed to rise before requiring an update, i.e., how far
the states of the system can evolve without updating the controller. These updates
occur at event times denoted by t}, t?, ..., and the control input between events is held
constant in a zero-order hold fashion. The bearing states that exist at event times are
denoted by {gij, gi;} and are constant between the interval [t¥,t¥*1). To check how far
the bearing states have evolved in this interval, we define time-dependent error terms

7¢:;(t) and 74, (t). Using this information, the relative errors are as follows,
ra (t) 2 8i5 (1) — gij () & g, (t) 2 §i; (tF) — 43 (1), (4.15)

where t € [tf, tf“). Using the above notations, we can modify the continuous controller

(4.2) to a piecewise continuous controller by replacing the states {g;;, 4;; } with {gi;, gi; }

and the resulting closed-loop dynamics are,

bi(tF) =ky > (G5 (t5) = gi5) + ko Y i (£5). (4.16)
JEN; JEN;

The following result provides convergence analysis for the system (4.16):

Theorem 4.3. Consider the system in (4.1) with control law (4.16) and assume the
communication graph is undirected and that Assumption 4.1 holds. Suppose the event-

triggered condition is given by,
kplléijlllIrg,; 1l + kolléslllirg,; || = okuléis, gis), (4.17)
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where o € (0,1) is a design parameter, é;; is the relative velocity, rg,. is the sensing
error in {gij}jen, and 1y, is the sensing error in {gi;}jen; as defined in (4.15). Then
for any initial conditions, the ETC in (4.17) decides when to generate the control update
u;(t¥) such that g;;(t) — 0 and g;;(t) — g7j, where g is the final bearing requirement

to achieve the desired formation.

Remark. The ETC in (4.17) makes use of the relative bearing states {g;;, ¢i;} and the

relative velocities {é;;}.

Proof. Define V : R?™ — R, a continuously differentiable function on the set € =
{(p,v) € R?™|V(p,v) < const.} which is positively invariant to (4.1) as V(p,v) =

kpe® (g — g*) + 3v7v. whose time derivative is,

Vi(p,v) = kylg — g")TH v+ "0,

k(g — 9" H v+ 0" (=kpH(§ — g") — ko HY),
ko9 — 9 )THTv — ko H(§ — g") — koo Hj,
k(g — 9" H'v) — ky(g — g*, H'v) — kyv" Hy,
kp(g—ry — g H ) — kp(§ — g*, H v) — ko' Hg,

—kpv H'rg —kowTHy = —kpéTrg — kvéTrg — kyeTg,

=—kpy D {eijrg,) = koD D (€igray) — ko D (€, dis),
i jEN; i jEN; i jEN;
which follows from the property that e;-l;- gi; = 0 and the error definitions from (4.15).
Using Cauchy-Schwarz inequality |(a, b)| < ||a||||b]|, we bound the above equation as,

Vpi,vi)<kp > leilllrg; |+ koD D> Neillirg | — ko > D (Eijy di)-

i jEN; i jJEN; i jEN;

To ensure the above derivative is negative semi-definite, we will enforce,
kplléijlllIrg,; 1l + Folléslllirg,; || < okuléis, §iz), (4.18)

where we again used the Cauchy-Schwarz inequality and this condition ensures that

the following derivative of the Lyapunov function,

V(pi,vi) < (0= Dky Y Y (€3, Gi)
i jEN;
is negative semi-definite for o € (0,1). Invoking the Invariance principle, [41], define
S1 = {(p,v) € R?™|V = 0} where V = 0 implies ¢;; and g;; are orthogonal to each
other. As introduced in Appendix D, g;; and g;; are orthogonal to each other too (i.e.,
gZTj gi; = 0), then there exists a scalar v, such that é;; = vg;;. Now from the definition
of g;j, given by ¢;; = ’|Y|f T9ij» is 0 since P, is the orthogonal projection of g;; i.e.,

Fyi;9i = 0.
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Therefore g;; = 0 and g¢;;(t) is constant. At this point if g;; = g;j then the proof is
complete and if g;; # g;; then u(tF) in (4.16) evolves until g;; = g5 [ |

