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Abstract

We propose a novel approach for solving an economic dispatch problem of a power
network comprised of multiple micro-gas turbines (MGT) together with a utility. The
ED problem is naturally formulated as a mixed-integer nonlinear optimization problem
which is known to be computationally difficult to solve. We present a numerically
efficient solution to this problem by decomposing the ED algorithm into two parts.
The decomposition is enabled with the introduction of a new auxiliary variable, and
the subproblems can be solved independently.

The first part of the decomposition, termed the “inner problem”, finds the optimal
allocation of output power of each MGT as a function of the total requested power.
We show that given MGTs with either convex or concave cost functions, the optimal
allocation can be attained analytically. For these two cases we investigate the difference
between the two solutions. In the convex case, the solution results in a power allocation
that aims at balancing the MGT output power for a given demand. For concave cost
functions, the solution requires that operational MGTs operate at their capacity before
additional MGTs join to meet demand. This solution can then be considered as a
look-up table for the second part of the decomposition, described next.

The second part of the decomposition, termed the “outer problem”, determines the
desired total output power from the MGTs by modeling all the generators as a single
unit. In this way, the problem reduces to a standard single-unit ED problem, and we
show how to solve this efficiently using the celebrated shortest path algorithm. To
do so, we consider the MGT network as one aggregated generator. We show how to
model this fictive aggregated generator dynamically and economically. The optimal
solution of the problem is then translated to an operation schedule for each MGT in
the network. This is done using appropriate heuristics for convex or concave generator
cost functions based on the analytic solutions developed for the inner problem.

Additionally, within this work, we lay a path for building a steady-state model and
an economic model for a specific commercial MGT, the Capstone C65. The models are
built based on measurement data that was obtained at the Turbomachinery and Heat
Transfer Laboratory at the Technion.

We support our results with a two numerical case studies. In the first case-study
our method against a commercial mixed-integer solver (MOSEK) for a simple example.
The second case-study simulates a real case scenario, where we perform simulations for
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two different demand profiles, a small and a large hotel. The MGTs considered for the
simulations are Capstone C65, and the utility cost is modeled according to publicly
available electricity tariffs.
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Abbreviations and Notations

IEA : International Energy Agency
EIA : The U.S Energy Information Administration
CAGR : Compound Anticipated Growth Rate
MGT : Micro-Gas Turbine
CCHP : Combined Cooling, Heat and Power
CHP : Combined Heat and Power
UC : Unit Commitment
ED : Economic Dispatch
AGC : Automatic Generation Control
SPA : Shortest Path Algorithm
MILP : Mixed Integer Linear Programming
t : time variable
N : the number of generators in a network
T : the planning horizon
Ci() : cost function of generator i

pi(t) : output power at time t of generator i

ūi(t) : vector of control variables at time t of generator i

J : objective function
cV : constant representing the variable generator’s costs
cF : constant representing the fixed generator’s costs
yi(t) : start-up control input of ith generator at time t

zi(t) : shut-down control input of ith generator at time t

P (t) : demand at time t

SP (t) : secured power at time t

LP (t) : power loss at time t

Pmax,i : maximum output power of generator i

RU : generator’s power up-ramping limitation
RD : generator’s power down-ramping limitation
RSU : generator’s power start-up ramping limitation
RSD : generator’s power shut-down ramping limitation
Di(t), Ei : constraint sets of the ith generator
gi(), hi() : constraint function§ of generator i
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E : edge set of a graph
V : node set of a graph
O() : big O notation - an upper bound on algorithm’s complexity
SUP : Single Unit ED Problem
∆T : time interval / time step
c() : number of time steps needed for state transition
fi() : ith generator’s dynamic transition function
DAG : Directed Acyclic Graph
Ccapstone : generator’s cost function specifically for Capstone C65
CGT : MGT’s cost function
PU (t) : output power of the utility at time t

CU () : cost function of the utility
pk : specific output power at state k of a generator
e() : overall cost of an edge
s : number of MGT’s discrete-model states
σ : the auxiliary variable
δp : discrete model power step
F : a set of feasible solutions
P⋆ : an optimal solution set
p⋆ : an optimal solution
AGT : fictive aggregated generator
CAGT () : AGT’s cost function
MIQP : Mixed Integer Quadratic Programming
FPE : Fixed price of Energy
ROI : Return Of Investment
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Chapter 1

Introduction

In recent years, the rapid advancement in technological capabilities accelerates the
ever-growing demand for electrical appliances and gadgets along side overall energy
consumption. Commercial industries and households consumes more energy in an in-
creasing rate, and as economic reports present the growth in the energy demand over
the years, economic models forecast the growth in energy consumption in the years to
come. According to recent publication from BP (BP p.l.c formerly known as British
Petroleum) one of the largest oil and gas corporations in the world, over a decade from
2009 to 2019 the world energy consumption increased in more than 20% [1]. Figure 1.1
demonstrates the yearly growth since 1994 including the decade 2009 to 2019. Addi-
tionally, Figure 1.1 exhibits the mix of main energy sources over the years, and provides
a sense of trends in fuel types. Specifically, a growth in consumption from sources such
as renewable sources and natural gas.

Figure 1.1: Yearly energy consumption over the world in exa-joules (reproduced from
[1]).
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The near future projections present a fair amount of uncertainty due to the COVID-
19 pandemic, yet models expect continue in growth. According to the International
Energy Agency (IEA) The resulted growth may vary under different scenarios in about
5%-10% from 2019 to 2030 [4].

As demand for energy keeps growing, in resent years, common perception around the
world have a change in concepts regarding how power should be generated from. People
are more and more aware of the impact polluting power plants have on our planet, and
policy makers are bound to guide and regulate toward less harming and polluting power
generation. Hence, the power generation industry is shifting toward cleaner and more
efficient power production, gradually increasing the use in natural sustainable fuels.
The U.S Energy Information Administration (EIA) reassures this projections published
upcoming trends in [2]. Figure 1.2 depicts the overall growth in energy consumption
by fuel type. While the energy consumption from renewable fuels constantly increases,

Figure 1.2: Projection of fuel types for energy generation (reproduced from [2]).

the energy produced from natural gas is consumed in the same growing rate. Hence,
according to the EIA, from 2020 to 2050 expectations are for almost doubling natural
gas consumption in the U.S. Furthermore, according to EIA, specifically for electricity
generation, the use in natural gas is relatively consistent from 2020 to 2050, while
nuclear and coal is expected to be cut in half. This makes generating power from natural
gas a very natural intermediate stage toward clean energy generation. Accordingly,
the gas turbine market is expected to grow with compound anticipated growth rate
(CAGR) of 8.2% from 2020 to 2026 [5]. Specifically for Micro-Gas Turbines (MGTs),
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considering output power up to 500 kW, the CAGR forcast to 2027 is 10% [6]. MGTs
are a compelling solution for combined cooling, heat and power (CCHP) solution, as
MGTs operate in variable speed, relatively compact in size, simple to operate, easy to
install and have low maintenance demands. The MGTs are also typically very efficient
with low NOx emission [7]. As the field of power generation moves away from the
old centralized generation toward distributed generation, this features makes MGTs a
very attractive candidate to be integrated within a power grid as a remote independent
supplier or as part of power network.

In contrast to more conventional methods with one power plant, new and cleaner
methods accommodate smaller generating units that can be spread around geographi-
cally. As such, a need for better and more efficient ways to distribute power is rising.
While in the past days the conventional architecture for power distribution networks
was comprised of a single utility generating power, recent architectures integrate several
generating units as part of a “smart-grid.” Hence, moving from a centralized approach
to a decentralized one for the distribution of power.

When confronting a power distribution problem in a network, one has to consider
power management and economic worthiness. In general terms, the problem is well
known as the overall solution of two problems: the unit commitment (UC) problem
and the economic dispatch (ED) problem. Although these two problems are relatively
well studied over the years, when considering an integration of decentralized power
network there is much room for further innovation. Specifically in this work, innovation
in integrating MGTs.

1.1 Literature Review

Economic dispatch problems challenged researchers and engineers from long back. Early
works on how to properly divide loads between generating units can be found since the
1920’s, with methods such as the “best point load” [8] where units are scheduled starting
with the most efficient one and proceeding downwards to the last efficient unit. Methods
for solving the ED problem continued to emerge over the following years for different
settings and limitations that concerned industry and academics. For example, during
the 1940’s some breakthroughs were achieved in optimal dispatching. An efficient
method for an hour by hour calculation of the transmission losses with changing load
was presented in 1943 [9]. Later within this decade, a new approach to economically
divide power was proposed, using a network analyzer to asses the transmission losses
of the network [10].

Since the 1950’s, as technology progressed, ED problems were solved with the aid of
digital computers [11]. Numerical techniques for calculating load-flow (low loss trans-
mission) via digital computers continued to evolve in the 1960’s and 1970’s as outlined
in the survey paper by Stott [12]. In his paper, Stott covers techniques related to
methods such as the y-matrix, the z-matrix and the Newton-Rapshon. Happ, in his
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survey paper from 1977[13], overviews the preceding overall progress within the field of
economic dispatch. Happ classifies the type of ED problems into single area, where the
main idea is to properly divide the loads between the available generators ,multi-area
where power transmission losses are also considered within the problem, valve-point
loading problems, considering increasing costs of generators, and optimal load flow to
minimize fuel consumption (i.e costs) considering network characteristics. In their re-
view from 1990 [14], Chowdhury and Rahrman gather some of the work that was done
regrading ED problems between the years 1977 to 1988. Within this work, Chowdhury
and Rahrman classifies the ED problems into four categories: optimal power flow, eco-
nomic dispatch in relation to AGC (Automatic Generation Control), dynamic dispatch,
and economic dispatch with non-conventional generation sources.

In dynamic dispatch, in addition to the costs related to producing the output
power, the ED optimization problem considers the dynamics of the power network
(e.g changing loads and demands) regarding future planning horizons. Ross and kim
developed dynamic programming techniques for such short-term dynamic economic
dispatch, where the optimization considers future load changes [15]. Throughout the
1980’s and the 1990’s additional work was done applying dynamic programming meth-
ods with regards to ED and UC. Three different approaches for the dynamic program-
ming method were compared in [16]. Van den Bosch and Honderd [17] suggested a
decomposition of the UC problem into sub-problems with reduced complexity. In [18]
a dynamic programming method is utilized to solve a UC problem for two-state gener-
ating units (i.e., on/off), and the generating units are classified beforehand according to
their similar characteristics. An attempt to reduce execution time with dynamic pro-
gramming method utilizing a variable window size according to change in demands was
done in [19]. In [20] the ED problem includes the transmission losses and solved with
dynamic programming. Another method of dynamic programming while performing
de-commitment of generating units until achieving the lowest possible cost is in [21].
This method is then compared to two other optimization methods - the Lagrangian
relaxation and the sequential unit commitment. Recently, a distributed calculation
dynamic programming was presented for smart grids integration [22]. Another method
for distributed generation with micro-grids based on dynamic programming method
presented in [23], considering several stochastic uncertainties while formulating the ED
problem.

For ED and UC problems where MGTs are part of the power network, there is some
work done in resent years. Rist et al. [24] provided a detailed model of an MGT, and
integrated the model within an ED optimization model under a CHP demand. The
optimization problem was then solved by transforming the problem to that of a shortest
path problem over a directed acyclic graph. In [25] a gas turbine was considered in a
CHP setting to produce at the lowest cost with a neural-network optimization approach.
Nemati et al. [26] introduced two methods for solving the UC and ED optimization
problem with a genetic algorithm and an enhanced MILP algorithm. Both methods are
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simulated in a micro-grid scenario including six photo-voltaic units, one wind turbine,
two micro gas turbines, one fuel cell and two diesel generators. A UC optimization was
performed recently for micro-grid with MILP optimization method for three combustion
generators and one MGT [27]. Finally, some ED solving robust methods consider
realistic settings, where the demand or costs can not be known deterministically [28,
29, 30].

