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Abstract

Sensor networks comprise a group of agents equipped with sensing devices and com-
municating capabilities in order to solve the common task of cooperative estimation of
a detectable physical process. In this framework, each agent in the system activates, in
a distributed fashion, an estimator which relies on local measurements fused with the
estimates from other agents in the network. A recently developed tool to solve this prob-
lem is the introduction of a consensus-based term fused with a classical Kalman state
estimator structure, known as the consensus Kalman filter. Our contribution begins
with proposing a method based on semi-definite programming to compute a centralized
consensus gain term, leading to improved performance of the estimator over existing
solutions found in the literature. We also propose a decentralized consensus gain, for
networks with homogeneous observation models, that can be computed by each agent
and relies only on local network properties (the number of neighboring agents).

We further extend our research to tackle the important aspect of reducing energy
(communication) consumption in network applications. To do so, we utilize an event-
triggering mechanism in which communication is permitted only if certain conditions
are met. The main analytical challenge in these estimator structures is the design of the
consensus gain term and an event-triggered condition that ensures stability of the es-
timation error dynamics. In this direction, our contribution continues with proposing
both a centralized and a decentralized consensus gain along with a tailored event-
triggered condition. We show that these event-triggered estimators out-perform the
standard non-cooperative local Kalman filter. Finally we introduce an event-triggered
consensus Kalman estimator which can cope with real-life scenarios where some agents
may have intermittent or absent observations.We provide numerical simulations to
demonstrate the effectiveness of our results compared to existing solutions in the liter-
ature.
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Abbreviations and Notations

Rn : set of real n-dimensional vectors
Rn×m : set of real n × m matrices
R+ : set of positive real numbers
E(x) : mean value of x

diag{M i}n
i=1 : block diagonal nd × nd matrix where the ith block is M i ∈ Rd×d

[M ]ij : ij-entry of the matrix M

λmax(M) : maximal eigenvalue of the matrix M

λmin(M) : minimal eigenvalue of the matrix M

σmax(M) : maximal singular value of the matrix M

σmin(M) : minimal singular value of the matrix M

tr (M) : trace of matrix M

|M |F : the Frobenius norm of the matrix M

WSN : wireless sensor networks
DETE : distributed event-triggered estimation
CKF : consensus Kalman filter
MSE : mean squared error
NCLKF : non-cooperative local Kalman filter
DCKE : distributed consensus Kalman estimator
ETCKF : event-triggered consensus Kalman filter
SoD : send on delta
MAS : multi-agent systems
ETM : event-triggered mechanism
ETF : event-triggered function
ETC : event-triggered condition
SOCKF : sub-optimal consensus Kalman filter
ZOH : zero order hold
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Chapter 1

Introduction

Sensor networks comprise a group of agents equipped with sensing devices and commu-
nicating capabilities in order to solve some common task such as cooperative sensing
and estimation of a detectable physical process. This complex problem has been a major
subject of interest in various research communities due to its wide range of applica-
tions including agriculture [30], oceanographic monitoring [2], security and surveillance
[51, 36], health monitoring [27] and space research [43].

One of the fundamental challenges in sensor networks deal with cooperative estimation
of some globally observable process [1, 7]. In this scenario, each agent in the system
activates, in a distributed fashion, an estimator which relies on local measurements of
the process fused with the estimates from other agents in the network. The motivation
to utilize neighboring information is to exploit the information that exists in the sensors
network to improve the performance of an individual agent, as well as the overall net-
work estimation accuracy. As a whole, the networked system aims to globally converge
to the true process state while considering constraints such as computational loads, the
amount of data shared, and the overall system performance.

A recently developed tool to solve this problem is the introduction of a consensus-based
term fused with a classical state estimator structure [10]. This provides a mechanism
for accounting for neighboring information. For example, the consensus H∞ estima-
tor is discussed in [44], the distributed particle filtering as presented in [16], and a
consensus Kalman filter was formulated in [32, 4]. In this work we shall deal with
the consensus Kalman filter, for which the estimator is composed of a classic Kalman
estimator structure fused with a consensus-based term.

Due to recent advance in manufacturing capabilities, the implementation of large scaled
wireless sensor networks (WSN) became more feasible. The unavoidable increase in
scale in WSN is well discussed in [9]. Considering cooperative estimation, this in-
crease in scale has instigated the necessity to discuss constraints such as network band-
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width [38] and global with local energy consumption (computational loads, transmission
power, etc...) [55]. Essentially, the trade-off between the estimator performance and
the data transmission required to obtain it, came into mind. For some researchers
[20, 28], the estimator cost function is no longer solely based on the estimation accu-
racy, but introduces a new component aimed at capturing the penalty associated to
transmissions energy consumption.

One of the mechanisms found in order to cope with these constraints is referred to as
distributed event-triggered estimation (DETE). In this scheme, each agent in the system
retrieves or transmits information to its neighbors only when some rule is violated. The
rule comprises a set of conditions which must be locally examined at each iteration
step. Violation of the rule will trigger an event and information will be shared. Between
events, the agents will run a Kalman based estimator that relies only on locally obtained
information. The system aims to globally converge to the true process state.

1.1 Literature Review

In this section we shall review works dealing with the consensus Kalman filter, with
and without an event triggering mechanism, to cover the basic foundation for our work
and to provide some motivation for our contributions.

1.1.1 Consensus Kalman Filter (CKF)

The consensus Kalman filter was first proposed by Olfati-Saber in [31], where he showed
that the problem of distributed Kalman filtering in sensor networks can be solved by
activating a consensus based filter on the state estimation (and inverse covariance) of
each sensor. Since then, one could witness increasing interest in the CKF as new works
are occupying different aspects of the filter. In [8], the consensus Kalman estimator
proposed in [32] was adapted, and they then derived the solution for both Kalman
and consensus gains that will minimize the local mean squared error (MSE). Addition-
ally, the authors of [8] have compared simulation results with the sub-optimal solution
suggested in [33]. The work [46] utilized the same sub-optimal solution to derive a
consensus extended Kalman filter in order to solve a spacecraft network relative mo-
tion estimation problem. The authors in [6] made another variation on the sub-optimal
consensus Kalman filter discussed in [33] to solve the extended problem of networks
with agent that have limited or null measurement capabilities.

In these recent papers, to our knowledge, no comparison has been made between sub-
optimal consensus Kalman filter and the non-cooperative local Kalman filter (NCLKF),
where each sensor implements a Kalman filter without any exchange of information from
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other sensors in the network. Furthermore, the selected consensus gain derived in [33]
might obtain small values rendering the consensus term contribution insignificant. In
this case the estimator behaves more like a NCLKF without agents reaching agreement
on their estimates.

1.1.2 Event-Triggered Consensus Kalman Filter (ETCKF)

Traditionally, state estimators such as the discrete Kalman filter [18], assumes that
measurements are acquired at every time step. This mechanism was outdated as con-
straints and restrictions on data transmission and bandwidth arose, especially while
discussing wireless sensor networks [3]. Researchers began seeking for efficient ways to
deliver measurements and estimates over the network. In this direction, much work
has been done to investigate intelligent methods for data sampling according to some
rule-set, see [23, 12]. In this way, fewer data samples are dispatched in order to hope-
fully achieve a similar estimator performance. These methods are widely referred to as
event-triggered estimation mechanisms.

Specifically, the consensus Kalman filter combined with an event-triggering mechanism
is a subject of increasing interest in recent years. For example, in [21], the send on delta
(SoD) rule is discussed, where each agent transmits its local estimates to its neighbours
only if the difference between the most recent transmitted estimate and the current
estimate exceeds some threshold. The author of [54] expanded this research while
addressing data transmission from a sensor to its peer estimator, where the estimator
to estimator communication is discussed. For this scenario, the event trigger condition
is based on measurements only. In [22], the issue of intermittent observations was
tackled by introducing a binary variable to the update equations.

It should be noted that, to our knowledge, no comparison has been made between
this approach and NCLKF, where each sensor implements a Kalman filter without
any exchange of information from other sensors in the network. Furthermore, the
event-triggering mechanism might be overly sparse, rendering the consensus term con-
tribution insignificant. In this case the estimator behaves more like a NCLKF without
agents reaching agreement on their estimates. Additionally the aspect of time varying
communication regime has not been formally introduced or investigated.

1.2 Thesis Contribution

In this section we outline the contribution of our work to the world of cooperative esti-
mation. Specifically we seek to solve the cooperative estimation of a linear discrete time
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process with a wireless sensor network. We aim to do so in two fields of interest: dis-
tributed consensus Kalman filtering, and distributed event-triggered estimation.

We begin with deriving the consensus Kalman filter proposed by Olfati-Saber in [33],
where we point out some issues with respect to suggested consensus gains found in the
literature. Next, we propose an alternative consensus gain which is computed utilizing
convex optimization techniques. We use the Lyapunov theorem in order to extract con-
straints for our convex optimization problem. With this proposed solution, we derive
for each time step an upper bound for the consensus factor for which stability of the
estimator is ensured. By using this upper bound we ensure that the consensus term,
encouraging the agreement of estimates between neighboring agents, plays a nontriv-
ial role in the estimator dynamics. We demonstrate through simulation examples the
superiority in performance over the NCLKF and other consensus gain found in the lit-
erature. We also show the proposed estimator is mean-squared error Lyapunov stable.
The aforementioned consensus gain is computed in a centralised manner since global
network matrices are required, therefore our contribution proceeds with proposing a
decentralized consensus gain, for networks with a homogeneous sensing model, which
is based on local network properties and thus can be implemented in systems with
switching or time-varying communication networks. Once more, superiority in perfor-
mance over the NCLKF and others are presented through simulations results. Our
contribution in this area is summarised in the following list:

i) extracting an upper bound on the consensus gain factor using convex optimization
and proposing a centralized consensus factor based on the extracted upper bound;

ii) proposing a decentralized consensus gain which is suitable for time-varying com-
munication networks for a homogeneous observation architecture.

For the event-triggered consensus Kalman filter, our contribution continues with propos-
ing a centralized consensus gain along with an event-triggering condition for which the
stability of the error dynamics is ensured. Once more the consensus gain is computed
centrally. Next, we propose an event-triggered mechanism which corresponds to a pro-
posed decentralized consensus gain for networks with a homogeneous sensing model.
With this solution, our event trigger scheme is robust to time-varying communication
topology.

Additionally, we construct a strategy to cope with real-life scenarios such as sensors
that may only function intermittently, for example due to occlusion between the sensor
and the process, or malfunction . In these scenarios, some agents’ observability of the
process can be intermittent or absent and therefore we use consensus based mechanism
to ensure the stability of the distributed mechanism. Finally, we provide extended com-
parisons through numerical simulation between different schemes including the NCLKF
where the energy consumption v.s performance trade-off is discussed. Our contribution
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is summarised in the following list:

iv) proposing an event-triggered mechanism together with a centralized and decen-
tralized consensus gain;

v) proposing an event trigger mechanism, for a homogeneous observation architec-
ture, which is robust to temporary non-observability of some agents ;

vi) providing numerical evidence for the superiority of our proposed solution in both
areas.

1.3 Thesis Organization

This work is organized as follows. In Chapter 2, we provide an introduction to three
fields of research which are the pillars to this work: the classic Kalman filter, graph
theory (with a specific orientation to the consensus algorithms), and for event-triggered
estimation. In Chapter 3 we discuss the fusion of a consensus algorithm and a Kalman
filter to solve the cooperative estimation problem. In Chapter 4, we apply an event-
triggered mechanism on the consensus Kalman filter to reduce communication loads
and in Chapter 5 our work is concluded with some suggested guidelines for future
research.
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Chapter 2

Preliminaries

In this chapter we shall introduce the research topics which will serve as the building
blocks for this thesis.

2.1 The Discrete-Time Kalman Filter

The discrete-time Kalman filter was first introduced by R.E Kalman in [19] as a recur-
sive solution for the discrete linear data filtering problem. This recursive algorithm was
proven compatible for many application, including trajectory estimation and control
of spacecraft in the late 60’s. Ever since then, the Kalman filter became an essential
component of modern control systems. For more extensive introduction to the Kalman
filter, the reader is encouraged to see [19, 25, 47].

2.1.1 Problem Statement

Consider the following discrete-time linear system,

xk+1 = Axk + Suk + wk

zk = Hxk + vk, (2.1)

where k is the time step, xk ∈ Rn is the state vector, uk ∈ Rq is a control input,
zk ∈ Rm is an observation (measurement), wk ∈ Rn and vk ∈ Rm are, respectively, the
process and measurement noises. Additionally A ∈ Rn×n represents the state matrix,
S ∈ Rn×q is the control input matrix and H ∈ Rm×n is the observation matrix.

The process and measurement noises are assumed to be independent of each other
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(E
[
vT

k wl

]
= 0∀k, l), white, and with normal probability distributions such that

wk ∼ N (0, Q) (2.2)

vk ∼ N (0, R) . (2.3)

Recall that x ∼ N(µ, Σ) means that the random vector x has a mean value E(x) = µ,
a covariance matrix E

(
(x − E(x))(x − E(x))T

)
= Σ and a probability density func-

tion

p (x) = 1
(2π) |Σ|1/2 e− 1

2 (x−µ)T Σ−1(x−µ).

Given Q, R, A, S, H, zk, uk, and some initial estimate x̄0, we seek to estimate the
process xk that minimizes the mean-squared estimation error,

Jk = E
[
(xk − E(xk))T (xk − E(xk))

]
. (2.4)

2.1.2 The Kalman Estimator

To solve the problem presented in the previous subsection, Kalman used the orthog-
onality principle (see [18, 42]) to construct a posteriori state estimation which is a
linear combination of an a priori estimate along with a weighted difference between a
measurement and it’s predicted value,

x̂k = x̄k + Kk (zk − Hx̄k) , (2.5)

where x̂k is the a posteriori estimate, x̄k is the a priori estimate, and Kk is the weight
given to the measurement prediction error, known as the innovation process, and can
be ”tuned” to achieve a particular performance. Additionally, Kk is also known as the
Kalman gain. For a high gain, more weight is applied to the most recent measurements,
rendering the estimator to rely on them more.

The a priori state estimation x̄k is the noise-free state propagation in the absence of
new information about the state (for example, a new measurement),

x̄k+1 = Ax̂k + Suk. (2.6)

As illustrated in Figure 2.1, the recursive state estimation process takes the form of a
feedback loop where the state is being propagated while a feedback in the form of the
measurement prediction is obtained. In other words the Kalman estimation process can
be divided into two groups: the time update (state prediction) and the measurement
update (state estimation). This separation shall become distinct as we proceed with
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the formulation of the Kalman filter update equations.

