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Abstract

This work considers a multi-agent formation control problem where a designated leader is sub-
jected to an additional velocity reference command. The entire formation should follow the
leader while maintaining the inter-agent distance constraints. The formation error is defined

from the zero-input dynamics of agents modeled as single integrators. A local stability proof
is provided by using the dynamics of the formation error and employing Lyapunov’s indirec-
t method. Finding an upper bound on the steady state error of the linearized dynamics also
reveals significant relations between the error properties to those of the graph topology. By

augmenting a standard gradient formation controller with a proportional-integral control on the
formation error, we are able to prove the stability of the formation error dynamics with ve-
locity input while ensuring zero steady-state formation error. To agents with double integrator

dynamics we add a consensus-based control loop on the velocities to achieve the formation
maintenance problem. The formation error is augmented with a velocity error, that defines the
differences between the velocity of each agent to that of the reference. Lyapunov’s second
method is used to prove that the system is asymptotically stable. For a system with an external

reference velocity a decentralized control is proposed to manipulate the agents’ velocities and
a velocity feedback mechanism is implemented on the leader to assure the formation tracks the
reference signal. Numerical simulations are shown to illustrate the theoretical results.
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Chapter 1

Introduction

Multi-agent systems (MAS) are systems composed of multiple interacting intelligent agents
within some environment. MAS can be used to solve different problems that are difficult or
even impossible for an individual to solve, and are applied in many areas in the real world,
such as computer games [7, 28], animations [24, 33], coordinated defence systems [30, 32, 47],
transportation [10, 27] and so on. Many different areas of research for multi-agents system-
s have emerged in the last years and this thesis is aiming to investigate how to control and
manipulate such systems.

In particular, the thesis will discuss on how to control a formation of a group of agents
when one of them is subjected to an external input, which aimed at driving the formation with
a desired velocity. The motivation for the thesis comes from a real-world task that deals with a
formation of several autonomous surface vehicles (ASV) that can communicate with each other
in different ways such as radio, microwaves or free-space optical communication. Their main
goal is to reach a specified destination in a harsh environment, such as a rocky mountain, tall
grass or an urban environment, while staying in a formation shape. Due to various area features
the vehicles cannot communicate with the operator all the time. For that purpose one of the
agents communicates with a remote controlled unmanned aerial vehicle (UAV) that hovers
above it and transmits back instructions, such as the next destination or velocity changes.

Figure 1.1: Formation tracking mission. The drone communicates with the leader only, while the other USVs
required to stay in a fromation shape. .
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The real problem arises when the UAV is moving in a constant velocity towards a new
location. The leader, and subsequently the rest of the ground agents, have to follow it quickly
while preserving the formation shape (see Figure 1.1). Without the presence of any additional
control, such change in the velocity can be interpreted as a disturbance to the agents’ dynamics,
causing the followers to fall behind the leader. The lag implication can be reflected as an
undesired change of the inter-agents distances and it will be discussed thoroughly in the thesis.

1.1 Literature Review

In recent years, there has been much attention given to the control of formations of multiple
agents across many application domains. Of the many control strategies for formation control,
distance-constrained formation stabilization has been extensively studied [2, 3, 8, 14, 17, 22,
31,50]. A closely related problem is formation tracking where the objective is to find a control
scheme that allow multiple robots to maintain some given formation while executing additional
tasks such as velocity tracking or leader following.

Distance-constrained formation control aims at maintaining inter-agent distances and uti-
lizes relative measurements (i.e., distances and relative-positions) to generate the control action.
The theory of rigidity has emerged as the correct mathematical foundation for defining distance-
constrained formations and proving that distance-constrained formation control strategies are
stabilizing [1, 3, 5]. Rigidity theory is also concerned with properties of graphs that ensure that
the formation modeled by the graph is rigid. Roughly speaking, a formation is rigid if the only
distance-preserving motions of the ensemble are the rigid-body rotations and translations of the
entire formation. For the precise definition of rigidity and broader overview of graph rigidity,
see [3, 5, 6].

In addition to conventional approaches where the target formation is defined by relative
positions or distances, [16, 52, 53] propose bearing-based approach where the target formation
is defined by inter-neighbor bearings. Additionally, a comprehensive review formation control
that is based on the graph Laplacian is provided in [36]. The PI controllers are known for their
successful attenuation of constant disturbances in the network, and hence can serve as a work-
ing point in formation maintenance and tracking problems. The authors in [4, 23] propose a
distributed proportional-integral controller for the consensus of networked dynamical systems,
while [53] present a proportional integral controller approach for bearing-based formation con-
trol in the presence of input disturbances. In this work, the use of a PI controller is introduced
in order attain velocity tracking of the formation.

The stability analysis of these control strategies has been investigated in many works.
In [21], application of the center manifold theorem was used to prove the local stability of
infinitesimally rigid formations. Lyapunov-based approaches were employed in [14, 15] and a
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general formation control scheme by using the error dynamics was presented in [37].
Despite its apparent utility, there are very few existing studies addressing velocity tracking

in formation control. The aid of one or more virtual agents to help the formation achieve a
desired common velocity or to arrive at a desired destination is considered in [42, 43, 45]. In
particular, [30] proposed a flocking algorithm with a virtual leader by including a navigational
feedback mechanism to every agent under the assumption that all agents are being informed.

Multi-agent systems with double integrator dynamics are also discussed in the literature.
Necessary and sufficient conditions for second-order consensus are described in [48, 49], and
general consensus protocol is investigated in [34]. Stability analysis of second order systems is
discussed in [14, 44, 45].

The formation tracking problem for agents with double integrator dynamics are not so com-
mon in literature, but some work has been done. In [36] maneuvering of the flocking agents
was achieved by adding a dynamic virtual leader dependent term to the control scheme. In [12]
the presented distributed control architecture employs static output feedback using an artificial
delay, whereas [11] present a distributed containment control.

1.2 Thesis Contributions

In this work, we first consider a collection of agents with integrator dynamics tasked with
maintaining a distance-constrained formation. As a first contribution of our work, we provide
an alternative local stability proof by deriving the dynamics of the formation error and employ-
ing Lyapunov’s indirect method. Relations between the error properties to those of the graph
are revealed in order to find an upper bound for the linearized steady-state error.

One agent in the ensemble is also designated as a leader and is subjected to an external ve-
locity reference command. In the absence of any additional control action, the standard rigidity
based formation stabilization solutions will exhibit a steady-state formation error. To address
this, we augment the gradient based formation controller with a proportional and integral (PI)
control on the formation error. We show that such a scheme preserves the stability proper-
ties of the formation error dynamics while ensuring a zero steady-state formation error. This
scheme has many advantages, including a simple and distributed implementation and no need
for virtual leaders.

As a second phase, we examine the formation error for agents with double integrator dy-
namics, tasked with the same formation maintenance problem. We notice that a stabilizing
controller (an acceleration level input) is also needed for eliminating the steady state formation
error. We show that by closing a consensus based control loop on the velocities of the agents
we are able to achieve velocity consensus.

To analyze the system’s stability, the same technique is employed to derive an appropriate
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error of the dynamical system. The stability properties of the error dynamics are studied and a
local stability proof is provided by using Lyapunov’s direct method.

The main goal of the external velocity input is to determine the velocity of the formation
as a whole, meaning that each agent should have a steady state velocity equal to that of the
reference. For the second order system, such input will cause the agents to move in a formation
shape but with a different velocity than that of the reference. For that purpose the difference
between the velocity of the leader to the reference velocity is added to the leader’s control law
as a control gain to attain the reference velocity. The remaining agents are not aware of the
external reference velocity but with the proposed control mechanism they are able to achieve
the required external velocity.

1.3 Thesis Organization

The organization of this work is as follows. Chapter 2 reviews some fundamental concepts
and notations from graph theory, rigidity theory and stability theory. In Chapter 3, the main
problem statement is formally described.

The well known distance-constrained formation control law is applied on agents with single
integrator dynamics and is presented in Chapter 4. Then, the formation distance error dynamics
is derived in Section 4.1 and the stability analysis of the system is discussed. A control mech-
anism for the dynamics with velocity reference is presented in Section 4.2. This section also
includes stability and performance analysis of the proportional controller and the PI controller.

Double integrator dynamics are introduced in Chapter 5, and the suitable error dynamics is
presented in Section 5.1. The error is now augmented from the formation distance error and
the new defined velocity error in order to stabilize the system. A more extensive analysis of
the second order formation stability is shown in Section 5.1.1. In order to deal with an external
reference velocity into the system, an inner control loop is implemented on the leader as can
be read in Section 5.2. Stability proof for the closed loop dynamics is also provided in that
section.

Numerical simulations are given along the thesis to verify the theoretical results. Finally,
Chapter 6 contains concluding remarks and areas for future work.
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Chapter 2

Preliminaries

This chapter reviews basic notations and provides sufficient graph theory background. Dealing
with control algorithms in this thesis, such as formation control and tracking, relies on some
basic concepts of rigid graph theory and on some key results from stability theory, which are
also outlined below. An indepth coverage of these concepts can be found in [19, 20, 25, 29].

2.1 Notations

Given A1, . . . , An ∈ Rp×q, when the range of i is clear from the context, denote diag(Ai) ,

blkdiag{A1, . . . , An} ∈ Rnp×nq. Denote In as the n×n identity matrix. Let 1n = [1, . . . , 1]T ∈
Rn be the vectors of all ones. The eigenvalues of a symmetric positive semi-definite matrix A
are denoted as 0 ≤ λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). The matrix Kronecker product is useful
when more than 1 dimension are involved. The Kronecker product of matrices A ∈ Rn×m and
B ∈ Rp×q is given as

A⊗B =


a11B · · · a1mB

... . . . ...
an1B · · · anmB

 ,
where aij denotes the ij-th entry of the matrix A. The following Kronecker product matrix
multiplication will also be extensively used:

(A⊗B) (C ⊗D) = AC ⊗BD,

where the matrices are all of commensurate dimensions. The range of A ∈ Rm×n, denoted as
Range(A), is the span (set of all possible linear combinations) of its column vectors. The rank
of a matrixA, denoted as rank(A), is the dimension of the vector space spanned by its columns
or rows. A matrix is said to have full rank if its rank equals the largest possible for a matrix
of the same dimensions, which is the lesser of the number of rows and columns. The null space
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of matrix A, denoted as Null(A), is the set of vectors which are sent to the zero vector by A.
That is, Null(A) = {v ∈ Rn | Av = 0}.

2.2 Graph Theory

Graph theory is the study of graphs, which are mathematical structures used to model pairwise
relations between objects [19, 25]. A graph G = (V , E) in this context consists of a vertex set
V and an edge set E ⊆ V × V . We denote the number of nodes in a graph as n , |V| (the
order of a graph) and the number of edges as m , |E| (the size of a graph). If (i, j) ∈ E is
an edge of a graph G = (V , E), then i and j are said to be adjacent. The set of neighbors of
vertex i is denoted asNi , {j ∈ V : (i, j) ∈ E}, and also noted as i ∼ j. A spanning tree is a
connected graph with |V| − 1 edges. A graph is called undirected, when there is no distinction
between the two vertices associated with each edge, i.e., an edge (i, j) is an unordered pair of
distinct nodes i and j. An orientation of an undirected graph is the assignment of a direction
to each edge and an oriented graph is an undirected graph whose edges are assigned with an
ordered pair of vertices. For an edge (i, j), we say that an edge is from its tail, vertex i, to
its head, vertex j. These vertices together are called endpoints of the edge. By assigning an
arbitrary orientation to an undirected graph we can define the incidence matrix. The incidence

matrix E(G) ∈ Rn×m of an oriented graph (sometimes reffered to as E) is the {0,±1} matrix
with rows indexed by vertices and columns by edges. Let G be a directed graph with edge set
E = {e1, ..., em} and vertex set V = {v1, ..., vn}. For directed graphs without self-loops, the
elements of the incidence matrix of G are defined by

[E(G)]ij =


−1 if vi is the tail of ej,

1 if vi is the head of ej,

0 otherwise.

For any connected graph, it then follows that Null (E(G)T) = span{1n} [19]. The Lapla-

cian of a graph is a matrix defined as L(G) = E(G)E(G)T . Note that the product E(G)E(G)T

is independent of the chosen orientation of the edges of G. In this work we assume that the
communication method between two identical agents is reciprocal. For that reason, and due to
the fact that L(G) is orientation-independent, we mainly deal with undirected graphs. Also, by
definition, L(G) is a real symmetric matrix and also positive semi-definite. Therefore it has n
non-negative real eigenvalues ordered as 0 = λ1(L(G)) ≤ λ2(L(G)) ≤ ... ≤ λn(L(G)) (repeat-
ed according to their multiplicities). It is easy to see that 0 is always an eigenvalue of L(G) and
that 1n is the corresponding eigenvector. Furthermore, the multiplicity of the zero eigenval-
ue of the graph Laplacian is equal to the number of connected components of the graph [19].
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Moreover, the second smallest eigenvalue of L(G), λ2(L(G)) is also known as the algebraic
connectivity of the graph [18].

2.3 Rigidity Theory

Rigidity theory plays an important role in distance-based formation control. We next review
some important definitions and results from rigidity theory; for a more detailed review, see
[3, 5].

