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Abstract

This work considers the problem of coverage control for large areas, where the number
of sensors is limited and can achieve only partial coverage. To solve this problem, we
are taking advantage of moving sensors - the sensors can move to achieve full coverage,
under the limitation that on a given time only part of the area is covered. In the
literature we find two main coverage strategies for doing so — trajectory based and
partitioned based. In the trajectory-based approach, we are building a trajectory for
each agent, such that the total area covered by all the agents is the total area need to
be covered. A second strategy consist of partitioning (or tiling) the area into partitions
that we can deploy our agents, and “jumping” between the partitions provides full
coverage.

In this work, we consider the partial coverage problem with another constraint that
requires the sensors to maintain partial coverage of some sub area at all time. This
can represent, for example, maintaining a communication connection to a home base.
Due to this constraint, we chose to focus on a partitioning strategy rather than a
trajectory-based approach. We introduce an algorithm that provides a partitioning of
an area while maintaining an intersection with some sub-area - the projected Lloyd’s
Algorithm (PLA). The PLA is a variation of the well-known Lloyd’s Algorithm for
partitioning and ensuring the coverage of some sub-area.

Furthermore, there might be a requirement for coverage control while maintaining
some sort of formation. A classic example is a formation with the goal of locating an
emitter, applying some sort of triangulation algorithm. Therefore, we propose a con-
troller which combines the coverage controller (whether the PLA or Lloyd’s algorithm
based) with a distance-based formation controller, while maintaining a formation. We
then analyze the quality of the combination. Each controller presented in this work is

backed up with simulations and numerical results.
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Abbreviations and Notations

Set of real numbers

Set of natural numbers

A graph

Set of graph edges

The ’th edge of a graph (vector)
An edge connecting nodes 1, j
Vertices 1, j relative position.

A formation error

The k’th edge error on a formation
Set of graph nodes (vertices)
Rigidity matrix

Incidence matrix of graph G
Lyapunov function

Projected Lloyd’s Algorithm.
Minimally Infinitesimally Rigid (graph).
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Chapter 1

Introduction

Monitoring some range using autonomous agents is a well known problem that is widely
researched. Common examples includes drones filming an area, robotic vacuum cleaners
cleaning a room, satellites trying to geo-locate an emitter, or UAV’s trying to locate a
target [1, 2, 3]. A common problem with monitoring some range is when the sensors
are limited in their sensing capability. For example, let us assume that we only have
three drones with a limited resolution camera, and the mission is monitoring a farm
from intruding animals. Let us further also assume that the farm is large enough such
that the drones can’t cover the whole area using one static formation. For achieving
full coverage, the drones must be dynamic, and use some tactic to cover the whole
farm. The situation is illustrated on Figure 1.1, where drones are covering some part
of the farm. Another possible constraint can be some sub-range which must be at least
partially covered at all times. For example, we want to make sure that the farm’s pen
is monitored, so we can recognize when a wolf is breaking in. Partial coverage in this
case should be fine - the operator can recognize when the sheep are coming out of their
peace to identify some possible intruder. The situation is illustrated on Figure 1.1,

where the coverage area is intersecting with the sheep pen.



Figure 1.1: An example of an area needed to be covered (limited within the black
rectangle) with subarea constraint (the blue drop-shape). The grey area represents the
actual area covered.

Another interesting question is what happens when a spatial formation of those
agents must be maintained. For example, the agents are performing geo-location of
free animals in the farm. As formation control is a difficult optimization problem
on its own, performing formation control under coverage constraints might lead to a
conflict in the optimization process (coverage vs. formation), thus making this problem
non-trivial. The problems explained above are two issues that this work tries to tackle.

In the next subsection, a discussion of the latest work in this field will be given,

followed by this thesis contribution and organization.

1.1 Literature Review

In the recent decades, researchers have come to the conclusion that performing tasks
using multi-agents networks can be beneficial [4]. An example for this application is
monitoring some range, which is known in the scientific community as the coverage
control problem [5].

Sensor coverage can be generally described as the reflection of how well a given
range is monitored by sensors. This field is well explored in the scientific community,
especially in the recent years as the fields of distributed algorithms and cooperative
systems were developed. A concept that repeats in many works is finding a set of
trajectories (at least one route for every sensor), allowing the mobile sensors to achieve
the required coverage goal. For example, when trying to cover an area using two mobile
sensors, the algorithm will define a trajectory for each sensor such that the whole area
will be covered [6, 7, 8]. Another idea that appears in most of the relevant literature is
the use of Voronoi diagrams for optimizing the sensor location [9, 10]. Those methods

generally require prior knowledge on the area to be covered.



A possible approach is the study of static (or stationary) sensing networks [11]. This
approach is very useful given we have constant access to the area needed to be covered,
and that we have enough sensors. When the mission involves exploring, it is obvious
that the sensors should move. Static networks allows us to determine some of their
properties, such as sensing capabilities, more easily than dynamic ones. For example,
in [11] the problem of sensing grid reliability is discussed. A network is reliable if it’s
connected (i.e. each sensor can communicate with another sensor, directly or indirectly)
and covered (every point within the range needed to be covered is indeed covered).

When coverage is required for large areas, and specifically when a single sensor can-
not provide full coverage of that area, the idea of using a deployment of mobile sensors is
presented [5, 9]. In [12], the problem is formed using a probabilistic network model and
some density function, to model detection of events. Then, an optimization algorithm is
proposed to find the optimal deployment such that maximum coverage is obtained with
minimal communications cost. In [9], Cortes et al. propose an optimization algorithm
for maximal coverage using Centroidal Voronoi Tessellations (CVT) [13]. To achieve
this partitioning, they are utilizing a continuous gradient controller implementation
of the Lloyd’s algorithm [14], an algorithm that employs a simple iterative method to
compute the CVT. The former concept will be utilized and modified in this thesis to
achieve new coverage capabilities that will be further described.

However, there are some cases where maintaining spatial properties are also as
important as keeping the required range covered. One example is when the communi-
cations between the sensors are limited to some range. Another example is when the
spatial shape is critical for the mission, as in geolocation missions, where we might need
to perform some kind of triangulation. There are several solutions for this problem,
known generally as the formation control problem [15, 16].

In the literature, we do find interesting examples of combining formation control
and coverage control. For example, in [17] the authors tried to maximize the coverage
in an environment cluttered with obstacles, and proposed an optimal dynamic forma-
tion control with a leader-following class formation, where the constraint is between
the agents and the leader. In [18], the authors propose a receding horizon algorithm
combined with Voronoi-based coverage control. In [19], the authors proposed a “mixing
function”, which defines how to mix sensors reading, resulting with interesting proba-
bilistic properties (for example, to minimize the variance of a sensor reading). To the
best of our knowledge, a combination between distance-based formation control and

Voroni-based coverage control was never made.

1.2 Thesis Contribution

In this work, we formulate the coverage problem from another angle. We firstly assume
that the given range can be at most partially covered. However, we also define some sub-

range that must be at least partially covered at all times (for example, surveillance or



home-base communications constraint). We present an algorithm for partitioning this
range into tiles, such that each tile intersects with this sub-range constraint, and then,
utilizing the approach outlined in [9] to achieve coverage of this tile. To achieve this
intersection, we present a new, modified version of Lloyd’s algorithm - the projected
Lloyd’s algorithm. This new algorithm modifies the original Lloyd’s algorithm and
utilizes a specific projection function to achieve partitioning answering the sub-range
constraint. With this method, we can guarantee complete coverage of the range by
sequentially deploying the agents from each tile to tile while ensuring that these tiles
all have a non-empty intersection with the sub-range of interest.

We then take into account spatial constraints. We present a method to combine a
deployment algorithm with a distance based formation controller. While the formation
controller tries to maintain a required formation, the controller is trying to optimize
the deployment of the sensors (maximal coverage), thus creating new dynamics where
both the formation and coverage are not optimal. We propose to combine the con-
trollers using a coefficient that balances between the controllers - in some of the cases,
the deployment will have more weight, and on others - the formation will have more
weight. We will demonstrate the influence of this coefficient and discuss its benefits

and disadvantages.