1.2 Thesis Contributions

In this work we consider an ED problem with a power network comprised of several
MGTs and a utility. We present a computationally efficient method for solving the
multi-agent (i.e., MGTs) ED optimization problem. The novel method dramatically
reduces complexity and computational run-time by decomposing the optimization prob-
lem into two sub-problems. Our results focus particularly on cost functions that are
either convex or concave. Finally, we implement and validate our method in a realistic
case study including the use of a detailed MGT model based on physical measurements.
The main contributions of this work are:

i) a decomposition method to dramatically reduce the computational complexity
and the run-time of the multi-agent ED problem;

ii) development of micro-gas turbine generator model amenable for use in a UC/ED
optimization framework;

iii) simulation results for realistic scenarios based on data providing demand profiles
and electricity tariffs.

1.3 Thesis Outline

Chapter 1 of this thesis presents the motivation for this work, including background and
literature review. Within Chapter 2, we lay out the basics of UC and ED optimization
problems, including definitions and notations. Additionally, in Chapter 2 we present
several known methods for solving the UC and ED optimization problems. In Chapter
3 we define the ED optimization problem with a single MGT. In this chapter we also
model an actual MGT, the Capstone C65, based on real experimental measurements.
We discretize the model to obtain with a graph describing the dynamics, and explain
how the single MGT case is solved with the celebrated shortest path algorithm. Chap-
ter 4 consists most of the main novelties of this work. In this chapter we describe and
define the ED problem with multiple MGTs in the power network. Within this chap-
ter we include additional methods for analytical optimal solutions to further reduce
computational complexity. Finally, we discuss how our method for efficient solutions
dramatically reduce the computational complexity of the multiple MGTs ED problem.
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In Chapter 5 we present simulation results for several case studies. These case studies
include a comparison of run-time performance between our method to a commercial
solver. Additionally, we simulate the overall method model, with the Capstone C65
model integrated, in a “real” case scenario. The results substantiates our novel decom-
position and analytical methods. Chapter 6 presents the conclusion of this work and
future work to be done.
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Chapter 2

The Unit Commitment and
Economic Dispatch Problems

Optimization problems are widely encountered in scientific disciplines such as engineer-
ing and computer science, but also in fields such as economics and applied mathematics.
One common type of optimization problem is the minimization problem where the goal
is to minimize an objective function possibly subjected to constraints [31, 32, 33]. The
unit commitment (UC) and economic dispatch (ED) problems may be described as a
minimization problem of a given objective function, namely a cost function. For ex-
ample, a goal might be to minimize monetary costs of power and heat distribution
considering the costs under CHP operation of generators. Another objective of UC
and ED problems may be to minimize environmental pollution of power generation, by
minimizing the emission of ecologically harming gases. In these problems the objective
is to minimize this cost, subject to technical, physical, or other types of constraints.

Within this chapter, we present an exposition to the UC and ED problems, estab-
lishing the needed settings for this work. We first describe the UC problem in Section
2.1 and in Section 2.2 we define the ED problem. In the final Section 2.3 we discuss
about known methods of solving the UC and ED problems.

2.1 The UC Problem

The essence of a UC problem is to meet a given consumer demand for power with
multiple generators. The demand can be for electrical power, heat, or both, and may
change over a specific time period. The generators satisfy the demand under a CHP
operation if needed. The explicit goal of the UC optimization problem is to try and meet
the demand, while also minimizing the costs associated to the production of power and
heat. Cost minimization is done by scheduling the generators’ operation (i.e., between
on and off states). The UC optimization problem is subjected to given constraints and
limitations. In this section we define the UC problem starting with the cost function,
proceeding to an overview of constraints types, and finally formulate the optimization
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model of the UC problem.

2.1.1 The UC Cost Function

The cost function represents the overall costs of producing electrical power or heat by
the generators. For example, in order to produce a specific amount of electrical power,
the generator will need to consume fuel at a sufficient rate. Hence, the cost function of
the generator relates between the amount of power that was produced, to how much
fuel was needed during the production of that power. Moreover, the cost function may
incorporate the cost of the generator dynamics such as start-up, shut-down or any other
transitions between generator states.

The notation of the cost function at time t is C(p(t), ū(t)), where p(t) is the output
electrical power of the generator, and ū(t) is a vector of control variables. We consider
the output power as a dynamical state, as it represents the overall generator state to
produce a specific output power. Following this notion, the control variable is a control
signal applied to achieve generator’s transition between states evolving in time. As there
are multiple generators, i.e., N generators, we index the cost function of each generator
with it’s state and control such that Ci(pi(t), ūi(t)), ∀i = 1, . . . , N . The consumer
demand in the UC problem is defined for a specific time-frame called the planning
horizon, and denoted as T . The UC optimization then schedules the generators over
discrete time instances within the planning horizon for each t = 0, . . . , T . The overall
cost function of the UC problem is the accumulated cost of the generating units over
the planning horizon, and can be expressed as

J =
T∑

t=1

N∑
i=1

Ci(pi(t), ūi(t)). (2.1)

The cost functions Ci of each generating unit may be convex, concave, or non-convex,
non-concave functions, depending on the generator’s characteristics.

Example 2.1 (Linear Cost Functions). One may consider, for example, a generator
with a linear cost function i.e., a linear relation between operational states, control
inputs and costs. Following this direction, the expression for the cost function can be
elaborated explicitly with fixed and variable costs such that

C(p(t), u(t)) = cV p(t) + cF u(t). (2.2)

The constant cV p(t) is defined considering the generator characteristics, e.g. fuel con-
sumption rate, which effects how much money invested in the production of a specific
amount of electrical power. Each amount of output power has its own cost and hence the
variable cost. Additionally, we consider a fixed cost expressed as cF u(t). in this exam-
ple, there is a single control input represented by a binary control variable u(t) ∈ {0, 1}.
Therefore if the generator is operating u(t) = 1, and there is a fixed added cost defined
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by the constant cF .

As previously mentioned, the UC problem defines which generating units are oper-
ational at each time instance within the planning horizon. Therefore, it’s paramount to
consider start-up and shut-down costs within the cost function. In order to formulate
the start-up and shut-down costs, we introduce two new binary control variables y(t)
and z(t), which represents control signals for start-up and shut-down, respectively. If
for example y(t) = 1, a start-up command was issued to the generator. Following this
notion, the control vector of the generator is ū(t) = [u(t), y(t), z(t)]⊤.

2.1.2 Constraints

There can be several types of constraints in the setting of a UC problem. These include
the main goal of meeting the consumer demand, to additional constraints that may arise
from transmission network topology, physical limitations of the generating units or any
other type of limitation and restriction depicting the nature of the UC problem. Here
we present several common constraints found in the UC problem.

power balance

The first constraint represents the goal, for which the aggregated output power from
all the generating units must meet the consumer demand. We define the aggregate
consumer demand with the time dependent function P (t), and formalize this constraint
mathematically as

N∑
i=1

pi(t) = P (t), t = 1, . . . , T. (2.3)

Thus, at each time t the total produced power must equal the requested demand.
In some cases there may be a need in securing power overhead from the network, or

consider power loss over the grid. We denote secured power as SP and loss power to be
compensated as LP . The power balance in (2.3) is updated with these two additional
considerations such that

N∑
i=1

pi(t) = P (t) + SP (t) + LP (t), t = 1, . . . , T. (2.4)

power bounds

As a “real world” electro-mechanical element, the generating units have physical lim-
itations. Such limitations include the maximum output power that is possible from a
generating unit, denoted as Pmax,i. Additionally, we define the control-state ui(t) to
represent only ‘on’ and ‘off’ operational status of a generating unit; that is we model
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ui(t) as the binary signal ui(t) ∈ {0, 1}. The constraint formulation is given by

0 ≤ pi(t) ≤ Pmax,iui(t), ∀t = 1, . . . , T. (2.5)

Constraint (2.5) states that if the generating unit i is working, it’s output power is
bounded by Pmax otherwise the output power is confined to be 0.

ramping limitations

Another physical limitation of a generating unit is the speed that it can change its power
output owing to the response time associated with large electro-mechanical machines.
Such constraints are termed ramp-rate constraints and can be formulated as

p(t)− p(t− 1) ≤ RU u(t− 1), ∀t = 1, . . . , T. (2.6)

The change in output power p(t) between two time instances (t, t − 1) is represented
as the difference in the left-hand side of inequality (2.6). The right-hand side limits
the difference of output power with a known physical up-ramping limitation denoted as
RU . The right-hand side also assures that the generator is operating before the state
transition occurs because in this case the start-up situation is not considered.

Similarly, by denoting the down-ramping limitation as RD, the expression for the
formalized constraint is

p(t− 1)− p(t) ≤ RDu(t), ∀t = 1, . . . , T. (2.7)

Note the switch between elements position in the left-hand side of inequality (2.7) with
respect to (2.6), as this is an output decreasing case p(t− 1) > p(t).

Next we impose a bound on the generators output power when initiating a start-
up command. We denote the allowed output power increment at start-up as RSU .
Incorporating this start-up limitation in (2.6) yields the next expression:

p(t)− p(t− 1) ≤ RU u(t− 1) + RSU y(t), ∀t = 1, . . . , T. (2.8)

Note that y(t) ∈ {0, 1} is a binary variable.

Similarly, we incorporate into the down-ramping limitation expressed in (2.7), a
binary variable z(t) ∈ {0, 1} which represents a shut-down command,

p(t− 1)− p(t) ≤ RDu(t− 1) + RSDz(t), ∀t = 1, . . . , T. (2.9)
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logical limitations

The relations between the control variables of the generator ū(t) = [u(t), y(t), z(t)] can
be logically expressed as

y(t)− z(t) = u(t)− u(t− 1), ∀t = 1, . . . , T (2.10)

y(t) + z(t) ≤ 1, ∀t = 1, . . . , T.

The equality in expression (2.10) restrict the relation between the previous (i.e., at
t−1) and current control signals. If, for example, {u(t) = 0, u(t−1) = 0} the unit does
not changes it’s off state. If {u(t) = 1, u(t − 1) = 0}, hence the generator operation
state is changed from ‘off’ to ‘on’, then a start-up command is given. The inequality
in (2.10), states that the generating unit can only be starting-up or shutting-down but
never both in a single time instance.

2.1.3 UC Optimization Model

Based on the preceding formulations for the cost function and constraints in Sections
2.1.1 and 2.1.2, we present the optimization model of the UC problem:

min
pi(t),ūi(t)

T∑
t=1

N∑
i=1

Ci(pi(t), ūi(t)) (2.11)

subject to:
N∑

i=1
pi(t) = P (t) ∀t = 1, . . . , T, i = 1, 2, . . . , N

gi(pi(t), ūi(t), t) ∈ Di(t), ∀t = 1, . . . , T, i = 1, 2, . . . , N

0 ≤ pi(t) ≤ Pmax,i · ui(t), ∀t = 1, . . . , T, i = 1, 2, . . . , N

ūi(t) ∈ {0, 1} × {0, 1} × {0, 1},∀t = 1, , ..., T, i = 1, 2, . . . , N.

The optimization model expressed in (2.11) describes the minimization of the cost
function subjected to a set of constraints. The first constraint is the power balance
constraint in which we ensure that the demand is satisfied. The second constraint
represents the ramping-rates, logical limitations and start-up/shut-down limitations,
namely the overall dynamical constraints of the generators. For simplicity, we lump
the dynamical constraints into an abstract constraint set noted as Di(t) with the map
g(). The third constraint is the power bounds of each generator. The last constraint
frames the control variables to be of binary values.

2.2 The ED Problem

Similarly to the UC problem, the ED optimization problem strives to satisfy a given
demand with a network of multiple generators. The main difference is that the ED
problem considers generators that are already committed, as determined by the solution
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of the UC problem. Therefore, The ED problem determines the power allocation of
each committed generator with minimum cost for each time instance t.

