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Abstract

Model reduction is an active branch of linear system theory with increasing im-
portance, as modern applications may be extremely large-scale. Reduced-order
models are required whenever it is computationally infeasible to implement, an-
alyze or simulate the full order system, of which orthogonal projection-based
reduced order models (PROM) are the most widely-used.

Graphs are mathematical objects composed of a set of vertices and a set of
interconnecting edges. As simple as they are constructed, the study of graphs
has developed into a formal branch of mathematics, with numerous applica-
tions in computer science, biology and social science, to mention a few. Graphs
characterize the structure of multi-agent systems, where each node is an agent
with a low-order dynamical system, and edges represent the local interaction be-
tween adjacent agents. As the number of agents increases, multi-agent systems
may be extremely large-scale and require model-reduction. Graph contractions
over vertex partitions have been extensively studied in the context of model
reductions of multi-agent systems. We define such model reduction methods
that preserve the networked structure of the system, as a new kind of model
reduction, named ”graph-based model reduction”.

In the first part of the study, we investigate classes of graph contractions
where the edges of the graph are the basis for the contraction operation. The
combinatorial operation of these edge-based contractions is derived, and we
construct, for the first time, the algebraic representations of graph contractions,
such as incidence and Laplacian matrices. A spectral interlacing theorem is then
proven for two types of edge-matching contractions, and two efficient algorithms
are provided for finding Laplacian-type interlacing contractions.

In the second part of the thesis, we reexamine the well known orthogonal
PROMs and their realizations. A novel product form is derived for the reduc-
tion error system of these reduced models, and investigating the error system
product form, we then define interface-invariant PROMs, model order reduc-
tions with projection-invariant input and output matrices. It is shown that for
such PROMs the error product systems are strictly proper. Furthermore, ex-
ploiting this structure, an analytic H∞ reduction error bound is obtained and
an H∞ bound optimization problem is defined. We then present a sub-optimal
greedy-edge efficient algorithm for H∞ graph-based model reduction of multi-
agent systems utilizing the derived edge-matching graph contractions and the
analytic H∞ reduction error bound.
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Table of Notation

In this dissertation, we will also use the following notation:

Notation Meaning

|A| The cardinality (size) of the set A.

R The set of real numbers.

R+ The set of non-negative real numbers.

C The set of complex numbers.

Q The set of rational numbers.

Z The set of integers.

xi,[x]i The i’th variable of vector x.
Aij ,[A]ij The i-j entry of a matrix A.

0d, 0d×d The all-zero vector of length d, all-zero matrix of size d× d.

1d The all-one vector of length d.

ê
(d)
i The i-th standard basis vector in Rd.

Id×d The identity matrix of size d× d.

ker(A) The kernel of the linear transformation A.

U⊥ The orthogonal complement of the linear subspace U .

Diag (A,B) The block diagonal of matrices A and B.
A⊗B The Kronecker product of the matrices A and B.

‖x‖ The Euclidean norm of the vector x.

‖A‖F The Frobenius norm of a matrix A.
A† The left pseudo-inverse of a square matrix A
A � B The matrix A−B is positive semi-definite.

A � B The matrix A−B is positive-definite.

σmin(A) The minimal singular value of A

σmax(A) The maximal singular value of A

λmin (A) The minimal eigenvalue of A

λmax (A) The maximal eigenvalue of A

λ (A) The spectrum of A
δ (A) The diagonal of A
Λ (A) The diagonal matrix of the spectrum of A
V A set of vertices.

E A set of pairs of vertices, called edges.

G = (V, E) A graph G with vertices V and edges E .

E , EG The incidence matrix of the graph G.

λ2(G) The algebraic connectivity of the graph G.

Σi The i-th agent in a multi-agent system.

Σ The collection of all agents in a multi-agent system.