1.3 Thesis Organization

The organization of this work is as follows. Chapter 2 covers the mathematical tools
related to this work. It follows by the formal problem formulation in Chapter 3. In
Chapter 4 the main solution to the problem is shown, and some simulations are given.
Expanding the deployment strategy for formation control combined with deployment

is given in Chapter 5. Finally, in Chapter 6 we conclude this work.



Chapter 2

Preliminaries

This chapter deals with the basic mathematical concepts and topics which are used in
this thesis.

2.1 Graph Theory

A Graph is a mathematical object that represents a set of elements which are related
in some sense [20]. For example, a common use is a set of agents as the ”elements”, and
the relations can be their communications [4]. As it appears that graphs have properties
and implications on physical elements or systems, graph analysis can become very useful
in the study of multi-agent systems. Graph theory is the mathematical study of graphs
and the main tool for such an analysis.

A graph G = (V,€) is a pair of two finite sets - the vertez (nodes) set V (|V| =
n), and edge set £€ C V x V. Each vertex can represent a mathematical or physical
entity, for example, a sensor. Each edge represents some relation between two entities,
for example, communication connectivity or congruent sensing ranges among mobile
sensors. An edge connecting nodes v;, v; € V is denoted e;; = {v;,v;}. If an orientation
is assigned to an edge such that e;; = (v;,v;) is described by an ordered pair, then
the graph is called directed. An wundirected graph (see Figure 2.1) is one where if
eij = (vi,v5) € &, then ej; = (vj,v;) is also an edge in £. A directed graph is a graph
where e;; = (v;,v;) € € does not imply ej; = (vj,v;) € £, and the edge e;; direction is
from its tail i to its head j. A vertex degree (for an undirected graph) is the number of
edges connected to it, and marked for vertex ¢ as d;. A path in a graph is a sequence
of edges and vertices connecting two vertices. If there exists a path between every two
vertices, then the graph is called a connected graph. A subgraph is a graph G’ = (V', &’),
such that V' € V,& C £. A cycle is a connected graph where for each node, d; = 2.
A tree is a connected graph that contains no cycle subgraph. The spanning tree of a
graph G is a subgraph of G that is a tree.

Graphs can be represented as matrices. The mathematical theory behind this is the

algebraic graph theory [20]. Analyzing those matrices can sometimes simplify studying



€34
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9 €34

(b) A connected graph with ar-
bitrary orientation assigned to
edges.

Figure 2.1: An example of connected graph which is also a tree. Therefore, removing
any edge will make this graph not connected.

the graph properties, and moreover - can sometimes help us represent a dynamical
system using a graph [4].

One useful matrix is the incidence matriz of a directed graph, which not only
describes connectivity between edges, but also indicates the direction of it. It is possible
to define an incidence matrix of an undirected graph simply by assigning arbitrary
directions to the edges (this also means that for undirected graph, the incidence matrix

is not unique).

Definition 2.1.1. The incidence matriz of an undirected graph G = (V, &) with an

arbitrary orientation, is the matrix F(G) such that

1, v; € Vis head of edge e; € &,
[E(g)]ij =49—1, v;€Vistail of edgee; € &,

0, otherwise.

In Figure 2.1(b), we can see a graph with arbitrary edge orientation, and its inci-

dence matrix is:

1 0 0
1 1 o0
EG =1, _1 .
0 0 1

2.2 Rigidity Theory

Rigidity theory is a mathematical tool that describes what happens to a structure
under some perturbation (such as pushing it), usually being modeled as a bar-and-

joints framework [21]. The rigidity theory relates between structures and graphs, and

10



using the algebraic graph theory allow us to analyze their rigidity properties [22, 23, 24]
Firstly, we shall define the notion of a configuration, which describes the positions of

the agents of the system.

Definition 2.2.1 (configuration). A d-dimensional configuration is a finite collec-

. . T d d
tion of n points denoted ¢ = [plT e pﬂ € R™¥% where p; € RY.

We also assume that p; # p; Vi # j.

Next, we define a relation between a graph and the real physical world. A framework
F = (G,p) is a graph G = (V, &) with the mapping p : V — R?, which assigns to each
node a point in a metric space [25, 26, 21, 23]. In this way, p(v) € R? is the position
assigned for a graph node v € V, and p(V) = ¢. We will often use the shorthand
pi = p(v;) to denote the position of the nodes in a framework. In our work, we focus on
the Euclidean space R?, and the distance between two nodes is the standard Euclidean
norm, [|p; — pilI* = (pi — pj)" (i — pj)-

Now we are ready to define some important properties of frameworks. Two frame-
works are said to be equivalent if they have the same edges length, and they are con-

gruent if the distance between each pair of points is identical.

Definition 2.2.2 (equivalent and congruent frameworks). Two frameworks Fy =
(G,p), F1 = (G,q) are equivalent if

Ip(vi) = p(vi)ll = llg(vi) = q(v)ll, ¥ {vi,v5} € €.

Two frameworks are congruent if
Ip(vi) = p(oj)ll = llg(vi) — q(wy)ll, ¥V vi,v; € V.

It is possible to think of a framework using a bar-and-joint interpretation where
the bar lengths are assumed to remain fixed. Each bar thus represent an edge. An
interesting question is whether there exists a movement of the entire framework that
maintains the lengths of the bars but deforms the framework shape. If there isn’t such
a movement, then the framework is rigid, and an example is given in Figure 2.2(b).
However, sometimes if we remove a bar from a rigid framework it remains rigid. The
minimally rigid framework is a framework where any bar removed makes it non-rigid.

We formalize these notions below.

Definition 2.2.3 (rigid framework). A framework Fy = (G, p) is rigid if there exists
an € > 0 such that every framework F; = (G, q) that is equivalent to Fy and satisfies
lp(v) —q(v)|| < e Vv €V, is congruent to Fo.

Definition 2.2.4 (minimally rigid framework). A minimally rigid framework is
a rigid framework Fy such that the removal of any edge in G results in a non-rigid

framework.

11



Now we can define the rigidity function [25]. Given a framework F(p) = (G, p), we
can define the function gg : R?" — RI€l:

ga(p) & ( O T )T (2.1)

The rigidity matriz R(p) associated with the framework F(p) is the Jacobian of the

T
rigidity function aggip(p) e RIEX2VI Define wy, = p; — pj, and w = [w{, e ,wféd It
can be also shown that ([27])

R(p) = diag(w}) (B(G)" @ 1), (2:2)

where diag(w{) is a |€] x 2n block diagonal matrix with w{ on the block diagonal.
As defined above, a configuration is the embedding of a graph and the physical
world. As such, it can represent dynamical situations, where the positions are not
absolutely static but subject to changes. We’re looking for infinitesimal motions, which
keeps the rigidity function constant up to first order. A first order Taylor expansion of

the rigidity function about p will be [25]

96(p + 6p) = ga(p) + R(p)op + O(6p%).

If op € ker R(p), R(p)dp = 0, and then we call p an infinitesimal flex of the framework
[26].

Definition 2.2.5 (infinitesimal flex). If 3dp € R?" such that R(p)dp = 0, then dp

is an infinitesimal flex of G.

A framework is infinitesimally rigid if the only infinitesimal flexes are trivial, i.e., the
rigid body rotations and translations of the framework. However, infinitesimal rigidity
does not imply rigidity. A minimally rigid framework graph must have exactly 2n — 3
edges [28]. A minimally rigid framework that is also infinitesimally rigid is called

minimally infinitesimally rigid (MIR). An example is Figure 2.2(c).

Lemma 2.2.6 ([28]). A framework F is infinitesimally rigid if and only if rank(R(p)) =
2n — 3.

(a) Non rigid framework (b) Rigid & infinitesimal frame- (¢) MIR framework.
work.