4.4.2 Simulation Results

The simulation results of Section 4.4 are presented here. We demonstrate the effective-
ness of the theoretical results presented in Section 4.3 by simulating an example for a
network of 6 agents with communication topology as shown in Figure 4.2. For the sys-
tem with dynamics (4.1) with control law (4.16) and under the action of ETC (4.18), as
noticed in Figure 4.5a all 6 agents achieve the desired formation and continue moving
and scaling with a constant final velocity. The snapshots of agents at ¢ = 20s,40s and
t = 60s are also shown in Figure 4.5a. As discussed in Assumption 4.1, the framework

is infinitesimal bearing rigid and the only trivial motion observed here is scaling.
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(a) Formation trajectory for the control law
(4.16) and event condition (4.18).
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(b) Event triggering instances for agents
shown in Figure 4.2.

Control Input for Agent 1
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(d) Control input for agent 1 defined in

(4.16).

Figure 4.5: Results pertaining to the edge-triggering case

Figure 4.5b shows the instances when an event is triggered over a particular edge
and every marker over an edge (i, j) € £ indicates a control update for agent ¢ and agent
j. The evolution of bearing error as seen in Figure 4.5¢ is smooth unlike the bearing

error in Figure 4.3c. This is because the sensing is continuous in edge triggering unlike
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Figure 4.6: Dependence of convergence on o.

the node triggering case. The control command for agent 1 from (4.16) is shown in
Figure 4.5d and as noted earlier, the control and hence actuation is piecewise continuous
thereby providing us better resource efficiency. In Figure 4.6, we see the dependence of
number of triggers and convergence accuracy on the design variable o. As discussed in
Theorem 4.3, we need to restrict o € (0, 1), however from Figure 4.6 we observe that o
can be greater than 1 by slowing the convergence rate, which also says that ETC’s are

quite conservative in most cases.

4.5 Alternative Edge Triggering

As discussed in Chapter 2, event-triggering conditions are not unique. In this section,
we present an alternate edge-triggering condition. To start with, denote the directed
edge (i,7) € E by k€ {1,2,...,|€|}. The edge vectors for kth edge are,

ek = €ij = Pj — Pi, €k = €5 = vj — v;,
and the bearing vectors are,

_ Py
ekl

€k . .
9k = Gij = UW, 9k = Gij

The following theorem presents an event-triggering condition for the edge triggering

case that is different from the one presented in Theorem 4.3,

Theorem 4.4. Consider the system in (4.1) with control law (4.16) and assume the

communication graph is undirected and that Assumption 4.1 holds. Suppose the event-
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triggered condition is given by,
koll€ijll 7 | = okoéiigis + kpéij(9i; — 955) (4.19)

where o € (0,1) is a design parameter, é;; is the relative velocity, rg,, is the sensing
error in {gij}jen, and v, is the sensing error in {gij}jen, as defined in (4.15). Then
for any initial conditions, the ETC in (4.17) decides when to generate the control update
u;(t%) such that g;;(t) — 0 and g;;(t) — g5j, where g¥; is the final bearing requirement

to achieve the desired formation.

Remark. The ETC in (4.19) makes use of the relative bearing states {gi;, §i;} and the

relative velocities {é;;}.

Proof. Define V : R?"¢ — R, a continuously differentiable function on the set Q =
{(p,v) € R?|V(p,v) < const.} which is positively invariant to (4.1) as

V(p,’U) = Z egelm
ke&

whose time derivative is,
Vip,v)=> éte,=ele= (" H)(H" V),
= v HH (~kpH (9 — g*) — ko1 g),
= —kp(vTHﬁT)ET(A —g") = k,(wTHHT)HJ,
where HHT = L = L ® I; where L is the Laplacian matrix. The vector vT L is then

> jen; (Vj — i) = 3 ien;, éij for i € V. Using these we expand the expression for V(p,v)

as follows,

> ken: (91 — gik)

: > kens (G2k — 951,)
_ T T T S 2k
V(p,v) =~k [EjeAﬁ €1 2jeN» €2 -+ DojeN, enj} ’

> ke, (Gnk — 9nk)

ZkENI g1k
Zke/\/ §2k
.T .T . T 2
— ky [Zje/\/’l €1 DjeN, €25 -+ DN, enj} . )
_Zk‘ENn Ink
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which can be summed as follows,