A d-dimensional configuration is a finite collection of n points, x = [xT
1 , . . . , x

T
n ]T ∈ Rdn,

where xi ∈ Rd and xi 6= xj for all i 6= j. A framework, denoted as G(x), is an undirected
graph G together with a configuration x, where vertex i in the graph is mapped to the point xi.
Oriented graphs turn out to be useful when discussing and studying frameworks rigidity. Let
(i, j) ∈ E correspond to the k-th directed edge in the orientation of graph G. Define the edge
vector for a framework, sometimes called the relative position vector, as ek , xj − xi. The

edges vector of the entire framework can be denoted as e =
[
eT

1 · · · eT
m

]T

∈ R2m.
Two frameworks G(x) and G(y) in R2 are equivalent if ‖xi − xj‖ = ‖yi − yj‖ for all

{(i, j)} ∈ E . Two frameworks G(x) and G(y) in R2 are congruent if ‖xi − xj‖ = ‖yi − yj‖
for all i, j ∈ V . Two frameworks can be equivalent but not congruent. An example with two
frameworks is described in Figure 2.1, where the distances of every edge in the edge set are
similar in both frameworks, but the distance between node 2 and node 4 is different in each
framework. Thus, the two frameworks are equivalent but not congruent.

(a) Framework 1. (b) Framework 2.

Figure 2.1: Two frameworks which are equivalent but not congruent.

9©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



A framework G(x) is rigid if there exists an ε > 0 such that if framework G(y) is equivalent
to G(x) and satisfies ‖yi − xi‖ ≤ ε for all i ∈ V , then G(y) is congruent to G(x). A framework
G(x) is globally rigid if every framework that is equivalent to G(x) is also congruent to G(x).
Clearly, global rigidity implies rigidity. Figure 2.1 for example, illustrates a framework that is
rigid but not globally rigid. Nevertheless, rigid frameworks can be converted to globally rigid
frameworks by including additional distance constraints [3].

Graph rigidity can also be interpreted upon the notion of bar-and-joint frameworks where
the distances between nodes are assumed to be fixed. We are interested in whether there is a
motion or deformation of this structure that preserves the lengths of the bars and the points of
attachment between the bars and joints but gives a genuine change in the shape of the structure,
i.e., a change in the distance between two joints that does not define an edge. When no such
motion exists the structure is rigid.

Given an arbitrary oriented graph, consider a framework G(x) with the edge vectors as
{ek}mk=1. Define the edge function, F : R2n × G → Rm, as a transformation from the configu-
ration of the graph to its edge-square-length, as

F (x,G) ,
[
‖e1‖2, . . . , ‖em‖2

]T
.

Note that the edge function is not unique and it depends on the ordering given to the edges. If
F (p,G) = F (q,G) for p, q ∈ R2, then the corresponding edges of framework G(p) and G(q)

have the same length, i.e., the frameworks are equivalent.
The rigidity matrix R(x), associated with a framework G(x), is the Jacobian of the edge

function,R(x) , ∂F (x,G)/∂x ∈ Rm×2n. The rigidity matrix encapsulates some of the rigidity
properties of a framework and it is discussed shortly. A short calculation shows that R(x) can
be equivalently written as

R(x) = diag(eT
i )(ET ⊗ I2). (2.1)

This representation separates the graph from the positions of the nodes. The symmetric rigidity

matrix associated with a framework G(x) is the 2n× 2n matrix defined asR(x) , R(x)TR(x)

[50].
If dx ∈ R2n×1 satisfies R(x)dx = 0, then dx is called an infinitesimal flex of G(x). In

Figure 2.2(a) we have a non-rigid framework, where a non-trivial motion causes a change in
the distance between a pair of nodes, although the bars constraints are preserved. A Framework
G(x) is infinitesimally rigid if the only infinitesimal flexes are trivial, i.e., the rigid body rota-
tions and translations of the framework. Such frameworks are described in Figures 2.2(b) and
2.2(c), where every flex motion is distance preserving. As the definition suggest, infinitesimal
rigidity does imply rigidity. rigidity of graphs is a generic property in the sense that almost
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all realizations of a particular graph are either infinitesimally rigid, or flexible. A minimally

rigid graph is a rigid graph such that the removal of any edge results in a non-rigid graph. As
an example, the graph in Figure 2.2(b) is a minimally rigid graph whereas the graph in Figure
2.2(c) is not. This property can be mathematically interpreted if the rigid graph has 2n − 3

edges. A framework G(x) is minimally infinitesimally rigid (MIR) if it is infinitesimally rigid
and the number of edges is m = 2n− 3. As demonstrated in Figure 2.2(b), a graph consists of
4 agents and 5 edges will result in an MIR framework. In fact, the rigidity of a framework can

(a) A non-rigid framework. (b) MIR framework. (c) Infinitesimally
rigid framework.

Figure 2.2: Rigidity of frameworks.

be characterized in terms of the rank of the rigidity matrix.

Lemma 1. ( [46]) A framework G(x) is infinitesimally rigid if and only if rank(R(x)) = 2n−3.

Since there are 2n − 3 edges in an MIR framework, the number of rows of the rigidity
matrix must also be 2n− 3, leading to the following corollary.

Corollary 1. If a framework is MIR, then the rigidity matrix R(x) has full row rank.

Corollary 1 gives a sufficient condition for the rigidity matrix of a framework having full
row rank. The notion of MIR frameworks and Corollary 1 turn out to be an important property
for deriving the stability of distance-constrained formation problems [13]. For that reason,
those results will be exploited when stability of dynamic systems is discussed.

2.4 Stability Theory

Stability was probably the first question in classical dynamical systems that motivated the intro-
duction of new mathematical concepts in engineeering and particularly in control engineering.
Stability means that the trajectories of the output do not change too much under small perturba-
tions from a given initial conditions or equilibrium state. Our treatment of stability will apply
to control systems described by sets of linear or nonlinear equations. Consider the nonlinear
autonomous (no forcing input) system

ẋ(t) = f(t, x(t)), (2.2)
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where x : R → Rn and f : R × Rn → Rn are functions and t, which usually represents time,
is the only independent variable. The derivative ẋ(t) is simply the derivatives of each of the
component functions, so if x(t) = (x1(t), ..., xn(t)) where xi(t) are real-valued functions on R
then,

ẋ(t) = (ẋ1(t), ..., ẋn(t)).

It is essential to first discuss the stability of the autonomous case where there is no external
driving force,

ẋ(t) = f(x(t)), (2.3)

where f : Rn → Rn. We are going to assume the existence of continuous solutions and
uniqueness of a solution with the initial condition x(t0) = x0 where t0 is a constant and x0 is a
constant n-vector.

The equilibrium points of (2.3) are constant solutions to the differential equations set and
can be evaluated by setting all system derivatives to zero. We would like to characterize if the
equilibrium point x̄(t) is stable. Stability is a qualitative notion that if we perturb a system from
its equilibrium conditions slightly, say x̄(t0) = x̄0 + ε, then the trajectories generated by the
dynamics in (2.3) will not change much [39]. We assume that x̄(t) is the origin of state space
and we can formalize stability with the following mathematical theorem (without any loss of
generality, since we can always do a state transformation with a new variable and study the
stability of the new system with respect to it). There is no single concept of stability, and many
different definitions are possible. We shall consider only several fundamental statements.

Theorem 1. Lyapunov Stability [20]: The equilibrium x(t) = 0 of (2.3) is:

1. Lyapunov stable, if for each ε > 0 there exists a δ > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t > t0.

2. Asymptotically stable if it is stable and in addition δ can be chosen such that

‖x(t0)‖ < δ ⇒ lim
t→∞
‖x(t)‖ = 0.

In general, asymptotic stability is more desirable, since the trajectories starting from initial
conditions close to the origin will approach the origin asymptotically. Analyzing the stability
of solutions to ordinary differential equations can be done by two main methods. First, the
indirect method of Lyapunov uses the linearization of a system to determine the local stability
of the original system. The second method, the Lyapunov direct method, uses an auxilliary
function to find stability without having to characterize the solutions.
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2.4.1 Lyapunov’s First Method

Lyapunov’s First Method, also known as the indirect method, works by characterizing solu-
tions to differential equations of the type (2.3) and considering the properties of the linearized
system. Those characterizations are used to infer about the system’s stability. Let x(t) = 0

be an equilibrium point (2.3) where f : D → Rn is a continuously differentiable and D is a
neighborhood of the origin.

Theorem 2. [20] Let A = ∂f
∂x

∣∣
x=0

, then

1. The origin of (2.3) is asymptotically stable if Re(λi) < 0 for all eigenvalues of A. In that

case, the matrix A is also called Hurwitz or asymptotically stable.

2. The origin of (2.3) is unstable if Re(λi) > 0 for one or more of the eigenvalues of A.

Theorem 2 does not say anything when Re(λi) ≤ 0,∀i with Re(λi) = 0 for some i. In this
case linearization fails to determine the stability of the equilibrium point, and further analysis is
necessary. The multi-dimensional result which is relevant here is the Center Manifold Theorem
but the reader is refer to [40] for further reading.

2.4.2 Lyapunov’s Second Method

Lyapunov’s Second or Direct Method does not require a characterization of the solutions to
determine stability. The method is a generalization of the idea that if there is some measure of
energy in a system, then we can study the rate of change of the energy of the system to ascertain
stability.

The method uses a function, called the Lyapunov function, to determine properties of the
asymptotic behavior of solutions to a differential equation of the general form (2.3). Let V :

D → R be a continuously differentiable function defined on the domain D ⊂ Rn that contains
the origin. The rate of change of V along the trajectories of (2.3) is given by

V̇ (x(t)) =
d

dt
V (x(t)) =

n∑
i=1

∂V

∂xi

d

dt
xi =

[
∂V
∂x1

∂V
∂x2

· · · ∂V
∂xn

]
ẋ =

∂V

∂x
f(x(t)). (2.4)

The main idea of Lyapunov’s theory is to establish properties of the nonlinear system by
studying how certain carefully selected scalar functions of the state evolve as the system state
evolves. In particular, the rate of change of the function V (x) along any trajectory is as x(t)

varies according to (2.3). If V̇ (x(t)) is negative along the trajectories of the system, then
V (x(t)) will decrease as time goes forward. Moreover, we do not really need to solve the
nonlinear ODE (2.3) for every initial condition, but we just need some information about the
drift f(x(t)). If such a function V exists, then stable solutions to the differential equation can
be found. We are now ready to state Lyapunov’s stability theorem.

13©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Theorem 3. [20] Let the origin x(t) = 0 ∈ D ⊂ Rn be an equilibrium point of (2.3). Let

V : D → R be a continuously differentiable function such that

1. V (0) = 0

2. V (x(t)) > 0,∀x(t) ∈ D\{0}
3. V̇ (x(t)) ≤ 0,∀x(t) ∈ D.

Then, x(t) = 0 is a stable solution of (2.3). Moreover, if V̇ (x(t)) < 0,∀x(t) ∈ D\{0}, then

x(t) = 0 is asymptotically stable.

If V (x(t)) > 0,∀x(t) ∈ D\{0}, then V is called locally positive definite. If V (x(t)) ≥
0,∀x(t) ∈ D\{0}, then V is locally positive semi-definite. If the conditions in Theorem 3 are
met, then V is called a Lyapunov function for the system described in (2.3). Unfortunately,
Lyapunov’s theorem assumes the existence of a Lyapunov function, but does not provide any
method to construct one from the differential equation (2.3). For proof, extensions and further
examples, please refer to [20].

2.4.3 LaSalle’s Invariance Principle

Lyapunov’s method is extremely valuable, since it enables us to reach conclusions about sta-
bility without obtaining explicit solutions. The disadvantage is that finding an appropriate
Lyapunov function can often be very difficult. Furthermore, when V̇ (x) is a negative definite
function, asymptotic stability of the origin is a direct consequence of Lyapunov’s second theo-
rem, but a criterion for asymptotic stability in the case when V̇ (x) is only negative semi-definite
is still missing.

In response to this fact, LaSalle produced an extension of Lyapunov’s method. In this
extension, LaSalle used the notion of limit sets and the notion of invariance (the property of
certain sets whereby a given function takes elements in the set to elements in the same set). By
introducing these notions, LaSalle was able to show how Lyapunov functions could be defined
less restrictively.

LaSalle’s theorem enables one to conclude asymptotic stability of an equilibrium point
even when V̇ (x) is negative semi-definite. We begin by introducing a few more definitions. We
denote the solution trajectories of the autonomous system in (2.3) as s(t, x0, t0), which is the
solution at time t starting from x0 at t0. The ω − limit set is the set S ⊂ Rn of a trajectory
s(·, x0, t0) if for every y ∈ S, there exists a strictly increasing sequence of times tn such that

s(tn, x0, t0)→ y

as y → ∞. A (positively) invariant set is the set M ⊂ Rn if for all y ∈ M and t0 ≥ 0, we
have

s(tn, x0, t0) ∈M ∀t ≥ t0.

14©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



It may also be proved that the ω− limit set of every trajectory is closed and invariant. We may
now state LaSalle’s principle.