Figure 2.2: Rigidity of different frameworks.

12



All of the above definitions help us understand what happens to a framework when
perturbations are made. If the framework represents a number of agents and it is
rigid then we can be assured that perturbations won’t change the spatial shape (i.e.
structure) of the agents. Doing so helps to maintain a required structure, or formation,

which is very important for different tasks.

2.3 Dynamical Systems

A dynamical system is a system which a time-dependent function describes its state
in a geometrical space. For this work, we consider the stability for an autonomous

dynamic system described by a set of non-linear equations,

&= f(x(t), (2.3)

where z : R — R", and f : R x R" — R", and ¢ is the independent variable (usually
representing time). We assume that there exists a continuous, unique solution with the
initial conditions z(t,) = zo € R", where t( is some initial time (constant). The equi-
librium points of (2.3) is simply the solution for & = 0, and let us mark an equilibrium
of this equation as .

In the following subsections, we will firstly define and discuss what stability is, and

then focus on gradient systems which have unique properties.

2.3.1 Stability Theory

The stability theory is the study of the stability of trajectories arising from dynamical
systems (2.3) modeled with differential equations. A stable system is one that the
solution trajectory doesn’t change drastically when small perturbations are made to the
initial conditions. The stability of the equilibrium point z can now be characterized.
Let’s assume we perturb system (2.3) from its equilibrium by some e € R™ at the time
to, such that z(tg) = = + €. If the trajectories remain close to the nominal equilibrium,
in some sense, we say the system is stable.

Without loss of generality, we assume that z is the origin of the axes on the state-
space (and if it isn’t - a state transformation can be done with some new variable and
a study of the new transformed system can be made). Then, we can define formally

the notion of Lyapunov stability [29].
Theorem 1 (Lyapunov Stability). The equilibrium point of (2.3) is

e stable if for each € > 0 there exists 6 > 0 such that for any ||z(t9)|| < 6, one has
()] < €Vt > to,

o unstable if it is not stable,

13



e and asymptotically stable if it is stable and 6 can be chosen such that ||xo|| < § =

limy—, o0 z(t) = 0.

While in a general stable system the trajectories are bounded by a ball with radius
€, an asymptotically stable system will approach the origin, thus providing a stronger
notion of stability.

Lyapunov also proposed two methods to analyze the stability of a system. The first
method, named Lyapunov’s First Method (also known as indirect method) is not of our
interest for this work. This method analyzes the eigenvalues of the linearized dynamics
of (2.3). Further information about this method can be found on [30].

Lyapunov’s second method, also known as the direct method, does not require a
characterization of the solution of (2.3). This method relies on a generalization of the
enrgy, or potential, of a system. If the system has some energy, then we can use the rate
of energy change to determine its stability. First of all, we should define the candidate
Lyapunov function V(z) : D — R where V(z) is a continuously differentiable function
defined on D C R"™ that contains the origin. We are interested in the rate of change of

V along the trajectories of (2.3),

d _8V dx

V(z(t) = -V (x(t) = 9% d@t

== =VV-i=VV-f(a) (2.4)

The main idea of Lyapunov’s theory is to establish properties of the nonlinear system
by studying how certain carefully selected scalar functions of the state evolve as the
system state evolves. The rate of change of V(x), V(m) along any trajectory of the
solution for (2.3) defines how this system evolves. When V (z(t)) is negative, we can

say that the potential decreases towards zero, hence the system is stable [29].

Theorem 2 (Lyapunov Direct Method). Let the origin 0 € D C R™ be an equilibrium
point of (2.8). Let V(z): D — R be a continuously differentiable function satisfying

(1) V(0) =0,
(2) V (x(t)) > 0,¥z(t) € D\ {0},
(3) V (x(t)) < 0,Va(t) € D.

Then, z(t) = 0 is a locally stable solution of (2.8). Moreover, if V (x(t)) < 0,Vz(t) €
D\ 0 then x(t) = 0 is locally asymptotically stable.

If the conditions in Theorem 2 are met, then V is called a Lyapunov function for
the system described in (2.3). Unfortunately, Lyapunov’s direct method assumes the
existence of a Lyapunov function, but does not provide any method to construct one
from the differential equation (2.3).

While Lyapunov methods are highly valuable, sometimes finding an appropriate
Lyapunov function can be difficult. Moreover, sometimes it is possible to meet The-
orem 2 conditions for stability, but it can be very difficult to prove the condition for

asymptotical stability (V (z(t)) < 0,Vz(t) € D\ 0 then z(t) = 0).

14



To help us with the mentioned above issues, LaSalle provided a theorem [31, 29].
For this theorem, which is an extension of Lyapunov’s second method, LaSalle used the
notion of limit sets and the notion of invariance (the property of certain sets whereby
a given function takes elements in the set to elements in the same set). By introducing
these notions, LaSalle was able to show how Lyapunov functions could be defined less
restrictively.

LaSalle’s theorem enables one to conclude asymptotic stability of an equilibrium
point even when V (z(t)) is negative semi-definite. We begin by introducing a few more
definitions. We denote the solution trajectories of the autonomous system in (2.3) as
s (t,zo,tp), which is the solution at time ¢ starting from xg at tp. The w-limit set is the
set S C R™ of a trajectory s (-, xg, tg) if for every y € S, there exists a strictly increasing
sequence of times t,, such that s (t,,xo,t0) — y as n — oo. A positive invariance set is
the set M C R" if for all y € M and ty > 0 we have s (t,xg,t9) € M YVt > to. It is also

possible to prove that the w-limit set of every trajectory is closed and invariant.

Theorem 3 (LaSalle’s Invariance Principal). Let V : R® — R be such that on Q. =
{z e R": V(x) < ¢}, a compact set we have V (z) < 0. Define

S={reQ.:V(z)=0}

Then, if S contains no trajectories other then x = 0 then the origin is asymptotically
stable.

Full proofs of these results can be found in [29, 31].

2.3.2 Gradient Dynamical Systems

Gradient dynamical systems are a unique case of dynamic systems, where the behaviour
can be described as a negative gradient flow [32]. Many systems can be described as
such, and gradient dynamics systems have some unique properties.

Given a differentiable function V' (z(t)) : R™ — R, the negative gradient flow defined
by V is the dynamical system

) ov
T = —%(x(t)) (2.5)

Let us further assume that V is twice differentiable. Then, for a point x € R”, the
Hessian matriz of V at x, denoted Hess(V (z)) € R™™ ", is a symmetrical matrix of
second order derivatives at x. If z* is a critical point of V, and if Hess(V(z*)) is
positive definite, then z* is a local minimum of V' (z) [32].

As mentioned above, gradient dynamic systems have special properties, which are

described in the following theorem [32].
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Theorem 4 (Convergence of negative gradient flow). Let V : R™ — R be twice differ-
entiable and assume its sublevel set Vgl(l) ={x € R? | V(x) <1} is compact for some

l € R. Then, the negative gradient flow (2.5) has the following properties:

(1) Each solution x — x(t) starting at Vgl(l) satisfies limy_,oo V(x(t)) = ¢ for some
c <1, and approaches the set of critical points of V:

W OV
fo e R | S (2) = 0},

(2) FEach local minimum point x* is locally asymptotically stable and it is locally

exponentially stable if and only if Hess(V (x*)) is positive definite,

(3) A critical point x* is unstable if at least one of the eigenvalues of Hess(V (x*)) is

strictly negative,

(4) If the function V is analytic, then every solution starting in a compact sublevel
set has a finite length (as a curve in R™) and converges into a single equilibrium

point.

The key idea in the proof of this result is that the function V' defining the dynamics

serves as a natural Lyapunov function for the system. For the full proof, see [32].

2.4 Voronoi Tessellations

The basic mathematical concept that we employ in this work is the Voronoi Diagram
(also known as Voronoi partition or Voronoi tessellation). While being a method to
partition an area with some cost function, it is a widely used in the optimal coverage
problems [9, 10, 13].