Σ Kk Σ A Σ

S

x̄k

x̄k+1zk x̂k

DelayH

-

uk

Figure 2.1: Recursive Kalman state estimation process.

2.1.3 Discrete-Time Kalman Filter Algorithm

Now that the Kalman estimator structure is in place, it is left to decide on the optimal
Kalman gain which will minimize the mean-squared estimation error (MSEE). To do
so, Kalman first defined the estimator error dynamics,

ηk = x̂k − xk = x̄k + Kk (zk − Hx̄k) − xk

= (I − KkH) η̄k + Kkvk (2.7)

η̄k+1 = x̄k+1 − xk+1 = Aηk − wk,

next he defined the a priori error covariance estimate, P̄k = E
[
η̄kη̄T

k

]
, and posteriori

error covariance estimate, P̂k = E
[
ηkηT

k

]
.

It follows that the error covariances are,

P̂k = FkP̄kF T
k + KkRKT

k

P̄k+1 = AP̂kAT + Q,
(2.8)

where Fk = I −KkH. Minimizing the MSE is equivalent to minimizing the trace of the
error covariance, hence, the optimal Kalman gain solves the following equation,

∂tr
(
E
[
ηkηT

k

])
∂Kk

= 0. (2.9)

The following properties of matrix calculus are used,

∂tr
(
Y XT

)
∂X

= Y,
∂tr (XY )

∂X
= Y T ,

∂tr
(
XY XT

)
∂X

= X
(
Y + Y T

)
. (2.10)
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Thus, the optimality condition can be obtained as

∂tr
(
P̂k

)
∂Kk

= −2P̄kHT + 2KkHP̄kHT + 2KkR = 0, (2.11)

and the optimal Kalman gain is

Kk = P̄kHT
(
HP̄kHT + R

)−1
. (2.12)

It is straight forward to validate that (2.12) represent a global minimum since the
second derivative of the error covariance trace is positive definite. The discrete Kalman
filter update equation are obtained:

KF :



Estimation

Kk = P̄kHT
(
R + HP̄kHT

)−1

P̂k = FkP̄kF T
k + KkRKT

k

x̂k = x̄k + Kk (zk − Hx̄k)

Prediction
x̄k+1 = Ax̂k + Suk

P̄k+1 = AP̂kAT + Q.

(2.13)

2.2 Graph Theory and Consensus Algorithms

In this introductory section we provide some basic graph theory background to the
material that we present more formally in later chapters.

2.2.1 Basic Definitions

A graph G is a pair G = (V, E) consisting of a finite vertex set V = {v1, v2, ..., vN } with
N vertices, and an edge set E ⊆ V × V. A graph is called directed if its edges have
a direction which is specified with the ordering of the vertices pairs, i.e., if (v, u) ∈ E
it does not necessarily means that (u, v) ∈ E for some u, v ∈ V (see Fig. 2.2(b)).
An undirected graph is one where all edges are bi-directional, i.e., (v, u) ∈ E implies
(u, v) ∈ E ∀v, u ∈ V (see Fig. 2.2(a)). A path is a sequence of vertices where each
vertex share an edge with its predecessor vertex and its successor vertex. A directed
path is a path where the ordering of the vertices corresponds with the edges direction.
In undirected graphs, the neighborhood (set of neighbors) of the vertex v is defined as
all the vertices which share an edge with v, Nv = {u ∈ V | (u, v) ∈ E}. The degree of a
vertex, dv = |Nv|, is the number of edges incident to the vertex v, and the degree matrix
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D is a diagonal matrix where [D]ii = di. For graphs where each vertex is assigned with
at least one edge, the degree matrix is invertible. In directed graphs, the in-degree of
a vertex, din

v = |{u ∈ V | (u, v) ∈ E}| , is the number of edges which are directed to
the vertex and the out-degree of a vertex, dout

v = |{u ∈ V | (v, u) ∈ E}| , is the number
edges which are directed from the vertex.

v1

v2 v3

v4

v5

v1

v2 v3

v4

v5

(b)(a)

Figure 2.2: Directed (right) and undirected (left) graphs.

A directed graph is called disconnected if for its undirected version (replacing all directed
edges with undirected edges) there are at least 2 vertices with no connecting path
between them (see Fig. 2.3(b)). A graph is connected if it is not disconnected (see
Fig. 2.3(a)). A directed graph is called weakly connected if its undirected version is a
connected graph. A directed graph is called strongly connected if there is a directed
path between every pair of vertices.

v1

v2 v3

v4

v5

v1

v2 v3

v4

v5

(b)(a)

Figure 2.3: Disconnected (right) and connected (left) graphs.

Any undirected graph can be represented by the Laplacian matrix, L ∈ RN×N [5],
where,

Li,j =


di i = j

−1 (i, j) ∈ E , i ̸= j

0 otherwise

. (2.14)

Note that the Laplacian has an eigenvalue 0, corresponding to the eigenvector, 1,
the vector of all ones (i.e., 1i = 1 for all i). For directed graphs we can distinguish
between the in-degree Laplacian and the out-degree Laplacian which are not necessarily
symmetric.
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2.2.2 Discrete-Time Consensus Algorithm

Multi-agent systems (MAS) refers to a group of agent aimed at obtaining some common
goal. These type of systems have been a hot research topic due to their wide range of
application in various fields such as vehicle formations [37, 40], rendezvous problems
[24], and coordinated decision making [41]. The key element in applying such coordi-
nation is by sharing information between agents. In a distributed MAS, information
is shared locally between neighboring agents, and then propagated via inter-agent in-
formation exchange to the rest of the system. With this idea emerged the requirement
to find a protocol which will drive the system towards agreement on some common
quantity of interest.

Consensus protocols, as formulated in [35], refers to the process of achieving global
agreement between all acting agents upon a certain state. In this protocol, we consider
a network of N agents which interact over some communication network described
by a graph G. Each agent has a state xi ∈ R with initial value xi

0. The consensus
(sometimes referred to as agreement) protocols aim to drive each agent to the same
state or trajectory, i.e.,

lim
k→∞

||xi
k − xj

k|| = 0, ∀i, j ∈ V. (2.15)

For example, consider a collection of n agents modeled as discrete-time integrators,

xi
k+1 = xi

k + ui
k.

Each agent then implements the following control,

ui
k = ϵ

∑
j∈Ni

(xj
k − xi

k),

yielding the closed-loop model

xi
k+1 = xi

k + ϵ
∑

j∈Ni

(xj
k − xi

k), (2.16)

for some ϵ ∈ R chosen to ensure stability. The state-space dynamics can now be
constructed as

xk+1 = (I − ϵL) xk, (2.17)

where L is the Laplacian matrix (2.14) and xk =
[
x1

k, x2
k, ..., xN

k

]T
. Assuming that

I − ϵL is stable, this system has an equilibrium at xk = x̄1, meaning that agreement is
obtained. An example of a network of 5 agents running the consensus protocol (2.17)
with ϵ = 0.1 is shown in Fig. 2.4.
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(a) The interaction graph. (b) Agent trajectories.

Figure 2.4: Trajectories of the consensus protocol, (2.17), for a network of 5 agents.

2.3 Event-Triggered Estimation

In the past decade, the art of economical computation via event triggering and the
requirement for robustly stable filters formed the highly niche research field of event-
triggered estimation. The motivation for utilizing event-triggered protocols lies within
bandwidth restriction and/or power supply limitation. To demonstrate this idea, [12]
illustrated an example in which a network of underwater wireless sensors can not comply
with consecutive transmission protocols in order to perform cooperative estimation.
This is due to the low bit rate delivery and limited resource budget. Indeed, one may
question the efficiency of transmitting two consecutive sampled data points with little
fluctuation between them.

For these constrained systems, one may consider implementing an event-triggered mech-
anism (ETM) in order to regulate sufficiently the data transmission or the sampling
action. In this sense, if the mechanism is properly designed, the sampling is conducted
in an intelligent manner so that new data will flow only when the “necessity” arises.
In that way, utilization of computational and/or transmission resources is reduced and
performance of the system estimation is not drastically compromised.

Whether referring to a single sensor-estimator system or cooperative estimation uti-
lizing WSN, the following scheme represents a typical event-triggered mechanism (see
Fig. 2.5): The sampler is responsible for sampling and holding the discrete data signal
θk. The sampled signal is denoted by θτs where τs, for s = 0, 1, 2, . . ., represent the sam-
pling instance sub-sequence with τ0 = 0. Note that the value of the sampled signal can
be updated only if an event is triggered, while in between events it will hold the same
value. The sampling is enabled only when there is a violation of the event-triggered
condition, which consists of locally available knowledge denoted by Φk, the signal θk,
and the most recent sampled signal, θτs . Evaluated at each time step, the condition
serves as the tactic to inspect whether the system requires another sampling or may

17

 

 

 



Figure 2.5: Event-triggering mechanism.

proceed with the latest sampled data.

The triggering mechanism is constructed in the following manner:

τs+1 = inf
k

{k > τs|f (θk, θτs , Φk) > δk} (2.18)

where δk is some threshold, f(·) is the event triggering function (ETF), and the rule
f (θk, θτs , Φk) ≤ δk is referred to as the event triggering condition (ETC). There are
several of common methods to construct the ETF as will be discussed in the following
subsection.

2.3.1 Classification

In this subsection we shall discuss the different types of common event-triggered mech-
anisms. For these types, the ETF usually utilizes an error between a quantity and its
sampled quantity in the event-free period as presented below:

i) Constant Threshold Based Event-Triggered Mechanisms : In this case, δk = δ

where δ ≥ 0 represents a constant threshold. This mechanism is commonly
referred as send-on-delta (SoD) mechanism. For example, in [54], the SoD event-
triggered mechanisms is applied on sensor networks where the sensor to estimator
channel is discussed. In this case, the data signal θk is the sensor measurement
and the ETC is constructed as

(θk − θτs)T (θk − θτs) < δ. (2.19)
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Once violated, the most recent measurement shall be transmitted to the esti-
mator. Additionally, [54] occupied the estimator-to-estimator channel with the
same mechanism (2.19), only the signal to be sampled is now the inter-agent state
estimation. In this case, if the condition is violated an estimator will transmit its
most recent estimation to its neighboring estimators.

ii) Measurement/Estimate Based Event-Triggered Mechanisms : In this case, the
event-triggering threshold from (2.18), obtains the following general form: δk =
δ(θk). In many works, the measurement/estimate dependent threshold, δ(θk),
incorporates a weighting factor on the latest measurements/ estimate such that
an event shall be triggered when the error between the most recent measure-
ment/estimate and the weighted measurement/estimate from previous event, ex-
ceeds some specified value.

For example, in [15], the event-triggered distributed H∞ consensus filtering prob-
lem was approached using the following event-triggered condition:

(θk − θτs)T Ω (θk − θτs) < σθT
k Ωθk, (2.20)

where θ is the state estimation, σ ∈ (0, 1] is some weighing factor and Ω is some
positive-definite matrix.

iii) Transmitted Measurement/Estimate Based Event-Triggered Mechanisms : In this
case, the event-triggering threshold from (2.18) takes the form δk = δ(θτs).
In other words the threshold to trigger an event is a function of the measure-
ment/estimate at the time of the most recent event (last transmitted value).

For example, in [53], the event-triggered mechanism, based on the latest trans-
mitted measurement, is applied to solve the distributed set membership filter for
a class of discrete time-varying systems in the presence of unknown but bounded
noises. The proposed ETC for each system is:

(θk − θτs)T Ω−1 (θk − θτs) < σ (θτs)T θτs , (2.21)

where θ is the state measurement, Ω is some positive definite matrix and σ ∈ R+

is some weighing factor.

For more information with respect to recent developments in the realm of event-
triggered estimation, the reader is encourage to see [12, 11, 23].
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Chapter 3

Consensus Kalman Filtering

In Chapter 2 we introduced the Kalman filter and the consensus algorithm. In this
chapter we shall formulate and discuss the fusion of a consensus term in a local Kalman
estimator as a tool to account for neighboring information of a given process. More-
over, we will follow a similar design approach for the determination of a consensus
gain proposed by [33]. We propose a new consensus gain design that will lead to an
improvement in performance.

3.1 Problem Setup

We consider a network comprising N interacting sensor agents where the interaction
topology can be described by an undirected graph G = (V, E). The edge set E ⊆ V × V
indicates which agents can exchange information with each other. Each agent observes
a linear discrete-time stochastic process described by the dynamics

P : xk+1 = Axk + Bwk, (3.1)

where xk ∈ Rn is the state vector and wk is an additive white Gaussian noise such that
E
[
wk(wl)T

]
= Qδkl, where δkl is the Dirac Delta function.

Each agent is capable of measuring the process state using the observation model

zi
k = H ixk + vi

k, (3.2)

where zi
k ∈ Rmi is the measurement obtained by agent i, H i ∈ Rmi×n is the observa-

tion matrix, and vi
k ∈ Rmi is a measurement noise assumed to also be additive white

Gaussian noise with E
[
vi

k(vi
l)T
]

= Riδkl. Additionally we assume that Ri ∈ Rmi×mi

is invertible and that (A, H i) make an observable pair for every agent such that the
noiseless NCLKF is asymptotically stable.
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The distributed consensus Kalman estimator (DCKE) was first proposed by [34] and
is constructed as

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni

(
x̄j

k − x̄i
k

)
, (3.3)

where Ki and Ci are the Kalman and consensus gains of the ith agent, respectively, and
x̂i and x̄i are the posteriori and a priori state estimate of the ith agent, respectively.
The consensus Kalman estimator (3.3) is composed of a classic Kalman estimator term
and a consensus term based on neighbors estimates, as illustrated in Fig. 3.1.

Σ Ki
k Σ A Delay

H i

Ci
k

Σ |Ni|

x̄i
k+1zi

k x̄i
kx̂i

k

−

−

∑
j∈Ni

x̄j
k

Figure 3.1: DCKE of the ith agent.

3.2 Consensus Kalman Filter Update Equation

In this section we shall follow in the footsteps of [8] to derive the optimal consensus
Kalman filter update equations. Next, we shall discuss some troubling aspects with
respect to the latter solution which will then follow by presenting a sub-optimal solution
which was suggested by Olfati-Saber in [33]. This will serve as the grounds for our
contribution in the following sections.