O (n) Big-O notation for algorithm run time complexity
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We will also use the following acronyms:

Acronym Meaning
LTI Linear and Time-Invariant
MIMO Multiple-Input Multiple-Output
SISO Single-Input Single-Output
TF Transfer Function
TFM Transfer Function Matrix
PD Positive Definite
NP Non-Polynomial
MAS Multi-Agent System
PROM Projection-based Reduced-Order Model
PCM Partition Characteristic Matrix
PPM Partition Projection Matrix
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Chapter 1

Introduction

1.1 Introduction and Focus

There is currently a rapid growth in the usage of multi-agent systems in many
modern technologies, such as robotic flocking and swarming [61], enabling ro-
bust operations in the most harsh environments [31]. Other applications include
power grids [37], and models in physics, economy and sociology [41], to name
a few. As the number of agents increases, multi-agent systems (MAS) may be
extremely large-scale, causing analysis and simulation to become computation-
ally infeasible, and presenting new challenges in the design of controllers to such
systems.

Multi-agent systems are characterized by their networked structure, where
each agent is represented by a node in a graph and edges (and their assigned
weights) represent the local interactions between adjacent agents, e.g., local
observations or data links [45]. Generally, an agent, is any dynamical system
coupled to other systems; however, for large scale MAS, where the scale is
determined by the large number of agents, a multi-type agent model seems less
relevant. Therefore, in this study, we only consider MAS compromised of a set
of functionally-homogeneous agents, i.e., all agents have the same dynamical
model up to some specified parameters (Figure 1.1). The most extensively
studied MAS are consensus models [51]. In a consensus model, all agents try to
achieve the same state as adjacent agents using a local control law. Under some
conditions, depending on the specific model, the entire ensemble may converge
to the same state, and consensus or agreement is obtained [45].

The unique network structure of MAS allows to model and analyze global
properties of such systems using graph theoretic tools [45]. Explicit relations
have been found between properties of consensus models and their underlying
graph structure: the system H2-performance has been found to be a function of
cycle-completing edges [69], and system Hp-norms were relates directly to zeta
functions of the graph Laplacian [57]. The combined forces of control theory
and graph theory have also provided new powerful methods for controlling MAS

4

 

 

 



CHAPTER 1. INTRODUCTION

(a) An example of a multi-agent system con-
sisting of four drones interacting over a net-
work.

Σ1

Σ2

Σ3

Σ4

(b) The multi-drone system is modeled by a
graph where each node represents an agent-
subsystem and each edge represents an in-
teraction between adjacent agents.

Figure 1.1: A representation of a multi-agent system.

[56]; however, as the complexity and size of such networked systems increases,
the design and synthesis of controllers become computationally infeasible, and
reduced order controllers are required.

Model-order reduction is an essential tool for the design and study of large-
scale with various scientific and engineering applications such as weather forecast
schemes [44] or the design of trajectories of spacial probes sent to other planets
[62]. Of particular interest is the study of model reduction for the implementa-
tion of controllers for large-scale systems. Internal model principle implies that
the order of the controller is at least as the order of the plant [22], as reflected
in the solution of H2 and H∞ control problems [19, 27, 38]. In order to imple-
ment low-order controllers for large scale systems, model reduction of the design
model or full-order controller is commonly performed [32, 39].

A widely-used family of reduced-order models are the projection-based re-
duced order models (PROMs) [1, 24]. Well established PROM producing meth-
ods, such as balanced truncation [3], preserve stability, guarantee minimality
and provide a priori reduction error bounds [48]. These methods, however,
may be unfeasible for very large-scale systems due to their computational com-
plexity [6, 9], and reduced-order control problems of LTI systems introduce a
great computational challenge even when the design is carried out off-line [9].
For example, computational methods for solving fixed-order output feedback
design problems are proven to be NP-hard [23]. As a result, many works aimed
at finding sub-optimal efficient solutions, e.g. by alternating projection meth-
ods [28], or Krylov-subspace techniques which are computationally efficient and
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CHAPTER 1. INTRODUCTION

suitable for extremely large-scale systems [4]. Such methods, however, may fail
to provide stable and minimal reduced order realizations [35].