The Voronoi Diagram of a region A C R? is the set of partitions V = {V4,...,V,,}
generated by the generators Z = {z1,...,2, | z; € A}, such that

Vi={qeAlllg—all <llg—zllVi# i}, (2.6)

and U;V; = A, where || - || denotes the Euclidean distance. A more intuitive and non-
formal definition of the Voronoi Diagram is as follows. If we take some area and place
points p; in it, then each partition is the set of all points that are closer to p; than pj,
when j # i. An example is the problem where there are post offices in some city, and
it is needed to decide which house will be served by which specific post office. Using
Voronoi partitioning, we can determine which houses are the nearest to each office and
therefore conclude which houses each branch will serve. A visual example can be seen
in Figure 2.3(a).
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(a) Voronoi Diagram. (b) Centroidal Voronoi Tessellations. Calcu-
lated using the density function p = 1.

Figure 2.3: Illustration of Voronoi Diagram and a CVT. The dots are the cells’ gener-
ators.

One can also define a density function, p;, for each Voronoi partition V;. Then, we

can define the center of mass for each partition as

. Jvye(y)dy

T )y @7

If a generator z; = 27 VV;, we call this partitioning a centroidal Voronoi tessellation
(CVT). Such tessellations are useful in terms of location optimization [9, 13, 6]. A

centroidal Voronoi tessellation illustration can be seen in Figure 2.3(b).
Remark. Throughout this work, p = 1 was used.

While Voroni diagrams are useful for partitioning some existing range, CVT is a
technique used for (but not only) planning in an optimal way. If in the Voronoi diagram
explanation, it was used to plan the delivery areas for each office, we will use the CVT

to find where are the optimal locations to place the post offices.

Calculating the CVT might be a complicated task. Lloyd proposed a very simple
way of calculating the CVT [14], presented in Algorithm 2.1. Various analysis were
made over Lloyd’s algorithm convergence for the particular use of CVT calculations
[33].

There are many diverse real-world applications for Voronoi partitioning. One that
was already given talks about postal-service. Another application, which is more rele-
vant for our case, is the optimal coverage strategy for given agents and an area. If we
assume that the generators represent some agents, or sensors, in some way the tessel-
lations are the optimal area for the corresponding agent to cover. While the Voronoi
tessellations provides an optimization for the current state, the CVT can provide us

with an optimal deployment for the system.
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Algorithm 2.1 Lloyd’s Algorithm

Input: A C R?, p;, po > po = p(to) is the initial agents positions
Output: 2

1: while z;, —z;, |, >edo

2: Calculate the Voronoi diagram for A, using generators z;, ;. > For first

iteration, use pg as initial guess.
Cl, < Calculate the center of mass for every cell using p;(y).
Zgy, CVz .

end while

i

2.4.1 Lloyd’s Algorithm Based Deployment Control

Cortes et al. [9] proposed a deployment control algorithm based on Lloyd’s algorithm.
Let us define a polygon W C R2. The basic deployment problem is finding a position
p € R? to maximize the coverage of the polygon W. According to [9], and assuming

the density function p(y) = 1, minimizing the function

W) = [ Ip—all*da (23

will yield the requested result. The function H(p, W) is the locational optimization
function. In [9], this problem was expanded to the case of n points, such that each

point p; represent the ¢’th sensor position, and we are looking for the best partition

(Wi, ..., Wy) such that the coverage is maximized. Now, the total cost function will
be
n
HEW) =Y [ llpi = alPda (29)
i=1"Wi
Minimizing this function results with the Voronoi partitioning, marked as V = (Vi,...,V,).

The main challenge now is finding the points that minimize (2.9). According to [9],

when using Voronoi partitioning, (2.9) can be expressed as:

HEY) =Hy(P) = | in Ipi — qll*¢(q)dq, (2.10)

where ¢(q) represents a measure of information or probability that some event take

place over A. For the rest of the problem, and for the sake of simplicity, we assume
that ¢(q) = p(q) = 1.

It is possible to define the mass My;, moment of inertia Jy; and the center of mass

Cy; of the ¢’th Voronoi region as,

My; =/ p(q)dq, (2.11)

i

T = [ la=plEplada (212)
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1
- . 2.1
Cy, W / qp(q)dq (2.13)

Cortes et al. [9] showed that at least one of the solutions for the optimization of (2.10)
is the CVT,
Cy, = arg n}lgi_n Hy(p). (2.14)

Note that there might be more then one solution for this problem and the selected one
is dependent on the initial conditions.
Assuming that a sensor has integrator dynamics, i.e., for each sensor, p; = u;, [9]

shows a way to implement Lloyd’s algorithm as,
ui = —ky (pi — Cy;) (2.15)

where k, is a positive constant, and Cy; is recalculated at each time step. Note that the
dynamics in (2.15), which minimize (2.8), is locally asymptotically stable [9]. In [9, 19],
it’s shown that u; = —w, thus system (2.15) is a gradient flow system. moving
the agents along using controller (2.15) results with a trajectory leading to optimal

deployment.

Remark. For Figure 2.3(b) and throughout this work, k, = 5 and p = 1 were used.

2.5 Formation Control

Acquiring and maintaining a spatial structure of several agents that should cooperate
for achieving some goal is a difficult mission. In this chapter, we will show how pre-
viously defined mathematical tools such as graph theory, rigidity theory and stability
theory can help us define controllers that solves this problem.

In this work, we will focus on distance based formation control. Consider a system

of n > 2 agents, moving in R?. The agents have single integrator dynamics,
pi=usi=1,...,n, (2.16)

where p;(t) € R? is the coordinate vector assigned to the i’th agent, and u; € R? is the
control input associated to each agent. Those agents can also communicate one with
each other, sharing relative measurements (location, relative distance, etc.).

Graphs are a natural mathematical tool for describing formations [15]. The desired
distance between two agents ¢, j connected by k’th edge is dj, (sometimes will be marked
as d;;), and let d = {d% d?n}T € RI€l be the required distance vector (m = |&|).
The distance error is the vector that measures the square of the difference between the

measured distance and the desired distance,
Sk = [lwgl|® = di, k € {1,...,m}, (2.17)
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where wy, is the relative positions between two agents. A proposed control algorithm

should achieve the following asymptotic result, solving the formation control problem,
Jim [lp; — pjl = lim ]| = di, ke {1,....m). (2.18)
Equation (2.18) can be equivalently written in terms of the distance error,
lim ||0x]| =0, k€ {1,...,m}. (2.19)
t—o0

In [15], a locally asymptotically stable gradient controller was proposed. It was

based on the following potential function:

> =

2 2 2
Fp) =3 (lewl® = d})" = 33" - (2:20)
k=1 k=1
Note that this potential function zeroes only when for each agent, ||w||> = d3. There-
fore, it also represents the total formation error and will be sometimes marked also as

0. The proposed controller is the negative gradient flow of (2.20),

. _OF(p)

For each agent k, the control law is of the form

pi=ui == (Il = pill* = &%) (i = py)- (2:21)

i~J

Using the framework’s graph rigidity matrix, the same control law can be written as
p(t) = u=—R(p)" R(p)p — R(p)" d*. (2:22)

T
Where d? is a vector with its elements squared (i.e. d* = [d% e d?n} ). Controller

(2.22) has an equilibrium point exactly where we want it to be:
P(t) =0 = —R(p)p — d* = 0= &2 = |y |” (2.23)

An example for this controller can be seen on Figure 2.4. The required formation is a
right triangle, with edge lengths goal distances as 1,1, v/2.

As for stability, different stability analysis can be found in [15, 25, 34]. Generally,
the distance-based formation control is locally asymptotically stable if the underlying
graph is at least MIR. The proof is based on the fact that the controller has gradient

dynamics, and given on Subsection 2.3.2.
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Figure 2.4: An example for classic distance-based formation control.
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Chapter 3
Problem Formulation

This chapter formalizes the definitions and problem statement of this thesis. First, it
will describe the sensor coverage of an area with limited amount of sensors and sensing
constraints. Secondly, it will focus on formation maintaining while performing the

coverage mission.