3.2.1 Optimal Consensus Kalman Filter

We begin our discussion by the problem we wish to solve.

Problem 3.1 (Optimal consensus Kalman gains). Consider N agents interacting over
a connected graph G where each observes the process (3.1) with observation model (3.2)
and utilizes an estimator type (3.3). Find a set of local optimal gains, Ki

k and Ci
k, that

will minimize the local mean-squared estimation error.
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To solve this problem we first construct the error dynamics,

ηi
k = x̂i

k − xk = x̄i
k + Ki

k

(
Hxk + vi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni

(
x̄j

k − x̄i
k

)
− xk

= F i
kη̄i

k + Ci
k

∑
j∈Ni

(
x̄j

k − x̄i
k

)
+ Ki

kvi
k

= F i
kη̄i

k + Ci
k

∑
j∈Ni

(
η̄j

k − η̄i
k

)
+ Ki

kvi
k

η̄i
k+1 = x̄i

k+1 − xk+1 = Aηi
k − Bwk,

where F i
k = I − Ki

kH i. Next we compute the inter-agent correlation term,

E
[
ηi

k(ηr
k)T

]
= F i

kP̄ i,r
k (F r

k )T + F i
k

∑
s∈Nr

(
P̄ i,s

k − P̄ i,r
k

)T
(Cr

k)T

+ Ci
k

∑
j∈Ni

(
P̄ j,r

k − P̄ i,r
k

)
(F r

k )T + Ki
kRi,r(Kr

k)T + Ci
kDi,r

k (Cr
k)T ,

where

P̄ i,s = E
[
η̄i(η̄s)T

]
, P̄ i,r = E

[
η̄i(η̄r)T

]
P̄ j,s = E

[
η̄j(η̄s)T

]
, P̄ j,r = E

[
η̄j(η̄r)T

]
Ri,r = E

[
vi(vr)T

]
,

and Di,r =
∑

j∈Ni

∑
s∈Nr

(
P̄ j,s − P̄ i,s − P̄ j,r + P̄ i,r

)
. Note that Ri,r = E

[
vi

k(vr
k)T

]
= 0

if i ̸= r. It follows that the internal agent’s error covariance is

E
[
ηi

k(ηi
k)T

]
= F i

kP̄ i
k(F i

k)T + F i
k

∑
j∈Ni

(
P̄ i,j

k − P̄ i
k

)T
(Ci

k)T

+ Ci
k

∑
j∈Ni

(
P̄ j,i

k − P̄ i
k

)
(F i

k)T + Ki
kRi

(
Ki

k

)T
+ Ci

kDi
k(Ci

k)T .

We shall find the optimal local Kalman gain by deriving the local error covariance trace
by the Kalman gain and equating to zero,

∂tr
(
E
[
ηi

k(ηi
k)T

])
∂Ki

k

= −2P i
k(H i)T + 2Ki

kH iP̄ i
k(H i)T − 2Ci

k

∑
j∈Ni

(
P̄ j,i

k − P i
k

)
(H i)T

+ 2Ki
kRi = 0.

(3.4)

Therefore the optimal Kalman gain is

Ki
k =

P i
k(H i)T + Ci

k

∑
j∈Ni

(
P̄ j,i

k − P̄ i
k

)
(H i)T

(Ri + H iP̄ i
k(H i)T

)−1
. (3.5)
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The update rule is as follow:

CKF :



Estimation

Ki
k =

P̄ i
k(H i)T + Ci

k

∑
j∈Ni

(
P̄ j,i

k − P̄ i
k

)
(H i)T

(Ri + H iP̄ i
k(H i)T

)−1

P̂ i,r
k = F i

kP̄ i,r
k (F r

k )T + F i
k

∑
s∈Nr

(
P̄ i,s

k − P̄ i,r
k

)T
(Cr

k)T

+Ci
k

∑
j∈Ni

(
P̄ j,r

k − P̄ i,r
k

)
(F r

k )T + Ki
kRi,r(Kr

k)T + Ci
kDi,r

k (Cr
k)T

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni

(
x̄j

k − x̄i
k

)
Prediction

x̄i
k+1 = Ax̂i

k

P̄ i,r
k+1 = AP̂ i,r

k AT + BQBT

.

(3.6)

We proceed with finding the optimal consensus gain. To do so, first we shall express
the error covariance as a function of Ci

k only:

E
[
ηi

k(ηi
k)T

]
= P̄ i

k + P̄ i
kΩi

kH iP̄ i
k(H i)T (Ωi

k)T P̄ iT
k + Ci

kΓi
kΩi

kH iP̄ i
k(H i)T (Ωi

k)T (Γi
k)T (Ci

k)T

+ P̄ i
kΩi

kH iP̄ i
k(H i)T (Ωi

k)T (Γi
k)T (Ci

k)T + Ci
kΓi

kΩi
kH iP̄ i

k(H i)T (Ωi
k)T (P̄ i

k)T

− P̄ i
k(H i)T (Ωi

k)T (P̄ i
k)T − P̄ i

k(H i)T (Ωi
k)T (Γi

k)T (Ci
k)T − P̄ i

kΩi
kH iP̄ i

k

− Ci
kΓi

kΩi
kH iP̄ i

k + (Γi
k)T CiT

k + Ci
kΓi

k − P̄ i
kΩi

kH i(Γi
k)T CiT

k − Ci
kΓi

kΩi
kH i(Γi

k)T CiT
k

− Ci
kΓi

k(H i)T (Ωi
k)T P̄ i

k − Ci
kΓi

k(H i)T (Ωi
k)T (Γi

k)T (Ci
k)T

+ P̄ i
kΩi

kRi(Ωi
k)T P̄ iT

k + Ci
kΓi

kΩi
kRi(Ωi

k)T (Γi
k)T (Ci

k)T + P̄ i
kΩi

kRi(Ωi
k)T (Γi

k)T (Ci
k)T

+ Ci
kΓi

kΩi
kRi(Ωi

k)T (P̄ i
k)T + Ci

kDi
k(Ci

k)T ,

where Γi
k =

∑
j∈Ni

(
P̄ j,i

k − P̄ i
k

)
and Ωi

k = (H i)T
(
Ri + H iP̄ i

k(H i)T
)−1

. For optimality,
we use the matrix calculus (see (2.10)) to derive and solve the following equation:

∂tr
(
E
[
ηi

k(ηi
k)T

])
∂Ci

k

= 2Ci
kΓi

kΩi
kH iP̄ i

k(H i)T (Ωi
k)T (Γi

k)T − 2Ci
kΓi

kΩi
kH i(Γi

k)T

+ 2P̄ i
kΩi

kH iP̄ i
k(H i)T (Ωi

k)T (Γi
k)T − 2P̄ i

k(H i)T (Ωi
k)T (Γi

k)T

− 2Ci
kΓi

k(H i)T (Ωi
k)T (Γi

k)T + 2Ci
kΓi

kΩi
kRi(Ωi

k)T (Γi
k)T

+ 2P̄ i
kΩi

kRi(Ωi
k)T (Γi

k)T + 2(Γi
k)T − 2Ci

kΓi
kΩi

kH i(Γi
k)T

− 2P̄ i
kΩi

kH i(Γi
k)T + 2Ci

kDi
k = 0,

(3.7)
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We note that

Ωi
kH iP̄ i

k(H i)T (Ωi
k)T (Γi

k)T + Ωi
kRi(Ωi

k)T (Γi
k)T = Ωi

kH i(Γi
k)T ,

and that Ωi
kH i = (H i)T (Ωi

k)T . Hence, the following is obtained:

∂tr
(
E
[
ηi

k(ηi
k)T

])
∂Ci

k

= 2(Γi
k)T − 2P̄ i

kΩi
kH i(Γi

k)T − 2Ci
kΓi

k(H i)T (Ωi
k)T (Γi

k)T + 2Ci
kDi

k = 0.

(3.8)

Therefore, the optimal consensus gain is

Ci
k =

(
(Γi

k)T − P̄ i
kΩi

kH i(Γi
k)T

) (
Γi

k(H i)T (Ωi
k)T (Γi

k)T − Di
k

)−1
. (3.9)

To this end we wish to emphasize two main points. Firstly, the consensus gain (3.9)
may be ill-conditioned as no guarantees are made regarding the structure of the matrix
Γi

k(H i)T (Ωi
k)T (Γi

k)T −Di
k. Secondly, as will be discussed in the following subsection, to

update the matrix Di
k, one requires additional communication channels to a two-hop

neighborhood (see Fig. 3.2). This may place unwanted burdens on the communication
bandwidth. Hence, one may consider implementing a more “economical” solution at
the expense of performance.

vi

one-hop neighbors

two-hop neighbors

Figure 3.2: Two-hop neighborhood of node vi.

3.2.2 Sub-Optimal Consensus Kalman Filter

Olfati-Saber in [33] constructed the distributed optimal Kalman filter (3.6) without ex-
plicitly computing the optimal consensus gain. Instead, he discussed the flaws that exist
in the update equations optimal form. Specifically the necessity to retrieve two-hop
neighborhood information in order to update the cross correlation term was empha-
sized. Not only that a two-hop neighborhood data flow is hard to implement, it can
also lead to computational overloads. For example, in a complete graph this would
mean that each agent would retrieve N(N + 1) cross correlation terms at each step.
The latter served as the motivation to construct a sub-optimal distributed consensus
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Kalman filter (SOCKF) which solves the following problem:

Problem 3.2 (Sub-Optimal consensus Kalman gains). Consider N agents interacting
over a connected graph G where each observes the process (3.1) with observation model
(3.2) and utilizes an estimator type (3.3). Using a one-hop based information exchange,
find a set of local gains, Ki

k and Ci
k, that will ensure the stability of the estimation

error.

Olfati-Saber proposed the following update equations which utilizes only (one-hop)
neighboring state estimates and discards the consensus terms from the error covariance
and Kalman gain equations in (3.6).

Estimation

Ki
k = P i

k(H i)T
(
Ri + H iP̄ i

k(H i)T
)−1

P̂ i
k = F i

kP̄ i
k(F i

k)T + Ki
kRiKiT

k

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni

(
x̄j

k − x̄i
k

)
Prediction

x̄i
k+1 = Ax̂i

k

P̄ i
k+1 = AP̂ i

kAT + BQBT ,

(3.10)

where F i
k = I −Ki

kH i. The omission of the consensus terms from the Kalman gain and
error covariance update equation is justified with the assumption that the consensus
gain is relatively small. It was shown in [33] that (3.10) has stable estimator dynamics
with an appropriate consensus gain selection, However, it should be noted that one must
be careful while selecting a small consensus gain since this might lead the consensus
component in the DCKE to be negligible.

For example the gain from [33] is given as

Ci
k = γkP i

k(F i
k)−T (3.11)

with the consensus factor

γk =
√

λmin (Ψk)
λmax ((L ⊗ A)Yk(L ⊗ A))

, (3.12)

where Ψk = diag{(P̂ i
k−1)−1 − AT (F i

k)T (P̂ i
k)−1F i

kA}N
i=1 and Yk = diag{(F i

k)−1(P̂ i
k)−1 (F i

k

)−T }N
i=1.

Although this consensus factor ensures the stability of the estimator, λmin (Ψk) can
obtain small values prior to convergence. This will result in a negligible consensus
factor and thus the cooperative nature of the estimator may be overstated. This idea
is captured in Fig. 3.3, where the consensus factor (3.12) is depicted. The consensus
factor was calculated according to the numerical example provided in Section 3.4. As
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can be seen, γk obtains very small values in a short period of time. This will cause the
inter-agent contribution in the estimation to be insignificant. Further discussion will
be provided in Section 3.4. This motivated us to search for a consensus gain that will
provide a meaningful network-level contribution.

Figure 3.3: Consensus factor (3.12) proposed in [33] as a function of time for example
presented in Section 3.4.

3.3 An Improved Consensus Gain Selection

In this section we explore both centralized and decentralized approaches for designing
the consensus gain term Ci

k in (3.10).

3.3.1 Centralized Consensus Gain Determination

We propose a new consensus gain for the SOCKF update scheme (3.10). We aim to
extract the maximal consensus gain in a manner that will ensure the stability of the
local estimation error (and thus, for the sum of all errors as well).

Theorem 3.3 (DCKE Stability). Consider a group of N agents interacting over a
connected graph G where each observes the process (3.1) with observation model (3.2).
The noiseless estimation error with the Kalman consensus filter (3.10) and the choice
of consensus gain Ci

k = γkP i
k(F i

k)−T is asymptotically stable for any γk ∈ [0, γ∗
k ] ∀ k,

where γ∗
k can be obtained as the maximum value for which

Kk(γk) = diag
{

(P̂ i
k−1)−1 − AT (F i

k)T (P̂ i
k)−1F i

kA
}N

i=1
+ 2γk

(
L ⊗ AT A

)
− γ2

k (L ⊗ A)T diag{(F i
k)−1P̂ i

k(F i
k)−T }N

i=1 (L ⊗ A) ,
(3.13)

is positive semi-definite, and can be found using semi-definite programming.
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Proof. The proof for this theorem follows the same line as presented in [33] with an
additional section to establish the range of consensus gains γk. First we choose a
quadratic Lyapunov function and show that for γk = 0, the Lyapunov function is
monotonically decreasing. We then prove that there must be some γ∗

k such that for any
γk ∈ [0, γ∗

k ], the Lyapunov function is monotonically decreasing. Finally we show that
γ∗

k can be found using semi-definite programming (SDP).

Let ηk = x̂k −xk and η̄k = x̄k −xk be the estimation and prediction errors, respectively.
The noiseless error dynamics are

ηi
k = (I − Ki

kH i)︸ ︷︷ ︸
F i

k

η̄i
k + Ci

k

∑
j∈Nj

(
η̄j

k − η̄i
k

)

η̄i
k+1 = Aηi

k.