A great challenge in the study of multi-agent systems is to find efficient re-
duction methods that guarantee stability and assure minimality of their reduced
order realizations, preferably, with optimal or suboptimal reduction errors. For
networked systems, as MAS, the interconnection properties of the underlying
graph can be related in some cases to the stability, controllability and observ-
ability of the system [2]. Therefore, it is desirable that reduced-order models are
found that preserve, in some sense, the network structure of the full-order sys-
tem. If we treat such systems as a general large-scale MIMO system, standard
model reduction techniques can be applied; however, the resulting reduced-order
system will generally not have the structure of a multi-agent system. Structured
model reductions have been developed for systems composed of a small number
of interconnected large-scale subsystems [42, 54], and were applied for model
reduction of networked power systems [59]. Such methods, however, are not
applicable for MAS consisting of large number of low-order agents.

An LTI MAS can be describes as a system with a realization that is a func-
tion of the graph. Utilizing this property, graph-based model reduction is a
family of MAS reduction methods where a graph reduction is performed, rather
than a direct model-order reduction. The resulting realization is a function of
the reduced-order graph and produces a reduced order model [40], which is a
reduced order MAS. In that direction, several recent studies were performed. In
[47, 34], PROMs of consensus-type multi-agent models were considered based
on graph-contractions over vertex partitions. In [36], removal of cycle complet-
ing edges was suggested for model simplification of the consensus protocol. The
reduction of second-order network systems with structure preservation using
hierarchical H2 clustering was demonstrated in [12]. A framework for optimal
structured model-order reduction of MAS was recently presented in [67]. Here,
a convex relaxation technique was derived for the H2 model reduction of diffu-
sively coupled second-order networks.

While these methods are limited to first or second-order multi-agent mod-
els, the goal of this research is to develop efficient graph-based model reduc-
tion methods for the general class of LTI MAS. As a first step, we formulate
graph-based model reduction as a graph reduction optimization problem. This
problem, however, is found to be computationally infeasible. In order to derive
efficient sub-optimal solutions of the graph reduction optimization problem, we
investigate graph-based model reduction algorithms based on vertex partitions.
Vertex partitions have been extensively studied in graph theory in the context
of graph clustering and network communities [49, 55, 58], and graph contrac-
tions over vertex partitions are widely used as a combinatorial graph reduction
tool. It has also been observed in previous studies that partition-based PROMs
maintain an MAS structure [47, 34], i.e., the PROM is an MAS defined over a
reduced order graph.

An important part of this research is a thorough study of vertex partitions
and of graph contractions, reduced-order graphs based on vertex partitions. We
construct a sub-class of vertex partitions denoted as “edge-induced partitions”,
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CHAPTER 1. INTRODUCTION

and derive a spectral analysis theorem for reduced-order graph Laplacian ma-
trices resulting from graph contractions. Novel efficient algorithms are provided
for finding two types of a Laplacian interlacing contractions.

In a second part of this work, we reexamine the well known PROMs and their
realizations. A new product form is derived for the reduction error system of
these reduced models, an analytic H∞ reduction error bound is derived, and an
H∞ bound optimization problem is defined. We then utilize edge-induced par-
titions to obtain an efficient suboptimal model reduction method for MAS. We
introduce the notion of edge-induced PROMs, PROMs which are constructed
over edge-induced partitions of the graph. This graph-based model reduction
method allows us to derive sub-optimal but efficient PROMs of MAS based on
the derived H∞ reduction error bound.

Notation

First, we use some standard notation from set theory. The cardinality (or
size) of a set A is denoted by |A|. The set R denotes the real numbers, the
set C denotes the complex numbers, and the set Z denotes the integers. The
integer set {1, . . . , n} ⊂ Z is denoted as [1, n]. We use the O() notation (“big
O notation”), whose precise meaning is the following. Let f and g be functions
that map positive numbers to positive numbers. We write f(x) ∈ O(g(x)) if
there exists M > 0 and x0 > 0 such that f(x) < Mg(x) for all x > x0.