A set of constraints is also considered within the ED problem settings. This set of
constraints considers additional aspects of the generators, e.g. the power capacity of
transmission lines. The ED optimization model formulation is

min
pi

N∑
i=1

Ci(pi(t), ūi(t)) (2.12)

subject to
N∑

i=1
ui(t)pi(t) = P (t), i = 1, . . . , N

hi(pi(t), ūi(t)) ∈ Ei, i = 1, . . . , N

0 ≤ pi(t) ≤ Pmax,i, i = 1, . . . , N.

Note that in the formulated ED optimization model (2.12), we state the time vari-
able t, although the ED problem is static. We do so to emphasize that the problem
must be solved for each time instance t within a given planning horizon T . Also, the
power balance constraint is considered only for the operational generators, that is for
generators where ui(t) = 1.

The ED optimization model expressed in (2.12) has a set of additional abstract
constraints Ei. The power output is mapped into the constraints set via the functions
hi(pi, ūi). These constraints may represent technical limitations of the generating units
and additional technical limitations of the power distribution network as mentioned
before. As the limitations of the power distribution network are outside the scope of
this work, we will not explore this further.

If we consider both the UC and ED problems, we get a combined overall solution,
providing an on-off schedule and commitment level for each generator. Following this
direction we can consider the UC and ED problem as one optimization problem which
is solved simultaneously [34]. Since in this work we solve the UC and ED as a single
optimization problem, we refer to it simply as one comprehensive economic dispatch
problem, i.e., the ED problem.

2.3 Solution Methods for the ED Problem

Observing the optimization model for the ED problem, it is clear that some variables are
binary (e.g. the variables in the control vector ū(t) at (2.11)). The formulation of the
ED optimization model allows for some or all variables to be integers. These types of
optimization problems with integer variables are known as mixed integer programming
(MIP) problems. There are several approaches to solve the ED problem as an MIP
problem. We now outline some of these methods.

One of the most basic methods is the exhaustive enumeration, in which optimal
solutions are obtained by enumerating all the possible solutions and search for the best
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one. As the number of potential solutions are exponential in the number of variables,
this method is often not computationally feasible. An ED problem with N binary
variables, for example, has 2N enumerations [35, 36]. With N variables taking values
from the set {α1, α2, . . . , αs}, we get sN enumerations, where the problem size grows
exponentially with N . Hence utilizing the exhaustive enumeration method typically
result in a very long run-times, and thus this is not a very popular approach for solv-
ing ED problems. In [37] there is a comparison between three methods to solve an
ED problem. One of the methods is a brute force method, which actually solves by
exhaustive enumeration. The other two types are the known Newton method and the
merit order loading method. The Newton method solves the ED problem utilizing
Taylor’s expansion on the gradient of the Lagrangian of the constrained optimization
problem. Then, output power values of each generating unit is obtained in iterative
manner until reaching wanted tolerance. The merit order method basically first brings
online the generating units with the lowest costs, i.e schedule the generating units from
the cheapest to the most costly. In particular, the method applied in the paper, ex-
ploits the fact that the specified generating units has decreasing incremental cost as
the output power increases. Thus starting at the cheapest generator at capacity and
continue adding generating units while meeting the power balance constraint.

Another method is the branch and bound (B&B). In this method we utilize a search
strategy enumerating all the possible solution by branching out at decision points, and
search for lower and upper bounds on the optimal solution in order to evade unneces-
sary calculations (i.e., pruning rules). In their survey, Lawler and Wood [38] present
the B&B method to use within applications such as integer programming, nonlinear
programming and more, also comparing calculations efficiency and run-time. Further-
more, [38] also presents the relation of the B&B method to the dynamic programming
method that will be discussed later in this section. In a more recent work, Morrison
et al. [39], surveys recent development of the three main components of B&B algo-
rithms, that is the search strategy, the branching strategy and the pruning rules. In
[40] the B&B method is embedded to solve an economic dispatch problem. As the set-
tings of the problem in [40] results in a complex mixed integer quadratic programming
(MIQP) problem under a quadratic constraints, the proposed B&B algorithm solves
the problem accurately, and faster with respect to other methods presented. In [41],
an additional approach to solving a unit commitment problem with a B&B algorithm
is presented.

Dynamic programming is a well studied method for solving optimization problems.
A survey on the dynamic programming method was performed by Larson [42], categoris-
ing the techniques into - procedures for obtaining complete feedback control solution,
procedures for finding optimal control sequence from a single initial state, procedures
for infinite-stage problems and additional category of procedures which do not fit to
the previous three categories. The utilization of the dynamic programming method to
solve ED and UC problems in particular, is mentioned excessively within the literature
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review Section 1.1 of this work.
As a branch of the dynamic programming method, the shortest path algorithm solve

optimization problems quickly and efficiently. Specifically with the known Dijkstra’s
algorithm, calculations end up in almost linear computational complexity given by
O(|E|+|V | log |V |), where |E| and |V | represents the number of edges and vertices in the
model graph, respectively [43]. In particular for solving the ED and UC optimization
problems the shortest path algorithm was utilized in [24, 44, 45].

In [46] there is a comparison between the linear relaxation method and general
MIP methods specifically for solving a UC problem. A new method known as firefly
algorithm is used to solve an ED problem in [47]. Heuristic optimization technique
based on harmony search is presented to solve ED problem in [48]. Additional heuristic
optimization techniques are utilised to solve the ED problem. Some of them are the
genetic algorithm [49], simulated annealing [50] and practical swarm optimization [51].

The ED optimization, as a constrained mixed-integer problem, is hard to solve. In
fact, it is classified as NP-hard in the general case [52]. The methods mentioned in this
section ,aim to find solutions in a reasonable computational run-time and effort. Our
approach in the thesis is to employ the SPA, and via a decomposition of the problem
find additional methods to reduce the complexity of the problem.
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Chapter 3

Economic Dispatch with a Single
MGT

After describing and defining the ED optimization problem in detail, and presenting the
benefits and the motivation of exploiting natural gas via MGTs within the preceding
chapters, in this chapter we present the ED problem with an MGT as a generating
unit. We first define the single unit ED problem, following with a general discrete
model for the MGT. Based on the general model and measurements data, we develop
state model with additional economic model for a real MGT. We then formulate the
single unit optimization model for the single unit ED problem. Finally we discuss about
graph representation and the SPA application for solving the single unit problem. This
chapter is based on the previous work done in [24], where the ED problem considered
the MGT under CHP operation.

3.1 Single Unit Problem

We now consider an ED problem with a single MGT and a utility as the power gener-
ating units to satisfy the demand. This ED problem is defined to be a single unit ED
problem (SUP) (see Figure 3.1). A key element in the single unit problem is the MGT.

Figure 3.1: Illustration of a single-unit problem.

As mentioned in Chapter 1, the MGT may generate both electrical power and heat,
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and therefore considered as a CHP generating unit. Hence, the overall ED problem
minimizes the costs by schedule and defines the output power and heat produced by
the MGT and the utility. A reasonable assumption, for example, will be that the pro-
duction of power and heat by the MGT is cheaper than the utility, therefore the utility
will supply only in the case that the MGT is at capacity and can not meet demands.
For simplicity, as the main ideas and notions are kept, throughout this work we will
focus on the economic dispatch specifically for electrical power distribution.

3.2 MGT Model

In this section we provide background on the MGT discrete-time state model in general,
a specific discrete model for a real MGT, and a cost model for that real MGT.

3.2.1 MGT Discrete-Time State Model

In order to compute the optimal solution of the single unit problem, a valid model of an
MGT is needed. The overall dynamics of the MGT are of a continuous nature, but we
derive a discretized model for computational reasons. Furthermore, as we are interested
only in the steady states of the MGT the discritization is performed accordingly, and
we neglect transient aspects such as settling time. How this is done precisely will be
later demonstrated when we model the real MGT.

The states of the MGT are modeled as p(t) representing the generator steady-
states that produce an explicit output power as described previously in Chapter 2.
The dynamics of the MGT can therefore be expressed generally as

p(t + c(p(t), ū(t)) ·∆T ) = f(p(t), ū(t)). (3.1)

The transition function f depends on the current electrical output power and the control
signals. The transitions yield changes in the electrical output power, namely transition
to the next state, expressed as p(t + c(p(t), ū(t)) ·∆T ). The size of a time interval ∆T

is fixed over the entire planning horizon, whereas c(p(t), ū(t)) determines the overall
number of time steps that is needed for state transition, stated explicitly as a function of
the current state and control. For example, if c(p(t), ū(t)) = 1 then the model considers
one time step for state transition from p(t) to f(p(t), ū(t). If c(p(t), ū) = 2 then two
time steps are needed to transition to the next state.

In this work we integrate and model a specific MGT, the Capstone C65 generator.
An engine module of the capstone C65 with it’s main elements is presented in Figure
3.2. Additional information about Capstone C65 can be found at [53].

The modeling technique of the MGT is based on real experimental measurements.
The measurement data was obtained at the Turbomachinery and Heat Transfer Lab-
oratory at the Technion, during monitored operation of a Capstone C65. To model
the dynamics, we distinguish between specific operational events of the MGT such as
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Figure 3.2: A Capstone C65 engine module.

start-up, shut-down and any changes in the output power. These events will be later
directly linked to the model via MGT operational command, namely the control sig-
nal considered at the model’s control vector ū. To determine an appropriate sample
time for the model, we consider how long the generator takes to reach a steady state
following different state transition commands.

The measured data shown in Figure 3.3, depicts the rotations per minute (RPM),
and output power performance in kilo-Watts of a Capstone C65 over a time period
of 1,800 seconds. The start-up command was given after 100 seconds, initiating the

Figure 3.3: Performance of a Capstone C6 micro-gas turbine. Data obtained from the
Turbomachinery and Heat Transfer Laboratory at the Technion.

operation of the MGT, following by additional 100 seconds for settling time.
After 200 seconds, the input command was changed for the first time during oper-

ation, increasing the output power to about 10kW. The process of increasing output
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power was repeated seven more times, until reaching an electrical output power of
about 60kW. Notice that the response of the generator to step changes in the power
demand, shows a transient response that includes some overshoot and settling time of
roughly 70 seconds.

At time instance t = 1000 seconds, a shut-down command was given and a settling-
time taking place for additional 680 seconds. Note that for the modeling we consider
down-ramping time equal to up-ramping time, although we did not actually run an
experiment to verify this.

At this point we can accurately assess the timing of each dynamical event. The
fixed time-step for the discretization of the steady-state MGT model was chosen to be
∆T = 100 seconds, based on the measurements. The transition times of each state
transition is gathered in Table 3.1, including the value of c(p(t), ū(t)).

state transition transition time (for
∆T = 100[sec])

c(p(t), ū(t))

start-up ∆T 1
shut-down 7∆T 7
single up-ramping ∆T 1
single down-ramping ∆T 1

Table 3.1: State transitions and their assessed time duration.

For the sake of complete MGT dynamical modeling, we also consider the constraint
of power bound limitations. In this aspect we deduce from the measured data that
the MGT capacity is ps = 60kW . Additionally, the model’s discrete steps of available
output power is spaced with a constant value δp that can be chosen based on any needed
criteria, such that p(t) ∈ {p1 = 0, p2 = δp, p3 = 2δp, . . . , ps = 60kW}. Note that based
on the measured data for specific output power values, we may interpolate additional
values for the model.

MGT Model with a State-Transition Graph

The discrete model of the MGT can be represented using a graph, specifically an acyclic
directed graph (DAG) [54]. The graph nodes represents the MGT’s states, namely the
possible output power at each time instance t. The graph edges describe the allowable
state transitions of the MGT.

In Figure 3.4 we present the discretized MGT model derived previously for the
Capstone C65 over a DAG. Shut-down sequence described in a period of 7∆T with an
appropriate edge from any operational state, e.g. from node state p2 at time instance
(k − 1)∆T to node state p1 = 0 at time instance (k + 6)∆T . Note that in order to not
over-detail the graph in Figure 3.4, some edges that represents valid MGT transitions
were omitted.
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Figure 3.4: MGT discrete model dynamics over directed acyclic graph.