Theorem 4. Let V : Rn → R be a locally positive definite function such that on the compact

set Ωc = {x ∈ Rn : V (x) ≤ c} we have V̇ (x) ≤ 0. Define

S =
{
x ∈ Ωc : V̇ (x) = 0

}
.

As t → ∞, the trajectory tends to the largest invariant set inside S, i.e., its ω − limit set is

contained inside the largest invariant set in S. In particular, if S contains no invariant sets

other than x = 0, then 0 is asymptotically stable.

For proof please refer to [20, 26].
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Chapter 3

Formation Tracking - Problem
Formulation

This chapter formalize the current methods for controlling a group of agents tasked with forma-
tion acquisition. When the leader is subjected to an external velocity input, the formation will
exhibit a steady-state distance error. Hence, our main objective is to track an external reference
velocity of the leader while maintaining the inter-agent distances. The need for further con-
trol modifications of the existing approach is emphasized here in order to solve the non-zero
steady-state error problem, both for first and second order systems. In this work two differ-
ent agent models are considered, single integrator and double integrator. Moreover, current
gradient-based control for agents with double integrator dynamics is not sufficient to achieve
the formation maintenance problem and further modifications are needed.

Consider a system of n (n ≥ 2) agents, moving in a 2-dimensional Euclidean space. The
agents can be modeled as single integrators, i.e.,

ẋi(t) = ui(t), i = 1, . . . , n, (3.1)

or as double integrators,

ẋi(t) = vi(t)

v̇i(t) = ui(t), (3.2)

where xi(t) ∈ R2 and vi(t) ∈ R2 are the coordinates vector and the velocity vector assigned to
the i-th agent correspondingly. ui(t) ∈ R2 denotes the control input associated with that agent.

Agents can communicate with each other in various ways and are able to collect data such
as relative measurements (i.e., distances and relative-positions). Graph theory has emerged as
the correct mathematical tool for modeling pairwise relations between agents. In terms of graph
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theory, the agents are modeled as nodes and the associated communication methods as edges
of graph G. Also, we consider the graph to be undirected, meaning that there is no distinction
between two vertices associated with the same edge. A formation can be defined by specifying
the distances between pairs of agents in the system. Denote dk as the desired distance between

agent i and j for edge number k,1 (i, j) ∈ E , and let d =
[
d2

1 · · · d2
m

]T

∈ Rm represent
the distance constraint vector.

The distance error, δ ∈ Rm, is defined as the difference between the measured relative
distances and the desired inter-agent distances,

δk = ‖ek‖2 − d2
k, k ∈ {1, . . . ,m}. (3.3)

As a first step, a control law is introduced, purposed to drive the agents in a way such that
the distances between them satisfy the distances constraints that we want, i.e., the control ui(t)
should result in

lim
t→∞
‖xj(t)− xi(t)‖ = lim

t→∞
‖ek(t)‖ = dk , ∀ek ∈ E , (3.4)

where d ∈ Rm is the distance constraints vector. In terms of the distance error that was defined
in (3.3), equation (3.4) may be written as:

lim
t→∞

δk = 0 , ∀ek ∈ E . (3.5)

Consider that the actual formation of the agents is represented by the framework G(x),
formed by the configuration x = (x1, · · ·, xn) ∈ R2n together with the graph G. The formation
is imposed such that the resulting framework is minimally and infinitesimally rigid, hence not
all the relative position measurements are required. In this direction, we first introduce the
following assumption, which is widely used in the literature [15, 22], and it will accompany us
throughout the thesis.

Assumption 1. Any framework G(x) satisfying the distance constraints {dij}(i,j)∈E is minimal-

ly infinitesimally rigid.

3.1 Gradient Formation Control Law

In [21], the well known gradient control law is proposed to locally and asymptotically stabi-
lize infinitesimally rigid formations. The associated positive semi-definite potential function is

1At times we will also write dij .
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defined as

Φ(e) =
1

2

m∑
k=1

(
‖ek‖2 − d2

k

)2
=

1

2

m∑
k=1

δ2
k. (3.6)

Observe that Φ(e) = 0 if and only if ‖ek‖2 = d2
k ∀k = 1, . . . ,m.

The control for each agent is then taken as the gradient of the potential function (3.6),

ui(t) = −
(
∂Φ(e)

∂xi

)
= −

∑
j∼i

(
‖ek‖2 − dk2

)
ek. (3.7)

By using the control law in (3.7), it can be written in state space form by using the definition
of the rigidity matrix R(x) for all the agents as

u(t) = −R(x)TR(x)x(t) +R(x)Td. (3.8)

This control law has been proven to ensure local asymptotic stability [21, 22].

3.2 Formation Maneuvering

Formation maneuvering, where the agents are required to simultaneously acquire a formation
and move cohesively following one leader, is an important task for surface and aerial vehicles.
The formation’s centroid and its derivatives represent the behavior and motion of the formation
and are given in the following equations:

x̄ ,
1

n

(
1T
n ⊗ I2

)
x, (3.9)

v̄ , ˙̄x =
1

n

(
1T
n ⊗ I2

)
ẋ, (3.10)

ā , ¨̄x =
1

n

(
1T
n ⊗ I2

)
ẍ. (3.11)

Equations (3.9), (3.10) and (3.11) describe the position, velocity and acceleration of the cen-
troid respectively. Consider the formation controller in (3.8) and designate one agent as a
leader. The leader is injected with an external reference velocity command vref ∈ R2, where
vref is constant. The objective of the formation is to move at the same velocity and follow the
leader’s reference velocity (hence, the centroid’s velocity will also be the same as the reference)
while maintaining the formation shape. In other words, the goal is to find a control law ui(t)

that will satisfy (3.4) and also

lim
t→∞
‖vi(t)− vrerf‖ = 0 i = 1, ..., n. (3.12)
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Note that ui(t) can be the velocity input or the acceleration input depending on the mathemati-
cal model.

For the first order system, without the presence of any additional control, such a scheme
will always lead to a steady-state error for the formation, i.e., limt→∞ ‖δ(t)‖ > 0. This phe-
nomena is demonstrated by a simple example shown in Figure 3.1(a). Here, 4 agents with
single integrator dynamics are tasked with maintaining a diamond shape formation (satisfying
Assumption 1) while tracking the designated leader (marked in green). Figure 3.1(b) plots
‖δ(t)‖ showing the steady-state error.
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(a) An MIR formation tracking a leader.
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(b) A plot of ‖δ(t)‖ showing a steady-state error.

Figure 3.1: Without any additional control, tracking a leader leads to a steady-state error in the formation.

The method for solving the problem for agents with single-integrator dynamics will be
discussed in Chapter 4. The well known distance-constrained formation control law will be
presented, as well as the derivation of the formation distance error dynamics. Then, the sta-
bility analysis of the system will be discussed, with and without a control mechanism for the
dynamics with velocity reference.

As for the second order system described in (3.2), solely implementing the distance-based
control law in (3.8) as the acceleration input, i.e.,[

ẋ(t)

v̇(t)

]
=

[
0 I

−R(x)TR(x) 0

][
x(t)

v(t)

]
+

[
0

R(x)T

]
d, (3.13)

will result in a non-stable system.
In witness whereof, simulating the dynamics in (3.13) for a 6 agents system results with

agents that cannot maintain the desired hexagon formation (as in Figure 3.2). The initial ve-
locities are all zeros and the initial positions of the agents are depicted in grey circles. As can
be seen from the trajectories in Figure 3.3(a), the formation is not asymptotically stable. The
formation error is plotted in Figure 3.3(b) in where we can see it does not converge to zero.
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Figure 3.2: An example of a desired Hexagon shape for a 6 agents formation
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(a) Unstable MIR formation.
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(b) The distance error ‖δ(t)‖ does not converge to
0.

Figure 3.3: Distance-based Formation control for agents with double integrator dynamics.

This phenomena for agents with double-integrator dynamics is explained and handled sub-
stantially in 5. Distance-based control combined with velocity consensus mechanism is used in
order to stabilize the suitable error dynamics. At the end of that chapter, the velocity tracking
problem, for a system with velocity reference as an input to a leader, is then considered and
analyzed.
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Chapter 4

Single-Integrator Dynamics

In this chapter we explore the formation control where each agent has single integrator dynam-
ics. One of the chapter’s contributions is to derive an associated dynamical system based on
the formation error. An alternative stability proof on the error dynamics will then be provided
by using Lyapunov’s indirect method. We manage to connect the error properties to those of
the graph and to find an upper bound for the linearized system.

When one of the agents is subjected to an external reference velocity and with the absence of
any additional control action, the standard rigidity based formation stabilization solutions will
exhibit a steady-state formation error. The main contribution of this chapter is the introduction
of a control scheme that will enable to implement a stabilizing controller over the error in order
to manipulate it. We demonstrate how the error can be decreased by using a proportional control
and completely eliminated by using PI controller. A mathematical proof is also provided and
simulations are given to support the results.

4.1 Distance-Constrained Formation Stabilization

The goal of this section is to introduce a controller ui such that the terms defined by (3.4) are sat-
isfied. Those terms are partial requirements of the main objective that was presented in Chapter
3, and aimed at acquiring distance between agents according to the distances constraints.

Consider a system of n (n ≥ 2) agents, modeled as first-order integrators, as described in
(3.1). The entire system can be written as

ẋ(t) = u(t),

and to simplify notations, the time variable in x(t) and u(t) will be omitted (i.e., x(t) := x).
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4.1.1 Formation Stability Analysis

The stability analysis of the this control strategy has been investigated in many works, start-
ing from center manifold theorem for the linearized dynamics [21] to employing Lyapunov
based approaches [14, 15]. It is well known that the direct linearization of (3.8) around the
target formation has multiple eigenvalues at the origin, and consequently cannot be analyzed
by Lyapunov’s indirect method [21]. By deriving an associated dynamical system based on the
formation error for MIR framework, we show that the linearization of the error dynamics leads
to a Hurwitz state matrix, and thus local asymptotic stability is readily shown.

By factorizing the dynamics in (3.8) yields

ẋ(t) = −R(x)T (R(x)x(t)− d) . (4.1)

From (2.1) it can be shown that the expression R(x)x(t) − d is the distance error vector
defined in (3.3), i.e.,

δ , R(x)x(t)− d = diag(eT
i ) (ET ⊗ I2)x(t)︸ ︷︷ ︸

e

−d. (4.2)

As we are concerned with the behavior of the formation error, we now derive the formation
error dynamics by differentiating (4.2) with respect to time,

δ̇ = 2 diag(eT
i )ė = 2 diag(eT

i )(ET ⊗ I2)ẋ. (4.3)

Combining (2.1) , (4.1) and (4.3) yields

δ̇ = −2R(x)R(x)T (R(x)x(t)− d)︸ ︷︷ ︸
δ

. (4.4)

Theorem 5. Under Assumption 1, the origin of the formation error dynamics (4.4) is locally

asymptotically stable.

Proof. Define a set Ω = {x|R(x)x− d = 0}. For any x∗ ∈ Ω , δ = 0 by definition, hence any
x∗ ∈ Ω corresponds to an equilibrium of (4.4). Denote M(x) = R(x)R(x)T. Evaluating the
Jacobian of the dynamics (4.4) at the equilibrium δ = 0 (x = x∗) gives

∂f(δ)

∂δ

∣∣∣∣
δ=0,x=x∗

=
∂ (−2M(x)δ)

∂δ

∣∣∣∣
δ=0,x=x∗

(4.5)

= −2

(
∂ (M(x))

∂δ
δ

)∣∣∣∣
δ=0,x=x∗

−2

(
M(x)

∂δ

∂δ

)∣∣∣∣
δ=0,x=x∗

.
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The linearized dynamics equation thus can be expressed as

˙̃δ = −2M(x∗)δ̃ , (4.6)

where δ̃ is the variation of the state around the equilibrium point.
From Assumption 1 and Corollary 1, it follows that R(x∗) has full row rank, and there-

fore M(x∗) is a symmetric positive-definite matrix. Thus, the equilibrium point δ = 0 of the
nonlinear formation error dynamics is locally asymptotically stable.

The result of Theorem 5 shows that examining the linearized formation error dynamics
allows for the use of Lyapunov’s indirect method to show local asymptotic stabilization of the
formation. In fact, exponential stability can also be shown using a similar approach as found
in [15].

4.1.2 Simulations

Consider for example a 4 agents system in which each agent is implemented with a distributed
control law as in (3.7). As can be seen in Figure 4.1(a), for an arbitrary initial positions (depict-
ed in grey), the formation reaches the desired squared shape. The norm of the formation error
is plotted as well in Figure 4.1(b) in order to support this result.
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(a) Trajectories of 4 agents with a distance based
control law.
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(b) A plot of ‖δ‖ showing zero steady-state formation
error.

Figure 4.1: MIR formation with a distance based control law.