Second, we use standard notation from linear algebra and matrix analysis
[30]. The vector 0d denotes the d-dimensional zero vector. The vector 1d denotes
the d-dimensional all-ones vector. In both cases, the subscript may be omitted

when the dimension is clear. The vector ê
(d)
i will denote the i-th standard basis

vector, i.e., ê
(d)
i ∈ Rd and

[
ê
(d)
i

]
j

= δij , where δij is Dirac’s delta. The identity

matrix of size d×d will be denoted Id. For two matrices A and B, Diag(A,B) is
a block diagonal matrix with A,B on the diagonal. The entries of a matrix A are
denoted [A]ij . For two matrices A,B, we’ll let A⊗B denote the corresponding
Kronecker product.

The spectrum of a real matrix A ∈ Rn×n is the set of eigenvalues λ (A) =
{λk (A)}nk=1 where λk (A) ∈ C is the kth eigenvalue of A. The corresponding
eigenvectors are {uk (A)}nk=1. For a symmetric matrix we have an eigenvalue de-
compositionA = U (A) Λ (A)UT (A), where U (A) = [u1 (A) , u2 (A) , . . . , un (A)]
is an orthonormal matrix and Λ (A) = Diag (λ (A)) ∈ Rn×n. A symmetric ma-
trix is positive-definite if λi (A) > 0 for i ∈ [1, n] and is denoted as A � 0. If
A,B are both square symmetric matrices of the same dimension, we’ll write
A � B if A−B is positive semi-definite. Moreover, we’ll write A � B if A−B
is positive-definite. If A is a map from a linear space to itself, then we denote its
minimal singular value by σmin(A), and its maximal singular value by σmax(A).
Similarly, if all of A’s eigenvalues are real, we’ll let λmin(A) be the minimal eigen-
value of A, and λmax(A) be the maximal value of A. If U is a linear subspace of
Rn, we’ll let U⊥ be its orthogonal complement. The Euclidean norm of a vector
x will be denoted by ‖x‖. The 2-norm of a matrix A is ‖A‖2 = σmax(A). The

7

 

 

 



CHAPTER 1. INTRODUCTION

Frobenius norm of a matrix A ∈ Rm×n is ‖A‖F =
√

Tr {ATA}.
We also go over several acronyms repeatedly used throughout the thesis.

Namely, multi-agent systems will be abbreviated as MAS, single-input single-
output systems will be called SISO systems, where multiple-input multiple-
output systems will be called MIMO systems. Projection-based reduced order
models will be called PROMs. Lastly, linear and time-invariant systems will be
denoted as LTI systems, and their transfer function will be abbreviated as TF.

1.2 Background

In this section, we present an overview of system theory and model reduc-
tion theory, along with some basic notions from graph theory introduce used
throughout the thesis.

1.2.1 System Theory

An LTI system Σ is a mapping u (t) 7→ y (t) from the inputs u(t) ∈ Rnu to the
outputs y(t) ∈ Rny . A realization Σ := (A,B,C,D) is the dynamical system,

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, (1.1)

where x(t) ∈ Rnx is the system state, and the matrices A ∈ Rnx×nx , B ∈
Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are the system parameters. The corre-
sponding transfer function matrix (TFM) representation of Σ is given as

Σ̂ (s) = C (sIn −A)
−1
B +D. (1.2)

Hereafter, the notation Σ̂ will be used, without the explicit dependence on s, to
denote the TFM of a system Σ.

A realization Σ := (A,B,C,D) is minimal if it is controllable and observable.
The order of a system is its McMillan degree, denoted as deg (Σ), which is the
order of any minimal realization of Σ [15]. For a strictly-proper system D = 0.
The system Σ is stable if A is Hurwitz, i.e., λ (A) ⊂ C−, where C− is the open
left-half complex plane and λ (A) = {λi}ni=1 is the spectrum of A [18, p. 37].

For a minimal realization of a stable system, the controllability and observ-
ability Gramians Xc and Xo are positive-definite matrices which are the unique
solutions to the Lyapunov equations

{
AXc +XcA

T +BBT = 0

ATXo +XoA+ CTC = 0
. (1.3)

If Σ := (A,B,C,D) is a minimal then for any invertible matrix T , also
Σ :=

(
TAT−1, TB,CT−1, D

)
is a minimal realization of Σ. We can always find

an invertible matrix Tb such that the realization Σ :=
(
TbAT

−1
b , TbB,CT

−1
b , D

)
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CHAPTER 1. INTRODUCTION

is a balanced realization, i.e., Xc = Xo [48]. The Hankel singular values (HSVs)
of Σ are the singular-values of the matrix XcXo, and for any minimal realization
σi (XcXo) > 0 for i ∈ [1, n] [6].