3.1 Constrained coverage

Let us consider an area A C R? that we aim to cover with n € N mobile sensors. Each
sensor is labeled as s;, and the set of all the sensors is given by S = {s1,...,s,}. We
further associate with each sensor s; a position, p;(t) € R?. The mobile sensors are

modeled with integrator dynamics, i.e.,
pl(t) = Uyq, 1= 1,...,7’L.

The configuration of the collection of sensors at time ¢ is given by the vector ¢(t) =
T
{p{(t) pZ(t)} . Each sensor can cover a region described by the abstract area

C; (pi(t)) C R?, as can be seen in Figure 3.1.

Ci (pa(t)))

Figure 3.1: A sensor and its coverage region.

Thus, the total coverage of a configuration is given by
D (c(t)) = UCs(pi(t))-
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We also emphasize in this work that we assume it is not possible to cover the entire

area A using a single configuration. That is, A ¢ D(c(t)) for any configuration c(t).
Assumption 1. For any configuration c(t), the coverage satisfies A ¢ D(c(t)).

Sometimes we would like to maintain some area under partial coverage at all time,
for example, a ground station which must maintain communication with the sensors.
In the case where it’s needed, let us consider a sub-area of A, A,, C A. The partial

coverage constraint can be described as the following,

Am N D (c(t)) # 0. (3.1)

D(C(t)

Figure 3.2: Two configurations built from the same sensors set.

In Figure 3.2, we can see how a given configuration can cover some area (assuming
disk coverage for each sensor) in different ways. In one case, A,, is partially covered
and in the other it isn’t. Due to Assumption 1 we know that it isn’t possible to achieve
full area coverage using a single configuration. Therefore, we shall partition the area,

as can be seen in Figure 3.3.

Definition 3.1.1 (Partition). A partition of A € R?, denoted PR(A), is a finite set
built from [ subsets pr; C R?, i =1, ..., [ such that

i) prinNpr; =0Vi#j.

ii) Upr; = A.

Figure 3.3: An example of a partition of some area.
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So far, we've defined sensor coverage, configurations and partitioning. Following
Assumption 1 and Condition (3.1), we have to find a partition PR(A) such that each
of it’s subsets pr; intersects with A,,. This will result with set of tiles that the union
of them provides full coverage of A and will fulfil Condition (3.1). Then, our strategy
will require covering each tile on it’s own, and by covering each tile on it’s own by the
sensors, eventually, using some strategy (sequential, for example), we will eventually
reach full coverage. One other major assumption that is hidden is that it is possible to

cover each pr; using our set of sensors.

Problem 1 (Constrained Coverage) Given a set of mobile sensors with integrator

dynamics, an area A and sub-area constraint A,,, and under Assumption 1,

i) Find a [-partition PR(A) such that each of the subsets pr; € PR(A) satisfy
pri 0 Ay # 0;

ii) Find a deployment strategy for each partition, such that there exists a sequence

of times T; satisfying Ty > Ty_1 > --- > T1 > t, satisfying

pri € D(c(Ty))),for i =1,...,L

Condition (ii) states that each partition must be covered by the deployment strategy
after some finite time. While condition (i) of the problem is understandable, the idea
behind condition (ii) is that full coverage of A under condition (3.1) is possible if we
perform coverage control on each partition pr;. An example for partitioning with the

constraint (3.1) can be seen in Figure 3.4.

Figure 3.4: A solution example for Problem 1.

3.2 Formation Control and Coverage Control

Let us consider a configuration c¢(t) and a partition pr; as defined on Definition 3.1.1.
For a configuration ¢(t), we define an underlying connectivity graph G = (V, £) in which
an edge e;; € £ represents communication between nodes v;,v; € V, and the pair (G, c)
defines a framework.

In a framework, the edge length represents the distance between two agents. In

Section 2.5 we discussed formation control, and established that in order to maintain
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formation the graph G has to be infinitesimally rigid. The set d € RI€l is the set
of required distances between agents (that is, assuming {v;,v;} € &, then d;; is the
required distance between agents 4, 7).

In this problem, we aim to solve Problem 1 under and addition a formation con-
straint defined by d.

Problem 2 (Coverage and Formation). Given a framework F = (G, ¢), such that F
is infinitesimally rigid, and given the desired formation specified by the distance vector
d,

i) Find a partition PR(A) such that each of the subsets pr; € PR(A) satisfy pr; N
Am 7& (2]3

ii) Find a deployment strategy for each partition, such that there exists a sequence
of times T satisfying Ty > Ty_1 > -+ > 11 > t, satisfying pr; C D(¢(T;)), for i =

1,...,1, while satisfying lim;, 7 ||wk|| = di + € (where € is a constant).

The idea behind Problem 2 is using the partitioning coverage strategy, obtaining a
required formation on each partition. Each partition defined on Problem 1 is answering
the sub-area constraint, and now we modify the solution to include maintaining a
formation. That said, in the general case the formation and deployment optimizations
may not converge to the desired spatial formation, therefore we define some constant e

which defines an allowable formation error.
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Chapter 4

The Projected Lloyd’s Algorithm

In this chapter, we propose a new algorithm based on the Lloyd’s Algorithm. Its goal is
partitioning an area with some sub-area constraint, as mentioned in Problem 1. After
the Projected Lloyd’s Algorithm is presented, a full solution for Problem 1 is presented,
using a centralized control strategy and partitioning strategies. Lastly, simulations are

shown to demonstrate the algorithm.

4.1 Projected Lloyd’s Algorithm

In this section, a solution for Problem 1(a) under Assumption 1 will be given. Recall
that in Problem 1(a), it is required that for the partition of A, pr; N A,, # () is satisfied.

To show the solution, we will first define the notion of a projection onto the area A,,.

Projection, for this problem, will be defined as the smallest distance from a point
onto a given polygon (including its boundary), and an example can be seen on Fig-

ure 4.1.

Definition 4.1.1. Consider a set A,, C R? and a point 2 € R%. The projection of =
onto A, is given by

PROJ 4, (z) = arg min ||z — yl%.
YEAm
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Figure 4.1: An example of the projection operator.

Applying the projection operator in conjunction with Lloyd’s algorithm yields the
Projected Lloyd’s Algorithm (PLA), given in Algorithm 4.1. This combination allows

solving Problem 1(a), and it is one of this work’s main contributions.

Algorithm 4.1 Projected Lloyd’s Algorithm

Input: A C R? A,, C R?, p;,po > po = p(to) is the initial agents positions
Output: 2

1: while z;, —z;, |, >edo

2: Calculate the Voronoi diagram for A, using z;, ;. > For first iteration, use

random initial guess, such as on the edges of A,,.
3 Cy;, < Calculate the center of mass for every cell using density functionp;.
4: Cp, < PROJ4,, (Cy,)
5 Zj), C P;-
6: end while
T 2Y 4 7,

As one can see, one more step was added to the original Lloyd’s algorithm - where
we project the cell center of mass to the polygon that defines the area constraint (step
number 4). Step number 5 is modified from the original algorithm, so the agents are
moving to the projected points and not the center of mass. Those steps allow us to
ensure that for each partition, the agent will be on or inside the limiting polygon,
thus we will have coverage within the constraint. In [33], a full convergence analysis
was done for Lloyd’s algorithm, however We did not perform one for the projected
Lloyd’s algorithm presented here. That said, our simulation studies demonstrated in
practice good convergence properties. The similarity to the original Lloyd’s algorithm
(Algorithm 2.1) make us suspect that the proof is very similar - Eventually, this is
a variation of Lloyd’s Algorithm, where we constraint the center of mass to some

transformation.

28



(a) CVT calculated using Lloyd’s algorithm. (b) PLA solution.
On top right corner - a cell that doesn’t inter-
sects A,,.

Figure 4.2: CVT and PLA solutions for initial conditions. The black polygon represents
A, and the dots are the cells’ generators.