4.2 Formation Control with Velocity Reference

Once the gradient-based controller has been successfully shown to asymptotically stabilize the
zero-input system as described in (4.1), the leader is now additionally injected with an external
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constant velocity command vref ∈ R2. The goal is to make the formation move at that velocity
and follow the leader’s reference velocity while maintaining the formation shape. The addition
of a velocity reference to the agent designated as a leader together with the control law in (3.8)
leads to the following dynamics,

ẋ(t) = −R(x)T (R(x)x(t)− d) +Bvref . (4.7)

Here, B ∈ R2n×2 is used to indicate which agent in the formation may receive the external
velocity reference, vref ∈ R2 (i.e., if agent i is the leader, then the ith block of B is I2, and
the remaining blocks are zero). The dynamics of the formation error vector with an external
velocity reference can be derived from (4.7) as

δ̇ = −2R(x)R(x)T δ + 2R(x)Bvref . (4.8)

A general control scheme is presented in Figure 4.2 and can be described as

ẋ(t) = u(t) +Bvref , (4.9)

u(t) = −R(x)TC
(
R(x)x(t)− d

)
, (4.10)

where C
(
R(x)x(t) − d

)
= C(δ), can be any stabilizing controller. In addition to preserving

the stability of the closed-loop dynamics, the controllerC should also eliminate the steady-state
formation error dynamics, i.e.,

lim
t→∞
‖δ(t)‖ = 0.

Controller R(x)T

B

ˆ

R(x)

d

δ

Vref

ẋ x

−

Figure 4.2: The formation control is augmented with an additional controller to eliminate the steady-state error in
the formation.

Before analyzing the stability of the control scheme proposed in (4.10), we first examine
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the performance of the formation with a leader. In particular, we show that for the dynamics
in (4.10), assuming that C is a stabilizing controller, the velocity of the formation centroid will
move at a velocity proportional to the reference, vref .

Theorem 6. Consider the system (4.9) and (4.10) and assume C is a stabilizing controller.

Then the centroid of the formation, (3.9), moves at the constant velocity vref/n.

Proof. Observe from (2.1) that
(
1T
n ⊗ I2

)
R(x)T =

(
1T
n ⊗ I2

)
(E⊗ I2)diag(ei) = 0 due to the

fact that 1n is the left null space of E. Using this property, we examine the dynamics of the
centroid,

˙̄x =
1

n

(
1T
n ⊗ I2

) (
−R(x)TC(δ) +Bvref

)
=

1

n

(
1T
n ⊗ I2

)
Bvref .

In the case that only one agent is being controlled (i.e., (1T
n⊗I2)B = I2), the centroid dynamics

reduce to ˙̄x = vref/n, concluding the proof.

Remark 1. Note that the centroid does not actually track the reference velocity. However,

if the number of agents in the ensemble is known by the leader, this is easily overcome by

premultiplication of the reference velocity by the number of agents in the network.

4.2.1 Proportional Gain Control

A proportional controller is a control loop feedback mechanism widely used in industrial con-
trol systems, and it is the first intuitive control gain that comes to mind when implementing
a controller. A proportional controller generally operates with a steady-state error, sometimes
referred to as droop. The next equation describes a proportional controller that may be imple-
mented as the controller C in (4.10),

u = −R(x)T(κP In) (R(x)x− d) , (4.11)

where κP is a scalar constant. Notice here that each agent utilizes the same gain parameter.
A proportional control system amplifies the error signal to generate the control signal. The

closed-loop dynamics of the system utilizing the proportional control in (4.11) is thus

ẋ = R(x)T (κP In) (R(x)x− d) +Bvref .

Examining the system from the error vector point of view will help to prove the stability
of the origin. The dynamics of the formation error vector (4.2) with a proportional controller
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described in (4.11) can be derived as

δ̇ = f(δ, vref ) = −2κPR(x)R(x)T δ + 2R(x)Bvref . (4.12)

Theorem 7. Under Assumption 1 and for any κP > 0 , the origin of the zero-input (vref = 0)

error dynamics (4.12) is locally asymptotically stable.

Proof. By using the same method described in Theorem 5, the linearized dynamics equation
can be expressed as

˙̃δ = −2κPM(x∗)δ̃ ,

where δ̃ is the variation of the state around the equilibrium point. For any choice of κP > 0

the matrix −2κPM(x∗) is Hurwitz (Because M(x∗) is a symmetric positive-definite matrix)
thus leading us to the local asymptotic stability of the equilibrium point δ = 0 of the nonlinear
formation error dynamics.

Theorem 8. In the local sense, under Assumption 1, and for any κP > 0 , the error dynamics

(4.12) is bounded input bounded output (BIBO) stable.

Proof. Since the derivative of the formation error will become zero at steady state (δ̇ss(t)) = 0),
the linearized error dynamics algebraic equation is

−2R(x∗)R(x∗)TκP δ + 2R(x∗)Bvref = 0, (4.13)

which in turn leads to
δss(t) =

1

κP
M(x∗)−1R(x∗)Bvref . (4.14)

Since R(x∗) and M(x∗)−1 (M(x∗) is invertible since it is symmetric positive definite ma-
trix) are constant matrices evaluated around the equilibrium, this immediately implies that
for any bound input the formation error will also be bounded. The same actions are taken
as in Theorem 5 in order to present the full linearized dynamics of (4.12). Define the set
Ω̃ = {(x, vref )| f(x, vref ) = 0}, which represents the equilibrium set of (4.12). We are inter-
ested in linearizing the system around a zero formation error, i.e., δ = 0 and hence x = x∗

(x ∈ Ω as defined in Theorem 5). In this direction, define the set Ω2 = {(x, vref )|R(x)x−d =

0 , f(x, vref ) = 0} ⊂ Ω̃. It then follows that any (x, v) ∈ Ω2 satisfies x ∈ Ω and v = 0. We now
linearize our system around the point (x∗, 0) ∈ Ω2 to obtain the linear state space form [29]

˙̃δ = Āδ̃ + B̄ṽ

y = C̄δ̃ + D̄ṽ,

where δ̃ is the variation of the state and ṽ is the variation of the input around the equilibrium
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point. The matrix Ā is obtained by evaluating the Jacobian of the dynamics (4.12) at the
equilibrium δ = 0 (x = x∗) and at the nominal input vref = 0:

Ā =
∂f(δ, vref )

∂δ

∣∣∣∣
δ=0,x=x∗,vref=0

=
∂ (−2κPM(x)δ + 2R(x)Bvref )

∂δ

∣∣∣∣
δ=0,x=x∗,vref=0

= −2κPM(x∗) + 2

(
∂R(x)

∂δ
Bvref

)∣∣∣∣
δ=0,x=x∗,vref=0

= −2κPM(x∗).

The Marix B̄ represents the control matrix, and is obtained in a similar way:

B̄ =
∂f(δ, vref )

∂vref

∣∣∣∣
δ=0,x=x∗,vref=0

= 2R(x∗)B.

The C̄ matrix is the identity matrix reflecting the formation error vector as the output of the
system with D̄ = 0. The complete linearized dynamics equation can be expressed as

˙̃δ = −2κPM(x∗)δ̃ + 2R(x∗)Bṽ (4.15)

y = δ̃.

For a general linear system, the transfer functions matrix between the input and the output
is given according to G(s) = C̄

(
sI − Ā

)−1
B̄ + D̄ [29]. The transfer function corresponding

to the linearized dynamics (4.15) is thus

G(s) = (sIm + 2κPM(x∗))−1 2R(x∗)B = 2
adj (sIm + 2κPM(x∗))

det(sIm + 2κPM(x∗))
R(x∗)B. (4.16)

BIBO stability can be concluded simply by examining the poles of G(s), and those are
obtained by solving the characteristic equation of −2κPM(x∗). By Assumption 1, M(x∗) is
a symmetric positive-definite matrix, and therefore all of its eigenvalues are real and positive.
Therefore, for positive κP , all the eigenvalues of −2κPM(x∗) are located on the open left half
plane and hence the system is BIBO stable.

Owing to the structure of the matrices in the linearized dynamics, we are also able to provide
an analytic expression for the steady-state error and also upper bounds that are expressed in
terms of properties of the system.

Corollary 2. Given a constant reference velocity ṽ =v for the linearized dynamics in (4.15), the
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steady-state formation error is limt→∞ δ̃(t) = δ̃ss = 1
κP
M(x∗)−1R(x∗)Bv and it is bounded as

∥∥∥δ̃ss∥∥∥ ≤ ∣∣∣∣ 1

κP

∣∣∣∣
√
dmax · λmax(L(G))

λmin(M(x∗))
‖v‖ .

Proof. For a step input response of magnitude v we can use the final value theorem, since the
eigenvalues of the dynamic matrix are all in the open left-half of the complex plane.

lim
t→∞

δ̃(t) = lim
s→0

δ(s) = lim
s→0

s
1

s
G(s)v

= lim
s→0

(sIm + 2M(x∗)κP )−1 2R(x∗)Bv

=
1

κP
M(x∗)−1R(x∗)Bv.

SinceR(x∗) andM(x∗)−1 are constant matrices, this immediately implies that for any bounded
input the formation error will also be bounded. The euclidean norm of the formation error vec-
tor is considered in order to express the boundness of the steady-state error with the following
norm inequality

∥∥∥δ̃ss∥∥∥ =

∥∥∥∥ 1

κP
M(x∗)−1R(x∗)Bv

∥∥∥∥ ≤ ∣∣∣∣ 1

κP

∣∣∣∣ ∥∥M(x∗)−1
∥∥ ‖R(x∗)‖ ‖B‖ ‖v‖ . (4.17)

From the definition of B in (4.7), its norm is ‖B‖ = 1 and hence assigning a different agent
with a reference velocity does not affect the boundness of the steady state error. Also observe
that

‖M(x∗)‖ =
∥∥R(x∗)R(x∗)T

∥∥
=

∥∥diag(eT∗i )(ET ⊗ I)(E ⊗ I)diag(e∗i )
∥∥ (4.18)

≤
∥∥diag(eT∗i )

∥∥∥∥(ETE ⊗ I)
∥∥ ‖diag(e∗i )‖ .

The expression ETE is also known as Le(G), the edge Laplacian of a graph [51]. Using an
SVD decomposition, the following equations hold,

‖E‖ =
√
λmax(ETE) =

√
λmax(Le(G))

=
√
λmax(EET ) =

√
λmax(L(G)) (4.19)

=
∥∥ET

∥∥ .
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From the properties of the Kronecker product, the norm
∥∥(ETE ⊗ I)

∥∥ =
(∥∥ETE

∥∥ · ‖I‖), and
hence

∥∥(ETE ⊗ I)
∥∥ = ‖Le(G)‖. From (4.19) and since Le(G) is symmetric,

‖Le(G)‖ = ‖L(G)‖ = λmax(L(G)). (4.20)

Note also that

∥∥diag(eT∗i )
∥∥ = ‖diag(e∗i )‖

=
√
λmax [diag(eT∗i )] [diag(e∗i )]

=

√√√√√√√λmax


‖e∗1‖

2

. . .

‖e∗m‖
2

 (4.21)

=
√

max
k

(d2
k) , dmax,

where maxk(d
2
k) is the largest entry of the distance constraint vector d. From (4.18), (4.20) and

(4.21) the upper bound of ‖M(x∗)‖ is

‖M(x∗)‖ ≤ dmax · λmax(L(G)), (4.22)

and as can be seen ‖M(x∗)‖ depends on the structure of the graph. The matrix M(x∗) is
symmetric and hence ‖M(x∗)‖ = λmax(M(x∗)). This fact will help us derive an upper bound
to the norm of R(x∗);

‖R(x∗)‖ =
√
λmax [R(x∗)R(x∗)T ] =

√
λmaxM(x∗) =

√
‖M(x∗)‖. (4.23)

Combining (4.22) with (4.23) it can be concluded that

‖R(x∗)‖ ≤
√
dmax · λmax(L(G)). (4.24)

Lastly, ‖M(x∗)−1‖ should also be bounded in order to completely bound the steady state error.
The norm of the inverse of a matrix is related to its condition number. Denote γ(M(x∗))

as the condition number of a matrix M(x∗), i.e., γ(M(x∗)) = λmax(M(x∗))
λmin(M(x∗))

. By definition,
γ(M(x∗)) = ‖M(x∗)‖ · ‖M(x∗)−1‖, and hence

∥∥M(x∗)−1
∥∥ =

λmax(M(x∗))

‖M(x∗)‖λmin(M(x∗))
=

1

λmin(M(x∗))
. (4.25)
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By collecting (4.17), (4.24) and (4.25) the steady-state error can be bounded as

∥∥∥δ̃ss∥∥∥ ≤ ∣∣∣∣ 1

κP

∣∣∣∣
√
dmax · λmax(L(G))

λmin(M(x∗))
‖v‖ , (4.26)

and is affected both from properties of the structure of the graph, and from the largest entry of
the distance constraint vector.

Note that the value of the steady state error is found only in the local sense, and it is not the
real steady state value but rather an approximation. This is due to the fact that the matrices
R(x∗) and M(x∗)−1 are computed around the equilibrium points, which accure when δ is
strictly zero.

While Theorem 7 provides us with information about the stability of the autonomous sys-
tem with a positive κP , here an additional condition on κP is provided in the context of error
boundness. Explicitly, the upper bound will become smaller as κP gets larger. Keep in mind
that all that glitters is not gold and that high gains have their own drawbacks. High proportional
gains usually increase the maximum overshoot of the system and create a longer settling time.
They also directly amplify process noise and hence increase the sensitivity to noise. More-
over, when the plant has a more complicated dynamics other than single-integrators, large gain
values can lead to system instabilities (depends on the location of the system’s poles and zeros).