3.2.2 MGT Cost Modeling

As previously discussed in Chapter 2, the cost function represents the operational
costs of an MGT, and depends on the output power and state transitions. To develop
a complete model for the Capstone C65, we obtain data from an additional set of
measurements. The measured data links between a given value of output power (kW) to
the fuel consumption rate (liters per second) as presented in Figure 3.5. For modeling

Figure 3.5: Fuel consumption as a function of output power for the Capstone C65
MGT.

purposes we utilise the function fitting application in MATLAB, and result with an
approximated cost function for the Capstone C65. Moreover, when the MGT is off-line
it does not consume fuel. Therefore, the cost function is adjusted to reflect this by
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splitting it into two cost function. We define the cost function of the Capstone C65
Ccapstone to be the sum of two cost functions C1 and C2, that is

Ccapstone(p(t), ū(t), t) = C1(p(t), ū(t)) + C2(p(t), ū(t)). (3.2)

The cost function C1 is the formulation of the costs during start-up and shut-down
such that

C1(p(t), ū(t)) = 3.75(y(t) + z(t)). (3.3)

During start-up and shut-down events the cost is associated only with the MGT aging.
Following the model presented in [24], we use the static cost of $3.75 for star-up/shut-
down events. Thus the value of C1(p(t), ū(t)) is 0 whenever y = z = 0, and $3.75
otherwise.

The cost function C2 represents the cost when the MGT is operating,

C2(p(t), ū(t)) = 2.7× 10−4(7.3× 10−5 · p(t)) ·∆T · u(t). (3.4)

In this work, we consider a gas price coefficient of $0.27/1000liter based on data from
[55]. Multiplying this coefficient with the approximated cost function leads to a cost
function in USD per second ($/sec). Additional multiplication by the time interval
∆T , given in seconds, results in (3.4) which is in USD. Note that the cost function now
is not described with general notation as CGT but rather Ccapstone specifically for the
Capstone C65.

MGT costs over a DAG

The cost function together with the graph modeling of the dynamics are combined to
produce a weighted DAG, where each edge is given a weight corresponding to the cost
of operating the generator. To do so, we utilize a cost averaging method. We first
consider the costs related to each output power as described previously for the cost
function Ccapstone. We calculate the appropriate edge weight according to

C̄capstone(t, t + c∆T ) = c∆T
Ccapstone(p(t)) + Ccapstone(p(t + c∆T ))

2
, (3.5)

where c := c(p(t), ū(t)) for notational convenience. As the allowed dynamic transitions
are represented with an edge, all of the operational costs are covered within the model
graph.
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3.3 SUP Optimization Model

The overall optimization model of the single unit problem is again sumarized below,

min
p(t),ū(t),PU (t)

T∑
t=1

[CGT (p(t), ū(t)) + CU (PU (t))] (3.6)

subject to

p(t + c(p(t), ū(t)) ·∆T ) = f(p(t), ū(t))

P (t) = p(t) + PU (t)

p(t) ∈ {p1 = 0, p2, . . . , ps}

PU (t) ≥ 0, ∀t = 1, ..., T.

The cost function expressed in the optimization model (3.6) is comprised of a general
MGT cost function CGT (p(t), ū(t)) and the utility’s cost function CU (PU (t)). Note
that the MGT costs are a function of the MGT’s output power p(t) and a specific set
of control signals expressed in the control vector ū(t). The control vector abstractly
represents control signals given to the MGT such as start-up, shut-down, up/down-
ramp etc.

The utility is a power generating unit assumed to have unlimited electrical power
for distribution. Additionally, the model expressed at (3.6) can be modified to consider
the case where the MGT sells power back to the utility. This is done by removing the
non-negativity constraint PU (t) ≥ 0, thus PU (t) < 0 corresponds to the case where the
utility purchases power instead of selling. The objective function is updated accordingly
to support different costs for the case of buying power from the utility, and the case of
selling power back to the utility.

The single-unit optimization problem is subjected to four constraints. The first
constraint represents the MGT dynamics as discussed in Section 3.2. The second
constraint is the power balance constraint, which requires the output of the generating
units (MGT and utility) to meet the consumer demand, denoted as P (t). The demand
is a function of time, representing all the consumers in the network as one accumulated
need for electrical power. The third constraint restricts the output power of the MGT
to a set discrete power steps i.e., of integer values, as discussed in Section 3.2. Finally
the forth constraint subjects the electrical power which is contributed from the utility
to be restricted to non-negative values.

3.4 Solving the Single Unit Problem Using the Shortest
Path Algorithm

The optimization model for the single unit problem expressed in (3.6), can be solved
efficiently with the celebrated shortest path algorithm (SPA). We already embedded
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the MGT costs within the model graph in Section 3.2.2.
In order to cover the optimization for the single unit problem, and solve with SPA,

we consider also the costs of the utility to each edge weight of the model graph. We do
it by first calculating the averaged output power of the MGT over the interval [t, c∆T ),
with

p̄(t, t + c∆T ) = c∆T
p(t) + p(t + c∆T )

2
. (3.7)

Next we calculate the cost of purchasing power from the utility at time t according
to

CU (t) = CU (P (t)− p(t)). (3.8)

The averaged utility cost over the interval [t, c∆T ) is therefore

C̄U (t, t + c∆T ) = c∆T
CU (t) + CU (t + c∆T )

2
. (3.9)

Finally, the overall cost that is assigned to the edge is

e(p(t), p(t + c∆T )) = C̄GT (t, t + c∆T ) + C̄U (t, t + c∆T ). (3.10)

Note that the graph is built in such manner that it’s nodes and edges cover all of
the states and transitions that evolve throughout the planning horizon. As such, there
may be, in some time instances for some demands, cases where the demand is lower
then the available output power states which are represented by graph nodes. In these
cases, since the optimization model expressed at (3.1) is subjected to the constraint
PU (t) ≥ 0 for all t = 1, . . . , T and thus restricting sell back to the utility, the edges
connecting to these states are ignored and trimmed out form the graph at the specified
time instances.

Additionally, classic shortest path algorithms designate two nodes, the initial node
and terminal node, between which the path should be determined. In this problem
setting, these nodes have no physical meaning, and we allow transitions from the initial
node to any MGT state, and any MGT state to the terminal node. We next assign
cost to these edges,

e(init, p(1))) = 0.5 · (CGT (1) + CU (1)) (3.11)

e(p(T ), term)) = 0.5 · (CGT (T ) + CU (T )),

where ‘init’ is the initial node, and ‘term’ is the termination node. The costs of the
generator and utility at the t = 1 are CGT (1) and CU (1) respectively. Similarly, the
costs of the generator and utility at the t = T are CGT (T ) and CU (T ). Note that the
costs here described in general formation for any state at t = 1 and t = T . Furthermore,
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these costs are designed to account for the averaging cost assignment across the other
edges. In this way, the shortest path return the true cost of the generation schedule.
The following example demonstrates how costs are assigned in a simple single-unit
problem.

Example 3.1. Consider a single unit problem with an MGT containing two states such
that p ∈ {0, 1}. The MGT dynamics are given and presented accordingly in Figure 3.6.
The cost function of the MGT is expressed as CGT (p) = p. The cost function of the
utility is CU (pU ) = 10 · pU , where pU is the output power of the utility. The demand
given for the planning horizon T = 3, such that

P (t) =


0, t = 1

1, t = 2

2, t = 3.

The cost of each transition is presented as edge weight in Figure 3.6, where init is
the initiation node, and term is the termination node. The MGT cost is calculated
according to (3.5) and the overall cost is calculated according to (3.10).

Figure 3.6: A single unit problem graph illustration for Example 3.1.

The graph size of the single unit problem is sT . The graph size is linearly related
to the number of sates from the MGT’s discrete model, and the number of discrete
time-slots comprising the planing horizon T . This ED optimization problem, as a MIP
optimization problem, is of high computational complexity as discussed in Subsection
2.3. Nevertheless, this problem can be solved rather quickly even for large size graphs
by applying the SPA [24].
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Chapter 4

ED with Multiple MGTs

The multi-unit ED problem solves the optimization problem for an electrical power
distribution network that is comprised of the demand, utility, and a network of N

MGTs (see Figure 4.1). Integrating more MGTs to the power network enables meeting

Figure 4.1: Illustration of a multi-unit problem.

higher consumer demand at a lower overall cost. Furthermore the power network is
more resilient to malfunctions and uncertainties. Additionally, considering a network
of MGTs is a major step toward an independent sub-networks of power suppliers. Alas,
the multi-unit ED problem, i.e., with N MGTs, is proven to be very hard to solve, as
the problem size explodes exponentially with N (to be discussed within this chapter).
This leads to a very complex problem computationally.

In this chapter we present our approach for dramatically reducing the computa-
tional complexity of the multi-unit ED problem. We first define the multi-unit ED
optimization model, then we introduce an auxiliary variable and we utilise this variable
to decompose the problem into two independent sub-problems. Finally we present how
this method reduces the problem complexity and simplifies the needed calculations to
solve the problem.
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4.1 Optimization Model for the Multi-Unit Problem

Consider a multi-unit ED problem with a network of N MGTs and the utility. The
goal is to meet the consumer demands with the minimum possible cost over a given
planning horizon T . The formulated optimization model of the multi-unit problem is
expressed as

min
pi(t),ūi(t),PU (t)

T∑
t=1

N∑
i=1

CGT,i(pi(t), ūi(t)) + CU (PU (t)) (4.1)

subject to
N∑

i=1
pi(t) + PU (t) = P (t), ∀t = 1, ..., T

pi(t + c∆T ) = fi(pi(t), ūi(t)), ∀t = 1, ..., T, ∀i = 1, 2, ..., N

pi(t) ∈ {p1,i = 0, ..., ps,i}, ∀t = 1, ..., T, ∀i = 1, 2, ..., N

PU (t) ≥ 0, ∀t = 1, ..., T

The objective function of the multi-unit problem is comprised of each MGT cost func-
tion CGT,i(pi(t), ūi(t)), and the cost function of the utility CU (PU (t)).

Note that each MGT has it’s own output power state variable pi(t), control vector
ūi(t), and transition function describing its dynamics, fi.

The minimization problem is subjected to the power balance constraint to meet the
given demand P (t) as before, this time considering all the generating units within the
power network. The MGT dynamics are modeled similarly to the single-unit problem
in Section (3.1). The utility output power is restricted to be non-negative as in the
single unit case.

4.2 Multi-Unit Complexity

In Chapter 3, we described the single unit case, where the graph representing the
dynamics of the MGT has sT nodes, where s is the number of MGT states and T is
the planning horizon.

In the multi-unit problem we have s states for each MGT (we assume at this point
that all the MGTs are identical). The combination of all possible states at one time
instance is therefore sN . When considering the planing horizon the graph has sN T

nodes, showing an exponential increase. We illustrate this idea in the next example.

Example 4.1. Consider a single unit problem with MGT that has a discrete model
with two output power states (i.e., s = 2), such that p ∈ {0, 1}. The MGT dynamics
are a simple one step transition evolving over one time interval (i.e., ∆T = 1 and
c = 1). Now consider a multi-unit problem with N = 3 identical MGTs with the same
model as previous setup. Figure 4.2 visualises the dramatic difference between the graph
size of a single-unit problem and the multi-unit problem. In the single-unit problem,
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(a) N = 1, s = 2 (b) N = 3, s = 2

Figure 4.2: Graph sizes for two cases.

the number of nodes presented in Figure 4.2a is 2T . A relatively small increase in
the amount of generators in the power network results in a graph with 23T nodes, as
demonstrated in Figure 4.2b. Furthermore, in the single unit case there are a total of
4(T − 1) edges where in the multi-unit case there are 64(T − 1) edges.

As the graph size, and therefore the problem size, increases exponentially with N ,
even if one utilizes the SPA approach as described in the preceding chapter, the problem
may be prohibitively large to solve.

4.3 A Decomposition Approach

In order to simplify the complexity of the multi-unit problem, we present a method
of decomposing the overall multi-unit problem into two sub-problems. The two sub-
problems are named the inner problem and the outer problem. Each one of the sub-
problems is solved independently, and a combined solution is an optimal solution for
the overall original multi-unit problem with N MGTs. The inner problem is an ED
problem which determines the allocation of output power from each MGT, given a
desired aggregated power as a demand.