In Figure 4.2, the PLA results can be clearly seen. For the same initial conditions,
Figure 4.2(a), it can be clearly seen that only 3 (out of 6 tiles) intersects with A,,. In
Figure 4.2(b), the PLA algorithm was activated and all tiles intersect with A,,.

Next, a continuous time controller is proposed for implementing Algorithm 4.1,
U; = —kp (pi — PROJg4,, (CVz)) . (4.1)

This continuous time controller, which is a modification of the controller proposed in
[9], is always converging into a solution where each tile intersects with A,,, if Cy; is
known.

In [9], it was proven that the controller (2.15) converges asymptotically to a set of
critical points. It was done using (2.10) as a Lyapunov candidate function, and then,
using La’Salle’s invariance principal, it was shown that the sensors converge to Cy;.

We employ this same idea to show the convergence of the projected Lloyd’s algorithm.
Theorem 5. The controller proposed in (4.1) is locally asymptotically stable.

Proof. Let us define a Voronoi partition moment of inertia as

Jvp = /V llg = plI* p(q)dg. (4.2)
In [9] it was shown that
Hy(P) =D _ Jv.cy, + Y Mylpi — Cv, 1%, (4.3)
i=1 i=1
OHy
— My (ps — Cy) 4.4
o — 2My, (i - Cu) (@9
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Where My, and Cy;, are defined in (2.11), (2.13) respectively. Also, (4.3) is equivalent
to (2.10).

Let us propose a candidate Lyapunov function:
n n
Hp(P) =) Jvicy, + D Myllpi — ProI4,, (Cv) |17, (4.5)
i=1 i=1

it follows that [9]
OHp

Op;

= 2MVz‘ (pi — PROJg4,, <C‘/Z)) . (4.6)

Proof follows the Lyapunov direct method condition as stated on Theorem 2. Condi-
tions 1,2 from the theorem are direct from the definition of Hp(P). As for condition
3, it is possible to see [9] that

dHp  OHp

— = i = —2k, > My ||pi — )|I? <o0.
i~ op? p 2 Mullpi ~ PrOsA, (G <0

However, the only trajectory zeroing the above equation is the trivial trajectory (i.e.
pi = PROJ4,, (Cy,)), therefore by Lasalle’s invariance principal, this system is locally
asymptotically stable. [ |

Note that both the PLA and Lloyd’s algorithm converge to some local minima of
the cost function. Lloyd’s algorithm will converge to the CVT, but the PLA converges

to some other tessellation determined by the projection onto the designated area A,,.

4.1.1 Comparing CVT and PLA Results

We now discuss the differences between the CVT and PLA algorithms. In Figure 4.2,
one can see the differences between PLA and CVT results. While for the CVT we have
a cell which does not intersects with A,,, the PLA calculation results with all cells
having a non-empty intersection with A,,. We can also see that in the PLA case, all
of the generators are on A,,.In (2.9), (4.5) we can see the cost function of the CVT
and PLA calculations, respectively. In Figure 4.3 we can see the values of the potential
function during the algorithm convergence process. While the PLA potential function
values are higher, we can see that the function value is decreasing as the time advances,
as expected. In Figure 4.4 we can see the resulted diagrams for which we calculated
the potential. In this figure, the red square represents the area A, and while the initial

positions of the agents are outside of it, the algorithm attracts it in.
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Figure 4.3: CVT and PLA potential function values for same initial conditions.
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(a) Resulted CVT. (b) Resulted PLA.

Figure 4.4: The resulted CVT and PLA diagram for the potential calculation results
displayed in 4.3. Black dots represents the initial guess, turquoise the center of each
cell. The black polygon in the PLA diagram represents A,,.

On Figure 4.5 we can see the impact of the initial condition of the PLA calculation,
which will be described qualitatively. As the center of mass of each Voronoi cell is
projected onto A,,, when the agents initial positions are on one side of it (i.e. most of
the agents are to the right or left of it) - more agents will be projected onto this side of
App. In turn, the PLA will create more cells on this side. On Figure 4.5(a) we can see
the results where the initial conditions are denser towards the right, and Figure 4.5(b)
is zoomed in on the upper right triangular partition (showing that the partition does
intersects A,,). On Figure 4.5(c) the conditions are denser towards the left and (d)
shows denser conditions towards the right.

In Figure 4.6 we can see the CVT behaviour under different initial conditions. It is

clear that the resulting partition is largely dependent on the initial conditions.
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Figure 4.5: PLA solutions for different initial conditions (marked as black dots). The
black box represents A,,.
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(a) CVT results with initial conditions dense (b) CVT results with initial conditions dense
to the right. to the left.

(¢) CVT results with initial conditions dense
to the bottom.

Figure 4.6: CVT solutions for different initial conditions (marked as black dots). The
black square represents A,,.

4.2 Problem 1 Solution Algorithm

Problem 1 consists of two sub-problems requiring to cover an area while maintaining
partial coverage of some subset of the region. Problem 1 also defined partitioning
an area, and for solving it we employ a sequential coverage strategy. A sequential
coverage strategy means that we cover a single partition at a steady state time, and
by sequentially covering the partitions, we achieve full coverage. As each partition
intersects with A, (as Problem 1 defined), we assure at least partial coverage of it on
each partition.

Problem 1 defines conditions that must be fulfilled. First of all, we need to partition
A such that pr; N Ay, # 0, and this is where PLA algorithm comes in handy. Next
question is, given a partition, we need a deployment controller to know how to cover it.
This controller is presented on [9], and also in this work (2.15). Combining the PLA
algorithm together with (2.15) provides us a solution to Problem 1.

Algorithm 4.2 is the proposed solution to Problem 1. The algorithm first partitions
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the area to maintain partial coverage of A,,, assigns an arbitrary order to the partitions,
and then performs the deployment strategy on each partition in a sequential manner

according to the ordering.

Algorithm 4.2 Problem 1 Solution Algorithm

Input: A C R?, A,, CR? ,p;, po, ¢ partitions > po = p(to)
1: Calculate partitioning PR(A) satisfying the sub area A,, constraint, using the PLA
algorithm (Algorithm 4.1).

: Assign an ordering to the partitions created in the previous step.

: fori=1:/do

4: Calculate Cy; using Algorithm 2.1. > use current position as pg for

Algorithm 2.1

Move agents pr; according to controller (2.15)

6: end for

W N

ot

The centralized algorithm 4.2 proposes a simple method to solve Problem 1. First,
start by partitioning the area using Algorithm 4.1. This stage promises a partitioning
of A while maintaining pr; N A,, # 0. After it, calculating the optimal deployment
for each partition using Algorithm 2.1, using the deployment of the previous partition
as the initial guess for the next partition deployment calculation. Also, the Lloyd’s
algorithm controller (2.15) is asymptotically stable, therefore the calculation stops after
a specified tolerance is achieved. Assuming that the sensors can cover each partition
using this deployment, the Problem 1 is solved. In this work, however, we do not
provide an algorithm that takes the actual sensors coverage radius into consideration
when calculating the partitions.

We must notice that in stage 1, the number of the tiles of the PLA solution is decided
by the user (and does not take into account D(c(t))). Therefore, for the assumption in
step 2 to hold, the user should wisely select the number of tiles, such that the agents
can provide full coverage to each tile using the optimal deployment calculated in step
2.

4.3 Numerical Results

In this sub-section, we will show results for Problem 1, using Algorithm 4.2. In the
following simulations, the initial conditions were identical. In Figures 4.7, 4.8, we are
simulating 3 agents covering 3 partitions using different algorithms. In each sub-figure,
the black dots represents the initial position of the agents, trying to cover the “active”
partition, marked in blue. The turquoise dots represents the agents final position for
coveting the “active” partition. The red square represents the area A (partitioned) and

the black square represents A,,. For the following simulations, we used k, = 5 and

p=1
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Figure 4.7: Results without PLA. The black square represents A,,.