The two most studied system norms are the H2-norm and the H∞-norm
[17]. The H2-norm of a system Σ is

‖Σ‖H2
=


 1

2π

∞∫

−∞

∥∥∥Σ̂ (jω)
∥∥∥
2

F
dω




1
2

. (1.4)

For a strictly-proper and stable system the H2 norm is finite and it can be
calculated from the controllability or observability Gramians Xc and Xo

‖Σ‖H2
=
√

Tr (BTXoB) =
√

Tr (CXcCT ). (1.5)

The H2-norm can also be interperted as a measure of the steady-state LTI
output dispersion as a function of the input noise power

‖Σ‖H2
= lim
t→∞

E
[
yT (t) y (t)

]
. (1.6)

The H∞-norm of a system Σ is

‖Σ‖H∞ = sup
ω∈R

σmax

(
Σ̂ (jω)

)
. (1.7)

1.2.2 Model Reduction

A reduced-order model of Σ is any system with realization Σr := (Ar, Br, Cr, Dr)
mapping u (t) 7→ yr (t), with u (t) ∈ Rnu and yr (t) ∈ Rny , such that deg (Σr) <
deg (Σ). Reduction error analysis can be performed by constructing an aug-
mented error system,

Σe = Σ− Σr, (1.8)

with realization Σe := (Ae, Be, Ce, De), where xe(t) =
[
x>(t) x>r (t)

]>
, ye(t) =

y(t) − yr(t), Ae = Diag(A,Ar), Be =
[
B> B>r

]>
, Ce =

[
C −Cr

]
and De =

D−Dr. The reduction error can then be quantified using any system norm ‖Σe‖
with the two most studied model reduction system norms being the H2-norm
and the H∞-norm.

A family of reduction producing methods are projection-based reduced-order
models (PROMs). Given a system Σ with minimal realization Σ := (A,B,C,D),
a projection-based reduction is a system Σr with realization

Σr :=
(
UTAV,UTB,CV,D

)
,

for any two matrices U, V ∈ Rn×r such that UV T is a projection matrix [24].
Recall that a matrix Π ∈ Cn×r is called a projection whenever Π = Π2. If
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v1

v2

v3

ǫ1

ǫ2

hE (ǫ1) = v1; tE (ǫ1) = v2
hE (ǫ2) = v2; tE (ǫ2) = v3

Figure 1.2: An example of head and tail assignment.

U = V the PROM is denoted as orthogonal, otherwise it is said to be oblique
[1].

Given a system Σ with a balanced realization

Σ :=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
, D

)
,

a balanced truncation is the reduced system Σr with realization Σr :=
(A11, B1, C1, D) [48]. The HSVs of Σr are then the r smallest HSVs of Σ and
the H∞ reduction error is bounded by

‖Σe‖H∞ ≤ 2
n−r∑

k=1

σi (Σ) , (1.9)

where {σi}ni=1 are in ascending order [20]. In fact, this classical balanced trun-
cation model reduction scheme is a prime example of employing oblique PROMs
[48].

1.2.3 Graph Theory

A graph G = (V, E ,W) of order n with m edges consists of a vertex set V (G) =
[1, n], an edge set E (G) = {εk}mk=1 with εk ∈ V2, and a set of edge weights,
W (G) = {wk}mk=1 with wi ∈ R. Two nodes u, v ∈ V (G) are adjacent if they are
the endpoints of an edge {u, v}, and we denote this by u ∼ v. The neighborhood
Nv (G) is the set of all nodes adjacent to v in G. The degree of a node v, denoted
dv (G), is the number of nodes adjacent to it, dv (G) = |Nv (G)|. A path in a
graph is a sequence of distinct adjacent nodes. A simple cycle is a path with an
additional edge such that the first and last vertices are repeated. A graph G is
connected if we can find a path between any pair of nodes. We denote G\VR as
the graph obtained from G by removing all nodes v ∈ VR ⊂ V from V (G) and
removing all edges in E (G) adjacent to v.