Some graph features affect the results of this section directly or indirectly. Firstly, for a
constant reference velocity, the centroid moves at a constant velocity proportional to the number
of the agents in a graph. Secondly, the steady state error has an upper bound related directly to
the Laplacian eigenvalues. The location of the those eigenvalues can be correlated to the graph
structure, and therefore used to identify desirable and undesirable formation interconnection
topologies.

By introducing a stabilizing proportional gain controller into the formation control scheme
we were able to accomplish the task of reducing the formation tracking error. That task does
not fully meet the requirements of the main objective described in Chapter 3. There is a need
to find a more efficient controller in order to completely eliminate the steady-state error. The
PI controller qualifies for that task and will be discussed broadly in the next section.

Simulations

We now demonstrate the results of Theorem 8 and Corollary 2 with a numerical example.
Consider two minimally infinitesimally rigid frameworks with 6 agents as illustrated in Figure
4.3. The graph in Figure 4.3(a) has λmax(L(G)) = 6 while the graph in Figure 4.3(b) has
λmax(L(G)) = 5.343. In order to know how the steady state error is affected by different types
of graphs, the mobile agents are driven by the dynamics in (4.9) under control law (4.11) and
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are initialized with arbitrary positions and zero velocities. We would expect a graph with a
lower λmax(L(G)) to yield a smaller upper bound, according to Corollary 2.
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(a) Graph 1.
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2 11

(b) Graph 2.

Figure 4.3: The distance constraint vector d as it is presented graphically on a two types of graphs.

The desired inter-agents distances were chosen such that the target formation will have the
same geometric shape, and are labeled above the edges of each graph in Figure 4.3. Also, only
the green colored agent is injected with a reference velocity, with a magnitude of 0.2[m/sec].

The motion of the agents is illustrated in Figure 4.4 in which the initial positions are marked
with grey circles and the final positions (at tfinal) with numbered circles. The dashed lines are
the trajectories of each agent and the proportional controller gain was initially set to κP = 2.

1

2 3

4

56

3

(a) Agents trajectories according to Figure 4.3(a).

1

2 3

4

56

3

(b) Agents trajectories according to Figure 4.3(b).

Figure 4.4: A MIR formations tracking a leader.

Figure 4.5 describes the norm of the true error, δ. It can be seen that the steady state
error indeed closely matches the linearized steady state value, marked in a green dashed line,
as it is derived from (4.17). As a comparison, the true steady state value of Figure 4.5(a) is
δss = 0.0411 while the steady state value from Figure 4.5(b) is δss = 0.0418. Sharp-eyed
readers may see that although the bound for Graph 2 (in Figure 4.4(b)) is smaller than that for
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Graph 1 (in Figure 4.4(a)), the simulation actually shows a smaller steady state error for Graph
1. That is due to the fact that the bound is not tight and is only an approximation which was
derived from the linearized version of the non-linear system.

In line with the expectations, smaller λmax(L(G)) does cause the upper bound to be smaller,
but this does not promise us that is how it will be for other types of graphs. The combination of
λmax(L(G)), λmin(M(x∗)), and dmax should be considered as a whole in order to examine this
bound accurately. In this example the framework in Figure 4.4(a) has λmin(M(x∗)) = 0.57 and
the framework in 4.4(b) holds λmin(M(x∗)) = 1.996 which according to Corollary 2 affirms
the correctness of the results. Lastly, as κP increases, the steady state formation error gets
smaller. This can be observed by the norm of the error for different values of κP in Figure 4.6.
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(a) The formation error norm, ‖δ‖, in correspondence
to the formation in Figure 4.3(a).
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(b) The formation error norm, ‖δ‖, in correspondence
to the formation in Figure 4.3(b).

Figure 4.5: The norm of the formation tracking error with an upper bound
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Figure 4.6: Norm of the formation error for different κP gain values.
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4.2.2 Proportional Integral Control

So far we have shown that by using a proportional control we can reduce the formation error,
but not eliminate is completely. By looking at the external velocity from a different perspec-
tive, we can come up with another type of control that will help us achieve this goal. The
external reference velocity may be thought of as a disturbance to the system dynamics, causing
a steady state error. As described extensively in the literature [4,29,38], one of the proportional
integral controller capabilities is disturbances rejection. By adding an integral term, which is
proportional to both the magnitude of the error and the duration of the error, we are able to
eliminate the residual steady-state error that occurs with a pure proportional controller. Exam-
ining the eigenvalues of the linearized error dynamics with the PI controller will tell us that it
is asymptotically stable, and simulations are presented to support this result.

The next equation describes a proportional-integrator controller that is implemented as the
controller C in (4.10),

u(t) = −R(x)TκP (R(x)x(t)− d)−R(x)TκI

ˆ T

0

(R(x)x(τ)− d) dτ, (4.27)

where κP and κI are scalar constants.
The integrator used in the controller introduces a new state-variable into the system,

ζ̇ = κI (R(x)x(t)− d) , (4.28)

and by combining (4.9) with control law (4.27) the closed-loop dynamics can be expressed as[
ẋ(t)

ζ̇(t)

]
=

[
−κPR(x)TR(x) −R(x)T

κIR(x) 0

][
x(t)

ζ(t)

]
+

[
κPR(x)T

−κII

]
d+

[
B

0

]
vref . (4.29)

Examining the system from the error vector point of view will be helpful when discussing
the stability near the origin. By a coordinate transformation as in (4.3), and by using (4.2.2),
the formation error dynamics are

[
δ̇(t)

ζ̇(t)

]
=

[
−2κPM(x) −2M(x)

κII 0

][
δ(t)

ζ(t)

]
+

[
−2R(x)B

0

]
vref , (4.30)

where M(x) = R(x)R(x)T.

Theorem 9. Given that Assumption 1 holds, for any kP , kI > 0, the origin of the zero-input

(vref = 0) error-dynamics in (4.2.2) is asymptotically stable.
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Proof. By following a similar procedure as in Theorem 5, we note that for any x∗ ∈ Ω , δ is
zero by definition, which in turn leads to the equilibrium condition ζ = 0. Hence, any x∗ ∈ Ω

corresponds to an equilibrium point. Denote

A(x) =

[
−2κPR(x)R(x)T −2R(x)R(x)T

κII 0

]
.

Linearizing around x = x∗ gives us the linearized dynamics[
˙̃δ(t)
˙̃ζ(t)

]
=

[
−2κPM(x∗) −2M(x∗)

κII 0

][
δ̃(t)

ζ̃(t)

]
,

where M(x∗) = R(x∗)R(x∗)T as before.
By Assumption 1, M(x∗) is a symmetric positive-definite matrix, and therefore all of its

eigenvalues are real and positive. Denote the eigenvalues of M(x∗) as µi. In order to learn
about the location of the eigenvalues of A(x∗), we need to solve its characteristic equation. The
following lemma will be useful for the analysis.

Lemma 2. ( [9])

The determinant of a block matrix A =

[
A11 A12

A21 A22

]
is given by the formula

|A| = |A22|
∣∣A11 − A12A

−1
22 A21

∣∣ . (4.31)

From Lemma 2, the characteristic polynomial of A(x∗) is thus

|λI − A(x∗)| = |λI|
∣∣∣∣λI + 2κPM(x∗) +

2

λ
kIM(x∗)

∣∣∣∣
=
∣∣λ2I + (2κPλ+ 2κI)M(x∗)

∣∣ .
Since M(x∗) is symmetric, it is also diagonalizable, i.e., there exists a matrix Q such that
M(x∗) = Q−1DQ, where D = diag(µi). Hence, the characteristic polynomial can be written
as

|λI − A(x∗)| =
∣∣λ2Q−1Q+ (2κPλ+ 2κI)Q

−1DQ
∣∣

=
∣∣λ2I + (2κPλ+ 2κI)D

∣∣
=

m∏
i=1

(
λ2 + (2κPλ+ 2κI)µi

)
.
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The ith eigenvalue of A(x) can be computed as

λi =
−2κPµi ±

√
4 (κPµi)

2 − 8κIµi

2
. (4.32)

Since µi > 0 is positive, it follows that κp must be positive in order for the real part of λi to be
in the open left-half plane. Furthermore, for positive κI , all the eigenvalues must also be in the
left-half plane. Therefore, for any κp, κI > 0, by Lyapunov’s indirect method, we conclude that
the zero-input (vref = 0) error-dynamics in (4.2.2) is asymptotically stable at the equilibrium
point δ = 0, ζ = 0.

Simulations

We now demonstrate the results of Theorem 9 with a numerical example. Consider a group of
6 mobile agents implementing the PI formation controller (4.2.2). A single leader is injected
with a reference velocity forming a circle. The resulting trajectories are shown in Figure 4.7(a);
the initial positions are depicted in grey and the leader is labeled by the green node. All of the
agents have zero initial velocities. A value of κP = 2 and κI = 3 were used for the control.
As shown in Figure 4.7(b), the PI controller leads to a zero steady-state error for the formation.
However, since the integral term responds to accumulated errors from the past, it can cause the
present value to overshoot the setpoint value or cause oscillations to the error.
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(a) An MIR formation tracking a leader with a PI con-
troller.
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(b) The steady-state error ‖δ(t)‖ asymptotically con-
verges to 0.

Figure 4.7: PI Formation control with velocity reference.

It is in our interest to verify that the PI controller can handle slowly time varying distur-
bances. As described in Figure 4.8(a), the green leader is injected with a sinusoidal reference
velocity and the remaining agents have to follow it while maintaining the pre-defined inter-
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agents distances. Indeed, as shown in Figure 4.8(b), the PI controller does a really good job to
reject those disturbances.
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(a) An MIR formation with a PI controller tracking a
leader with slow time varying reference velocity.
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(b) The PI controller leads to a satisfactory small error
‖δ(t)‖ .

Figure 4.8: PI Formation control with time varying velocity reference.
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Chapter 5

Double-Integrator Dynamics

In this chapter, we extend our discussion to a second order system with agents having a double
integrator dynamics where the goal is for the agents to acquire and maintain a predefined shape
in the plane. Secondly, the agents are required to simultaneously acquire a formation and move
cohesively following an agent with external velocity reference. For that purpose a rigidity-
based control law is applied along with a velocity tracking mechanism.

Similarly to the previous chapter, we first show that the centroid of the formation moves in a
constant velocity, which is determined by the initial velocities of the agents. Then we derive an
associated dynamical system based on the formation error, which now comprises the distance
error vector and the velocities error vector. We then provide a local stability proof for the error
dynamics by using Lyapunov’s direct method.

5.1 Distance-Constrained Formation Stabilization

The goal of this section is to introduce a controller ui such that the terms defined by (3.4) in
Chapter 3 are satisfied. It will be shown that formation acquisition requires additional velocity
feedback based on the Laplacian consensus dynamics. Consider a system of n (n ≥ 2) kine-
matic point masses (also refer to as agents), moving in a 2-dimensional Euclidean space. The
motion of each agent is modeled as second-order integrator,[

ẋi(t)

v̇i(t)

]
=

[
0 I2

0 0

][
xi(t)

vi(t)

]
+

[
0

I2

]
ui(t), (5.1)

where xi(t), vi(t) ∈ R2 are the position and velocity of the i-th robot respectively and ui(t) ∈
R2 denotes the control input.

As the objective is to find a control law that will cause the agents to maintain a predefined
shape, the distance-based control law in (3.7) is solely implemented as the acceleration input:
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[
ẋ(t)

v̇(t)

]
=

[
0 I

−R(x)TR(x) 0

][
x(t)

v(t)

]
+

[
0

R(x)T

]
d. (5.2)

As can be seen from the problem statement simulations in Chapter 3, that describes the
dynamics in (5.2) for a 6 agents system, we see a phenomena where the agents cannot maintain
the desired hexagon formation (as in Figure 3.3(a)).

This phenomena can be easily explained by looking at the dynamics of the system when
the formation error is zero. At a specific point of time, t0, although the agents have reached the
desired formation, their velocities, v(t0), are not necessarily zero. They will keep on moving,
breaking the formation over and over again. In contrast to the first order system, the acceleration
will instantaneously become zero and not the agent’s velocity.

In order to overcome this problem, a new control law is proposed that causes the distance
error vector to converge to zero and also ensures that the velocities will reach consensus. This
control law is based both on a gradient control law that was proposed in (3.7) and on the Lapla-
cian consesus dynamics. The latter describes dynamics that is implemented with a distributed
control law that drives the states from their initial condition to a consensus, and conserves the
sum of the initial states [25, 41]. Each agent implements the following control law:

ui(t) = −
∑
j∼i

(
‖ek‖2 − dk2

)
ek −

∑
j∼i

(vj − vi) . (5.3)

A scheme for the closed loop dynamics is presented in Figure 5.1 and is written in state
space form as:[

ẋ(t)

v̇(t)

]
=

[
0 I2n

−R(x)TR(x) − (L⊗ I2)

][
x(t)

v(t)

]
+

[
0

R(x)T

]
d (5.4)

R(x)T

ˆ

L⊗ I2

ˆ

R(x)

d v̇ ẋ

−
x

−

Figure 5.1: A formation control for a second order system is augmented with a velocity controller to ensure
velocities consensus.
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As a first step, the performance of the centroid under the implementation of the new control
law is examined by the next theorem.