V(p,v) =—k Z Z Z ez] Gik — gzk — ko Z Z Z ez] gzk

i JEN; kEN; i jEN; keEN;
=—kp > D> > Ci(Gik—gi) — ko> D Y €ii(Gik +Tg,)
i JEN; keEN; i JEN; kEN;
= <k D0 N G — ) — ke D D G =k D D it
i JEN; keN; i JEN; kEN; i JEN; kEN;
S—kpy Y > i@ —gh) ke Y D> bty > > lélliral,
i JEN; KEN; i JEN; kEN; i JEN; keEN;

where we used the Cauchy-Schwarz inequality. Enforcing the following condition,
kolléijllllrg,; || < okvéijgis + kpéij(9ij — g5;),

we arrive at the non-positive function,

V( S 0*1 ZZ Zez]gz]a

i jEN; kEN;

where o € (0,1). The convergence conclusion is similar to that of Theorem 4.3. n

The simulation results for the ETC (4.19) is shown below where we note that ETC
(4.18) uses half the number of triggers used by ETC (4.19). The triggers from the
condition (4.19) come in clusters as the term on the right of the inequality is sign
indefinite. If kyé;59i5 + kpéij(Gi; — gz*J) is negative then continuous triggers occur as
Eolléij]l|7g;; || is non-negative and (4.19) is always satisfied. This situation is avoided in

(4.18) as the term on the right of the inequality is always non-negative.

48



100 -

50

y(m)

-50

-100

-150 -100 -50 0 50 100
(a) Formation trajectory for the control law
(4.16) and event condition (4.19).

12 T T T T T T

721']55 llgij — gfill

Bearing error

(c¢) Evolution of bearing error defined by
> 195 — a5l

(4.6 o] —

(2,5) ++ F A ———

(1,4) -+~ —H— A

(1,3) - + o+ -
g(6,1)-ﬁ—0—H-W++++\ L -+ -+
@ (5,6) (M- m—-—— + i+

(4,5) - - —

(34)

(2,3)  ————

(1,2) UM - + H——

0 2 4 6 8 10 12 14 16 18
time(s)

(b) Event triggering instances for agents
shown in Figure 4.2.

Control Input for Agent 1

(d) Control input for agent 1 defined in

(4.16).

Figure 4.7: Results pertaining to the alternative edge-triggering condition
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Chapter 5
Closing Statement

In this Chpater we conclude the work presented and also discuss few directions for

future research.

5.1 Conclusion

In Chapter 3 we solved the average and zero-velocity consensus problem by propos-
ing a novel event triggered condition among a group of agents with double integrator
dynamics. We highlight that the proposed condition relies only on relative state mea-
surements and reduces the communication load on the system. The proposed event
triggered scheme determined for each agent when to update its own states and when to
broadcast its states when a locally computed error function exceeds a state-dependent
threshold. We made use of a single ETC to solve two problems and lay emphasis on
converting a consensus problem to a rendezvous problem by updating the controller
in continuous time. In the average consensus problem, we used the ETC to direct the
information exchange and the control updates of agents, whereas in the zero-velocity
consensus problem we use the ETC to direct the information exchange between agents.

In Chapter 4, we presented distributed bearing-based event-triggered schemes to
achieve formation stabilization for agents with double-integrator dynamics. We pro-
posed two triggering mechanism that we term node triggering and edge triggering.
When the only information available to agents are relative measurements, these mea-
surements are a function of every edge and it is not possible to decouple them to obtain
agents self-states. This lead to the notion of edge triggering, where we demonstrated
how each edge can have its own ETC and drive the control updates of the agents. In
node triggering, we used additional information in the form of self-velocity of agents to
arrive at an ETC that uses collective information from all its neighbors to render the
final formation stationary and ensures the inter-event times are strictly positive. We
also presented a simulation example to establish the effectiveness of these results and
showed that event-triggered control can substantially decrease the amount of process-

ing power by sensing and updating controller at event times rather than traditional
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time-triggered updates.

5.2 Future Work

This thesis provides a foundation to answer plethora of future questions in the field. To
start with, future work can be devoted to providing non-zeno proofs for the consensus
problem and edge triggering problem. In the node triggering case, as presented in [45],
even marginal disturbances can cause zeno-behavior which will warrant an analysis
with time-delays, disturbances and noises. In the context of performance, one direction
to look at is to find optimal sampling time for the proposed problems and compare
them to the the event-triggered schemes presented. If the performance is not desired,
approaches like dynamic event-triggering, team-triggering can be adopted or controller
redesign can be considered such that certain performance bounds are enforced. The
analysis can be followed in the lines of the one discussed in Part II of [58].