In Figure 4.7, we can see a simulation for 3 agents'!. The area is partitioned into
3 tiles using Lloyd’s algorithm (that is CVT), and not using PLA, thus not satisfying
the sub-area A,, constraint and each tile is covered using the algorithm proposed in
[9]. The agents moved between the tiles in user-determined order - 1 — 2 — 3, as can
be seen in the figure (active partition marked in blue). One can also notice that only

in the last step there was coverage of A,,.

initial to 1 1to 2 2to 3
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4 e 4 » 4 .
o]
2 . 2 @ @@ 2 ° o @
0 ] ]
0 5] 10 15 0 5 10 15 0 5 10 15

Figure 4.8: Results with PLA. The black square represents A,,.

In Figure 4.8, we perform another simulation with 3 agents. This time, the area is
partitioned into 3 tiles using the Projected Lloyd’s algorithm?, and each tile is covered
using the algorithm proposed in [9]. The agents moved between the tiles in an order
to what was defined in the previous simulation (1 — 2 — 3), and each tile has some

partial coverage of A,,, as expected by the algorithm.

"Voronoi diagram calculation here and throughout this work is done using Hyongju Park (2019).
Polytope bounded Voronoi diagram in 2D and 3D (https://www.github.com/hyongju/Polytope-
bounded-Voronoi-diagram), GitHub.

?During this entire work, the projection calculation is done wusing a mod-
ified version of the “p__poly_ dist” Matlab function by Michael Yoshpe,
https://www.mathworks.com/matlabcentral/fileexchange /12744-distance-from-points-to-polyline-
or-polygon.
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Chapter 5

Lloyd’s Algorithm and Formation
Control

Locating an emitter is an example for a mission that requires not only area coverage,
but also specific spatial configuration (or, a formation [15]) - different configurations can
affect dramatically the locating algorithm performance [35]. This problem is defined
as Problem 2, and to solve this problem, the distance-based formation control will be

combined with a deployment controller.

5.1 Formation and Deployment Control

In this section, a combined deployment and formation controller will be shown. Recall
that both the deployment and formation control algorithms given in (2.15) and (2.22)
are gradient dynamical systems. Our strategy is to combine them into a single potential
function.

Let us define a coefficient 0 < o < 1. Thus, we propose the combined potential

function as the convex combination between (2.9) and (2.20),

Ho(p) = aH(PV) + (1 - a) F(p) (5.1)
—a( [ min Ipi—alo(@)da) + (1 - i (el - @2)*),
Ad€(l,..0) 1
where A is the area we aim to partition, and m = |€| (see Section 2.5 for further

explanation). The proposed gradient controller for each agent is then the potential

function derivative,

w =i = =P o (o (5 - G+ - ) {; (Ipi = w3 11> %) m] .

(5.2)

This proposed controller is a direct weighted combination of two other controllers
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with different objectives. When a = 0 we have pure formation control, and when o = 1
we have pure deployment control. When « is between the values, we may not expect
solving both formation and deployment control, and the impact of the coefficient will be
discussed later on Subsection 5.2.1. However, there are few interesting results regarding

this controller.

Proposition 5.1.1. Assume that there exists a Central Voronoi Tessellation (CVT),
with Cy;, i = 1,...,1 such that ¥i # j,||Cy, — Cy,||* = dZ; (that is Cy, satisfy the
formation constraints). Then, there exists an equilibrium p for dynamics (5.2) such
that p = Cy (where p; = Cy, and Cy = [Cy, ..., Cy;]), which is locally asymptotically
stable.

Proof. First of all, let us show that p = Cy is an equilibrium point of (5.2). Indeed
by assumption, we have Vi # j, [|Cy; — Cy; |2 = U, so [|pi — psl|* = |Cv; — Cy, |2 = Z],
therefore under the assumption we have

b=~k B~ Cv)) + (1 a) [—Z (I — 511> — ) (5 —@)]

invj

= a(~ky (Cv, ~ Cv)) + (1 - a) [—Z (2~ %) (5 —m]

i~J

=a(—=ky-0)+ (1 -0

-Yo- ] 0
invj
showing p = Cy, is an equilibrium point.

Now we are ready to prove that this equilibrium is stable. Let us choose a candidate
Lyapunov function for the combined controller, which is a combination of the Lyapunov
functions for each controller ((2.20) for the formation controller and (2.10) for the

deployment controller),

+a-a) |0 Tow)|,  (53)

_O‘[Z/ min g = pil*6(a)da

where My, Jy,, Cy, are as defined in (2.11), (2.12), (2.13) respectively, p = [p1, . .. ,pn]T
and o = [01,...,6,]" (8 as defined on (2.20)).

As the equilibrium is p = Cy , we will change the variables such that ( = p — Cly,

resulting

l
. 1
Ve(¢)=a [; i llg =G = Cv, ||2¢<q>dq] +(1-a) [4UT(< +Cv)o(¢+Cv)| .
(5.4)
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Figure 5.1: An example where deployment equilibrium and formation equilibrium con-
solidate.

Proof follows the Lyapunov direct method condition as stated on Theorem 2. For

condition (1),

l

Ve((=0)=a min_lq = Cy|*¢(q)dq
P v, ie{l,...,l}

1

+ (1 — a) ZO'T(Cv)O'(Cv) .

We know that o(Cy) = 0, as Cy is the equilibrium of the formation controller.

For condition (2), it’s obvious that both terms are strictly positive for ¢ # 0.

For condition (3), the combined derivative of the combined Lyapunov function is
[9]:

Ve(¢) =a [—%pZMwHCHQ +

i=1

(1—a) [=o(C+ Cv)TR(C+ Cv)RT(C + Cv)a(C + Cv)| <.

As we can see, this term is smaller or equal to zero. Therefore, using Lyapunov
method, this system is stable, however not asymptotically stable. That said, we can
notice that the set S = {p = Cy'} doesn’t contain any trajectory apart from the trivial
trajectory (when ¢ = 0), therefore by LaSalle’s principal the system is locally asymp-
totically stable. |

An example for Proposition 5.1.1 is as such. Let us assume that we have 3 agents
that we want to deploy. The deployment results tessellations, such that the center of
mass of the tessellations are (0,0),(0,1),(0,—1). If we have a formation such as in

Figure 5.1, then the formation equilibrium is exactly the deployment result.
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Proposition 5.1.1 is an example for a case which can be described and analyzed
deeply. The general case, however, is highly complicated and non-linear, thus we can’t

find a general term for the equilibrium. What we can do is analyze its stability.

Theorem 6. The dynamic system described by the controller (5.2) asymptotically con-
verges to a critical point of the function G(p) = aHy(p) + (1 — a)F(p), where F(p) is
the distance-based formation controller (2.22) potential, and Hy (p) is the Voronoi-based
deployment controller (2.15) potential function.

Proof. Both the formation control and the deployment controller can be expressed as
a gradient dynamics system. It is known that gradient flows converge to the critical

points of the potential function. [ |

Another major issue is the trade-off between formation and deployment control.
Choosing a coeflicient different from 1 or 0 means that the final deployment will not be
optimal for a deployment nor for formation, thus the engineers of a system that is using
that algorithm must know how to handle this. For example, in geolocation missions
the geolocating algorithm might suffer heavily from imperfections of the formation, and

one solution might be partitioning into more tessellations.

Remark. As the combination of controllers provide some interesting results, it is very
important to remember that it doesn’t necessarily solve Problem 1. The reason is that
the formation is changing the deployment, thus the condition for full area coverage
might be broken. This work does not provide a condition where the formation control

holds and Problem 1 is fully solved. Examples are given in Subsection 5.2.1.