Consider now the following Lyapunov function,

Vk =
N∑

i=1
(ηi

k)T (P̂ i
k)−1ηi

k. (3.14)

The Lyapunov step difference function along the system trajectories is

δVk = Vk − Vk−1

=
N∑

i=1
(ηi

k)T (P̂ i
k)−1ηi

k −
N∑

i=1
(ηi

k−1)T (P̂ i
k−1)−1ηi

k−1

=
N∑

i=1

(
F i

kAηi
k−1 + Ci

kui
k

)T
(P̂ i

k)−1
(
F i

kAηi
k−1 + Ci

kui
k

)
− (ηi

k−1)T (P̂ i
k−1)−1ηi

k−1

=
N∑

i=1
(ηi

k−1)T
(
AT (F i

k)T (P̂ i
k)−1F i

kA − (P̂ i
k−1)−1

)
ηi

k−1

+ 2
N∑

i=1
(η̄i

k)T (F i
k)T (P̂ i

k)−1Ci
kui

k +
N∑

i=1
(ui

k)T (Ci
k)T (P̂ i

k)−1Ci
kui

k,

(3.15)

where

ui
k =

∑
j∈Ni

(
x̄j

k − x̄i
k

)
=
∑

j∈Ni

(
η̄j

k − η̄i
k

)
. (3.16)

Let us consider only the term which is not dependent on the consensus gain,

Ψ i
k = −(P̂ i

k−1)−1 + AT F iT
k (P̂ i

k)−1F i
kA. (3.17)
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Plugging in (3.10) into (3.17) produces

Ψ i
k = −(P̂ i

k−1)−1 + AT (F i
k)T

(
F i

kAP̂ i
k−1AT (F i

k)T + Πi
k

)−1
F i

kA, (3.18)

where
Πi

k = Ki
kRiKiT

k + F i
kQF iT

k .

Multiplying P̂ i
k−1 on both sides of (3.18) yields

P̂ i
k−1Ψ i

kP̂ i
k−1 = P̂ i

k−1AT (F i
k)T

(
F i

kAP̂ i
k−1AT (F i

k)T + Πi
k

)−1
F i

kAP̂ i
k−1 − P̂ i

k−1.

Utilizing the Woodbury matrix identity (inversion lemma) [52] and multiplying once
more (P̂ i

k−1)−1 on both sides gives

Ψ i
k = − (P̂ i

k−1)−1
(
(P̂ i

k−1)−1 + AT (F i
k)T (Πi

k)−1F i
kA
)

(P̂ i
k−1)−1. (3.19)

Since
(
Πi

k

)−1 and (P̂ i
k−1)−1 are positive definite, Ψ i

k is negative definite. We are left
to find a consensus gain such that δVk shall always remain negative. Consider the
consensus gain structure proposed by [33] of

Ci
k = γkP̂ i

k(F i
k)−T = γkP̄ i

k. (3.20)

where the second equality stems from the well known result in Kalman filtering that
P̂k = FkP̄k (see [49]). Implementing (3.20) into δVk produces

δVk =
N∑

i=1
(ηi

k−1)T Ψ i
kηi

k−1 + 2γk

N∑
i=1

(η̄i
k)T ui

k + γ2
k

N∑
i=1

(ui
k)T Y i

k ui
k, (3.21)

where Y i
k =

(
F i

k

)−1
P̂ i

k

(
F i

k

)−T . The second term in (3.21) can be simplified using the
graph Laplacian and (3.16) as

2γk

N∑
i=1

(η̄i
k)T ui

k = −2γkηT
k−1

(
L ⊗ AT A

)
ηk−1, (3.22)

where ηk−1 is the augmented agents’ estimation error vector at the k − 1 step. It is
immediate that the third term in (3.21) is positive semi definite:

γ2
k

N∑
i=1

(ui
k)T Y i

k ui
k = γ2

kηT
k−1 (L ⊗ A)T Yk (L ⊗ A) ηk−1, (3.23)

with Yk = diag{Y i
k }N

i=1. Therefore we can write:

δVk = −ηT
k−1Kkηk−1, (3.24)
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with

Kk =
(
−Ψk + 2γk

(
L ⊗ AT A

)
− γ2

k (L ⊗ A)T Yk (L ⊗ A)
)

, (3.25)

and Ψk = diag{Ψ i
k}N

i=1.

We showed in (3.19) that for γk = 0, corresponding to the NCLKF, Kk is posi-
tive definite. We now show that there must be a positive upper bound on γk for
which Kk is positive semi-definite. In this direction, we recall Sylvester’s criteria [13],
which states that a matrix is positive definite if and only if its leading principle mi-
nors are all positive. In this direction, let a1 = −[Ψk]11, a2 = [2

(
L ⊗ AT A

)
]11 and

a3 = −[(L ⊗ A)T Yk (L ⊗ A)]11. If a1 + a2γk + a3γ2
k < 0 (the first leading principle

minor of Kk is negative), then Kk is not positive definite. Therefore, there must be
some γ∗

k satisfying

0 < γ∗
k <

−a2 −
√

a2
2 − 4a1a3

2a3
,

for which the matrix Kk is positive semi-definite, and for any γk ∈ [0, γ∗
k ], Kk is positive

definite and the noiseless error dynamic is asymptotically stable.

The next step in our proof is to find a method for extracting the consensus factor
γ∗

k . Here, we employ the Schur complement lemma [45], which states that for matrices
W (x) = W (x)T , Q(x) = Q(x)T and S(x) that depend affinely on x, W (x) ≻ 0 and
Q(x) − S(x)W (x)−1S(x)T ≻ 0 if and only if

[
Q(x) S(x)
S(x)T W (x)

]
≻ 0.

Let us consider the constraint Kk(γk) ⪰ 0, and define

Qk(γk) = Ψk + 2γk(L ⊗ AT A)

Wk = Y −1
k

Sk(γk) = γk(L ⊗ A)T .

Since [A, H i] make an observable pair for all agents, the matrix F i
k is full ranked.

Additionally, we know that P̂ i
k is positive-definite, therefore Yk and its inverse are

positive-definite as well. Additionally, we have Qk(γk) − Sk(γk)W −1
k Sk(γk)T = Kk(γk)

and thus we can conclude that Kk(γk) ⪰ 0 if and only if
[
Ψk + 2γk(L ⊗ AT A) γk(L ⊗ A)T

γk(L ⊗ A) Y −1
k

]
⪰ 0.
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This is an LMI constraint in γk. We can then construct the semi-definite program

max
γk

γk

s.t.
[
Ψk + 2γk(L ⊗ AT A) γk(L ⊗ A)T

γk(L ⊗ A) Y −1
k

]
⪰ 0,

(3.26)

to obtain the largest value γk ensuring that Kk is positive definite. This completes the
proof. ■

Recall that the suggested consensus gain structure (3.20) is nothing more then the
multiplication of the local matrix P̄ i

k with the consensus factor γk. Therefore it is
evident that Problem 3.2 reduces to finding the scalar γk which solves (3.26). This
concept is manifested in Theorem 3.3. We note that in order to solve (3.26), one requires
global network information such as the graph’s Laplacian and the augmented matrix
Yk. In other words, the consensus factor computation is conducted in a centralized
manner as illustrated in Fig. 3.4.

zi
k

Consensus

Measurement Local
Kalman
Filter

Ni

Agent i

P
x̄i

k

x̄j
k

xk

x̂i
k

Ci
k

Centralized Computation
γk Y i

k

Figure 3.4: DCKE structure for the ith agent - centralized consensus gain architecture.

A comparison between the consensus gain found from (3.26) and the gain proposed in
[33] is provided in Section 3.4, where superiority of our solution is demonstrated.

3.3.2 Decentralized Consensus Gain Determination

In the previous sub-section, we presented an approach for finding a consensus gain for
the DCKE based on semi-definite programming. This calculation, however, must be
done in a centralized manner, and the gain should be implemented for each agent in
the sensor network. Note that any changes in the network structure, noise proper-
ties, or other, would require solving the SDP in (3.26) again, making this approach
perhaps fragile in large-scale network systems. These points motivate an alternative
method for finding a suitable consensus factor that does not require any centralized
computation.

In this direction, we propose a decentralized approach for finding a suitable consensus
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Figure 3.5: DCKE structure for the ith agent - decentralized consensus gain architecture.

gain that depends only on the local properties of the network for each agent, see Figure
3.5. In this way, we can handle time-varying graphs as well.

Consider a group of N agents, interacting over a time-varying undirected graph Gk

satisfying the following assumption:

Assumption 1. The time-varying graph Gk is connected at each time-instant k.

Each sensor observes the process (3.1) with observation model (3.2). Consider now the
decentralized consensus gain,

Ci
k = 1

|Ni,k| + 1
F i

k, (3.27)

where Ni,k denotes the neighborhood of agent i at time step k. Then, the local noiseless
error dynamics are

ηi
k = F i

kAηi
k−1 + 1

|Ni,k| + 1
F i

kA
∑

j∈Ni,k

(
ηj

k−1 − ηi
k−1

)

= F i
kAηi

k−1 + 1
|Ni,k| + 1

F i
kA

∑
j∈Ni,k

ηj
k−1 − |Ni,k|

|Ni,k| + 1
ηi

k−1

= 1
|Ni,k| + 1

FkA
∑

j∈Ni,k∪{i}
ηj

k−1,

(3.28)

and the augmented noiseless error dynamics are

ηk = diag{F i
kA}N

i=1

(
INn −

(
D−1

k Lk ⊗ In

))
ηk−1

= diag{F i
k}N

i=1((IN − D−1
k Lk) ⊗ A)ηk−1, (3.29)

with Dk = diag{|Ni,k| + 1}N
i=1 and Lk denotes the graph Laplacian at time step k. It is

immediate that for the non-cooperative case, i.e., when IN − D−1
k Lk = IN , we obtain

the noiseless NCLKF error dynamics. Under the case where each sensor has the same
observation of the process, we can arrive at the following result.

Proposition 3.3.1. Assume that Assumption 1 holds and that each sensor in the
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network measures the process (3.1) using the same observation model

zi
k = Hxk + vi

k, i = 1, . . . , N,

where vi
k is the zero-mean Gaussian measurement noise with E[vi

k(vi
l)T ] = Rδkl. Then

the error dynamics (3.29) are asymptotically stable.

Proof.

ηk = diag{F i
kA}N

i=1

(
INn −

(
D−1

k Lk ⊗ In

))
ηk−1

= (IN ⊗ F̄kA)((IN −
(
D−1

k Lk)) ⊗ In

)
ηk−1

=
(
(IN − (D−1

k Lk)) ⊗ F̄kA
)

ηk−1.

Due to the properties of the Kronecker product, we have that (IN ⊗ F̄kA) and ((IN −
(D−1

k Lk)) ⊗ In) commute. This leads to the following inequality,

lim
k→∞

∥∥∥∥∥∏
k

(
(IN − (D−1

k Lk)) ⊗ F̄kA
)∥∥∥∥∥ ≤ lim

k→∞

∥∥∥∥∥∏
k

(F̄kA)
∥∥∥∥∥ lim

k→∞

∥∥∥∥∥∏
k

(IN − (D−1
k Lk))

∥∥∥∥∥ .

From the stability of the NCLKF, it follows that lim
k→∞

(∏
k F̄kA

)
= 0.1 Furthermore,

it was shown in [17] that for connected graphs, the matrix IN −
(
D−1

k Lk

)
is ergodic at

each time step k. By Wolfowitz’s Theorem (see [50]), the process ∏k(IN − (D−1
k Lk)) is

ergodic as well and there exists a vector c ∈ RN such that

lim
k→∞

∏
k

(IN − (D−1
k Lk)) = 1cT ,

where 1 is the matrix of all ones; Therefore,

lim
k→∞

ηk = lim
k→∞

(∏
k

(
IN − (D−1

k Lk)
)

⊗
∏
k

F̄kA

)
η0 = 0.

and the noiseless error dynamics are asymptotically stable. ■

The result of Proposition 3.3.1 may be restrictive, as we are assuming each sensor has
the same measurement model with noise characteristics. On the other hand, such a
model may be useful when employing a homogeneous sensor network and aiming for
faster convergence of the estimate compared to using a single sensor. Currently, we do
not have a proof for the general case of heterogeneous sensor measurements, however
we note that in numerical simulation, over a variety of random network properties, the
heterogeneous case gives promising results. We explore this in the next section.

The above proposition provides an extremely simple method to find a consensus factor
1Here we use an abuse of conventional notation and define

∏n

k=1 Mk = MnMn−1 · · · M2M1.
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that works. In contrast, [39] proposed the following decentralized consensus gain,

Ci
k = ϵ

1 + |P̂ i
k|F

P̂ i
k, (3.30)

where ϵ is some predetermined constant. The design constant ϵ can be pre-calibrated,
however no mid-run modification techniques were provided for this constant in case of,
for example, a change in the graph structure.

Remark 1. It should be noted that the consensus gain structure in the centralized
scheme of Theorem 3.3 is not the same as the one proposed in (3.27). The central-
ized consensus gain was chosen to ensure explicitly that the Lyapunov function (3.14)
decreases along the system trajectories. On the other hand, the decentralized gain was
chosen to simplify the structure of the error dynamics. Although not having the same
structure, we would expect that the centralized consensus gain found using (3.26) would
out perform the proposed decentralized consensus gain. This is due to the fact that the
centralized estimator employs global network properties to compute the consensus gain,
whereas, in the decentralized scheme, only local network properties are employed. For
the numerical example presented in Section 3.4 we note that this is not the case, and
in fact the decentralized scheme shows better results.

3.4 Simulation Results

The following numerical example was taken from [34] with minor modifications. Con-
sider a robot performing a noisy “snail” trajectory with the following dynamics,

xk+1 =
[

0.9996 −0.0283
0.0283 0.9996

]
︸ ︷︷ ︸

A

xk + 0.375 · I2︸ ︷︷ ︸
B

wk. (3.31)

The robot’s initial state is set to be x0 = [15, −10]T , the initial covariance matrix for
each agent is set to be P i

0 = 10I, and the agents’ initial estimates are normally dis-
tributed about the initial state. Additionally, the process noise covariance is Q = I2.

A network of 20 sensors are randomly positioned in some field of interest (see Fig. 3.6)
where a communication link between 2 sensors exists only if their distance is below
some threshold (< 40 meters). Furthermore, we consider two sensing models: 1) the
homogeneous sensing model where each agent measure the robot with the same obser-
vation model such that Ri = R = 9 and H i = H = [0.5, 0.5], and 2) the heterogeneous
model where each agent with an even number measures the robot’s y-axis position
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while the agents with an odd number measure its x-axis position such that:

H i =

[1, 0] i ∈ {1, 3, ..., 19}

[0, 1] i ∈ {2, 4, ..., 20}
. (3.32)

The measurement noise covariance for the ith agent is Ri =
√

i.