The outer problem is as a special case of a single unit problem as described in 3.1,
but instead of an MGT we incorporate an aggregated generating unit. The generating
unit represents the MGTs network, where we then can assign the appropriate costs to
each output power state according to the inner problem solution.

The multi-unit problem decomposition process starts with the observation that

PU (t) = P (t)−
N∑

i=1
pi(t).
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In this direction, we introduce the auxiliary variable σ(t) as,

σ(t) =
N∑

i=1
pi(t). (4.2)

Plugging the auxiliary variable into the power balance constraint we get

PU (t) = P (t)− σ(t), ∀t = 1, ..., T.

We proceed in this direction and incorporate the auxiliary variable in the ED multi-unit
model.

4.3.1 Incorporate the Auxiliary Variable

Considering the optimization model in (4.1), we express PU (t) with the auxiliary vari-
able σ(t) and the demand P (t) as in (4.2) and rewrite (4.1) as

min
pi(t),ūi(t),σ(t)

T∑
t=1

N∑
i=1

CGT,i(pi(t), ūi(t)) + CU (P (t)− σ(t)) (4.3)

subject to σ(t)−
N∑

i=1
pi(t) = 0, ∀t = 1, ..., T

pi(t + c∆T ) = fi(pi(t), ūi(t)), ∀t = 1, ..., T, ∀i = 1, ..., N

pi(t) ∈ {p1,i, ..., ps,i}, ∀t = 1, ..., T, ∀i = 1, ..., N

P (t)− σ(t) ≥ 0, ∀t = 1, ..., T.

The cost function of the utility CU is now dependent on the demand and the auxiliary
variable. Additionally, the constraint stating that the power purchased from the utility
is non-negative is also expressed in terms of the demand and the auxiliary variable. The
minimization is now performed over the optimization variables pi(t), ūi(t), and σ(t).

We observe in the optimization model (4.3) that the overall cost function has two
parts which are comprised of different variables. The first part is the sum of the N

MGTs costs as a function of the output power pi(t) and the control vector ūi(t) of
each MGT. The second part is the utility cost function which depends on the demand
and the auxiliary variable. Theses two parts of the objective function are coupled only
by the constraint, that the sum of the generator outputs must equal the aggregated
output.

At this point we separate the minimization by performing it over σ(t), ūi(t) and
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pi(t) independently

min
σ(t)

min
pi(t),ūi(t)

T∑
t=1

N∑
i=1

CGT,i(pi(t), ūi(t)) + CU (P (t)− σ(t)) (4.4)

subject to σ(t) =
N∑

i=1
pi(t), ∀t = 1, ..., T

pi(t + c∆T ) = fi(pi(t), ūi(t)), ∀t = 1, ..., T, ∀i = 1, ..., N

pi(t) ∈ {p1,i, ..., ps,i}, ∀t = 1, ..., T, ∀i = 1, ..., N

P (t)− σ(t) ≥ 0, ∀t = 1, ..., T.

Note that when neglecting time, each generator has a cost associated with a given
output power. In this direction, we can consider solving the following problem: for a
given aggregate power demand σ(t), what is the optimal allocation of power for each
generator pi(t) such that ∑

i pi(t) = σ(t). This problem is precisely the economic dis-
patch problem presented in Section 2.2. As we will show in Section 4.3.2, this problem
can be solved analytically. This then allows us to consider a classic unit commit-
ment problem for a fictitious generator with output power variable σ(t), presented in
Section 4.3.3. This separation is reflected in (4.4) by noting that the cost function
CU (P (t)− σ(t)) does not involve the variable pi(t), enabling such a separation.

4.3.2 The Inner Problem

The goal of the inner optimization problem is to minimize the operation costs of the
power network comprised only of the MGTs (i.e., without the utility). The optimization
is achieved by allocating the MGTs output power economically, to meet some fixed value
of the auxiliary variable. Hence, the auxiliary variable is given to the inner problem as
time-independent “external” parameter σ, and the optimization problem is static. To
get the optimal allocation of output power from the MGTs network we minimize the
objective function over pi. The inner optimization model is

min
pi

N∑
i=1

CGT,i(pi) (4.5)

subject to
N∑

i=1
pi = σ

pi ∈ {p1,i = 0, ..., ps,i}.

The time-independent inner problem yields a stand-alone optimal solution for the
MGTs power network given a specific σ, regardless of the planning horizon which was
imposed within the original multi-unit problem. As we are interested in the optimal
solution of the MGTs power network for any possible value of σ, we perform the inner
optimization formulated in (4.5) repeatedly for each possible σ.
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The set of optimal solutions for each σ is kept, and may now serve as a ”look-up
table” to be forwarded to the next step of solving the outer problem as will be discussed
in Section 4.3.3.

We now provide an analytic solution for (4.5) for the case of convex or concave cost
functions.

Convex Cost Functions

The next theorem shows that when considering an optimization problem as modeled
in (4.5) for the case of convex cost functions, there is an optimal solution that can be
determined analytically.

Theorem 4.1. Consider the following optimization problem,

min
pi

N∑
i=1

C(pi)

subject to
N∑

i=1
pi = σ

pi ∈ {p1 = 0, p2, . . . , ps},

where C : R→ R is a strictly convex function, and pi+1 = pi + δp for i = 1, . . . , s− 1
and some δp > 0. Let F denote the set of feasible solutions. The optimal solution set
P⋆ ⊂ F is such that any solution p⋆ ∈ P⋆, has the structure p⋆

i ∈ {Q, Q + δp} for
i = 1, . . . , N , with Q = ⌊ σ

N ⌋. In particular, for r = (σ mod N) and w = r/δp, then

p⋆
i =

Q + δp, i = 1, 2, . . . , w

Q, i = w + 1, . . . N.

Proof. We start by choosing without loss of generality some feasible solution x ∈ F .
We need to show that if at least one xi /∈ {Q, Q + δp}, then there is another solution
y ∈ F such that ∑N

i=1 C(yi) <
∑N

i=1 C(xi). Namely, the solution y is cheaper than the
solution x. This then would show that all optimal solutions should have the prescribed
structure.

Consider, without loss of generality, a feasible solution x ∈ F with xi ≤ Q− δp for
some i. Consequently, because of the constraint ∑N

i=1 xi = σ, there must also be some
entry j satisfying xj ≥ Q + δp. We now construct a new solution y ∈ F as

yk =


xk, k ̸= i, j

xi + δp, k = i

xj − δp, k = j.

It is straightforward to verify that ∑N
i=1 yk = σ holds, i.e., yk is a feasible solution. It
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now remains to verify that ∑N
i=1 C(yi) ≤

∑N
i=1 C(xi).

From the construction of the solution y, we obtain the difference in the cost of the
two candidate solutions,

N∑
i=1

C(xi)−
N∑

i=1
C(yi) = C(xi) + C(xj)− C(xi + δp)− C(xj − δp). (4.6)

Furthermore, it follows that

xi < xi + δp ≤ xj − δp < xj .

From the chordal slope lemma (see Appendix A) for strictly convex functions we
have

C(xi + δp)− C(xi)
xi + δp − xi

<
C(xj)− C(xj − δp)

xj − (xj − δp)
, (4.7)

which simplifies to

C(xi + δp) + C(xj − δp) < C(xj) + C(xi). (4.8)

Hence, the expression in (4.6) is greater than zero, and the cost of solution y is cheaper
than the cost of solution x. The proof can follow generally for xi ≥ Q + 2δp. Thus, the
optimal solution must have the structure proposed in the theorem.

Finally, note also that all solutions in the set P⋆ can be obtained from each other
by a simple permutation. Thus all solutions generated by the method outlined in this
proof will converge to an optimal solution. ■

Remark. Note that for the case σ < N it follows that Q = 0. This shows that the
optimal solution includes generators that produce no power.

Theorem 4.1 gives the exact characterization of how optimal solutions should look
like for any given demand, and therefore can be done offline. Furthermore, the given
solution in the convex case aims to balance the generated power across all the MGTs.

Example 4.2. In this example we present the commitment and output power allocation
of the MGTs power network within the context of Theorem 4.1. We show the results
for different values of the auxiliary variable σ. Consider five (N = 5) identical MGTs
with the convex cost function C(p) = p2 such that the overall cost is

C(p) =
N∑

i=1
p2

i . (4.9)

Each one of the five MGTs has four operational states, i.e., pi ∈ {0, 1, 2, 3}. We consider
the problem for different values of σ as σi, i = 1, 2, . . . , 16. We consider the aggregate
demand σ(t) to follow the profile shown in Figure 4.3.
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Figure 4.3: Demand σ as a function of time.

The output power of the MGTs for each value of σ(t) were analytically determined
according to Theorem 4.1, and the results are presented graphically in Figure 4.4. The
figure shows that indeed generators distribute the generation of power in a balanced
fashion.

Concave Cost Functions

As was shown for the convex cost function case, there is an explicit structure for optimal
solutions when considering concave cost functions.

Theorem 4.2. Consider the following optimization problem,

min
pi

N∑
i=1

C(pi)

subject to
N∑

i=1
pi = σ

pi ∈ {p1 = 0, p2, ..., ps}

where C : R→ R is a strictly concave function, and pi+1 = pi + δp for i = 1, . . . , s− 1
and some δp > 0. Let F denote the set of feasible solutions. The optimal solution
set P⋆ ⊂ F is such that any solution p⋆ ∈ P⋆, has the structure p⋆

i ∈ {0, r, ps} for
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Figure 4.4: MGTs allocation for changing σ with convex cost function.

i = 1, . . . , N , with Q = ⌊ σ
ps
⌋. In particular, for r = (σ mod ps) then

p⋆
i =


ps, i = 1, 2, . . . , Q

r, i = Q + 1

0, i = Q + 2, . . . , N.

Proof. We start by choosing without loss of generality some feasible solution x ∈ F .
We need to show that if both xi, xj /∈ {0, ps}. Then there is another solution y ∈ F such
that ∑N

i=1 C(yi) <
∑N

i=1 C(xi). Namely, the solution y is cheaper than the solution x.
This then would show that all optimal solutions should have the prescribed structure.

Consider, without loss of generality, a feasible solution x ∈ F such that xi ≤ xj ,
with xj ≤ ps − δp for some j and xi ≥ δp for some i. Consequently, because of the
constraint ∑N

i=1 xi = σ, xi and xj must balance each other. We now construct a new
solution y ∈ F as

yk =


xk, k ̸= i, j

xj + δp, k = j

xi − δp, k = i.

It is straightforward to verify that ∑N
i=1 yk = σ holds, i.e., yk is a feasible solution. It

now remains to verify that ∑N
i=1 C(yi) ≤

∑N
i=1 C(xi).

N∑
i=1

C(xi)−
N∑

i=1
C(yi) = C(xi) + C(xj)− C(xj + δp)− C(xi − δp). (4.10)
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Furthermore, it follows that

xi − δp < xi ≤ xj < xj + δp.

From the chordal slope lemma (see Appendix A) for strictly concave functions we
have

C(xi)− C(xi − δp)
xi − (xi − δp)

>
C(xj + δp)− C(xj)

xj + δp − xj
, (4.11)

which simplifies to

C(xj) + C(xi) > C(xi + δp) + C(xj − δp). (4.12)

Hence, the expression in (4.10) is greater than zero, and the cost of solution y is cheaper
than the cost of solution x.

The proof can follow generally for xj ≤ ps − nδp and xi ≥ nδp for an integer n in
the same manner. Thus, the optimal solution must have the structure proposed in the
theorem.

Finally, note also that all solutions in the set P⋆ can be obtained from each other
by a simple permutation. Thus all solutions generated by the method outlined in this
proof will converge to an optimal solution. ■

In the concave case, we get from Theorem 4.2 the exact characterization of how
optimal solutions should look like for any given demand. Similarly to the convex case,
this can be performed offline. The given solution prioritizes the maximization of output
power from each MGT before bringing new ones online.