In another direction, experimental verification of the schemes will provide much
needed validation for the implementation of event-triggered algorithms. Various dy-
namical models can be chosen to re-develop the problem in Chapter 3 and Chapter 4.
Additionally, a more general gradient dynamical system analysis can be performed to
cover the presented solutions into an umbrella of event-triggered conditions.

In the context of time-delayed systems, delay margins can be used to upper bound
inter-event times to obtain non-conservative results. In another direction, as presented
in [39] sometimes agents are better off by estimating the states of their neighbors if
the dynamics of the entire system are identical and only request new information when
such estimates deviate quickly. A trade-off study can be conducted to the impact on
convergence rate, communication cost, computation resources required and inter-event
times.

In Chapter 4, agents with limited field of view can be considered which would result
in switching graph topology. In another direction, attacks on the triggering mechanism
can be considered where the attacker controls the ETC switch and the switch can
be kept open until the Lyapunov function gets unbounded thereby destabilizing the
system. We discussed in Chapter 4 about designing ETC conditions over edges, a
future direction can be to design these conditions over subgraphs and when an event is
triggered the agents present in the subgraph share their states and update controllers

which can minimize computation resources.
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Appendix A

Basic Algebraic Notions

The Euclidean norm of x = [z1, 2, . .. ,wn]T on an n-dimensional Euclidean space R" is
given by ||z|l2 = ||z|| = \/m% + 23 +---+22. A matrix M is symmetric if M = M7 i.e.

the matrix is equal to its transpose. A symmetric real nxn matrix M is positive definite
if the scalar 27 Mz is strictly positive and is positive semi-definite if the scalar 27 Mz
is non-negative for x € R™/0. In terms of eigenvalues, M is positive definite if all its
eigenvalues are positive and positive semi-definite if all its eigenvalues are non-negative.
We can analogously define negative definiteness and negative semi-definiteness. The
]T

dot product of two vectors x = [x1,x2,...,2,]7 and y = [y1,2,...,ys]" is given by,

n
(my)=a"y=y"z=> zy:
i=1
Next we present 3 inequalities from [54] that will come handy later on.

Definition A.1 (Young’s inequality with €). For any given z,y € R and for € €
R+, the following inequality holds,

2 2

¢ ey

< 4L
eyl < 50+ 5

The above inequality says, in order to gain tighter control on the second term one must

loosen some control on the first term.

Definition A.2 (Cauchy-Schwarz inequality). This inequality states that for all

vectors  and y of an inner product space it is true that,

(@, )] < (z,2) - (y,9),

where (-, -) represents the inner product which in this work is a real dot product.

Definition A.3 (Triangle inequality). In a normed vector space S, the norm of the

sum of two vectors is at most as large as the sum of the norms of the two vectors,
lz+yl <llzll +llyll ¥V az,yes.
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Appendix B

Graph Theory

This section introduces concepts from graph theory that will be useful in the rest
of the thesis. A graph G is a triplet G = (V, &, A) consisting of a finite vertex set
V ={w,we,...,wy} with N vertices, an edge set £ C V x V and an adjacency matrix
A€ RévoXN. The elements of adjacency matrix a;; = 1 if (w;,w;) € € and a;; = 0

otherwise. The set of neighbors of vertex i is defined as,
M = {j S (wi,wj) € 8}

The degree of a vertex, d; = deg(w;), for an undirected graph is the number of edges
incident to the vertex w; and the degree matrix A is a diagonal matrix where [A}; = d;.
A graph is directed if each edge is assigned an orientation. An edge (w;,w;) € £
is directed from w; to w; if w; is tail of the edge and w; is head of the edge. An
undirected graph is one where every edge is bi-directional, i.e., (w;,w;) € £ implies
that (wj,w;) € €. A graph can also be represented by matrices which falls under the
field of algebraic graph theory [59]. Some of the matrices are defined below.

o Incidence matrix: The incidence matrix of a graph G is the matrix H(G) where,

1, w; € V is head of edge e¢; € £,
[H(G)]ij = (-1, w; €V is tail of edge e; € &,
0, otherwise.

e Laplacian matrix: The Laplacian matrix, L, which is of size N x N is defined
as, L = A — A, and its elements are,
deg(w;) ifi=yjy
[L]ij = -1 if 1 # j and w; is adjacent to w;

0 otherwise.