Figure 3.6: A sensor network of 20 agents randomly positioned.

We provide a comparison between 7 state estimators:

NCLKF: the non-cooperative local Kalman filter with null consensus gain;
SOCKF1: the sub-optimal consensus Kalman filter with consensus factor (3.12);
SOCKF2: the sub-optimal consensus Kalman filter with consensus factor (3.26) (com-

puted utilizing CVX toolbox [14]);
DSOCKF1: the decentralized sub-optimal consensus Kalman filter with ϵ = 0.1 and

consensus gain (3.30);
DSOCKF2: the decentralized sub-optimal consensus Kalman filter with consensus

gain (3.27);
OCKF: the optimal consensus Kalman filter (3.6) with the optimal consensus gain

(3.9).
CENKF: centralized Kalman filter where all agents’ measurements are processed in

a single Kalman filter.

The compared performance measures are twofold: the agents state estimation standard
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deviation (Fig. 3.7) calculated as

σx = 1
MC

MC∑
j=1

√√√√√ 1
N − 1

N∑
i=1

([
1 0

]
x̂i,j − 1

N

[
1 0

] N∑
i=1

x̂i,j

)2

σy = 1
MC

MC∑
j=1

√√√√√ 1
N − 1

N∑
i=1

([
0 1

]
x̂i,j − 1

N

[
0 1

] N∑
i=1

x̂i,j

)2

,

where MC denotes the number of Monte-Carlo runs and x̂i,j is the ith agent state
estimation for the jth run. The true averaged root mean squared error (Fig. 3.8)
calculated as

RMSE = 1
MC

MC∑
j=1

√√√√ N∑
i=1

(E[(ηi,j)T ηi,j ]),

where ηi,j = x̂i,j − x .

Figure 3.7: Standard deviation of the agents’ state estimation for both axes, compar-
ison between 6 distributed state estimators over 100 Monte-Carlo runs for a homoge-
neous sensing model.

We begin our discussion with the homogeneous sensing scheme, in Fig. 3.7 one can
observe the agents rate of convergence and stability of the agents’ estimation error for
all 6 distributed state estimators (all except CENKF). As shown, the OCKF and the
DSOCKF2 converges with the fastest rate among all estimators. Additionally shown the
relative proximity of the SOCKF1 to the NCLKF estimator performance. This results
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Figure 3.8: Root mean squared error, comparison between 7 state estimators over
100 Monte-Carlo runs for a homogeneous sensing model.

due to the extremely small consensus factor gain used by SOCKF1 which effectively
ignores the effect of the consensus component, thus turning SOCKF1 into a NCLKF
estimator.

Fig. 3.8 demonstrates the superiority of SOCKF2 and DSOCKF2 over other solutions
by presenting lower root mean squared error (excluding the optimal solutions). Their
superiority over the NCLKF is expected as there is more information for the agents
to process. Additionally shown that for this specific graph topology, the SOCKF2
shows superiority over the DSOCKF1, potentially due to a poor selection of the gain
ϵ. The CENKF represents the best obtainable solution while the OCKF represents a
lower bound on our proposed sub-optimal and distributed consensus based strategies.
In these simulations we see the gap between our solutions and OCKF/CENKF is not
significant.

Although the DSOCKF2 was proven for the homogeneous model, we show that in fact
it provides satisfying results for the heterogeneous model as well. We note that, in
this scheme, although (A, H i) make an observable pair for each individual sensor, the
observability is relatively weak for the non-measured axis, i.e., while the robot is in
transition between quadrants one would expect a relatively large estimation error since
the position in one axis hardly vary while the position in the other can vary significantly.

In Fig. 3.9 we see the standard deviation of the agents’ estimation for the heterogeneous
model . As shown, the SOCKF2 converges with the fastest rate among the centralized
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Figure 3.9: Standard deviation of the agents’ state estimation for both axes, compar-
ison between 6 state estimators over 100 Monte-Carlo runs for a heterogeneous sensing
model.

Figure 3.10: Root mean squared error, comparison between 7 state estimators over
100 Monte-Carlo runs for a heterogeneous sensing model.

filters while maintaining a relatively constant state estimation standard deviation (even
through quadrants transition). Additionally, one can observe that, in this scheme
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as well, the SOCKF1 does not show drastic improvement over the NCLKF. In the
decentralized schemes we observe superiority of the DSOCKF2 over DSOCKF1 here as
well, and as expected, the OCKF outperformed all other estimators.

(a) SOCKF2 (b) DSOCKF2

Figure 3.11: Trajectory of the true state and the agents’ mean estimate utilizing
SOCKF2 (a) and DSOCKF2 (b) for a heterogeneous sensing model.

Figure 3.12: Local MSE, comparison between agents with minimum NCLKF MSE
, maximum SOCKF2 MSE and maximum DSOCKF2 MSE for a single run with a
heterogeneous sensing model.

Fig. 3.10 further demonstrates the superiority of SOCKF2 and DSOCK2 over the oth-
ers by presenting lower root mean squared error. Once more it is shown that for this
specific graph topology, the SOCKF2 shows superiority over the DSOCKF1. Addi-
tionally shown is that , here as well, the gap between our suggested solution and the
OCKF/CENKF is not large. What is perhaps most astonishing is that these simula-
tions indicate the decentralized consensus gain selection for DSOCKF2 out performs the
centralized consensus factor in SOCKF2. This result can be explained emphasizing the
following two points regarding the optimal gain (3.9). Firstly, (3.9) is a decentralised
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solution. Secondly, both (3.9) and (3.27) are of the form Ci
k = F i

kΘi
k, where Θi

k is com-
puted differently for each gain. In (3.9), Θi

k = (Γi
k)T

(
Γi

k(H i)T (Ωi
k)T (Γi

k)T − Di
k

)−1

whereas in (3.27), Θi
k = 1

|Ni,k|+1In. Fig. 3.11 illustrates the true and mean esti-
mated trajectory of the robot using SOCKF2 (3.11a), and DSOCKF2 (3.11b) for the
heterogeneous sensing model. As shown, the proposed filter provides good tracking
results.

Fig. 3.12 provides zoom-in demonstration for the effectiveness of our proposed solutions
with respect to the local estimator performance. This is done by comparing between
agents which obtained the maximum local MSE for estimators SOCKF2 and DSOCKF2
with the agent which obtained the minimum local MSE for NCLKF. As shown , local
performance improved drastically with our proposed solutions.

(a) Graph at k = 1. (b) Graph at k = 50. (c) Graph at k = 150.

Figure 3.13: Communication graph at time steps (a) 1-49, (b) 50-149, and (c) 150-300.

Figure 3.14: Sum of all agents mean squared error with two graph switches (at step
50 and at step 150), comparison between 3 state estimators for a single run with the
heterogeneous sensing model.

To conclude, we compare the robustness of the proposed decentralized consensus Kalman
filter to the filter proposed in [39]. To do so, we simulate a communication topology
switch at two time instances, at k = 50 and k = 150 (see Fig. 3.13). The sum of
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all agents MSE are presented in Fig. 3.14, where we compare between 3 estimators:
NCLKF, DSOCKF1, and DSOCKF2. As shown, the DSOCKF1 becomes unstable after
the first switch, while the DSOCKF2 remains stable for the entire duration.

To summarise this chapter, we have demonstrated superiority of our proposed consensus
gains compared to existing solutions and the non-cooperative Kalman estimator, in
both the homogeneous and the heterogeneous schemes. We did so for two consensus
gain computation methods: centralized and the decentralised. We further demonstrated
robustness to time varying communication topology for the decentralised method.
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Chapter 4

Event-Triggered Consensus
Kalman Filter

In the previous chapter we introduced the consensus Kalman filter and showed superi-
ority in performance over the NCLKF. In this chapter we shall expand our discussion
to include energy consumption in the form of communication load reduction for each
sensor in the network. To do so we shall implement an event-triggering mechanism in
the consensus Kalman filter while preserving aspects such as stability and performance
compared to the NCLKF.

4.1 Problem Setup

We consider a network comprising N interacting sensor agents where the interaction
topology can be described by an undirected graph G = (V, E). The edge set E ⊆ V × V
indicates which agents can exchange information with each other. Each agent observes
a linear discrete-time stochastic process described by the dynamics

P : xk+1 = Axk + Bwk, (4.1)

where xk ∈ Rn is the state vector and wk is an additive white Gaussian noise such that
E
[
wkwT

l

]
= Qδkl, where δkl is the Dirac Delta function.

Each agent is capable of measuring the process state using the observation model

zi
k = H ixk + vi

k, (4.2)

where zi
k ∈ Rmi is the measurement obtained by agent i, H i ∈ Rmi×n is the observa-

tion matrix, and vi
k ∈ Rmi is a measurement noise assumed to also be additive white
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Gaussian noise with E
[
vi

k(vi
l)T
]

= Riδkl. Additionally we assume that Ri ∈ Rmi×mi

is invertible and that (A, H i) make an observable pair for every agent such that the
noiseless NCLKF is asymptotically stable.

The distributed event-triggered consensus Kalman estimator (DETCKE) was first pro-
posed by [48],

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni

(
x̃ji

k − x̃ii
k

)
, (4.3)

where Ki
k and Ci

k are the Kalman and consensus gains of the ith agent, respectively, and
x̂i and x̄i are the posteriori and a priori state estimate of the ith agent, respectively.
Additionaly, x̃ji denote the jth agent state propagation, used in the ith agent estimator,
according to the following event triggering rule,

x̃ji
k =

x̄j
k, f j

k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
> 0

Ax̃ji
k−1, f j

k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
≤ 0

∀ j ∈ Ni ∪ {i}, (4.4)

where f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
is the event triggering function comprising local network

properties and locally computed estimates, evaluated by the jth agent in each step.
Formally, if the ETC f j

k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
≤ 0 is satisfied, then the ith agent will

continue propagating the most recent state prediction obtained from the jth agent
(assuming they are neighbors). If the ETC is violated then the jth agent will broadcast
its current state prediction. The function f j

k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
holds a key role in the

filter update equations. If not well formulated, this function could lead to the absence
of events which may cause the local estimation errors to diverge. On the other hand,
it may generate an event at each time instance such that the event-triggered consensus
Kalman estimator, for all practical purposes, serves as the consensus Kalman estimator
(3.3).

The event-triggered consensus Kalman estimator (4.3) is composed of a classic Kalman
estimator term, a consensus term based on neighbors last transmitted estimates and an
event-triggered mechanism. As Fig. 4.1 suggests, the ETM is responsible for the prop-
agation of the state from the most recent event, x̃ii

k . It should be noted that, although
not captured in this figure, the ETM shall manage the state prediction broadcasting
when the ETC is violated .

4.2 Event-Triggered Consensus Kalman Estimator

In this section we explore an event-triggered mechanism to reduce transmission over-
loads while ensuring stability of the consensus Kalman filter. Essentially we seek to
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Σ Ki
k Σ A Delay

H i

Ci
k

ΣΣ |Ni| ETM (4.4)

x̄i
k+1zi

k x̄i
kx̂i

k

−

x̃ii
k

−
{x̃ji

k }j∈Ni

Figure 4.1: DETCKE of the ith agent.

solve the following problem:

Problem 4.1 (Sub-optimal event-triggered consensus Kalman filter). Consider N agents
interacting over a connected graph G where each observes the process (4.1) with obser-
vation model (4.2). Additionally, each agent utilizes an estimator of type (4.3) and an
event triggering rule of type (4.4). Using a one-hop based information exchange, find a
set of local gains, Ki

k and Ci
k, and an ETF, f i

k(·), that will ensure the stability of the
estimation error and reduce communication bandwidth.

Once more, our discussion is divided into two approaches: centralized and decentralized
methods for designing the consensus gain Ci

k.

4.2.1 Event-Triggered Condition for a Centralized Consensus Gain

We now consider the consensus gain (3.20) with the event-triggered condition for the
ith agent, as proposed in [26],

f i
k

(
{x̃ji

k }j∈Ni∪{i}, x̄i
k

)
=
(
x̄i

k − x̃ii
k

)T ∑
j∈Ni

(
x̃ji

k − x̃ii
k

)
< 0. (4.5)

Next we will propose a range of values for the consensus factor, with which we solve
Problem 4.1 and ensure the stability of the error dynamics. This is presented in the
following theorem.

Theorem 4.2 (DETCKE Stability). Consider a group of N agents interacting over a
connected graph G where each observes the process (4.1) with observation model (4.2).
The noiseless estimation error for the consensus Kalman filter (3.10) with the DETCKE
(4.3), the event-triggered mechanism (4.4) with the event-triggered condition (4.5), the
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choice of consensus gain Ci
k = γkP i

k

(
F i

k

)−T and any consensus factor satisfying

0 ≤ γk ≤ 2

λmax

(
diag

{(
F i

k

)−1
P i

k

(
F i

k

)−T
}N

i=1

)
λmax(L)

,

is asymptotically stable.

Proof. To prove the stated theorem, first we choose a quadratic Lyapunov function
and show that for the suggested consensus factor and event-triggered condition, the
Lyapunov function is monotonically decreasing.

Let ηk = x̂k − xk , η̄k = x̄k − xk and η̃k = x̃k − xk be the estimation, prediction, and
propagation errors, respectively. The noiseless error dynamics are

ηi
k = (I − Ki

kH i)︸ ︷︷ ︸
F i

k

η̄i
k + Ci

k

∑
j∈Ni

(
η̃ji

k − η̃ii
k

)

η̄i
k+1 = Aηi

k.