Example 4.3. Similar to the convex case example, in this example we present the
output power allocation of the MGTs power network within the context of Theorem
4.2. We show the results for different values of the auxiliary variable σ. Consider five
(N = 5) identical MGTs with the concave cost functions C(p) = −p2 + 10p, such that
the overall cost is

C(pi) =
N∑

i=1
(−p2

i + 10pi). (4.13)

Each one of the five MGTs has four operational states, i.e., pi ∈ {0, 1, 2, 3}. The values
for σi are considered with i = 1, . . . , 16. The σ(t) profile is given as before, as depicted
in Figure 4.3.

The output power of the MGTs for each value of σ(t) were analytically determined
according to Theorem 4.2, and the results are presented graphically in Figure 4.5. The
figure shows that the output power from the generators is not spread evenly over the
generators as in the convex case. Rather, each generator first reaches its output capacity
before introducing a new generator to meet the aggregate demand.
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Figure 4.5: MGTs allocation for changing σ with concave cost function.

4.3.3 The Outer Problem

The role of the outer problem is to determine a schedule for the auxiliary variable σ(t),
representing the total aggregated power of all the generators. To do so, we approach
the outer problem similarly to the single-unit problem, considering the MGTs power
network as a single aggregated power generating entity (i.e., a new generator). In this
direction, we need to model the new generator, noted as AGT , and integrate it into
the optimization model. The model of the aggregated generator is built to consider an
aggregated dynamics derived from the MGTs. The optimization model for the outer
problem is

min
σ(t),ūAGT (t)

T∑
i=1

[CAGT (σ(t), ūAGT (t)) + CU (P (t)− σ(t)] (4.14)

subject to σ(t + c∆T ) = fAGT (σ(t), ūAGT (t)), ∀t = 1, 2, . . . , T

σ(t) ∈ {σ1, σ2, . . . , σmax}, ∀t = 1, 2, . . . , T

σ(t) ≤ P (t), ∀t = 1, 2, . . . , T.

Note that the optimization model given in (4.14) is similar to the single-unit model in
(3.6), but does not explicitly minimizes the power purchased from the utility, PU (t), as
it coupled within the power balance constraint to σ. The cost of each σ is optimized
independently within the inner problem, and can be fed to the outer optimization model
as a look up table.

We will now further develop the aggregated generator model for the scenario of
identical MGTs, specifically for the Capstone C65 model.
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aggregated generator model

In Section 3.2.1 we modeled the Capstone C65 MGT. We use this model to derive a
model for the aggregated generator with output power σ(t).

• power bounds
The minimal aggregated power is zero in the case where there are no MGTs on-
line. For a power network of N Capstone C65 MGTs, with maximal output power
of each generator is ps, so the maximum aggregated output power is N · ps. The
power steps in the model are generally defined with increments δp, so there are a
total of (N ·ps)/δp available states of output power from the aggregated generator.
Note that ps/δp is exactly the number of output power states of each MGT which
was defined as s. The total number of output power states is therefore sN such
that

σ(t) ∈ {σ1 = 0, σ2, . . . , σsN}, ∀t = 1, . . . , T, (4.15)

with σi+1 = σi + δp, σ1 = 0 and σsN = Nps.

• dynamics
The dynamics of the aggregated generator is governed by the characteristics of
the MGTs that comprise the power network, and expressed with the transition
function fAGT ,

σ(t + c(σ, ūAGT (t)) ·∆T ) = fAGT (σ(t)(t), ūAGT (t)). (4.16)

Here, ūAGT (t) ∈ {0, 1} × {0, 1} × {0, 1} represents the control signal for the ficti-
tious generator. The variable has the same representation as described in Section
2.1.2, corresponding to on/off, startup and shutdown i.e, variables {u, y, z} re-
spectively. As the AGT is comprised from N MGTs, the dynamics must consider
the state-transition times accordingly. For example, the AGT is considered to
be on for σ(t) > 0, however, transitioning from σ(t) = σi to σi+1 may require
bringing a new generator online. The function c(σ(t), ūAGT ) must therefore be
chosen to represent these transitions. In Theorems 1 and 2, we saw that all the
solutions within the optimal set p⋆ ∈ P⋆, can be obtained with simple permu-
tations. Hence, we must choose for the AGT model only one p⋆ for each σ. In
this direction we develop a heuristic mapping the schedule for σ(t) to a schedule
for each individual generator. As the MGT’s are indexed with i = 1, . . . , N , we
choose to add or remove MGTs from operational mode in ascending or descend-
ing manner. That is, if MGTs i = 1, . . . , k are operational at time t in order to
generate σ(t), and an additional MGT is needed to produce σ(t + 1), then MGT
i = k + 1 must be online by time t + 1. Similarly, if the MGTs i = 1, . . . , k are
operational at time t, and in order to produce σ(t + 1) we need one less MGT,
we shut down the kth MGT.
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We present two heuristics for the generator dynamics, one corresponding to the
convex case (Theorem 4.1) at Algorithm 4.1, and one for the concave case (The-
orem 4.2) at Algorithm 4.2. That is, we map the fictitious AGT transition maps
to a schedule for the actual MGTs, based on the heuristics for each case.

Algorithm 4.1 MGT Scheduling Heurisitc: Convex Case
Require: N ▷ The number of MGTs
Require: T ▷ Planning horizon
Require: δp ▷ AGT power increment
Require: σ(t) ∀t = 1, . . . T

for t = 1 : T do
Q(t) = ⌊σ(t)

N ⌋
r(t)← (σ(t) mod N)
w(t)← r(t)/δp

if Q(t) = 0 & w(t) < N then
k(t)← w(t) ▷ k(t) is the number of operational MGTs at t

else
k(t)← N

end if
if k(t) > 0 then

ui(t)← 1, ∀i = 1, 2, . . . , k(t)
ui(t)← 0, ∀i = k(t) + 1, k(t) + 2, . . . , N

else
ui(t)← 0, ∀i = 1, 2, . . . , N

end if
if k(t + 1) > k(t) then ▷ MGTs start-up

yi(t)← 1, ∀i = k(t) + 1, k(t) + 2 . . . , k(t + 1)
else if k(t + 1) < k(t) then ▷ MGTs shut-down

zi(t)← 1, ∀i = k(t), k(t)− 1 . . . , k(t + 1) + 1
else

yi(t)← 0, ∀i = 1, 2 . . . , N
zi(t)← 0, ∀i = 1, 2 . . . , N

end if
pi(t)← Q(t) + δp, ∀i = 1, 2 . . . , k(t) ▷ Next MGTs state
pi(t)← Q(t), ∀i = k(t) + 1, k(t) + 2, . . . , N

end for

Example 4.4. In this example we illustrate AGT’s transitions that evolve with
time over a DAG, while considering the heuristics impacts. In particular we
emphasize the difference between two cases of power networks, one that comprised
of MGTs with a convex and one comprised of MGTs with a concave cost function.

Consider a power network of N = 3 identical MGTs, with output power states
pi ∈ {0, 1, 2, 3} for i = 1, 2, 3 and a discrete state model as described in Table 4.1.
Then the AGT model of this network has output power states σ ∈ {0, 1, 2, . . . , 9}.

The Figure 4.6a demonstrates the transitions of the AGT model when the cost
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Algorithm 4.2 MGT Scheduling Heurisitc: Concave Case
Require: N ▷ The number of MGTs
Require: T ▷ Planning horizon
Require: δp ▷ AGT power increment
Require: ps ▷ MGT’s maximum output power
Require: σ(t) ∀t = 1, . . . T

for t = 1 : T do
Q(t) = ⌊σ(t)

ps
⌋

r(t)← (σ(t) mod ps)
if r(t) = 0 then

k(t)← Q(t) ▷ k(t) is the number of operational MGTs at t
else

k(t)← Q(t) + 1
end if
if k(t) > 0 then

ui(t)← 1, ∀i = 1, 2, . . . , k(t)
ui(t)← 0, ∀i = k(t) + 1, k(t) + 2, . . . , N

else
ui(t)← 0, ∀i = 1, 2, . . . , N

end if
if k(t + 1) > k(t) then ▷ MGTs start-up

yi(t)← 1, ∀i = k(t) + 1, k(t) + 2 . . . , k(t + 1)
else if k(t + 1) < k(t) then ▷ MGTs shut-down

zi(t)← 1, ∀i = k(t), k(t)− 1 . . . , k(t + 1) + 1
else

yi(t)← 0, ∀i = 1, 2 . . . , N
zi(t)← 0, ∀i = 1, 2 . . . , N

end if
pi(t)← ps, ∀i = 1, 2 . . . , Q(t) ▷ Next MGTs state
pi(t)← r(t), i = Q(t) + 1
pi(t)← 0, ∀i = Q(t) + 2, . . . , N

end for
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(a) MGTs network with convex cost function.

(b) MGTs network with concave cost function.

Figure 4.6: An AGT discrete model over DAG with heuristic considerations.
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state transition duration time [sec] c(p(t), ū(t))
start-up 200 2
shut-down 200 2
single up-ramping 100 1
single down-ramping 100 1

Table 4.1: State transitions and their assessed time duration.

function of the MGTs is convex. As expected, when starting from the non-
operational state σ1 towards higher output values, we encounter sequential start-
ups of the individual MGTs until σ4. A total of three start-ups as the number
of MGTs that comprise the AGT. According to the heuristic, we have y1 ← 1
between σ1 to σ2, followed by y2 ← 1 between σ2 to σ3 and so on. This is due
to the balancing nature of the optimal solution stated in Theorem 4.1. This is
also true for the shut-down sequence. The concave case is presented in Figure
4.6b. In this case, when moving up starting at σ1 we observe the prioritizing of
maximum output power from each MGT. The heuristics here are such that we
have y1 ← 1 following by reaching MGT capacity. Only then, from σ4 to σ5 we
have additional start-up y2 ← 1. Again, when moving down-wards between σs,
shut-down sequence follows the same logic.

• cost modeling
The optimal cost of each σ is given from the inner problem as CAGT (σ), where
the costs are gathered together as a look-up table. We use these costs to build a
cost function for the AGT which depends on the power output and the transitions
costs. The transition costs are formulated as

C̄AGT (t, t + c∆T ) = c∆T
CAGT (σ(t)) + CAGT (σ(t + c∆T ))

2
. (4.17)

As the AGT model represents a cluster of N MGTs, there are N possible events
of MGT start-up and N possible events of MGT shut-down. The associated costs
of this events are considered as additional cost of the appropriate AGT’s edges,
according to how the heuristic works.

The final stage for solving the outer problem is to build the appropriate weighted DAG
and solve with SPA. The cost of purchasing power from the utility at time t is calculated
according to

CU (t) = CU (P (t)− σ(t)). (4.18)

The averaged utility cost over the an interval is

C̄U (t, t + c∆T ) = c∆T
CU (t) + CU (t + c∆T )

2
. (4.19)
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Then the overall cost assigned to the edge weight is

e(σ(t), σ(t + c∆T )) = C̄AGT (t, t + c∆T ) + C̄U (t, t + c∆T ). (4.20)

4.3.4 Decomposition Method Summary and Complexity

In Figure 4.7 we present a summary for utilizing the decomposition method. Consid-

Figure 4.7: Step by step decomposition of the multi-unit problem.

ering an electrical power network with N different MGTs, then one of them (or some
of them) has the maximal number states expressed as ps/δp = s.

In order to form an upper bound on the computational complexity, we consider
a multi-unit problem where all of the N MGTs are with s states. In Section 4.2
we discussed the exponential growth of the graph size sN T and the resulted problem
complexity. Using the decomposition method, we compute the values of each σ by per-
forming the inner optimization (N ·s) times and then storing the results. Furthermore,
specifically for the convex and concave cost functions we have the solution analytically
without any computation at all.

The outer problem graph can be modeled with a graph on (N · s) · T nodes, and
can be solved as a single-unit problem with the shortest path algorithm. The overall
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computational complexity is O(|E| + |V | log |V |), where we remind that |E| and |V |
represents the number of edges and vertices in the model graph, respectively.