95



Figure B.1: A directed graph G;
The Laplacian matrix is also related to the incidence matrix as follows,
L=HHT,
where for an undirected graph, L is a symmetric positive-semidefinite matrix. A matrix
is positive-semidefinite if all the eigen-values of the matrix are non-negative. The
eigenvalues of the Laplacian matrix satisfy the following inequality, 0 = A < Ay <

-++ < An. Consider the directed graph G; in Figure B.1 whose Incidence and Laplacian

matrix can be written as follows,

w1 0 1 -1 0

w3 -1 -1
wy |1 0 0 O

and,

L=HHT =

and its eigenvalues are A\; = 0, Ao = 1, A\3 = 3 and A4 = 4 where we note that these are

all non-negative due to the positive semi-definiteness of the Laplacian matrix.
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Appendix C

Stability of Dynamical Systems

Consider the following autonomous system,

i= f(x), (C.1)

where f : D — R"™ is a locally Lipschitz map from a domain D C R". Denote the
equilibrium point of (C.1) as & € D which means f(z) = 0.

Definition C.1. The equilibrium z of (C.1) is,

o stable if, for each € > 0, there is a 6 = §(e) > 0 such that,

[z(0)[| <6 = [lz(®)] <€, ¥V £20,

o unstable if it is not stable, and,

o asymptotically stable if it is stable and § can be chosen such that,
|z(0)]| <6 = tlggox(t) = I.

The above stability definition says that if a trajectory originates in the § neighborhood
of Z then it never leaves the € neighborhood of z, and the asymptotic stability says
that any trajectory originating in the § neighborhood will always converge to the point
Z as times tends to infinity, i.e., it converges asymptotically. Sometimes the point z is
challenging to calculate analytically, in this scenario we make use of Lyapunov stability
to judge the stability of (C.1). Lyapunov stability gives sufficient conditions for stability
of (C.1) without having to actually solve the differential equation. Lyapunov stability
can be used to show boundedness of the solution which makes it a very powerful tool
in the analysis of event-triggered control systems. The following theorem provides

conditions to determine if the given equilibrium is a globally asymptotically stable one.

Theorem C.1 (Lyapunov Direct Method). Let the origin * = 0 be an equilibrium
point for (C.1) and D C R™ a domain containing it. Let V(z) : D — R be a continuously
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differentiable function such that,

e V(0)=0 and V(z) >0, in D—{0},

e V(z) <0, inD,

then x(t) = 0 is stable. Moreover if

V(z) <0 in D—{0}
then x = 0 is asymptotically stable.

Any function V(x) satisfying the above conditions is called a Lyapunov function and
the surface V(x) = ¢ for ¢ > 0 is a Lyapunov surface. The above theorem summarizes
to say if the condition V(x) < 0 is satisfied then a trajectory starting in the Lyapunov
surface V(z) = c enters the set . = {xr € R"|V(z) < ¢} to never come out again.
If further the condition V(z) < 0 is satisfied then the trajectory crosses the level set
V(x) = ¢ to enter a new level set V(z) = ¢; where ¢; < ¢ and the Lyapunov surface
V(z) = 1 keeps shrinking until it reaches the equilibrium point, i.e., the origin.

If only the condition V(z) < 0 is satisfied then we cannot certainly say if the
trajectory will reach the origin. However, if there exists a V' (z) whose derivative satisfies
V(az) < 0 in a domain about the origin, and if we can ascertain that no trajectory stays
at points where V(ac) = 0 except at the origin, then the origin is asymptotically stable.
If this domain is R™, then the origin is globally asymptotically stable. This concept is
materialized in the proceding theorem of LaSalle called the invariance principle. Some

definitions are introduced below before we state the LaSalle’s invariance principle.

Definition C.2. A set M is an invariant set with respect to (C.1) if z(0) e M =
x(t) € M for all t € R.

Definition C.3. A set M is positively invariant set if x(0) € M = z(t) € M for all
t>0.