Theorem 10. Consider the system (5.1) with the control law in (5.3). Then the centroid of the

formation, (3.9), moves at the constant velocity 1
n

(
1T
n ⊗ I2

)
v(0), which is the initial velocities

average.

Proof. The velocity of the centroid is given in the following equation by introducing the double
integrator system (5.1) into (3.9):

v̄(t) = ˙̄x(t) =
1

n

n∑
i=1

ẋi(t) =
1

n

(
1T
n ⊗ I2

)
ẋ(t) =

1

n

(
1T
n ⊗ I2

)
v(t). (5.5)

Note that the centroid’s velocity, v̄ ∈ R2, is the average of all agents’ velocities. Observe from
(2.1) that

(
1T
n ⊗ I2

)
R(x)T =

(
1T
n ⊗ I2

)
(E ⊗ I2)diag(ei) = 0 due to the fact that 1n is in the

left null space ofE. The same applies for
(
1T
n ⊗ I2

)
(L⊗I2) =

(
1T
n ⊗ I2

)
(E⊗I2)(ET⊗I2) =

0, from the Laplacian definition in Section 2.2. By using those properties and (5.7), we examine
the dynamics of the centroid,

˙̄x = v̄ (5.6)

˙̄v =
1

n

(
1T
n ⊗ I2

)
v̇(t)

=
1

n

(
1T
n ⊗ I2

) (
−R(x)T δe − (L⊗ I) v

)
= 0.

As can be seen, the centroid moves at a constant velocity, which is determined by the initial
velocities of the agents, concluding the proof.

Corollary 3. Consider the system (5.1) with the control law in (5.3). For agents with zero

initial velocities, the centroid of the formation, (3.9), is stationary.

Proof. The corollary is a direct consequence of Theorem 10.

In order to discuss the stability near the origin, an appropriate system’s error is derived.
Since the velocities consensus dynamics conserves the sum of the velocities, the error is con-
nected to the definition of the centroid (3.9). Let δv ∈ R2n be the velocities error vector, defined
as the difference between the velocity of each agent to the centroid’s velocity , i.e.,

δv =


...

vi − v̄
...

 = v − (1n ⊗ v̄) . (5.7)
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Note that we can also write δv in terms of the agents’ velocities by using (5.5) and (5.7):

δv = v − (1n ⊗ I2) v̄

= v − (1n ⊗ I2)
1

n

(
1T
n ⊗ I2

)
v

= v − 1

n

(
1n1

T
n ⊗ I2

)
v

=

[(
In −

1

n
1n1

T
n

)
⊗ I2

]
v. (5.8)

Theorem 10 has shown that the centroid’s velocity is an invariant quantity. The invariance
of v̄ = 1

n

(
1T
n ⊗ I2

)
v gives more information on the velocities error vector. From the definition

in (5.7), v can be written as:

v = (1n ⊗ v̄) + δv. (5.9)

By looking at (5.9), δv can be referred to as the group velocity disagreement vector and it
reflects the velocity deviation of the agents from the centroid’s velocity. The error δv is orthog-
onal to 1 and it also belongs to an (2n− 1) dimensional subspace (known as the disagreement

eigenspace of L⊗ I2 for a connected graph [30]) and satisfies the equation

(
1T ⊗ I2

)
δv = 0. (5.10)

The last equation can be easily achieved by left multiplying (5.7) with
(
1T ⊗ I2

)
. This

property appears to be necessary in order to prove the stability of the system.

5.1.1 Formation Stability Analysis

In this section we provide a stability analysis for the second order system in (5.4) by examin-
ing its error dynamics. By using Lyapunov’s direct method the system is proven to be locally
asymptotically stable. In contrast to Chapter 4 Lyapunov’s indirect method does not work. The
linearized state matrix has non-positive eigenvalues (zeros and negative eigenvalues), and the
origin of the nonlinear error dynamics cannot be inferred as stable. In addition, the correspond-
ing eigenvectors are also stated here to confirm this result.

As we are concerned with the behavior of the error, an augmented error vector ∆ ∈ Rm+2n

is now defined, which comprises the distance error δe ∈ Rm, defined in (3.3), and the velocities

error vector, δv ∈ R2n, defined in (5.7),

∆ =

[
δe

δv

]
=

[
R(x)x− d

v − (1n ⊗ I2) v̄

]
. (5.11)
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The differentiation of the error (5.11) with respect to time is[
δ̇e

δ̇v

]
︸ ︷︷ ︸

∆̇

=

[
2 diag(eT

i )ė

v̇ − (1n ⊗ I2) ˙̄v

]
=

[
2 diag(eT

i )(ET ⊗ I2)ẋ

−R(x)T (R(x)x− d)− (L⊗ I) v

]
, (5.12)

where the results of the right hand side can be explained by (5.6). Introducing 2 equations that
will help us to rewrite (5.12) using the fact that 1n is in the right null space of ET

2R(x)δv = 2 diag(eT
i )(ET ⊗ I2) [v − (1n ⊗ I2) v̄] = 2R(x)v, (5.13)

− (L⊗ I2) δv = −(E ⊗ I2)(ET ⊗ I2) [v − (1n ⊗ I2) v̄] = − (L⊗ I2) v. (5.14)

By using (5.13 , 5.14), (5.12) becomes

[
δ̇e

δ̇v

]
=

[
2R(x)v

−R(x)T δe − (L⊗ I2) v

]
=

[
2R(x)δv

−R(x)T δe − (L⊗ I2) δv

]
, (5.15)

and can be represented as an autonomous system for the error:[
δ̇e

δ̇v

]
=

[
0 2R(x)

−R(x)T − (L⊗ I2)

]
︸ ︷︷ ︸

A(x)

[
δe

δv

]
. (5.16)

Also note that the control law (5.3) can be written in terms of the error vector by using
(5.14),

u = −R(x)TR(x) +R(x)Td− (L⊗ I) v

= −R(x)T δe − (L⊗ I) δv. (5.17)

As in the previous chapter, we use Assumption 1 in order to check stability by linearizing
the system around an equilibrium of an MIR framework.

To correlate the states to the errors we define the set

Ω2 = {(x, v) |R(x)x− d = 0, (1n ⊗ I2) v̄ − v = 0} .

For any (x∗, v∗) ∈ Ω2, δe = 0 and δv = 0 by definition, hence any (x∗, v∗) ∈ Ω2 corresponds
to an equilibrium of (5.16). Again, M(x) is denoted as M(x) = R(x)R(x)T. Evaluating the
Jacobian of the dynamics (5.16) at the equilibrium ∆ = 0 (x = x∗, v = v∗) gives
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∂ (A(x)∆)

∂∆

∣∣∣∣
∆=0,(x,v)=(x∗,v∗)

=

(
∂ (A(x))

∂∆
∆

)∣∣∣∣
∆=0,(x,v)=(x∗,v∗)

+

(
A(x)

∂∆

∂∆

)∣∣∣∣
∆=0,(x,v)=(x∗,v∗).

(5.18)

The linearized dynamics equation thus can be expressed as

˙̃∆ = A(x∗)∆̃ , (5.19)

where ∆̃ is the variation of the state around the equilibrium point. The explicit form for the
linearized dynamics is [

˙̃δe
˙̃δv

]
=

[
0 2R(x∗)

−R(x∗)T − (L⊗ I2)

][
δ̃e

δ̃v

]
, (5.20)

and it allows for a more transparent understanding of the eigenvalues. The next theorem ex-
plains why linearization can not be used to infer stability.

Theorem 11. The matrix A(x∗), which describes the linearized error dynamics (5.20) around

the equilibrium, has at least three eigenvalues at the origin.

Proof. One way of showing that A (x∗) has eigenvalues at the origin is to find an eigen-
vector that corresponds to the zero eigenvalue. Define u1 ∈ R2n and u2 ∈ R2n as u1 =(
1n ⊗

[
1 0

]T)
and u2 =

(
1n ⊗

[
0 1

]T)
correspondingly and recall that 1n belongs

to the right null space of R(x) and to the right null space L. Each one of them relates to a
translation of the framework in a different direction [50]. The use of the kronecker product
allows us to write:

(L⊗ I2)u1 = 0

(L⊗ I2)u2 = 0, (5.21)

and hence
[

0m uT1

]T
and

[
0m uT2

]T
are both eigenvectors of A(x∗) that lead to a zero

eigenvalue. There is also a third eigenvalue of the rigidity matrix with a corresponding zero
eigenvalue, that relates to a rotation of the framework [50]. Define the position vector x̂i ∈ R2

as a permutation on the position vector of agent i such that

x̂i =

[
0 1

−1 0

]
xi. (5.22)
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Furthermore, define the vector u3 ∈ R2n as

u3 =
[
x̂T1 · · · x̂Tn

]T
. (5.23)

It can now be verified that from this construction that

R(x∗)u3 = 0. (5.24)

Note that u3 does not belong to the null space of L, i.e. (L⊗ I2)u3 6= 0. Denote u4 ∈ Rm as a

non zero vector in order to create the augmented eigenvector
[
uT4 uT3

]T
of A(x∗). In order

to find another eigenvector that correspond to a zero eigenvalue, we need to find what u4 is by
looking at the equation:

R (x∗)T u4 − (L⊗ I2)u3 = 0. (5.25)

To find the explicit expression for u4 we can use the Moore-Penrose pseudoinverse of
R(x∗)T , since it is not a square matrix, and it is full row rank for an MIR framework:

u4 =
[
R (x∗)R (x∗)T

]−1

R (x∗) (L⊗ I2)u3. (5.26)

Thus,
[
uT4 uT3

]T
is the third eigenvector of A(x∗) corresponding with the zero eigenval-

ue.

Lyapunov’s Indirect Method does not deal with linearized systems that have eigenvalues at
the origin and we can not infer on the stability of the system. Nevertheless, it can be shown that
the nonlinear system is asymptotically stable by using Lyapunov’s direct method.

Theorem 12. Under Assumption 1, both the formation error dynamics and the velocity error

dynamics (5.16) are locally asymptotically stable.

Proof. Consider the following Lyapunov function:

W =
1

2
δTe δe + δTv δv, (5.27)

where W is continuously differentiable in δe and in δv.
The derivative of (5.27) is

Ẇ = δTe δ̇e + 2δTv δ̇v

= −2δTe R(x)δv + 2δTv R(x)δe − 2δTv (L⊗ I2) δv

= −2δTv (L⊗ I2) δv ≤ 0. (5.28)
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Hence, the time derivative ofW is negative semi-definite (Ẇ ≤ 0). It is not strictly negative
definite because Ẇ = 0 for any δv ∈ S, where S = {δv| (L⊗ I2) δv = 0}, irrespective of the
value of δe. That means the origin is a stable equilibrium, but not necessarily asymptotically
stable. The set S also implies a velocity consensus, i.e., δv1 = δv2 = ... = δvn . By using (5.10)
we can conclude that the δvi = 0 ∀i = 1...n and at steady state, the components of δv will be
zero in each direction.

LaSalle’s invariance principle implies that the errors converge to a set of configurations S.
Furthermore, in S, δv = 0 and vi = v̄ ∀i. The velocity error dynamics is:

δ̇v = R(x)T δe = 0. (5.29)

For aMIR graphs,R is of full row rank, and δe must be zero in order for (5.29) to hold. The
conclusion is that the trajectories will converge to the largest invariant set {δe, δv| δv = 0 , δe = 0}
and at least asymptotically the control goal is achieved.

The velocities consensus feedback control can be interpreted essentially as a PD-like con-
troller of the system. Both describe a control mode in which a derivative section is added to
the existing controller. In order to avoid effects of the sudden change in the value of the error
signal, the derivative is taken from the output response of the system variable instead of the
error signal. In our case, the velocities of the agents are considered to be the output response
of the system.

5.1.2 Simulations

In order to demonstrate Theorem 12 and Corollary 3 consider for example a 6 agents system,
in which each agent is implemented with a distributed control law as in (5.3). As can be seen
in Figure 5.2(a), for an arbitrary initial positions (depicted in grey), the formation reaches the
desired hexagon shape (depicted with bold lines). Furthermore, the initial velocities of the
agents are all set to zero, which means that the centroid of the system remains stationary. The
norm of the formation error is plotted in Figure 5.2(b) showing that there is no steady state
formation error. Also, the norm of the velocity error is plotted in Figure 5.2(c) showing zero
steady state error, which implies that the agents have stopped moving.
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(a) An MIR formation With 6 agents.
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(b) A plot of ‖δe(t)‖ showing a zero steady-state dis-
tance error.
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(c) A plot of ‖δv(t)‖ showing a zero steady-state ve-
locity error.

Figure 5.2: Zero steady-state errors for MIR formation implementing control law (5.3).