By decomposing the original multi-unit problem with O(sN · T ) exponential com-
plexity, we actually solve two optimization problem with substantially lower complex-
ity. This enables finding the optimal solution to a large multi-unit ED problem within
acceptable calculation converge-time.
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Chapter 5

Results and Discussion

To evaluate the performance and efficiency of the decomposition method for the ED
optimization problem with multiple MGTs, we implement and simulate it with MAT-
LAB for several different scenarios. All of the simulations were performed with Intel
Core i3-6100 CPU @3.70 GHz.

5.1 Comparison of Decomposition Method with Commer-
cial Solver

In this section we compare the simulation run-time of a multi-unit ED problem using
two different solution methods:

• our proposed decomposition method;

• Mixed Integer Quadratic Programming (MIQP) performed using a commercial
solver (MOSEK).

We simulated both methods with different number of MGTs in the power network.
Consider a multi-unit problem with N identical MGTs. Each MGT has three states

such that pi ∈ {0, 1, 2} for all i = 1, . . . N . All of the state-transitions require one
time step (i.e., ∆T = 1). This includes start-up and shut-down transitions. The cost
function of an MGT is expressed as

CGT (pi(t)) = p2
i (t).

The planning horizon is taken to be T = 5. There are no explicit additional MGT costs
such as start-up costs, shut-down costs etc. As the MGT cost function is a convex
function, the analytical cost expression, as given in Theorem 4.1, is embedded within
the simulation.
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Number of MGTs MIQP Decomposition
Run-Time[sec] Total Cost Run-Time[sec] Total Cost

N = 2 2.48 16 0.23 16
N = 3 2.66 12 0.23 12
N = 4 5.21 10 0.23 10
N = 5 184.35 10 0.23 10

Table 5.1: Comparing the run-time and total cost between methods: decomposition vs
MIQP.

The demand in this multi-unit ED problem is

P (t) =



0, t = 1

1, t = 2

2, t = 3

3, t = 4

4, t = 5.

The cost function of the utility is CU (pU ) = 10 · pU (t), where pU (t) is the output power
of the utility.

In Table 5.1 we gathered the run-time and the total cost results for both meth-
ods, where each simulation was performed for different number of MGTs. With the
decomposition method, the simulation run-time for N = 2, 3, 4, 5 MGTs take less than
quarter of a second. The simulation run-time of the MIQP method is 10 times slower
with two and three MGTs. With four MGTs the run-time is doubled. The simulation
of five MGTs explodes, where the run-time is 800 times slower than the decomposition
method. Increasing N any further results in unreasonable or not-converging run-time
when simulating the MIQP method. The total cost in both methods is the same. The
results in Table 5.1 demonstrate the efficiency of the decomposition method, and it’s
superiority with regards to the MIQP method.

In Figure 5.1 we present the schedule and output power allocation of MGTs, corre-
sponding with the simulations results in Table 5.1. The scheduling and power allocation
is the same in both methods i.e., optimal solutions within the boundaries of MGTs per-
mutation. Note that the application of the decomposition method heuristics take place
and visualized in the graphs. That is, MGTs are brought online in an organized manner
starting from MGT#1, then MGT#2 and so on.

5.2 A Real Case Scenario

In this section we simulate a multi-unit problem in a real life scenario settings. There-
fore, the simulation considers models of real elements as described in Section 5.2.1. The
simulation of the real case scenario is solved with the decomposition method discussed
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(a) Decomposition with N = 2. (b) MIPQ with N = 2.

(c) Decomposition with N = 3. (d) MIPQ with N = 3.

(e) Decomposition with N = 4. (f) MIPQ with N = 4.

(g) Decomposition with N = 5. (h) MIPQ with N = 5.

Figure 5.1: MGTs scheduling and output power allocation for different number of
MGTs. The schedules are the same within a permeation of the MGT labels.
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in details in Section 4.3.

5.2.1 Setting-Up the Problem

Demand

In the real case scenario we consider two consumers:

• small hotel - area of 4, 013m2

• large hotel - area of 11, 345m2

The demand is the electrical power in kilo-watts, needed by each of the hotels over a
one day period. The data is taken from the information published by the U.S DOE [3].
The data of the changing demand is shown in Figure 5.2. for both hotels.

Figure 5.2: Demand over a single day (1/1/2004) for a small and large hotel [3].

MGT Model

We integrate the MGT model of the Capstone C65 as developed in Section 3.2. As the
cost function of the Capstone C65 is linear it may be considered as convex or concave
case for the heuristics and analytical calculations. Therefore, for the simulations in this
section we embed analytical calculations for both convex and concave cost functions as
shown in Theorems 4.1 and 4.2. The results of the two cases will later be compared
and discussed.
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Utility Costs - Electricity Tariffs

The utility is considered as an unlimited source of electrical power, nevertheless, pur-
chasing electrical power cost money. In this work the electricity tariffs are modeled
similarly to what is done in [24]. There are three cost components: fixed cost of service
(FC), fixed pricing of energy (FPE) and demand charging (DC). The DC is a changing
value according to different components such as peak hour pricing and seasonal pricing.
In this work we consider the FPE as part of the simulation. The power purchased from
the utility is PU (t) = P (t) −

∑N
i=1 pi(t) for all t = 1, 2, . . . , T , and the cost function

defining the cost of electricity is

g(PU (t)) = A ·∆T · PU (t). (5.1)

Here, A is the energy charge such that for small hotel A = 0.0273$/kWh, and for big
hotel A = 0.0291$/kWh.

5.2.2 Simulations Results

We simulate the multi-unit problem for this setting over several variations:

• MGT networks with different sizes considering to a small hotel demand. We
consider both convex and concave heuristics.

• MGT networks with different sizes considering a large hotel demand. We consider
both convex and concave heuristics.

• Selling-back to the utility. Considering two MGTs, a utility and a demand of a
small hotel with convex heuristics.

In Table 5.2 we gathered the simulation results of the real case scenario with N =
2, 3, 4, 5 MGTs. We compare two elements: the simulation run-time and the total cost.
We compare the elements with regards to both convex and concave heuristics. The
run-time increases with N , as expected when the problem is getting bigger. The run-
time performance is similar i.e., differs in up to several hundredths of a second, when
comparing cases with the same number of MGTs.

In all the solutions, excluding the small hotel concave case, the total cost is in
inverse relationship with the number of MGTs. This is because when considering the
real costs, producing power with MGTs is cheaper than purchasing power from the
utility (for the tariffs used in this example). Thus, the simulations results strengthen
our motivation to incorporate MGTs into power networks. In particular, if we were
to only purchase from the utility to meet small hotel demands, the total cost will be
$75.78.

Within the optimal solutions, MGTs are turned on and off according to the heuris-
tics as extensively discussed in the preceding chapter. The total cost is impacted

51

 

 

 



# MGTs Convex Concave Concave without
SU&SD costs

Run-Time
[sec]

Cost[$] Run-Time
[sec]

Cost[$] Run-Time
[sec]

Cost[$]

N = 2 0.46 9.67 0.39 13.88 0.38 9.67
N = 3 0.66 0.44 0.67 13.88 0.68 0.44
N = 4 1.06 0.19 1.08 13.88 1.13 0.19
N = 5 1.73 0.19 1.72 13.88 1.73 0.19

(a) Small hotel.

# MGTs Convex Concave
Run-Time[sec] Cost[$] Run-Time[sec] Cost[$]

N = 2 0.43 225.53 0.39 225.53
N = 3 0.65 186.32 0.68 186.32
N = 4 1.10 147.33 1.09 147.33
N = 5 1.98 115.42 1.71 115.42

(b) Large hotel.

Table 5.2: Comparison of run-time, number of start-ups and shut-downs and total cost
between convex and concave cases, while meeting demands.

accordingly, as these operations have additional cost defined in Section 3.2.2. More-
over, since the SPA looks for the cheapest paths, it naturally avoids paths with higher
costs. This is well demonstrated in Table 5.2a, where the concave case solutions are
much more expensive than the convex case. In fact, due to the costs of MGTs start-up
and shut-down events, the optimal solution is fixed for all N variations, where excess
power procurement from the utility is preferred over additional MGTs. This is regard-
less of how many available MGTs are in the power network. Even-though, the optimal
solution includes two operational MGTs. That is, the incorporation of the MGTs into
the power network yields overall cost reduction.

To emphasize the notion of start-up and shut-down costs, we add the most right
extension to Table 5.2. In the extension we bring the solutions of the concave cases
without MGTs start-up and shut-down costs (i.e., the cost is zero). As expected,
with linear cost functions of MGTs, the solutions are now identical to the convex case
solutions with the same N .

This also holds for the large hotel results, demonstrated in Table 5.2b. Furthermore,
there is a dramatic difference in total costs between the small and large hotels. Since the
demand from the large hotel is much higher, we have to purchase more power from the
utility once the MGTs network reaches capacity. Additionally, the large hotel results are
identical for convex and concave cases, therefore, based on the superiority of the convex
case in the small hotel demand, one might prefer convex heuristics. However, this may
not be necessarily true in general. In this real-case scenario examples we addressed one
day snap shot of demands, and simulations consider MGTs that are already operational.
In particular, the construction of the shortest path graph allows for the initial power
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generation state (at t = 1) to be ’ON’ without incurring any associated start-up cost.
We could potentially require that all generators must start in an off state, leading to a
more fair comparison between the convex and concave heuristics.

The schedule and output power allocation of the generating units is visualized for
each simulation result included in Table 5.2. In Figure 5.3 we present for the small
hotel and in Figure 5.5 for the large hotel. Note that networks performs as anticipated
according to the heuristics. In Figure 5.4 we compare the small hotel convex cases with
the concave case without start-up and shut-down cost (i.e., Table 5.2a extension).

The total cost when considering two MGTs with convex heuristics, and a utility to
meet small hotel demand is $9.67. If we allow the MGTs power network to sell power
back to the utility, with identical tariff as for buying power, we actually end up with a
revenue of 2.63 USD. The output power allocation of the generating units is presented
in Figure 5.6, next to the solution without sell-back for the conveniences of comparison.
As expected, the MGTs perform at capacity throughout the planning horizon, in order
to reduce the network costs as much as possible.
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(a) Convex case with N = 2. (b) Concave case with N = 2.

(c) Convex case with with N = 3. (d) Concave case with N = 3.

(e) Convex case with N = 4. (f) Concave case with N = 4.

(g) Convex case with N = 5. (h) Concave case with N = 5.

Figure 5.3: Schedule and allocation of generating units to meet small hotel demand.
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(a) Convex case with N = 2. (b) Concave case w/o SU&SD costs; N = 2.

(c) Convex case with with N = 3. (d) Concave case w/o SU&SD costs; N = 3.

(e) Convex case with N = 4. (f) Concave case w/o SU&SD costs; N = 4.

(g) Convex case with N = 5. (h) Concave case w/o SU&SD costs; N = 5.

Figure 5.4: Schedule and allocation of generating units to meet small hotel demand.
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(a) Convex case with N = 2. (b) Concave case with N = 2.

(c) Convex case with with N = 3. (d) Concave case with N = 3.

(e) Convex case with N = 4. (f) Concave case with N = 4.

(g) Convex case with N = 5. (h) Concave case with N = 5.

Figure 5.5: Schedule and allocation of generating units to meet large hotel demand.
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(a) With sell-back.

(b) Without sell-back.

Figure 5.6: Output power allocation of two MGTs and a utility to meet small hotel
demand.
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Chapter 6

Conclusion and Open Questions

In this work we developed a novel approach for solving the multi-unit ED problem
efficiently. We began in Chapter 1 with motivation for producing power with MGTs
that consumes natural gas as fuel, and a literature review. The literature review briefed
from the challenges and solution dealt by academia and industry from the early years of
working on ED and UC problems, up-to recent date methods and techniques. Specific
references on ED problems and solution methods with MGTs are also included.

We then followed with background for the ED and UC optimization problems,
including definitions and mathematical formulations in Chapter 2. In this chapter
we also discussed some solution methods for the ED optimization problem, and their
associated challenges in terms of computational complexity.