Theorem C.2 (LaSalle’s Invariance Principle). Let Q@ C D be a compact set that is
positively invariant with respect to (C.1). Let V : D — R be a continuously differentiable
function such that V(z) < 0 in Q. Let E be the set of all points in Q where V (z) = 0.
Let M be the largest invariant set in E. Then every solution starting in € approaches

M ast — oo.

The proof of the above theorem follows from the argument that no solution z(t) can
stay in E other than the trivial solution x(¢) = 0. This section was built on the results
from [41, Chapter 4].
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Appendix D

Bearing-based Formation Control

In this section we present an introduction to bearing-based formation control and is
built on the results from [12] which applies bearing rigidity theory to arbitrary dimen-

sional bearing-only formation stabilization problems.

D.1 Bearing Rigidity Theory

Bearing rigidity theory answers the following question: can a framework be uniquely
determined up to a translation and a scaling factor using only bearing measurements?
We start by defining an orthogonal projection matrix operator P : RY — R4 as,

(zz”)

P@)=F 2l

where z € R? is a nonzero vector and d > 2 is the dimension of the cartesian space.
The matrix P, is positive-semi definite with one zero eigenvalue and d — 1 eigenvalues
at 1. A framework in R? is a pair (G, p) that maps every vertex of a graph to a point

in the space R,

Definition D.1 (Bearing Equivalent Frameworks). Two frameworks G(p) and G(p’)
are bearing equivalent if Py, . (p; — pj) = 0 for all (4, j) € €.

An example of bearing equivalent framework is shown in Figure D.1 where the bearings
between p(v1) and p(vy) are equivalent in both the frameworks but the bearings between

p(v1) and p(vs) are not equivalent. Similar arguments apply to points p(v4) and p(vs).

Definition D.2 (Bearing Congruent Frameworks). Two frameworks G(p) and G(p')
are bearing congruent if P, . (p; — pj) = 0 for all i, € V.

An example of bearing congruent framework is shown in Figure D.2 where the bearings
between any two points is equivalent in both the frameworks and the only possible

motions are trivial(translation and scaling).
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Figure D.1: Two equivalent but non-congruent frameworks G(p) and G(p')
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> >

Figure D.2: Two congruent frameworks G(p) and G(p')

All bearing congruent frameworks are bearing equivalent but the converse is not
true. The relative position and velocity vectors between two agents (the edge vectors)
are defined as,

A . A .o
€ij =pj —Dpi, €y =v;— v, (1,7) €E.

The bearing and rate of bearing vector between two agents are defined as,

eij . Py, . -
9ii = HTZII gij = ﬁ%” (i,5) € €.

The vectors e and ¢ can thus be expressed in compact form as e = H p and é = H v.
Since Py, is the orthogonal projection operator of g;;, their inner product is 0, P,; gij =
0. This also results in gg 9ij = eg; gij = 0 and Null(Py, ;) = span{g;; }. The set of desired
bearings are denoted by {g};} i jyee-

We will now define the bearing rigidity matriz , denote the bearings of a directed
edge as g where k € {1,...,m} and define the bearing function Fp : R¥ — R¥™ as,
Fgp(p) & {ng, cee gTﬂT. The bearing rigidity matriz is defined as the Jacobian of the

bearing function,

0Fp(p)
Op

_ diag( Loy )}_IT € Rimxdn,

R LS
5(p) Tess|

where m = |€| and n = |V|. Let 0p be a variation of p such that if Rp(p)dp = 0 then
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dp is called an infinitesimal bearing motion. There are two kinds of trivial infinitesimal
bearing motions: translation and scaling, which leads us to our next definition and

assumption,

Definition D.3 (Unique Target Formation, [12]). A target formation can be uniquely

determined if all the infinitesimal bearing motions are trivial.

The strongest notion of bearing rigidity is the infinitesimal bearing rigidity defined

below.

Definition D.4 (Infinitesimal Bearing Rigidity). A framework is infinitesimal bear-
ing rigid if the only allowable motions are translation and scaling of the entire frame-

work.

For a framework (G, p) to be infinitesimally bearing rigid, it has to satisfy the following

conditions listed below,

i) rank(R(p)) =dn—d—1

ii) Null(R(p)) = span{1l ® I4,p}.