Given a graph G = (V, E ,W), we assign an orientation to the edges using head
and tail functions, hE , tE : E → V where hE (εk) and tE (εk) return, respectively,
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(a) A simple undi-
rected graph.

(b) A simple di-
rected graph.

(c) A simple undi-
rected multi-graph.

(d) A simple directed
multi-graph.

(e) An undirected
graph with two
self-loops.

(f) A directed multi-
graph with two self-
loops.

Figure 1.3: Examples of the different graph classes.

the head and tail nodes of edge εk (Fig. 1.2). If G is an undirected graph then
the head and tail of each edge are arbitrary; if G is a directed graph (digraph)
then the head and tail define the edge direction. A self-loop is an edge εk ∈ E
such that hE (εk) = tE (εk), and duplicate edges are any pair εi, εj ∈ E such that
i 6= j, tE (εi) = tE (εj) and hE (εi) = hE (εj). A simple graph does not include
self-loops. A multi-graph is a graph that includes duplicate edges. Figure 1.3
provides examples of the different graph classes. The head and tail functions
can be used to define the incidence matrix E (G).

Definition 1.1 (Incidence matrix). Let G = (V, E) with head and tail functions
hE and tE . Then the corresponding incidence matrix, E (G) ∈ R|V|×|E|, is defined
with entries

[E(G)]ij =





1 hE (εj) = vi
−1 tE (εj) = vi
0 otherwise

(1.10)

Subgraphs, spanning trees and co-trees are key concepts in graph theory
which will be used throughout the thesis.

Definition 1.2 (Subgraph). A subgraph GS = (VS , ES) of a graph G = (V, E),
denoted as GS ⊆ G, is any graph such that VS ⊆ V and ES ⊆ E∩V2

S. An induced
subgraph G [VS ] is a subgraph GS ⊆ G such that ES = E (G) ∩ V2

S. An induced
subgraph G [VS ] is a connected component of G if it is connected and no node in
VS is adjacent to a node in V (G) \VS.
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v1 v2

v3

v4

v5

ǫ4

ǫ3

ǫ2

ǫ1

ǫ5

Figure 1.4: An example of a signed path vector. The tree edges are E (T ) =
{ε1, ε2, ε3, ε4}, and the sole co-tree edge is ε1 (C) = ε5 (dashed) with the corre-

sponding signed-path vector t1 = [0, 1,−1, 1]
T

.

Definition 1.3 (Spanning tree and co-tree). A spanning tree T (G) of a con-
nected graph G = (V, E) is any connected subgraph GS = (V, ES) with a minimal
number of edges. The set T (G) denotes all spanning trees of a connected graph
G. For T ∈ T (G), the co-tree graph G\E (T ) is denoted as C (T ) [25].

Based on the tree and co-tree representation of the graph, each co-tree edge
can be described by a corresponding signed-path vector defined below, with an
example given in Figure 1.4. We will find signed-path vectors useful in our
graph theoretical derivations.

Definition 1.4 (Signed path vector). Consider a graph G and its spanning
tree T ∈ T (G) with co-tree C (T ), with arbitrary head and tail assigned to the
end-nodes of each edge in E (G). For each edge εj ∈ E (C) there is a path from
head to tail in T , and we define a corresponding signed path vector tj ∈ R|E(T )|,
[tj ]k = 1 if εk (T ) is along the path, [tj ]k = −1 if εk (T ) is opposite to the path,
and [tj ]k = 0 otherwise.