In Chapter 3 we lay more specific foundations to our work, presenting with adequate
definitions and expressions, formulating the optimization model for the ED single unit
problem. We showed how to model a real MGT for integration within the optimization
model. The modeling resulted with a discrete-state model for MGT dynamics and
costs. We also showed how the single-unit problem can be solved efficiently with the
construction of appropriately designed graph model (i.e. DAG) and employing the
SPA.

Chapter 4 started with the definition for the multi-unit ED problem. Once formal-
izing the problem, we discussed about the problem size and complexity, having also a
comparison to the single-unit problem. Next, we presented the main part of our work.
The decomposition method was presented and developed based on the introduction of
an auxiliary variable. The multi-unit problem was decomposed into two independent
problems - the inner problem and the outer problem. The inner problem is an opti-
mization problem that yields the optimal allocation of output power from the MGTs.
That is, for a given value of auxiliary variable, the inner problem returns an optimal
solution that contains the output power of each MGT. From which we also get the cost
associated to the specific value of auxiliary variable. We specifically proved that the
inner problem can be solved analytically for convex and concave cost functions. This
enlightenment dramatically reduces the problem complexity. The outer problem solves
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a single unit problem, while considering the MGTs power network as one aggregated
generator. To do so, we modeled that fictive aggregated generator based on the inner
problem results. The schedule generated by the outer problem is translated to sched-
ules for each MGT according to the heuristics developed in Section 4.3.3. By solving
the decomposed optimization problem, we actually reduced the overall size of the orig-
inal ED multi-unit problem. We concluded this chapter with a discussion about the
benefits of the decomposition method, with regards to efficient solution and superior
computational run-time.

We backed our work findings with numerical simulations at Chapter 5. By com-
paring simulation results of the decomposition method with other method performed
by a commercial solver, it becomes clear how much our new approach out-performs
the contestant when considering run-time. In fact, in some cases the simulations of
the other method did not converge to a solution within reasonable time. We then set
up a real case scenario including real-life characteristics for problem elements such as
demand, utility and MGTs. This was a concluding simulation in which all points of
this work came together, and the insights that stem throughout the work could be
clearly observed from the overall simulation results. Furthermore, the simulation re-
sults demonstrates the economic benefits of integrating MGTs into a distributed power
network.

This new approach, being so efficient, has the potential to greatly reduce com-
plications and turmoils when planning power supply network. Future work in this
direction includes exploring new real case scenarios with different types of generating
units. A CHP environment also needs to be dealt with, as MGTs are capable to also
meet heat demands. The integration of MGTs into the power grid has the potential
for great monetary savings (or even profit), therefore we propose to perform a full
economic analysis including aspects of return on investments (ROI). Based on the new
method presented in this work, a full experiment with several MGTs in an actual power
network is also suggested. Finally, further comparison and development with real-time
algorithms is needed, to further strengthen the utilization of the decomposition method
when considering a multi-unit problems.
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Appendix A

Chordal Slope Lemma

When dealing with convex functions one of the classical insights is the relation between
the function and the chords that connect points on the function. This relation is well
defined with the chordal slope lemma.

Lemma A.0.1 (Chordal Slope Lemma). Let a1 ≤ a2 and b1 ≤ b2 be real numbers, and
assume a1 < b1, a2 < b2.

i) If the map f : [a1, b2]→ R is convex, then

f(b1)− f(a1)
b1 − a1

≤ f(b2)− f(a2)
b2 − a2

.

ii) If the map f : [a1, b2]→ R is concave, then

f(b1)− f(a1)
b1 − a1

≥ f(b2)− f(a2)
b2 − a2

.

Furthermore, if f is strictly convex (concave), then the inequalities above are strict,
unless a1 = a2 and b1 = b2.

Lemma A.0.1 is given here without a proof which can be obtained by utilizing Jensen’s
Inequality [56]. A graphical illustration for the convex case is provided in Figure A.1.

Figure A.1: Illustration of the chordal slope lemma for a convex function.
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הטורבינות. רשת של הספציפי למענה המתאימה המינימאלית העלות מוצמדת פיזיבילית דרישה שלכל

באופן אנליטית הבעיה את לפתור ניתן מסוימות עלות פונקציות עבור כיצד מראים אנו מזאת, יתרה

מידי.

ניתן כעת כאשר המיקרו-טורבינות, מרשת הנדרש המיטבי ההספק מה קובעת השנייה תת-הבעיה

על נקבעים ממאפייניו שחלק בודד ספק כלומר, בודד. (גנרטור) ספק כאל זו לרשת להתייחס

זו, בשיטה הראשונה. תת-הבעיה מפתרון מתקבלים וחלקם אותו, שמרכיבים הגנרטורים סמך

אופטימאלי פתרון מציגים ואנו משתתפים, ריבוי ללא סטנדרטית, ED לבעיית מצטמצמת הבעיה

כאלגוריתם גם (ידוע אופטימיזציה בבעיות ביותר הקצר המסלול למציאת ידוע אלגוריתם בעזרת

בעיית את שמייצג מתאים גרפי מודל נבנה זה, באלגוריתם להשתמש שנוכל מנת על דייקסטרה).

הבעיה. של הכלכליים ההיבטים את והן הדינאמיים, ההיבטים את הן מכיל הגרפי המודל .ED-ה

להחלטות בכפוף ברשת המיקרו-טורבינות של אופטימאלית להפעלה מתורגם האופטימאלי הפתרון

זו. עבודה במסגרת הוא גם פותח קביעתן שאופן יוריסטיות,

מיקרו-טורבינת של כלכלי ומודל דינאמי מצב מודל לבניית דרך מתווים אנו העבודה במסגרת בנוסף,

סמך על נבנה המיקרו-טורבינה מודל ספציפי. מסוג מיקרו-טורבינה עבור המתווה את ומממשים גז,

בטכניון. חום ומעבר לטורבו-מכונות במעבדה שבוצעו מדידות

בעיית את לפתור כדי לחישובים הנדרש הריצה זמן את משמעותי באופן מקטינה החדשנית הגישה

וסימולציות. מתמטיים פיתוחים עם זו בעבודה המוצגות בתוצאות תומכים אנו המורכבת. האופטימיזציה
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תקציר

ומוצרי חדשות טכנולוגיות על ויותר יותר מסתמכים אנו היומיום, ובחיי בעסקים, שבתעשייה, בשעה

בדרישה משמעותית גדילה מציגים כלכליים ומאמרים שונים דיווחים חדישים, ואלקטרוניקה חשמל

קומפקטיים, כלל בדרך נוספים, אנרגיה בספקי הצורך גם עולה מכך, כתוצאה חשמלית. לאנרגיה

המקובלת הריכוזית השיטה זאת, לאור "חכם". באופן החשמל לרשת שמחוברים גיאוגרפית, מפוזרים

אתגרים נוצרים זו, להתפתחות בהתאם יותר. ומבוזרת מפוזרת גישה לעבר פניה משנה חשמל להפצת

בהיבט ויעיל מיטבי באופן אותם ולנהל לרשת, החשמל ספקי כל את לחבר במטרה חדשים טכנולוגיים

בהם. להתחשב שיש כלכליים אילוצים ובראיית שלהם ההפעלה תזמון מספקים, שהם החשמל כמות

כבעיית הידועה אופטימיזציה לבעיית טבעי באופן מתורגם החשמל ברשת ספקים של מיטבי ניהול

חשמלי, (הספק לאנרגיה דרישה בהינתן לפתור יש EDה בעיית את כללי באופן . (ED) החסכונית ההפצה

כך הזו הדרישה על לענות היא לבעיה הפתרון ומטרת זמן של פונקציה הינה זאת דרישה וכו'). חום

האילוצים לאוסף בכפוף לתת יש המענה את וכו'). אוויר זיהום (כספיות, מינימליות יהיו שהעלויות

שניתן המקסימלי וההספק ספקים של אלקטרו-מכאניים מאפיינים כגון: הבעיה מאפייני את שמתאר

מתאים, מתמטי מודל נבנה EDה לבעיית בזה. וכיוצא אספקה קווי על והפסדים מגבלות מהם, להפיק

המודל. במשתני כתלות ערכה את למזער שנדרש עלות כפונקציית מבוטאות עצמן והעלויות

עבור ספציפי באופן משתתפים. מספר עם ED בעיית לפתרון חדשנית גישה מציעים אנו זו בעבודה

כאשר חשמל), (כחברת בודד מרכזי חשמל וספק גז מיקרו-טורבינות ממספר שמורכבת חשמל רשת

במקרה ED בעיית קילוואט. כ-500 עד עצמאית לספק מסוגלת בהגדרתה, אחת, גז מיקרו-טורבינת

האופטימיזציה מודל בדידים. משתנים גם מכילה אשר לינארית לא אופטימיזציה כבעיית נבנית זה

המרכזי הספק על מגבלות כגון לבעיה, האופייניים האילוצים את בתוכו מכיל הבעיה עבור שנבנה

מודל בעזרת מיוצגים המיקרו-טורבינות מאפייני מיקרו-טורבינות. של השונים והמאפיינים הבודד,

(בדיד). מתאים דינאמי מצב

פתרון מציגים אנו עבורן. פתרון במציאת הכרוך ובקושי הרבה במורכבותן ידועות זה מסוג בעיות

אופטימיזציה תת-בעיות לשתי EDה בעיית את מפרקים שאנו בכך (חישובית), נומרית יעיל שהינו חדשני

חדש. ייעודי משתנה הגדרת בזכות מתאפשר המקורית הבעיה פירוק עצמאיות.

היציאה, הספקי של המיטבי (הקצאה) האלוקציה לאופן אנליטי פתרון מאפשרת הראשונה תת-הבעיה

את (שמקיימת פיזיבילית דרישה בהינתן כלומר, שברשת. טורבינה מהמיקרו- אחת בכל בהתחשב

כל של היציאה הספק את יגדיר האופטימאלי הפתרון לתת-הבעיה, חשמלי הספק של הבעיה) תנאי

המיקרו- מרשת אחוד יציאה הספק שמייצג אופטימאלי, פתרון מתקבל זה באופן מיקרו-טורבינה.

כך ערכים, כטבלת נשמרים האופטימאליים הפתרונות בזמן. שמשתנה דרישה לכל כמענה טורבינות

i

 

 

 



 

 

 



אווירונאוטיקה להנדסת בפקולטה צ'וקורל, בני ופרופסור זלזו דניאל פרופסור של בהנחייתם בוצע המחקר

וחלל.

תודות

השלבים כל לאורך וההנחיה הלימוד על זלזו, דן פרופסור שלי, למנחה הלב מקרב להודות ברצוני

בה. מרכזי חלק יש ולך עבורי, משמעותית לימודית חוויה הייתה זו התזה. עבודת במהלך השונים

מיאל לדוקטור לעבודה. ותרומתו תמיכתו על צ'וקורל, בני פרופסור שלי למנחה רבה תודה בנוסף,

פלמן למיכאל תודה המועילות. ועצותיך החכמים הרעיונות על תודה בפז, תסולא לא עזרתך שרף,

בלעדייך היקרה, גרינברג ליהודית ליבי מעומק תודה המועיל. והמידע הסיוע על לדוקטורט) (סטודנט

וההערות העבודה סקירת על דיסקין אלכסיי לדוקטור תודה זו. עבודה להשלים קשה יותר הרבה היה

הסופיים. הכתיבה בשלבי

עדנה היקרים, הוריי הדרך. לאורך והנתינה העידוד התמיכה, על למשפחתי הלב מעומק תודה

הדר משה, מלינגר, ורואי שרון וגיסיי, חייק, ויאיר מזל וחמי, חמותי פלג, ועומרי יובל אחיי ומנחם,

חייק. וישי

ניתן היה ולא לדרך היקרה שותפתי את הילה, הילה. לאשתי העמוקה ואהבתי תודתי לסיכום,

ויונתן. אסף נגה, בילדינו המסור וטיפולך תמיכתך ללא הזו העבודה את להשלים
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