In a different case, where the agents are initialized with arbitrary velocities, we expect to
see the formation moving. According to Theorem 10, the velocity of the centroid is determined
by the average of the initial velocities. This fact is demonstrated in Figure 5.3(a), where the
same 6 agents are being initialized with

v1(0) =

[
0

0

]
v2(0) =

[
1

2

]
v3(0) =

[
−1

0

]

v4(0) =

[
−3

2

]
v5(0) =

[
0

3

]
v6(0) =

[
−1

−1

] ,

and all units are in meter per second. Calculation of the centroid’s velocity yeilds

v̄ =

[
−4/6

6

]
m/sec,
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supporting the proof.
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(b) A plot of ‖δe(t)‖ showing a zero steady-state dis-
tance error.
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(c) A plot of ‖δv(t)‖ showing a zero steady-state ve-
locity error.

Figure 5.3: Zero steady-state errors for MIR formation implementing control law (5.3) with arbitrary initial ve-
locities.

5.2 Formation Control With Velocity Reference

We are interested in making the formation of the second order system, at the same manner as
for the first order system, follow an external reference velocity. By injecting the reference value
into the dynamics of one of the agents, we show that the centroid will follow that velocity by
using an appropriate decentralized control.

Consider one agent as a leader with an external reference velocity command, as descibed in
(5.30), where the objective of the formation is to follow the leader at the same velocity while
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preserving the inter-agents distances,

ẋ = v

v̇ = u+Bvref , (5.30)

where B ∈ R2n×2 is used to indicate which agent in the formation may receive the external
velocity reference, vref ∈ R2 (i.e., if agent i is the leader, then the ith block of B is I2, and the
remaining blocks are zero).

The addition of a velocity reference to the agent designated as a leader together with the
control law in (5.4) leads to the following dynamics,

ẋ = v

v̇ = −R(x)T (R(x)x− d)− (L⊗ I) v +Bvref . (5.31)

In Section 4.2 we showed that for a first order system with a reference velocity command,
a steady state distance error can be overcome by using a stabilizing controller, such as a PI
controller. Nevertheless, the same phenomena doesn’t occur for the augmented error in the
second order system and is demonstrated by a simple example shown in Figure (5.4(a)). Here,
6 agents are tasked with maintaining a hexagon shape formation (satisfying Assumption 1)
while tracking the designated leader (marked in green) with a constant reference velocity. The
external reference changes the equilibria of the system and without a proper stabilizing control
the distances will exhibit a small steady-state error. This can be seen in Figure (5.4(b)) where
the (non zero) steady-state distances error, ‖δe(t)‖, is plotted. Figure (5.4(c)) plots ‖δv(t)‖
showing that the steady-state velocity error is zero. According to the definition of δv in (4.2),
it also means that the velocities of the agents reach a new consensus equal to the velocity of
the centroid. The reason for that is because the integral action on the velocity error is obtained
through the double-integrator dynamics of the agents. After closing the control loop on the
velocities, the additional integrator of the dynamics reacts to the integral of the velocity error
and eliminates it, similarly to a PI controller.

Before analyzing the stability of the control scheme proposed in (5.31), we first examine
the performance of the formation with a leader. In particular, we show that for the dynamics in
(5.31) the acceleration of the formation centroid will be proportional to the reference velocity,
vref . Furthermore, we show that the ceontroid, and consequently the agents, will not follow the
reference velocity and another simple feedback mechanism is needed.

Theorem 13. Consider the system (5.31). Then for a constant reference velocity, vref = const,

the centroid of the formation, (3.9), accelerates at a constant velocity equals to 1
n
vref .

Proof. Following the same steps as in Theorem 10, the dynamics of the centroid for the system
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(a) An MIR formation tracking a leader.
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(b) A plot of ‖δe(t)‖ showing a steady-state distance
error.
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(c) A plot of ‖δv(t)‖ showing a steady-state velocity
error.

Figure 5.4: Without any additional control, tracking a leader leads to a steady-state error in the formation.

in (5.31) will be

˙̄x =
1

n

(
1T
n ⊗ I2

)
ẋ =

1

n

(
1T
n ⊗ I2

)
v

˙̄v =
1

n

(
1T
n ⊗ I2

)
v̇

=
1

n

(
1T
n ⊗ I2

) [
−R(x)T δe − (L⊗ I) δv +Bvref

]
=

1

n

(
1T
n ⊗ I2

)
Bvref (5.32)

In the case that only one agent is being controlled (i.e., (1T
n ⊗ I2)B = I2), the centroid

dynamics reduces to

˙̄x = v̄

˙̄v =
1

n
vref (5.33)
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Moreover, (5.32) reveals that the acceleration of the centroid is proportional to the reference
velocity. In particular, when vref = const, the centroid will accelerate at a constant velocity
equals to 1

n

(
1T
n ⊗ I2

)
Bvref , concluding the proof.

As evidence, the leader in the formation described in Figure 5.4(a) is injected with external

constant velocity vref =

[
2

−2

]
. The acceleration of the centroid is ˙̄v =

[
1/3

−1/3

]
which is

consistent with the proof.

5.2.1 Leader’s Velocity Feedback Control

As can be seen, the formation is not driven by the velocity reference in the way we want. In
the second order system, the purpose of vref is to determine the velocity of the formation as a
whole, meaning that each agent should have a steady state velocity equal to vref .

For that purpose we want to find a decentralized control to manipulate the velocity of the
agents according to vref . Without loss of generality, we assume that agent number 1 is the leader
and is driven by an inner control loop such that its velocity will attain the reference velocity.
The remaining agents are not aware of the external reference velocity and are manipulated only
by their own preceding dynamics as in (5.34)

u1(t) = −
∑
j∼1

(
‖ek‖2 − dk2

)
ek −

∑
j∼1

(vj − v1) + vref − v1 (5.34)

ui(t) = −
∑
j∼i

(
‖ek‖2 − dk2

)
ek −

∑
j∼i

(vj − vi) ∀i 6= 1.

The closed loop dynamics can be written in state space form as:

ẋ = v

v̇ = −R(x)T (R(x)x− d)− (L⊗ I) v +Bvref −BBTv, (5.35)

where BBT ∈ R2n×2n is a block diagonal matrix and is used to indicate that the feedback
comes from the agent that has received the external velocity reference, vref ∈ R2 (i.e., if agent
i is the leader, then the ith diagonal block of BBT is I2, and the remaining blocks are zero).
Such control scheme is also depicted in Figure 5.5.
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R(x)T

B

BT

ˆ

L⊗ I2

ˆ

R(x)

d

Vref −

BT δref

v̇ ẋ

−
x

−

Figure 5.5: Velocity feedback mechanism to ensure velocity tracking of vref .

5.2.2 Stability Analysis

In this section the stability of the second order system described in (5.35) with the feedback
controller is analyzed and discussed. It is shown that the system is locally asymptotically stable.

Intuitively, in order to do that, we define the following error

δref = v − (1n ⊗ I2) vref . (5.36)

The error δref belongs to R2n and states the difference between the velocity of each agent to
the reference velocity vref . It is also presented in Figure 5.6, together with δe as an observable
output of the second order system with a reference velocity command in (5.31).
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R(x)T

B

1n ⊗ I2

ˆ

L⊗ I2

ˆ

R(x)

d

Vref −

v̇ ẋ

−

δref

x

−

δe

Figure 5.6: The second order system with a velocity reference command.

With the help of matrix B ∈ R2n×2, (5.36) can be manipulated to present the velocity error
for the leader:

BT δref = BTv − vref . (5.37)

where BT (1n ⊗ I2) = I2 is the unit coefficient of vref and BT δref is noted in Figure 5.5.
For a constant reference velocity, the dynamics of (5.35) can be written in terms of the

defined errors by using (5.13) and (5.37):

ẋ = v

v̇ = −R(x)T δe − (L⊗ I) v −BBT δref , (5.38)

and it will be useful in our journey to prove stability using Lyapunov’s direct method.
Before analyzing the stability of the system, we show that for the dynamics in (5.38), the

acceleration of the formation centroid is proportional to the reference error of the leader. In
order to examine the connection between the centroid dynamics to the new defined reference
error, analysis of the centroid dynamics equation is needed.

Theorem 14. Consider the closed loop system (5.38) with a reference velocity vref . Then the

centroid of the formation, (3.9), moves at the acceleration − 1
n
BT δref .
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Proof. Implementing the formation dynamics (5.38) into (3.9):

v̄ =
1

n

(
1T
n ⊗ I2

)
ẋ =

1

n

(
1T
n ⊗ I2

)
v (5.39)

ā =
1

n

(
1T
n ⊗ I2

)
v̇

=
1

n

(
1T
n ⊗ I2

) [
−R(x)T δe − (L⊗ I2) v −BBT δref

]
.

First, the velocity of the centroid is independent of the vref (at least implicitly), and equal
to the average of the agents’ velocities. Secondly, in the proof of Theorem 10 it was shown that
1n belongs to the left null space of R(x)T and L, hence,

ā = − 1

n

(
1T
n ⊗ I2

)
BBT δref = − 1

n
BT δref . (5.40)

It can be seen that the acceleration of the centroid is depended on the leader’s velocity and
on the reference velocity. When the expression BT δref converges to zero, the velocity of the
centroid will be constant (zero acceleration). Note also that BT δref = 0 means that the leader
is moving at the same speed as the velocity reference.

Remark 2. By using the velocity control law in (5.17) we have shown velocity consensus that

caused δv = 0, i.e. v1 = v̄. Assuming the 5.34 is a stabilizing controller, by combining leader’s

inner controller with (5.17) we can conclude that the centroid’s velocity will be equal to the

reference velocity (v̄ = vref ).

The stability of the system is shown by using Lyapunov’s Direct Method and by using the
dynamics of the formation error descibed in (4.2) and the reference error described in (5.36).

The formation error dynamics defined in (4.2) has not changed, i.e., δ̇e = 2R(x)v. Further-
more, by using (5.36) along with the fact that 1n belongs to the right null space of R(x)T , the
derivative of δe can be written as:

δ̇e = 2R(x)δref . (5.41)

Next, we derivate the reference-centroid error, δref , defined in (5.36) with a constant refer-
ence velocity:

δ̇ref = v̇. (5.42)

Theorem 15. Under Assumption 1, formation error dynamics (5.41) and the reference error

dynamics (5.42) are locally asymptotically stable.

Proof. To show the stability of system (5.38) we use the Lyapunov direct method with the
following Lyapunov function:

W =
1

4
δTe δe +

1

2
δTrefδref . (5.43)
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where W is continuously differentiable in δe and in δref . The derivative of (5.43) yields

Ẇ =
1

2
δTe δ̇e︸ ︷︷ ︸
A

+ δTref δ̇ref︸ ︷︷ ︸
B

. (5.44)

According to (5.13) and (5.41), expression A is

1

2
δTe δ̇e =

1

2
δTe 2R(x)v = δTe R(x)δref , (5.45)

and from (5.42) expression B is

δTref δ̇ref = δTref v̇

= δTref
[
−R(x)T δe − (L⊗ I) v −BBT δref

]
(5.46)

= −δTrefR(x)T δe − δTref (L⊗ I) v − δTrefBBT δref .

According to the definition of δref , i.e., (5.36), and the fact that 1n belongs to the left null space
of L:

δTref (L⊗ I) v =
[
vT − vTref

(
1Tn ⊗ I2

)]
(L⊗ I) v = vT (L⊗ I) v. (5.47)

By using (5.47), (5.46) can now be written as:

δTref δ̇ref = −δTrefR(x)T δe − vT (L⊗ I) v − δTrefBBT δref . (5.48)

By introducing (5.45) and (5.48) into (5.44):

Ẇ = δTe R(x)δref − δTrefR(x)T δe − vT (L⊗ I2) v − δTrefBBT δref , (5.49)

we can write down the derivative of the Lyapunov function in its simplified form by using
(5.36):

Ẇ = −vT (L⊗ I2) v −
(
BTv − vref

)T (
BTv − vref

)
. (5.50)

Hence, the time derivative of W is negative semidefinite (Ẇ ≤ 0). It is not strictly negative
definite because Ẇ = 0 for any v ∈ S2, where S2 =

{
v| (L⊗ I2) v = 0, BTv − vref = 0

}
.

That means the origin is a stable equilibrium, but not necessarily asymptotically stable. The
set S2 also implies a velocity consensus, i.e., v1 = v2 = ... = vn. Moreover, BTv − vref can
only be zero in one point which implies v1 = vref . The equation BTv − vref = 0 together
with (L⊗ I2) v = 0 means that every agent will have the same velocity equals to the reference
velocity. The set S2 can be written in terms of δref by using (5.47):

S2 =
{
δref | (L⊗ I2) δref = 0, BT δref = 0

}
.
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LaSalle’s invariance principle implies that the errors converge to a set of configurations S2.
Furthermore for a constant reference velocity, in S2, v1 = vref , and vi = vj ∀i. Thus, we can
conclude that δref = 0. Accordingly, from (5.38) and (5.42) the velocity error dynamics is:

δ̇ref = −R(x)T δe = 0. (5.51)

For a MIR graphs R is a full row rank, δe must be zero in order for the last equation to
hold. The conclusion is that the trajectories will converge to the largest invariant set

{
(δe, δref ) | δe = 0 , δref = 0 , BT δref = 0 ∀i

}
and at least asymptotically the control goal is achieved.

Finally, the next theorem deals with the centroid’s dynamics at steady state, once the stabil-
ity has been shown.