For convenience, we define the following notation ũi
k =

∑
j∈Ni

(
η̃ji

k − η̃ii
k

)
. Consider

now the following Lyapunov function,

Vk =
N∑

i=1
(ηi

k)T (P̂ i
k)−1ηi

k. (4.6)

The Lyapunov difference along the system trajectories is

δVk = Vk − Vk−1 =
N∑

i=1
(ηi

k)T (P̂ i
k)−1ηi

k −
N∑

i=1
(ηi

k−1)T (P̂ i
k−1)−1ηi

k−1

=
N∑

i=1

(
F i

kAηi
k−1 + Ci

kũi
k

)T
(P̂ i

k)−1
(
F i

kAηi
k−1 + Ci

kũi
k

)
− (ηi

k−1)T (P̂ i
k−1)−1ηi

k−1

=
N∑

i=1
(ηi

k−1)T
(
AT (F i

k)T (P̂ i
k)−1F i

kA − (P̂ i
k−1)−1

)
ηi

k−1

+ 2
N∑

i=1
(η̄i

k)T (F i
k)T (P̂ i

k)−1Ci
kũi

k +
N∑

i=1
(ũi

k)T (Ci
k)T (P̂ i

k)−1Ci
kũi

k,

It was shown in the proof of Theorem 3.3 that the matrix Ψ i
k = AT (F i

k)T (P̂ i
k)−1F i

kA −
(P̂ i

k−1)−1 satisfies

Ψ i
k < 0, (4.7)

i.e., it is negative definite. Recall the consensus gain structure from (3.20),

Ci
k = γkP̂ i

k(F i
k)−T = γkP̄ i

k. (4.8)
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Inserting (4.8) into δVk produces

δVk =
N∑

i=1
(ηi

k−1)T Ψ i
kηi

k−1 + 2γk

N∑
i=1

(η̄i
k)T ũi

k + γ2
k

N∑
i=1

(ũi
k)T Y i

k ũi
k, (4.9)

where Y i
k =

(
F i

k

)−1
P̂ i

k

(
F i

k

)−T . We now consider the event trigger condition for the ith
agent,

f i
k

(
{x̃ji

k }j∈Ni∪{i}, x̄i
k

)
=
(
x̄i

k − x̃ii
k

)T
ũi

k =
(
η̄i

k − η̃ii
k

)T
ũi

k ≤ 0. (4.10)

If ETC (4.10) is violated, then according to ETM (4.4) we obtain that x̄i
k = x̃ii

k or
equivalently η̄i

k = η̃ii
k such that:

2γk(η̄i
k)T ũi

k = 2γk(η̃i
k)T ũi

k.

If ETC (4.10) is satisfied, then the following inequality holds:

2γk(η̄i
k)T ũi

k ≤ 2γk(η̃i
k)T ũi

k, (4.11)

thus the second term in (4.9) satisfies

2γk

N∑
i=1

(η̄i
k)T ũi

k ≤ 2γk

N∑
i=1

(η̃i
k)T ũi

k, (4.12)

for each time step k. Additionally, we know that x̃ji is the same for all i ∈ Nj , i.e.,

x̃ji = x̃js ∀ {i, s} ∈ Nj ,

such that the following equality holds,

ũk = (L ⊗ In) η̃, (4.13)

with ũk =
[
(ũ1

k)T , (ũ2
k)T , ..., (ũN

k )T
]T

. Fusing (4.7), (4.12), and (4.13) into (4.9) yields

δVk =
N∑

i=1
(ηi

k−1)T Ψ i
kηi

k−1 + 2γk

N∑
i=1

(η̄i
k)T ũi

k + γ2
k

N∑
i=1

(ũi
k)T Y i

k ũi
k

< 2γk

N∑
i=1

(η̃ii
k )T ũi

k + γ2
kλmax (Yk)

N∑
i=1

(ũi
k)T ũi

k

≤ −2γkη̃T
k Lη̃k + γ2

kλmax(Yk)η̃T
k LLη̃k

≤ −(2γk − γ2
kλmax(Yk)λmax(L))η̃T

k Lη̃k ≤ 0,
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where Yk = diag{Y i
k }N

i=1. Hence, for the consensus factor

0 ≤ γk ≤ 2
λmax(Yk)λmax(L)

, (4.14)

the Lyapunov difference (4.9) is strictly decreasing. ■

It should be noted that by choosing γk = 0, we obtain the NCLKF for which stability
is ensured. We have shown that by selecting a consensus factor which satisfies (4.14),
consensus gain structure (3.20), and ETC (4.10), we are able to guaranty the stability
of the noiseless estimation error.

Remark 2. The consensus gain proposed in [26] has the form

Ci
k = 2F i

kΓ i
k

−1

λmax (Γk
−1) λmax (L)

, (4.15)

where Γ i
k =

(
F i

k

)T
AT (P̄ i

k)−1AF i
k and Γk = diag{Γ i

k}N
i=1. The computation of (4.15)

requires the assumption that the matrix A is non-singular. However, even if it is
non-singular but ill-conditioned, it may still lead to numerical challenges. This is in
contrast to the gain proposed in this work that does not require inversion of the process
dynamics. The performance degradation of (4.15) with respect to the consensus gain
stated in Theorem 4.2 will be presented in Section 4.4.

In order to solve (4.14), one requires global network information such as the graph’s
Laplacian matrix and the augmented matrix Yk. Therefore, the consensus factor com-
putation must be conducted in a centralized manner as illustrated in Fig. 4.2.

zi
k

Consensus
ETCj

Measurement
Local

Kalman
Filter

Ni

Agent i

P

x̄i
kETCi

x̄j
k

xk

x̂i
k

Ci
k

Centralized Computation

γk Y i
k

Figure 4.2: DETCKE structure for the ith agent - centralized consensus gain archi-
tecture.

We now seek to construct a solution which does not requires global network informa-
tion.
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4.2.2 Event-Triggered Condition for a Decentralized Consensus Gain

In the previous subsection we proposed a centralized solution for the determination
of the consensus factor γk that required global network information, i.e., the largest
eigenvalue of the Laplacian matrix L and the augmented matrix Yk. In Chapter 3,
we showed that this choice of gain can be problematic for time-varying communication
networks. Additionally, for large-scale networks, the centralized architecture may also
require heavy computational tools. In this subsection, we propose a decentralized
event-trigger scheme in which the event-triggering function and the consensus factor
are formulated such that only local network properties are required (see Fig. 4.3).

zi
k

Consensus
ETCj

Measurement
Local

Kalman
Filter

Ni

Agent i

P

x̄i
kETCi

x̄j
k

xk

x̂i
k

Ci
k

Figure 4.3: DETCKE structure for the ith agent - decentralized consensus gain ar-
chitecture.

Consider a group of N agents, interacting over a time-varying and undirected commu-
nication graph, denoted by Gk. Different from the setup in Section 3.3.2, here we do
not require that Gk is connected at each step. Each sensor observes the process (4.1)
with observation model (4.2) and the consensus Kalman estimator:

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈Ni,k

βj
k

(
x̄j

k − x̄i
k

)
, (4.16)

where Ni,k is neighborhood of the ith agent with respect to the graph Gk and βj
k = 1

if the jth agent broadcasts its information and βj
k = 0, otherwise. In (4.16), we use

the broadcasting neighbors a priori state prediction in the consensus term instead of
the state propagation x̃ji

k of non-broadcasting agents as formulated in (4.3). In this
direction, we introduce the following ETM:

βj
k =

1, f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
> 0

0, f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
≤ 0

∀ j ∈ Ni ∪ {i}. (4.17)

Additionally, we consider the SoD event-triggering condition for the jth agent:

f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
=
(
x̃jj

k − x̄j
k

)T (
x̃jj

k − x̄j
k

)
− δ ≤ 0, (4.18)
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(a) Undirected graph - Gk. (b) Directed graph - G∗
k .

Figure 4.4: Available v.s instantaneous communication topology where agents broad-
cast information based on an event triggering mechanism.

where x̃jj is formulated as in (4.4) and δ ∈ R is some constant threshold so that an
agent will broadcast (trigger an event) if the error norm between the state prediction
and the state propagation exceeds some value.

To simplify future discussion, we introduce a new notation set to describe the instan-
taneous broadcast channels of an event-triggering scheme. Let Lk be the Laplacian
matrix for the sensing network Gk describing the available communication channels be-
tween each agent at step k. Let G∗

k = (V, E∗
k ) denote the transmission graph of agents

for which an event was triggered such that E∗
k = {(j, i) | βj

k = 1, j ∈ Ni,k}. For example,
Fig. 4.4b illustrates the instantaneous communication topology in which only the 3rd
and the 8th agents broadcast, while Fig. 4.4a depicts the available communication
topology, Gk. Additionally, let L∗

k be the Laplacian matrix for the directed sensing
network G∗

k . Finally let N ∗
i,k be the local neighborhood of the ith agent with respect

to G∗
k such that N ∗

i,k = {j | βj
k = 1, i ∈ Nj,k}. Thus, (4.16) can be reformulated as

such:

x̂i
k = x̄i

k + Ki
k

(
zi

k − H ix̄i
k

)
+ Ci

k

∑
j∈N ∗

i,k

(
x̄j

k − x̄i
k

)
. (4.19)

We now consider the following consensus gain

Ci
k =


1

|N ∗
i,k| + 1

F i
k, |N ∗

i,k| > 0

0, |N ∗
i,k| = 0

, (4.20)

Note that for the case where an agent has no broadcasting neighbors, i.e., |N ∗
i,k| = 0, the

consensus term will be zero and it will run the NCLKF. In this case it is straightforward
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that the noiseless error dynamics are

ηi
k = F i

kη̄i
k

η̄i
k+1 = Aηi

k.
(4.21)

For the non-empty neighborhood case, the local noiseless error dynamics are

ηi
k = F i

kη̄i
k + 1

|N ∗
i,k| + 1

F i
k

∑
j∈N ∗

i,k

(
η̄j

k − η̄i
k

)

= F i
kη̄i

k +

 1
|N ∗

i,k| + 1
F i

k

∑
j∈N ∗

i,k

η̄j
k

−
|N ∗

i,k|
|N ∗

i,k| + 1
F i

kη̄i
k

= 1
|N ∗

i,k| + 1
F i

k

∑
j∈N ∗

i,k
∪{i}

η̄j
k

η̄i
k+1 = Aηi

k,

(4.22)

and the augmented noiseless error dynamics are

ηk = diag{F i
kA}N

i=1

(
INn −

(
D−1

k L∗
k ⊗ In

))
ηk−1

= diag{F i
k}N

i=1((IN − D−1
k L∗

k) ⊗ A)ηk−1, (4.23)

with Dk = diag{|N ∗
i,k| + 1}N

i=1. We note that for the case where each agent constantly
triggers, i.e., when L∗

k = Lk∀k, we obtain the noiseless error dynamics (3.29). Addi-
tionally for the non-cooperative case, i.e., when (IN − D−1

k L∗
k) = IN , we obtain the

noiseless NCLKF error dynamics.

Under the case where each sensor has the same observation of the process, we can arrive
at the following result.

Proposition 4.2.1. Assume that each sensor in the network measures the process (4.1)
using the same observation model

zi
k = Hxk + vi

k, i = 1, . . . , N,

where vi
k is the zero-mean Gaussian measurement noise with E[vi

k(vi
l)T ] = Rδkl. Addi-

tionally, assume that each agent activates the event-triggered consensus Kalman filter
(4.19) with the consensus gain (4.20) and the event-triggered mechanism with event
trigger condition (4.18). Then the error dynamics (4.23) are asymptotically stable.

Proof. This proof follows a similar line to the proof for Proposition 3.3.1. In the case
where each sensor uses the same measurement model, it follows that F i

k = F̄k for all
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agents. The error dynamics can then be simplified to

ηk = diag{F i
kA}N

i=1

(
INn −

(
D−1

k L∗
k ⊗ In

))
ηk−1

= (IN ⊗ F̄kA)((IN −
(
D−1

k L∗
k)) ⊗ In

)
ηk−1

=
(
(IN − (D−1

k L∗
k)) ⊗ F̄kA

)
ηk−1.

Due to the properties of the Kronecker product, we have that (IN ⊗ F̄kA) and ((IN −
(D−1

k L∗
k)) ⊗ In) commute. This leads to the following inequality,

lim
k→∞

∥∥∥∥∥∏
k

(
(IN − (D−1

k L∗
k)) ⊗ F̄kA

)∥∥∥∥∥ ≤ lim
k→∞

∥∥∥∥∥∏
k

(F̄kA)
∥∥∥∥∥ lim

k→∞

∥∥∥∥∥∏
k

(IN − (D−1
k L∗

k))
∥∥∥∥∥ .

From the stability of the NCLKF, it follows that lim
k→∞

(∏
k F̄kA

)
= 0. If ETC (4.18)

is satisfied for all agents events we have that
(
IN − D−1

k L∗
k

)
= IN , if ETC (4.18) is

violated for some agents, the Laplacian L∗
k will correspond with the new instantaneous

topology and will not necessarily be symmetric. Finally, if ETC (4.18) is violated for
all agents then L∗

k = Lk. For all mentioned scenarios, the matrix
(
IN − D−1

k L∗
k

)
is

row stochastic at each time step k, and thus its spectral radius is always unity, and in
particular,

ρ

(
lim

k→∞

(∏
k

(IN − D−1
k L∗

k

))
= 1.

since the product of row-stochastic matrices are row-stochastic. Therefore,

lim
k→∞

ηk = lim
k→∞

(∏
k

(
IN − (D−1

k L∗
k)
)

⊗
∏
k

F̄kA

)
η0 = 0.

and the noiseless error dynamics are asymptotically stable. ■

Remark 3. For the proof of Proposition 3.3.1 we have assumed the sensing network
communication graph is connected and undirected in each time step k. We now dismiss
both of these assumption and find proof for the general case of disconnected and directed
graphs.

Remark 4. In contrast to the event triggering mechanism discussed in Section 4.2.1,
here the event trigger condition does not play a role in ruling stability on the error
dynamics, instead, its contribution is with respect to performance.

The result of Proposition 4.2.1, here as well, is restricted to the homogeneous case
where each sensor has the same measurement noise characteristics. Although the proof
for the stability of the heterogeneous case is not given in this research, we note that
numerical simulations show promising results; we explore this in Section 4.4.
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4.3 Stability with Partial Non-Observablity

In this section we shall relax the assumption where all agents are able to measure the
process (4.1). We consider the scenario where the sensing agents have a fixed sensing
radius r, and a measurement is available only when the process state is within this
radius. Formally, let pi ∈ Rd be the fixed position of sensor i for d ∈ {2, 3}. Then the
measurement model for each sensing agent now has the form

zi
k =

Hxk + vi
k, ∥xk − pi∥ ≤ r

∅, otherwise
, (4.24)

where zi
k = ∅ means that there is no measurement available to agent i. This mea-

surement model is illustrated in Figure 4.5a. Here, the process state is indicated by
the black node. All the blue nodes are able to sense the process, while the red nodes
are not. At the same time, the sensor agents are able to exchange information with
each other according to the underlying communication graph, indicated by edges in the
figure. Note that as the process state moves, the sensing agents may also change.