Consider the framework in Figure D.3 which is the reproduction of Figure D.2 in R?
with arbitrary orientation. Its bearing rigidity matrix is built as follows, the incidence

matrix is given by,

and the projection operator matrices for the 5 edges are,

0 0 1 0 0.5 —-0.5
P912_P934_[0 1]’ szs_Pgsz;_lO 0]7 P913_[_05 05]7

and the distance norms are, ||e12|| = |le2s|| = ||esa]| = |lear|| = 1 and |le13|| = V2. The
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Figure D.3: An infinitesimally bearing rigid framework

bearing rigidity matrix can now be written as,

[0 0 0 0 0 0 0 0]

0 -1 0 1 0 0 0 0

0 0 -1 0 1 0 0 0

0 0 0 0 0 0 0 0
R(p) = 0 0 0 0 0 0 0 0 |
0 0 0 0 0 -1 0 1

1 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0

—0.3536 0.3536 0 0 0.3536 —0.3536 0 0

| 03536 —0.3536 0 0 —0.3536 0.3536 0 O]

whose rank is 5 which equals dn —d — 1 = 2(4) — 2 — 1 = 5. Hence the framework in
Figure D.3 is infinitesimally bearing rigid.

The event-triggered control theory developed in Chapter 4 assumes the formation
to be infinitesimally bearing rigid and some necessary notions of bearing rigidity are
also defined there.

D.2 Distributed Bearing-only Formation control

In this section we will provide results on bearing-only formation control of multi-agent

systems from [12]. Consider the dynamics of each agents to be single-integrator,

where v;(t) € R? is the velocity input proposed as,

JEN;

Vi € V and the constraints {g;j}(i7j)€g specify a final target formation.
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Definition D.5 (Feasible Formation). A target formation is said to be feasible if
there exists at least one configuration p that satisfies the bearing constraints, that is

gij = g; for all (i,5) € €.

However, feasibility of bearing constraints does not imply uniqueness of the target
formation. A target formation is unique up to a translation and scaling factor if the
bearing constraints {g;;}(;  jce specify an infinitesimal bearing rigid framework. For

the nonlinear bearing-only control law proposed in (D.1), the following results hold,
i) The centroid and scale of the formation are invariant,

ii) If the target formation is infinitesimally bearing rigid, then the system has two

isolated equilibria and the system is almost globally exponentially stable.

A simulation result for the system in (D.1) and graph D.5 is shown in Figure D.4 where
Figure D.4a shows the desired stationary formation and Figure D.4b shows the bearing

error where se see that g;;(t) equals g;; asymptotically.

18 — P
B f e [0 =51

\
Bearing rate

z(m)
(a) Formation trajectory of the system (b)  Evolution of  bearing  error
(D.1). Z(i,j)EE l9ij — Qi*j||~

Figure D.4: Simulation of the system in (D.1).

This section is built on the assumption that agent model is of single integrator
dynamics. Next we present some results from [14] where agents are modeled with
double integrator dynamics which is also the case in Chapter 4. For agents modeled as
pi(t) = vi(t),0;(t) = u;(t) where wu;(t) is the acceleration input, the proposed bearing-

only control law is,

pit) = vi(t),
bi(t) =kp Y (9i5(t) — g5) + ko Y Gij(1), (D.2)

JEN; JEN;

where k, and k, are position and velocity gains respectively. Using the above control

law, g;;(t) converges to g7; and §;;(t) converges to 0. To see the working of system in
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Figure D.5: An undirected graph

(D.2), consider the graph in D.5 where each agent’s control is,

912 — gi2 + 913 — 913 + 914 — 974) + ku(912 + 913 + G14),
921 — g51 + 923 — 953) + ku(g21 + §23),
931 — 931 + 932 — G30 + 934 — Gaa) + ko (g31 + G32 + 34),

~~ I~ —~

941 — gi1 + 943 — 9i3) + ku(ga1 + 943),

and the Figure D.6 shows the corresponding simulation results. We see that formation
is achieved in Figure D.6a and the bearing error 3-,cn; [l9:5 — 975 and rate of bearing

vectors } e, are shown in Figure D.6b and D.6c respectively.
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(a) Formation trajectory for (b) Evolution of bearing er- (c) Evolution of bearing rate
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Figure D.6: Simulation of the system in (D.2).

As stated earlier, the controller (D.2) drives the bearing vectors g;;(t) to g7; and
rate of bearings ¢;;(t) to 0.
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