Theorem 16. Consider the closed loop system (5.38) with a constant reference velocity vref .

Then the centroid of the formation, (3.9), moves with a constant velocity equals to vref .

Proof. In Theorm 14 it was shown that the acceleration is equal to − 1
n
BT δref . For a constant

reference velocity, Theorem 15 describes that by using Lyapunov’s Direct Method, the origin
of the system is stable and that δref = 0 at steady state. By using both Theorems:

ā = 0,

and the centroid moves at a constant velocity. Since Theorem 15 also tells that vi = vref ∀i,
the centroid moves at a constant velocity equals to vref .

5.2.3 Simulations

In order to demonstrate Theorem 15 consider for example a 6 agents system, in which each
agent is implemented with a distributed control law as in (5.37). As can be seen in Figure
5.7(a), for an arbitrary initial positions (depicted in grey), the formation reaches the desired
hexagon shape (depicted with bold lines). The norm of the formation error is plotted in Figure
5.7(b) showing that there is no steady state formation error. Also, the norm of the reference
error is plotted in Figure 5.7(c) showing zero steady state error, which implies that the velocities
of the agents are equal to vref , supporting Theorem 16.
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(a) An MIR formation tracking a leader.
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(b) A plot of ‖δe(t)‖ showing a steady-state distance
error.
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(c) A plot of ‖δref (t)‖ showing a steady-state velocity
error.

Figure 5.7: Tracking a leader with a zero steady-state errors.

57©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



58©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 6

Conclusions

This work considers a multi-agent formation control problem where a designated leader is
subjected to an additional velocity reference command. The entire formation should follow the
leader while maintaining the inter-agent distance constraints. The formation error is defined

from the zero-input dynamics of agents modeled as single integrators.
By augmenting a standard gradient formation controller with a proportional-integral control

on the formation error, we are able to prove the stability of the formation error dynamics with
velocity input while ensuring zero steady-state formation error. In order to solve the forma-
tion tracking problem of a multi-agent system, we augmented a distance-based rigidity control
law with a PI controller on the formation error. We started with agents modeled as single
integrators and demonstrated that the stability of the distance error dynamics can be proven
using Lyapunov’s indirect method. The centroid of the first order system moves at a speed
proportional to the reference velocity.

By finding an expression for the steady state formation error of the linearized dynamics, we
show that the error properties are related to the graph topology. By simulations, we showed
that the formation error vector can be manipulated, and eventually converges to zero, and that
the formation tracks the leader with a reference velocity.

To agents with double integrator dynamics we added a consensus-based control loop on the
velocities to achieve the formation maintenance problem. The formation error is augmented
with a velocity error, that defines the differences between the velocity of each agent to that of
the reference. Lyapunov’s second method is used to prove that the system is asymptotically
stable. For a system with an external reference velocity a decentralized control is proposed to

manipulate the agents’ velocities and a velocity feedback mechanism is implemented on the
leader to assure the formation tracks the reference signal. Numerical simulations were shown

to illustrate the theoretical results.
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6.1 Future Work

While this thesis has demonstrated how to control a formation of agents when one of them is
subjected to an external reference velocity, many opportunities for extending the scope of this
thesis remain. This section presents some of these directions.

Finding the relation of M(x∗)−1 to the graph

In Corollary 2 at Chapter 4 the steady state error was presented for a constant velocity reference,
vref = v. The norm of error is bounded by a value that was related to the graph properties:

‖δss‖ ≤ ||
√
dmax · λmax(L(G))

λmin(M(x∗))
‖v‖ . (6.1)

We have been working on finding the missing graph interpretation of M(x∗)−1, where
M(x∗) is invertible since it is symmetric positive definite matrix.

One direction of research is to use the condition number of a matrix and analyze this.
Denote κ(M(x∗)) as the condition number of a matrix M(x∗), i.e. κ(M(x∗)) = λmax(M(x∗))

λmin(M(x∗))
,

where λmin(M(x∗)) is the smallest eigenvalue of M(x∗) that is not zero. By definition,

κ(M(x∗)) = ‖M(x∗)‖ ·
∥∥M(x∗)−1

∥∥ ,
and hence

∥∥M(x∗)−1
∥∥ =

λmax(M(x∗))

‖M(x∗)‖λmin(M(x∗))
=

1

λmin(M(x∗))
. (6.2)

In this direction, further investigation is needed in order to connect λmin(M(x∗)) to the
graph properties.

Multiple leaders

Some work has been done regarding formation maintenance with multiple leaders [43,53], but
there is a place for further improvements regarding the issue of formation tracking. In a case
that we have more than one leader we can no longer expect that the formation will track the
directions of the velocity references, but we hope the formation will reach its desired shape.

Figure 6.1(a) illustrates how two opposite agents (marked with green) are injected with a
reference velocity of the same magnitude, but with opposite directions (right and left). The
PI control law is implemented at the agents. The initial conditions are chosen such that the
formation is in its desired shape, meaning that the distances constraint are satisfied. The grey
dotted lines are the trajectories of the agents, and those appear in the figure as a solid lines
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due to repeated tracks. The dotted red lines represent the distances between the agents at time
t = 8 [sec] in order to emphasize the transition shape. In this scenario, the average steady
state velocity is zero, and results in a non-moving centroid. Further analysis of the centroid’s
dynamics is needed in order to foresee its behavior in different cases. Figure 6.1(b) shows that
the formation will converge to the desired formation shape, despite the transient occurrence
caused by the reference velocities. This fact should be proven for this case, and also for the
general case of multiple leaders.
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(a) The formation with both agents 2 and 4 as leaders.
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(b) The formation error norm, ‖δ‖.

Figure 6.1: The norm of the formation tracking error with an upper bound

Different control aproach

It would be interesting to extend and examine some different types of stabilizing controllers in
order to search for optimal control in the sense of rate of convergence, disturbance rejections
and performance.

For example, consider the classic second-order consensus protocol [35] of the form:[
ẋi(t)

v̇i(t)

]
=

[
0 1

−L(G) −L(G)

][
xi(t)

vi(t)

]
(6.3)

This kind of system employs a Laplacian Based control to reach velocity consensus as well
as position consensus. We now apply the same technique to check if rigidity consensus may be
achieved by using similar techniques. Consider the system:[

ẋi(t)

v̇i(t)

]
=

[
0 1

−R(x)TR(x) −R(x)TR(x)

][
xi(t)

vi(t)

]
+

[
0

R(x)T

]
d (6.4)
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which can be written as:

ẋi(t) = vi(t)

v̇i(t) = −R(x)T [R(x)x(t)− d]−R(x)TR(x)v(t)

From Figure 6.1 we can see that the system is stable and that the desired distances are
maintained, but mathematical proof is needed.
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Figure 6.2: The formation with 4 agents - no external velocity.

In the first order system we saw that we can use linearization in order to proof the stability
of the error dynamics. In this direction, applying classical linear control methods such as Bode,
Nyquist, etc., on the formation control may reveal additional interesting properties.

Extending the control analysis of this work to include dynamic uncertainty in both the
agent’s system representation and the connection graph may lead to a better understanding and
intuition of these systems.
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V 
 

  תקציר

  
עתה של העבודה עוסקת בשמירת מבנה של מערכות מרובות סוכנים, כאשר הסוכן המנהיג נתון תחת השפ

פקודת מהירות חיצונית. על שאר הסוכנים במבנה לעקוב אחר המנהיג ובאותה העת לשמור על אילוצי 
מורכבת ממספר סוכנים היכולים לתקשר ביניהם בתוך  כת מרובת סוכניםמער המרחקים בין הסוכנים.

במערכות מרובות סוכנים נפוץ בעיקר בבעיות אותן קשה ואפילו בלתי אפשרי לפתור השימוש  סביבה מסוימת.
נפוצות למערכות אלו ניתן למצוא במשחקי מחשב, מערכות הגנה ותקיפה, דוגמאות באמצעות סוכן אחד. 

מרובות סוכנים הוא תורת הגרפים, אשר יוסבר  לטיפול במערכותהמרכזי המתמטי הכלי  תחבורה ועוד.
   בהרחבה בתחילת העבודה.

ים יכולים הקשר זה סוכנבשל שמירת מבנה.  נקודת מבטמים איך לבקר מערכות מרובות סוכנ זו תציגבודה ע
מבנה באמצעות שמירת אילוצי המרחקים בין הסוכנים קרת ב. לוויינים ועוד רובוטים, כלי טיס, להיות

יחסי עבור מערכת מסדר ראשון  ומיקום יחסימרחק , דהיינו בלבד בין הסוכניםמסתמכת על מדידות יחסיות 
הקשיחות מסתמנת ככלי המתאים ביותר לטיפול תורת  .)ובנוסף מהירות יחסית עבור מערכת מסדר שני

מבנה קשיח כללי, באופן בבעיות מסוג זה וכוללת גם את היכולת להראות יציבות עבור חוקי בקרה שונים. 
ויוצרת תנועת טרנסלציה או רוטציה  המוגדרים ביניהםהוא מבנה בו תנועת הסוכנים שומרת על המרחקים 

 תוקי הבקרה נדרשים לספק עקיבח, קיימת כניסת מהירות חיצונית למערכתכאשר  של המבנה כולו בלבד.
 .של המבנה אחר הקלטמהירות 

קיימים מספר חוקי בקרה המסתמכים על מדידות יחסיות שיובילו את המערכת לתצורה המבוקשת.  כיום,
מוגדרת על ידי סוכנים בעלי  , שמשמעה ההבדל בין התצורה הרצויה לתצורה הנוכחית,שגיאת המבנה

הוכחת ראשונה של עבודה זו היא תרומה דינמיקה מסדר ראשון כאשר אין כניסות חיצוניות למערכת. 
בהינתן והפעלת השיטה הלא ישירה של ליאפונוב. שגיאת המבנהדינמיקת על ידי שימוש במקומית היציבות ה

במצב  מבנה תלשגיאיוביל חוק הבקרה הסטנדרטי  ת חיצונית ובהעדר פקודת בקרה נוספתכניסת מהירו
מציאת חסם עליון על השגיאה במצב ל גםמובילה  הלא ישירה של ליאפונובשיטה ה מתמיד שונה מאפס.

חושפת יחסים בעלי חשיבות רבה בין תכונות השגיאה לטופוגרפית ו ,מתמיד של המערכת לאחר ליניאריזציה
על ידי הרחבת בקר המבנה הסטנדרטי לבקר פרופורציונאלי ואינטגראלי על השגיאה עצמה, ניתן  הגרף.

השגיאה במצב  מהירות ובו בזמן להבטיח את איפוסדינמיקת שגיאת המבנה עם כניסת  עבוריבות יצ להוכיח
  מתמיד.

כי נדגים  הכפופים לאותם אילוצי מרחקים. סוכנים בעלי דינמיקה של אינטגרטור כפולהעבודה יעסוק בהמשך 
 בקר קונצנסוסכך נוסיף לשם אינה יציבה ולכן נחוץ בקר נוסף. המערכת  הסטנדרטיבאמצעות חוק הבקרה 

.  רות המשימה של שמירת מבנהעל מנת לעמוד בהגדמהווה נדבך חשוב העל מהירויות הסוכנים  (הסכמה)
ת כהפרש בין המהירות של כל סוכן לזו רשגיאת המהירות של כל סוכן, המוגד שגיאת המבנה מצטרפתכעת, ל

יציבות אסימפטוטית  מוכחתשל הכניסה החיצונית. השיטה הישירה של ליאפונוב מסתמנת כיעילה ובעזרתה 
על מנת לבקר את מהירויות בקרה מבוזרת של שילוב , ר מערכת עם כניסת מהירות חיצוניתעבו של המערכת.

של המבנה אחר המהירות בקרה בחוג סגור על מהירות הסוכן המנהיג תבטיח עקיבה חד עם י הסוכנים
יציבות במקרה זה תינתן על ידי שימוש בשגיאה המורחבת, הכוללת בתוכה את  תוכחההחיצונית הדרושה. 

מהירות המנהיג לבין מהירות רות של הסוכנים והשגיאה בין שגיאת המרחקים של המבנה, שגיאת המהי
  סימולציות נומריות מלוות את ההוכחות התאורטיות ומדגימות את מהימנותן. הכניסה החיצונית.
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III 
 

  

המחקר נעשה בהנחייתו של פרופסור דניאל זלזו במסגרת התוכנית הבין יחידתית למערכות אוטונומיות 
  ורובוטיקה.

  אני מודה לדיאן ולאונרד שרמן על התמיכה הכספית הנדיבה בהשתלמותי.
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  בקרה ועקיבה של סוכנים במבנה עם אילוצי מרחקים
  

  

  

  חיבור על מחקר

  

מערכות לשם מילוי חלקי של הדרישות לקבלת תואר מגיסטר למדעים ב
  אוטונומיות ורובוטיקה

  

  

  

  אושרי רוזנהק

  

  

  

  

  מכון טכנולוגי לישראל  –הוגש לסנט הטכניון 

  2016ניסן תשע"ו, חיפה, אפריל 
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  עם אילוצי מרחקיםסוכנים במבנה  ה ועקיבה שלבקר

  

  

  

  

  אושרי רוזנהק
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