5.1.1 Distance-Based Formation Control and PLA

Similar to the regular CVT controller, and as (4.1) is also a stable gradient system, it
can also be combined with (2.22), to achieve some spatial properties while maintaining
coverage of A,,. As before, first we shall combine the formation control potential
function (2.20) with the PLA potential (4.5),

Hep(p) = aHp(P) + (1 —a) F(p). (5.5)

Then, once again, using a coefficient 0 < o < 1, the combined controller:

w; = pi = (= (pi = PROIA,, (Cv)) + (1= ) | =3 (Ilps = pslI* = &%) (s = 1)
i~j
(5.6)
Theorem 7. The dynamic system described by the controller (5.6) asymptotically con-
verges to a critical point of the function G(p) = aHp(p) + (1 — a)F(p), where F(p)

is the distance-based formation controller (2.22) potential, and Hp(p) is the same as

(4.5).
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Proof. Both the formation control and PLA can be expressed as a gradient dynamical
system. It is known that negative gradient flows converge to the critical points of the

potential function (Theorem 4). [ |

5.2 Simulations and Results

In the following section we present some numerical studies to demonstrate the strate-
gies proposed here. Those analyses are quantifying the errors of different combination

coeflicients, as well as qualitative analysis of formations and deployment combinations.

5.2.1 Controller Coefficient Analysis

i
- 1.3822
1
1 1
1.38
1
(a) 3 agents formation (b) 5 agents formation

Figure 5.2: Different tested formations for combined coefficient analysis. The numbers
above each edge represents the required distances.

In controller (5.2), a convex combination between two controllers was used. In
Figure 5.3 we can see the effect of the parameter o on the trajectories of 5 agents,
starting in the same initial conditions and trying to achieve formation as described on
Figure 5.2(b). The starting position of the agents is represented as black dots while
the end of the trajectory marked as teal ones. In this simulation, we aim to explain the
significance of « on the trajectory. We do not limit the trajectories (i.e. no physical
constraints are presented), however we do define a spatial formation using required
distanced between agents. We can clearly see that as « approaches 0, the formation
obtains the required shape, and when o = 1, the formation convergence to the optimal
deployment, in a case of unbounded Voronoi tessellations.

An interesting analysis is checking the influence of « on the formation error §. For

each edge, the edge error Jy, as introduced in (2.17):
O = ||lwi||? — d3, k€ {1,...,m}.
Two different formations were tested, and they can be seen in Figure 5.2.
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We're interested to know what happened in steady-state as a function of a. First
we will look into edges length, which can be seen on Figure 5.4(a),(b). It can be clearly
seen that the agents are converging into the required formation as the coefficient «
approached 0 (which represents a perfect formation). In Figure 5.4(c),(d), we can see

the steady-state formation error. In both cases, we can see that the edges error becomes
very small (below 1) for & = 0.3 and below.

Next, in Figure 5.5, we can see how the total formation error (i.e. the formation
potential) behaves.

We can see that, as expected, as the coefficient approached 0

the whole formation error approaches zero. In Figure 5.6 we can see the exact same
behavior for 5 agents formation.

Patential Function, MIR Graph, 3 Agénts

012“\
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Figure 5.5: 3 agents formation error (potential function value).
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Figure 5.7: Tested formation framework for CVT and formation controller simulation.
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Figure 5.6: 5 agents formation error (potential function value).

5.2.2 Formation and Deployment Analysis

In the following sub-section, a simulation for Lloyd’s algorithm and formation controller

(5.2) is presented. In this simulation, we used 5 agents and divided the area A to 3
partitions.

We used Algorithm 4.1 (PLA) to partition the area, and calculated each cell de-
ployment using Lloyd’s algorithm (Algorithm 2.1).

44




initial to 1 itoz 2to3
10 10

(a) a =1 (only deployment).

initial to 1 1to2 2t03
jt 10

(b) & = 0.5 (combination).
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(¢) a =0 (only formation).

Figure 5.8: Simulation of formation controller and deployments controller (using Lloyd’s
algorithm). The subarea A,, is the black polygon, and the active partitions is marked
in blue.

In Figure 5.8, we can see a simulation of 3 cases - deployment only (a), combined
controller (b) with @ = 0.5, and formation only (c). The formation error over time
(2.17) varies between the cases, and can be seen on Figure 5.9. In this figure, we see
for each cell and each « value how the formation error is changing. We can see that
the formation error for &« = 1 is high as expected, and for & = 0.5 we can clearly see
how the formation control interfere and reduced dramatically the formation controller,
while competing with the deployment control. For a@ = 0 the error is 0 as expected.
We can also see clearly for a = 0,0.5 how the potential "grows” when the formation

starts to move into a new partition, until convergence within it.
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46



Chapter 6

Conclusion

The problem of partitioning some area aiming to cover it is a well known and researched
problem. It was tackled using many approaches - some of them were trajectory-based
while the other were partitioning-based. In this work, the goal was covering while main-
taining partial coverage on some sub-area and therefore the partition-based strategy
was chosen.

In many works (for example, [9]), the partitioning optimization was based on Cen-
troidal Voronoi Tessellations (CVT), which provides a reasonable strategy for parti-
tioning an area when the goal is covering it. The most popular way for calculating the
CVT was using an algorithm known as Lloyd’s Algorithm [14, 9]. In this work, the Pro-
jected Lloyd’s Algorithm (PLA) was introduced. This algorithm utilized a projection
operator for partitioning an area while still covering a constraining sub-area.

The PLA resulted partitioning that intersects with the constraining sub-area, creat-
ing interesting partitions which varies with initial conditions - and this can be utilized
for practical usages.

During the work, another question was raised - what happens if we want to maintain
some formation, creating some desired spatial structure. The results can be beneficial
for many practical use cases. In this work the most obvious example was geolocation,
but of course - there might be many more usages. This question was answered, using a
combination of deployment and formation controllers, and specifically a distance-based
formation controller. The combination was tested mostly for the trade-off between
the two controllers, and the results shows that although it’s highly depended on the
framework, starting from o = 0.3, the formation is generally well controlled. Further

analysis is required in future work.

6.1 Future Work and open questions

First of all, as the proposed algorithm for PLA is centralized, the first and most obvi-
ous question that comes to mind is what happens if there isn’t any central computer

available. Therefore, a decentralized method should be developed.
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Secondly, in Chapter 5, while the two controllers where combined using a coefficient,
we did not supply any condition to ensure some minimal coverage or mazximal formation
error. Although simulation supplied some intuition regarding the formation error, this
should be analyzed more formally.

Third, we could not find the combined Lloyd’s Algorithm and Distance-based for-
mation controller critical points.

Lastly, one major assumption was made in this work - that no matter what the PLA
results are, the agents can cover it in one static formation. This assumption obviously
does not hold in real-world problem, therefore an algorithm for partitioning the area
using PLA and ensuring coverage for each partition is mandatory. This algorithm can

utilize the results for the formation and deployment combination coefficient.
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DIYHNN D3 > DY NDIDNN NVYN TOY T3 ,JW»N D32 DI90N 7NN N2 NIVIVOR — NINYNIN
SV ,oUNY  MINID ) N APVIVON DV VI .NOYN DY RO MDD MNN> DND0NN D TIND
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55 75, MYNNY NLYN NPIYN NNYI NN DIV IVIVOR (TN YN 11T T NIPN3a
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MHNNS POINKD NOWA N MIVIVONI YHNYND 1IN ,DINDRM MNINN NN

(Centroidal "mt>7mmn N9 MPNR”D APIYN MYNANA NN NP ANNN NOWN ,MI2D2
NOY INPNA - KXIN 9N NOY NPIYND NVY NN NI Mpnn” Voronoi Tessellations)
DMDN HINND NNINRNNN NPNND L (MNNTD ,DIVPNN NN XD DD TUR) POY DONINN qGOIN)
TN NN OINNN DONN IMNX AYUND DN IMND NP2 MAIPN DLV MTPIN 995 GUIN NN
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NITYA YNIANND DNN YD OODIVAIRD NINS INNN — 290N 1T DIYINN DY NDIIN DVPTIY
TND N2 MY am (Lloyd’s Algorithm) M7 BIM™MMIR 10 Y1930 ,00 DNNINON
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