To cope with this scenario, we introduce some new notations to capture the state-
dependent nature of the sensing network. First, we consider the network G = (V, E) of
N sensing agents with an undirected communication topology (see Fig. 4.5a). Let L be
the Laplacian matrix for the sensing network G describing the available communication
channels between each agent. Let Ok ⊆ V denote the set of agents that are able to
measure the process according to (4.24) at time-step k, and let Ōk be the set of agents
that are not able to measure the process. Thus it holds that Ok ∪ Ōk = V for all k. We
define a directed network architecture to reflect the difference between the sensing and
non-sensing nodes. This leads to a time varying and directed communication graph
(see Fig. 4.5b) which is denoted by Ĝk. The edge set of Ĝk is thus determined by which
agents can observe the process. Non-observing nodes do not share any information with
other nodes, but are able to receive information from the sensing nodes. Let

EOk,Ōk
= {(i, j) | i ∈ Ok, j ∈ Ōk, {i, j} ∈ E},

EOk,Ok
= {(i, j) | i, j ∈ Ok, {i, j} ∈ E},

(4.25)

be the set of edges connecting the observing agents to the non-observing agents, and
observing agents with observing agents, respectively. Thus, Ĝk = (V, EOk,Ok

∪EOk,Ōk
) =

(V, Êk). Note that the observing agents have bidirectional edges between them, while
non-observing agents only have incoming edges emanating from the observing agents.
This is illustrated in Fig. 4.5b. We make the following assumption on the time-varying
structure of the graph Ĝk.

Assumption 2. The graph Ĝk is weakly connected at each time k. Equivalently, there
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(a) Undirected graph - G. (b) Directed graph - Ĝk.

Figure 4.5: Measurement model where sensing agents can only sense the process when
it is in range.

exists a directed path from every observing agent in Ok to every non-observing agent in
Ōk, and |Ok| ≥ 1.

We now wish to extend our discussion by accounting for energy consumption in the form
of communication loads. This shall be done for observing agents only, as non-observing
agents shall not broadcast information according to the aforementioned architecture.
This distinction is made clear using the following ETM,

βj
k =

1, f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
> 0

0, f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
≤ 0

, (4.26)

where βj
k = 1 means that the jth agent is broadcasting its state information and βj

k = 0
means it does not broadcast. Additionally, the following ETF is used,

f j
k

(
{x̃sj

k }s∈Nj∪{j}, x̄j
k

)
=


−1, j ∈ Ōk

1, j ∈ ∪i∈Ōk
Ni , j ∈ Ok(

x̄j
k − x̃jj

k

)T (
x̄j

k − x̃jj
k

)
− δ, j /∈ ∪i∈Ōk

Ni , j ∈ Ok

,

(4.27)

where x̃jj is formulated as in (4.4) , δ ∈ R is some constant threshold and Ni denote the
neighborhood of the ith agent with respect to the sensing graph G. The event-triggering
function (4.27) is constructed such that non-observing agent will not broadcast their
state estimation so that βj

k = 0∀j ∈ Ōk. Furthermore, observing agents which are
neighbors to non-observing agents will constantly broadcast their state estimation so
that βj

k = 1 ∀j ∈ Ok ∩
(
∪i∈Ōk

Ni

)
. This ensures Assumption 2 holds. Finally, observing

agents with no non-observing neighbors will broadcast their estimates based on the
SoD event trigger condition so that βj

k value is modified accordingly.

Let G∗
k = (V, E∗

k ) denote the transmission graph of broadcasting agents at step k.
The edge set of G∗

k is thus determined by which agents are broadcasting such that
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E∗
k = {(j, i) | βj

k = 1, j ∈ Ni}. Additionally, let L∗
k be the Laplacian matrix for the

directed sensing network G∗
k .

To summarize, we have introduced three communication graphs: the available undi-
rected communication graph G (Fig. 4.5a), the weakly connected communication graph
Ĝk introduced to cope with partial non-observability (Fig. 4.5b), and the graph G∗

k intro-
duced to describe the instantaneous broadcasting nature of an event-triggered scheme
(Fig. 4.4b). Note that E∗

k ⊆ Êk.

We note that for this configuration, in order to ensure stability of the error dynamics,
the consensus factor must be reevaluated. This is due to the fact that the noiseless error
dynamic for agents with null observability are not necessarily asymptotically stable in
the non-cooperative case. In fact, since in this scenario a non-observing agent is just
propagating the state, we would expect to see the error diverge in some cases. Thus,
the proof that was given in Section 4.2.2 is incompatible.

Additionally, the state estimator must be reconstructed as well. In this direction we
consider the following event-triggered consensus Kalman estimator:

x̂i
k =

x̄i
k + Ki

k(zi
k − Hkx̄i

k) + Ci
k

∑
j∈Ni

βj
k

(
F j

k x̄j
k − F i

kx̄i
k

)
, i ∈ Ok

x̄i
k + Ci

k

∑
j∈Ni

βj
k

(
F j

k x̄j
k − F i

kx̄i
k

)
, i ∈ Ōk

. (4.28)

where F i
k = I − Ki

kH. Note that the innovation term nullifies for the non-observing
case as no local measurements are obtained.

Now that our setup is complete, we may proceed to the stability analysis for the de-
scribed configuration. Under the case where each observing agent has the same obser-
vation of the process, we can arrive at the following result.

Proposition 4.3.1 (Stability with Partial Observability). Consider a group of N agents
interacting over a time-varying graph Ĝk = (V, EOk,Ok

∪ EŌk,Ok
) as defined in (4.25)

and satisfying Assumption 2, where each agent observes the process (4.1) with the same
state dependent observation model (4.24). Let the event-triggered consensus Kalman
estimator be of type (4.28). Additionally, let the event-triggered mechanism be given
as (4.26) with the event-triggered condition (4.27). Finally, let the consensus gain be
given as

Ci
k =


1

1 +
∑

j∈Ni
βj

k

i ∈ Ok

1∑
j∈Ni

βj
k

i ∈ Ōk

. (4.29)

Then the noiseless estimation error is asymptotically stable.

Proof. We begin our proof by constructing the error dynamics for the observing agents
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and non-observing agents. Next we construct the joint error dynamics and prove that
it is asymptotically stable.

In the case where each observing sensor uses the same measurement model, it follows
that F i

k = F̄k∀i ∈ Ok . Thus, the error dynamics for observing agents are:

ηi
k = F̄kη̄i

k + 1
1 +

∑
j∈Ni

βj
k

F̄k

∑
j∈Ni

βj
k

(
η̄j

k − η̄i
k

)

= F̄kη̄i
k +

 1
1 +

∑
j∈Ni

βj
k

F̄k

∑
j∈Ni

βj
kη̄j

k

−
∑

j∈Ni
βj

k

1 +
∑

j∈Ni
βj

k

F̄kη̄i
k

= 1
1 +

∑
j∈Ni

βj
k

F̄k

η̄i
k +

∑
j∈N i

βj
kη̄j

k


η̄i

k+1 = Aηi
k.

(4.30)

Similarly, since the innovation is nullified for non-observing agents we have that F i
k =

In∀i ∈ Ōk and so, the error dynamics for non observing agents are:

ηi
k = η̄i

k + 1∑
j∈Ni

βj
k

∑
j∈Ni

βj
k

(
F̄kη̄j

k − η̄i
k

)

= η̄i
k +

 1∑
j∈Ni

βj
k

F̄k

∑
j∈Ni

βj
kη̄j

k

− η̄i
k

= 1∑
j∈Ni

βj
k

F̄k

∑
j∈N i

βj
kη̄j

k

η̄i
k+1 = Aηi

k,

(4.31)

The joint error dynamics can now be constructed as such:

ηk = diag{F i
kA}N

i=1

(
INn −

(
D−1

k L∗
k ⊗ In

))
ηk−1

= (IN ⊗ F̄kA)((IN −
(
D−1

k L∗
k)) ⊗ In

)
ηk−1

=
(
(IN − (D−1

k L∗
k)) ⊗ F̄kA

)
ηk−1.

where Dk = diag{di
k}N

i=1 and

di
k =


1 +

∑
j∈Ni

βj
k i ∈ Ok

∑
j∈Ni

βj
k i ∈ Ōk

.

By Assumption 2 we have that di
k > 0 for all agents, therefore the matrix Dk in

invertible. Due to the properties of the Kronecker product, we have that (IN ⊗ F̄kA)
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and ((IN − (D−1
k L∗

k)) ⊗ In) commute. This leads to the following inequality,

lim
k→∞

∥∥∥∥∥∏
k

(
(IN − (D−1

k L∗
k)) ⊗ F̄kA

)∥∥∥∥∥ ≤ lim
k→∞

∥∥∥∥∥∏
k

(F̄kA)
∥∥∥∥∥ lim

k→∞

∥∥∥∥∥∏
k

(IN − (D−1
k L∗

k))
∥∥∥∥∥ .

The stability of the observers’ NCLKF is ensured such that lim
k→∞

(∏
k F̄kA

)
= 0. Ad-

ditionally, ETM (4.17) dictates the values of the instantaneous Laplacian L∗
k, however

the row stochastic property of the matrix
(
IN − D−1

k L∗
k

)
is not affected. Thus, its

spectral radius is always unity such that,

ρ

(
lim

k→∞

(∏
k

(IN − D−1
k L∗

k

))
= 1,

since the product of row-stochastic matrices is row-stochastic. Therefore,

lim
k→∞

ηk = lim
k→∞

(∏
k

(
IN − (D−1

k L∗
k)
)

⊗
∏
k

F̄kA

)
η0 = 0.

and the error dynamics are asymptotically stable. ■

We have shown that by using the tools that were developed so far, we may approach
unique scenarios in which some of the agents do not observe the process, and still obtain
stability of the error dynamics. We strengthen our claim with a numerical example in
the next section.

4.4 Simulation Results

We consider the same numerical example that was discussed in chapter 3 where a group
of 20 agents observe a robot performing a noisy “snail” trajectory with the following
dynamics,

xk+1 =
[

0.9996 −0.0283
0.0283 0.9996

]
︸ ︷︷ ︸

A

xk + 0.375 · I2︸ ︷︷ ︸
B

wk. (4.32)

The robot’s initial state is set to be x0 = [15, −10]T , the initial covariance matrix for
each agent is set to be P i

0 = 10I, and the agents’ initial estimates are normally dis-
tributed about the initial state. Additionally, the process noise covariance is Q = I2.

The sensors are randomly positioned in some field of interest (see Fig. 4.6) where a
communication link between 2 sensors exists only if their distance is below some thresh-
old (< 40 meters). Furthermore, we consider two sensing models: 1) the homogeneous
sensing model where each agent measure the robot with the same observation model
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such that Ri = R = 9 and H i = H = [0.5, 0.5], and 2) the heterogeneous model where
each agent with an even number measures the robot’s y-axis position while the agents
with an odd number measure its x-axis position such that:

H i =

[1, 0] i ∈ {1, 3, ..., 19}

[0, 1] i ∈ {2, 4, ..., 20}
. (4.33)

The measurement noise covariance for the ith agent is Ri =
√

i.

Figure 4.6: A sensor network of 20 agents randomly positioned.

We provide a comparison between 6 state estimators:

NCLKF: the non-cooperative local Kalman filter with null consensus gain;
CKF the sub-optimal consensus Kalman filter consensus gain (3.20) with the factor

(4.14).
ETCKF1: the sub-optimal event triggered consensus Kalman filter with consensus

gain (3.20), consensus factor (4.14), and event-triggered condition (4.10);
ETCKF2: the sub-optimal event triggered consensus Kalman filter with consensus

gain (4.15) and event-triggered condition (4.10);
ETDCKF: the sub-optimal event-triggered decentralized consensus Kalman filter with

event triggered condition (4.18), δ = 0.2, and the consensus gain (4.20);
POETCKF: the sub-optimal event triggered decentralized consensus Kalman filter

with event triggered condition (4.27), δ = 0.2, and the consensus gain (4.29).

The performance of these estimators was tested over 100 Monte-Carlo simulations in
which the process and measurement noises were randomized. The compared perfor-
mance measures are twofold: the agents local energy consumption expressed as total
number of events per agent, denoted by #i (Fig. 4.8), calculated in the following man-
ner:

#i = 1
MC

MC∑
j=1

#i,j ,
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Figure 4.7: Root mean squared error, comparison between 5 state estimators over
100 Monte-Carlo runs with a homogeneous sensing model.

Figure 4.8: Total events per agent for a 400 step simulation - a comparison between
3 event triggered estimators and the CKF with a homogeneous sensing model.

where MC is the number of Monte-Carlo runs and #i,j is the ith agent’s total number
of triggered events for the jth run. Additionally we have the true averaged root mean
squared error (Fig. 4.7) calculated as such:

RMSE = 1
MC

MC∑
j=1

√√√√ N∑
i=1

E[(ηi,j)T ηi,j ],

where ηi,j is the ith agent state estimation error for the jth run.

We begin our discussion with the homogeneous sensing model. Fig. 4.7 illustrates
the averaged RMSE for 5 estimators. As shown, the ETDCKF is preferable in per-
formance over the ETCKF1 and ETCKF2 and even over the CKF. This is explained
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by the fact that for the ETDCKF, the consensus term is weighted according to the
number of neighbors each agent has, while for the CKF all terms are weighted equally.
Additionally, we see that the performance of the ETCKF1 is slightly better than that
of ETCKF2. This result corresponds to the relatively low communication effort of this
filter with respect to the others, as illustrated in Fig. 4.8. Overall, in this sensing
scheme all estimators show superiority over the NCLKF. The performance of all es-
timators is summarized in Table 4.1 where we compare the averaged communication

effort computed in the following manner,
∑N

i=1 #i

400N
· 100%, where 400 is the simulation

time.

Estimator RMSE Averaged com effort
NCLKF 12.2 0%

CKF 10.95 100%
ETCKF1 10.7 76%
ETCKF2 10.95 53%
ETDCKF 10.5 78%

Table 4.1: Estimators comparison for the homogeneous model.

(a) ETCKF1 (b) ETDCKF

Figure 4.9: Trajectory of the true state and the agents’ mean estimate utilizing
ETCKF1 (a) and ETDCKF (b) for the homogeneous model.

The robot’s true and mean estimated trajectory (using homogeneous sensing model) is
depicted in Fig. 4.9, for a single run with both the ETCKF1 (4.9a) and the ETDCKF
(4.9b). As shown, the filters provides reasonable tracking results.

Although we have proven the stability of ETDCKF for the case of homogeneous sens-
ing model for all agents, we show in the following that in fact it provide reasonable
results for the heterogeneous sensing model as well. Fig. 4.10 illustrate the averaged
RMSE for the discussed 5 estimators. As shown, the effect of the consensus, with re-
spect to the NCLKF, is much more dominant here compared to the homogeneous case.
This is understandable since the flow of information, in this scheme, provides new “in-
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Figure 4.10: Root mean squared error, comparison between 5 state estimators over
100 Monte-Carlo runs with a heterogeneous sensing scheme.

Figure 4.11: Total events per agent for a 400 step simulation - a comparison between
3 event triggered estimators and the CKF with a heterogeneous sensing scheme.

sights” for some agents. Specifically, ETCKF2 shows degraded performance compared
to ETCKF1, and slightly better performance than ETDCKF. This too corresponds to
the relatively low communication effort of this filter with respect to the others. This
is illustrated in Fig. 4.11 where we see that estimators ETCKF1 and ETCKF2 are
conservative while ETDCKF consumes a relative large amount of energy. What is in-
teresting to see is that although the ETDCKF consumes more energy, its performance
is degraded compared to ETCKF1, which indicates that the estimator structure has a
dominant effect on performance for this scheme. The performance of all 5 estimators
is summarized in Table 4.2.

The robot’s true and mean estimated trajectory (using the heterogeneous sensing
model) is depicted in Fig. 4.12, for a single run with both the ETCKF1 (4.12a) and
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Estimator RMSE Averaged com effort
NCLKF 12.7 0%

CKF 7.7 100%
ETCKF1 7.9 70%
ETCKF2 8.2 64%
ETDCKF 8.5 78%

Table 4.2: Estimators comparison for the heterogeneous model.

(a) ETCKF1 (b) ETDCKF

Figure 4.12: Trajectory of the true state and the agents’ mean estimate utilizing
ETCKF1 (a) and ETDCKF (b) for the heterogeneous model.

the ETDCKF (4.12b). As shown, the filter provides good tracking results.

To further demonstrate the robustness of the ETDCKF, we compared the sum of all
agents MSE of a single run, with the heterogeneous sensing model, to that of the CKF
and NCLKF. Only here, we have simulated an “unexpected” communication topology
switch at two time instances, at k = 50 and k = 150 (see Fig. 4.13). In this
scenario, the CKF estimator is maintaining the nominal communication topology of
the Laplacian eigenvalues for calculating (4.14). Since they are no longer compatible
after the first switch, this leads the CKF to become unstable immediately afterwards,
while the ETDCKF remains stable for the entire duration.

(a) Graph at k = 1. (b) Graph at k = 50. (c) Graph at k = 150.

Figure 4.13: Communication graph at time steps (a) 1-49, (b) 50-149, and (c) 150-400.
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Figure 4.14: Sum of all agents mean squared error for 2 mid-run graph switch (at
step 50 and at step 150), comparison between 3 state estimators for a single run.

To conclude, we investigate the performance of the scenario where some of the agents
do not obtain any measurements. To do so, we simulate the limitation where the agents
can not measure the state once the physical distance from the target is greater then
some threshold. For the following analysis, we change the initial state vector of the
robot to be x0 = [−20, −40]T . The sensors are randomly positioned in some field of
interest (see Fig. 4.15) where a communication link between 2 sensors exists only if
their distance is below 40 meters. Additionally we have simulated an out of range value
of 85 m such that agents which their distance from the robot is above this value will not
measure the robot’s state according to observation rule (4.24). This is illustrated for
two time instances during the run in Fig. 4.16 where non-observing agents are marked
in red.

Figure 4.15: Available communication graph for a sensing network with 20 agents.
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(a) k = 50. (b) k = 150.

Figure 4.16: Observing and non-observing agents for an 85 meters out of range
limitation at k = 50 (a) and k = 150 (b).

Fig. 4.17b compares the sum of all agents’ MSE for 2 estimators: the NCLKF and
POETCKF. As shown,the POETCKF provide reasonable results for a scenario with
occasional partial non-observability. This figure also captures the disadvantage in run-
ning the non-cooperative estimator as the sum of MSE diverges since some of the agents’
observability is lost. Furthermore, Fig 4.17a depicts the events map of all agents as a
function of time. Here, the performance is satisfying with an averaged communication
effort of 73%, which indicates that this scheme is effective.

(a) POETCKF events per agent. (b) Sum of all agents MSE.

Figure 4.17: Partial observability scenario results.

To summarise this chapter, we have demonstrated superiority of our proposed central-
ized consensus gain compared to existing solutions and the non-cooperative Kalman
estimator for both homogeneous and heterogeneous sensing models. We have demon-
strated robustness to time varying communication topology for the decentralised con-
sensus gain. Finally, we have shown an effective and simple architecture for scenarios
in which some agents are locally non-observable.
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Chapter 5

Conclusion and Open Questions

In this Chapter we conclude the work conducted for this thesis and also suggest future
occupation following the line of our results.

5.1 Conclusion

In Chapter 3 we presented a widely common sub-optimal consensus Kalman filter
scheme and presented new solutions for determining the consensus gain. In the central-
ized scheme, we proposed a semi-definite program for extracting an upper bound on
the consensus factor which does not affect the state estimation error stability. Addi-
tionally, we proposed a decentralized scheme which does not require global knowledge
of graph properties and can cope with varying communication topology. Finally we
presented performance superiority of both schemes over existing solutions in the lit-
erature and over the non-cooperative local Kalman filter. In Chapter 4, we discussed
a sub-optimal event-triggered consensus Kalman filter scheme and proposed new so-
lutions for determining the consensus gain. In the centralized scheme, we utilized
an existing event-triggered mechanism to conduct a full stability analysis for a unified
consensus gain structure and our proposed centralized consensus gain. In the decentral-
ized scheme, we proposed a decentralized consensus gain which does not require global
knowledge of graph properties along with suggesting an event triggering scheme which
will not affect stability. Additionally, we relaxed the assumption that all agents have
full observability and constructed an event trigger architecture that deals with ”blind”
agents. Finally we have presented the effect of a low and high total event percentage
with respect to performance by comparing our solution to both the non-cooperative
local Kalman filter and the continuous consensus Kalman filter.

To conclude, in this work we have generated a toolbox (see Fig. 5.1) for cooperative es-
timation networks designers. After characterizing the network’s requirements and con-

65

 

 

 



straints (energy consumption, access to global network properties, etc...), the designer
may pinpoint the consensus Kalman estimator, consensus gain, and event-triggering
mechanism that is most suitable for his or her specifications.

Figure 5.1: Cooperative estimation network designers toolbox.

5.2 Future Work

This thesis may serve as the building block to explore new ideas and to answer future
questions in the field of distributed estimation and event-triggered estimation. To start
with, future work can be devoted to projecting the methodologies that were used in
this thesis onto other distributed estimators such as the EKF, the Unscented KF and
more. Performance wise, one direction is to find the optimal event-triggered CKF,
with respect to the MSE, and conduct comparisons with the event-triggered schemes
presented in this work. In this direction, future researchers may consider redesign the
cost function to include a penalty on transmission.

On the theoretical side, much work remains to be done. The properties of the estimators
presented in this work, such as the biasness of the mean squared, can be explored. For
example it is obvious that the estimate of the error covariance is biased due to the
sub-optimal assumption that we have made, however what about the biasness of the
estimate itself? Another direction is to explore an upper bound on the error covariance.
To do so for the NCLKF case, [29] constructed the observation Gramian and extracted
an upper bound on the error covariance. Similarly, this can be done for the cooperative
case where the distributed network observation Gramian should be defined and used
to construct an upper bound on the ith agent error covariance.
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Finally, in this work we presented proof for the stability of the consensus Kalman
estimator, which incorporates only local network properties, under the assumption of
a homogeneous sensing model. This proof should be extended for the heterogeneous
case as well.
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עמידות מוצגת זה במקרה גם כאשר אחיד, לא קונצנזוס הגבר מציעים אנו בנוסף ושדרוגם. קודם

מעורר קלמן – קונצנזוס מסנן בתור: הידוע זה מסנן כי מראים אנו . הרשת במאפייני שינויים בפני

תעבורת משמעותית בצורה חוסך ומחד מאידך, הקלאסי קלמן המסנן על בביצועיו עולה אירועים,

ארכיטקטורת מציעים אנו לסיום הרציף. קונצנזוס – קלמן במסנן במבוצע כפי שוטפת תקשורת

או זמנית בצורה שלהם המדידה יכולת את איבדו ברשת מהסוכנים חלק בהם בתנאים אירועים עירור

הקיימים פתרונות מול אל תוצאותינו יעילות את להמחיש נומרית דוגמא מספקים אנו בנוסף תמידית.

בספרות.
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תקציר

המאפשרים וחיישנים פנימית תקשורת יכולות בעלי סוכנים ממספר מורכבות מרושתות חישה מערכות

משערך מבוזר, באופן מפעיל, סוכן כל זו, בקונפיגורציה פיזיקלי. הליך איזשהו של שיתופי שיערוך לבצע

שיערוך ברשת. אחרים סוכנים של המצב שיערוך עם בהיתוך רועשות מקומיות מדידות על המסתמך

להתכנס שואפת המערכת השיתופי, השיערוך בבעיית סוכנים. בין נתונים תעבורת ע"י מתקבל זה

נתונים העברת כמות חישוב, עומסי : כגון באלמנטים התחשבות כדי תוך , האמיתי למצב גלובלית

לבעיית מענה שנותן יחסית חדשני פיתוח ככלל. הסוכנים סך ושל בפרט סוכן כל של וביצועים

קלאסי. קלמן במסנן מסויים, בהגבר מוכפל קונצנסוס, רכיב של השילוב הינו השיתופי, השיערוך

ברשת אחרים מסוכנים מידע עם ביחד מקומיות ממדידות מידע מהתך סוכן כל זו בארכיטקטורה

הגבר קונצנסוס. – קלמן שיערוך בתור ידועה זו שערוך שיטת (שכנים). תקשורת לו יש עמם

מדידותיו. על נשען הוא כמה לעומת שכניו שיערוך על הסוכן ששם המשקל את קובע הקונצנסוס

תושג הסוכנים בין והסכמה שכניו על יותר יסתמך המשערך כך גדול, קונצנסוס שהגבר שככל כמובן

של גזירה ידי על האופטימלי הקונצנזוס הגבר את למצוא ניתן יציב). שמשערך (בהנחה מהר יותר

של ביטויים תכלול שתתקבל התוצאה לאפס. ולהשוותה ההגבר לפי השיערוך שגיאת ריבוע תוחלת

רק לא מידע לקבל ידרש סוכן כל המשערך משוואת שבעדכון היא המשמעות שניה, מדרגה שכנים

בפתרון עוסק בנושא המחקרים של הגורף הרוב פרקטים משיקולים שכניו. של מהשכנים אלא משכניו,

בהצעת מתחילה תרומתינו ראשונה. דרגה לשכנים המידע תעבורת את מגבילים בו אופטימלי – תת

בשיטה , Programming Semi-Definite של בשיטה מחושב אשר הסוכנים לכל אחיד קונצנסוס הגבר

אנו בכך, יציבים. ברשת המשערכים כלל עבורו המקסימלי הקונצנסוס הגבר את מוצאים אנו זו

הגבר מציעים אנו , מזאת יתרה בספרות. הקיימים אחרים פתרונות לעומת בביצועים שיפור מציגים

מידע באמצעות רק בנפרד, סוכן כל ידי על , מקומית ומחושב הסוכנים, לכל אחיד שאינו קונצנזוס

מיחידה מידע של הזרמה ללא , מקוון באופן הקונצנזוס הגבר את לחשב ניתן זו, בשיטה מקומי.

מתבססת אינה המערכת כן כמו ובסיבוכיות. באנרגיה במשאבים, לחיסכון מוביל זה דבר חיצונית.

כיול בו האחיד למקרה בניגוד הרשת במבנה שינויים בפני עמידות ומציגה גלובלים רשת מאפייני על

מרושתות חישה מערכות בנושא המחקר את מרחיבים אנו רשת. מבנה שינוי כל עבור נדרש מחדש

יותר, נמוכה וברזולוציה באנרגיה חיסכון – המודרנית בספרות ומדובר חשוב בתחום לגעת מנת על

תעבורת מאפשר אשר אירועים עירור מנגנון מימוש ידי על זאת עושים אנו נתונים. בתעבורת חיסכון

תפקידו זמן. צעד בכל סוכן כל ע"י נבדקים אלו תנאים מתקיימים. מסויימים תנאים כאשר רק נתונים

מהסביבה. המגיע למידע עדכון לבצע צורך יש בה הזמן נקודת את להכריע הינו העירור מנגנון של

כך אירועים מעורר תנאי ושל הקונצנסוס הגבר של התכן הינו זה מסוג במשערכים העיקרי האתגר

בהמשך נדרשת. ביצועים רמת על תשמור המערכת אך יציבה, תהיה סוכן כל של השגיאה שדינמיקת

ממחקר אירועים מעורר תנאי ושל אחיד קונצנזוס הגבר של המבנה בלקיחת נמשכת תרומתינו למוזכר,
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תודות

שהייתי ברגעים לבדה בגבורה שהסתדרה , היקרה אשתי לחיים, לשותפתי להודות מבקש אני ראשית

נוכח. הייתי לא בהם ובשבתות המחקר את לקדם שקט צריך

תמיכתו על זלזו, דניאל פרופסור שלי, למנחה תודתי הוקרת ואת הערכתי את לבטא מבקש אני שנית,

תיאוריה של מוכרים לא בשדות מנחה אור כמקור לי שימשו מילותיו בי. אמונתו ועל העיקשת

המקצועית הקרירה כל למשך איתי שתישארנה בדרכים השראה לי נתן הוא אקדמיות. ופרוצדורות

שלי. והאקדמאית

ופרופסור מירקין ליאוניד פרופסור שלי: הבחינה ועדת חברי לשאר להודות אני מבקש המנחה, לצד

שניהלנו. המעניינת השיחה ובעבור החשובות היערותם זמנם, עבור אושמן יעקב

המחקר. למימון הנדיבה תרומתו על לטכניון להודות מבקש אני בנוסף

המחקר. למימון הנדיבה תרומתם על שינג קא לי לקרן להודות מעוניין אני לבסוף
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