The most commonly studied matrices in algebraic graph theory are the ad-
jacency matrix A (G) ∈ R|V|×|V|, the Laplacian matrix L (G) ∈ R|V|×|V| and the
normalized Laplacian matrix L (G) ∈ R|V|×|V|, all of which are real symmetric
matrices. They are defined below, where each row and column is indexed by a
vertex in the graph G [25],

[A(G)]uv =

{
1, u ∼ v
0, otherwise

,

[L(G)]uv =





du (G) , u = v
−1 u ∼ v
0, otherwise

,
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and

[L(G)]uv =





1, u = v

−
(√

du (G) dv (G)
)−1

u ∼ v
0, otherwise

.

For a simple undirected graph, the Laplacian matrix L (G) ∈ R|V|×|V| can
be written as

L (G) = E (G)W (G)E (G)
T
, (1.11)

where W (G) is a diagonal matrix with edge weights along the diagonal [25].

1.3 Contributions and Thesis Outline

The following overview presents the outline of this thesis and briefly summarizes
its contributions. The second chapter of the thesis deals with graph theoretical
derivations of graph contractions, the third chapter studies PROMs and the
fourth chapter applies results from these two chapters to the model reduction
of multi-agent systems, the fifth and final chapter summarizes the work.

Chapter 2 - Graph Contractions and Their Spectral Inter-
lacing Properties

In this chapter we investigate the combinatorial operation of graph contractions.
We show how classes of graph contractions where the edges of the graph are the
basis for the contraction operation are a result of a combinatorial operation
on the vertices of the graph. We construct, for the first time, the relations
between algebraic representations of graphs, such as incidence and Laplacian
matrices, and those of contracted graphs. We then derive a general interlacing
graph reduction theorem based on a set-theoretical extension of the min-max
theorem. A class of edge-matching graph contractions is defined, and utilizing
the extension of the min-max theorem it is proven how two types of edge-
matching contractions provide Laplacian and normalized Laplacian interlacing.
An O (mn) algorithm is provided for finding a normalized Laplacian interlacing
contraction and an O

(
n2 + nm

)
algorithm is provided for finding a Laplacian

interlacing contraction of a given graph with n vertices and m edges.

Chapter 3 - Product Form of Projection-Based Model Re-
duction

In this chapter, we reexamine the well known orthogonal PROMs and their real-
izations. A novel product form is derived for the reduction error system of these
reduced models, and it is shown that any such PROM can be obtained from a
sequence of 1-dimensional projection reductions. Investigating the error system
product form, we then define interface-invariant PROMs, model order reduc-
tions with projection-invariant input and output matrices, and it is shown that
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CHAPTER 1. INTRODUCTION

for such PROMs the error product systems are strictly proper. Furthermore,
exploiting this structure, an analytic H∞ reduction error bound is obtained and
an H∞ bound optimization problem is defined.

Chapter 4 - Model Reduction of Multi-Agent Systems by
Graph Contractions

Based on the edge-based contractions derived in Chapter 2, in this chapter we
introduce the notion of edge-induced PROMs. These are PROMs which are
constructed over edge-induced partitions of the graph. This graph-based model
reduction method allows us to derive sub-optimal but efficient PROMs of MAS
utilizing the PROM H∞ bound derived in Chapter 3. The resulting algorithm
is demonstrated on a large-scale consensus model.

Chapter 5 - Summary

This final chapter provides some conclusive remarks, both summarizing the
thesis and hinting at possible future directions of research.

1.4 Publications

The research presented in this thesis has been presented in the following publi-
cations

• N. Leiter and D. Zelazo, Graph-based model reduction of the controlled
consensus protocol, in IFAC World Congress, Toulouse, France, 2017.

• N. Leiter and D. Zelazo, Edge-matching graph contractions and their in-
terlacing properties, Linear Algebra and its Applications, vol. 612, pp.
289-317, 2021.

Some material in this thesis is also contained in the following manuscripts,
submitted for review:

• N. Leiter and D. Zelazo, Product Form of Projection-Based Model Reduc-
tion and its Application to Multi-Agent Systems, submitted to Automat-
ica.
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Chapter 2

Graph Contractions and
Their Spectral Interlacing
Properties

Graphs are mathematical objects composed of a set of vertices and a set of
interconnecting edges. As simple as they are constructed, the study of graphs
has developed into a formal branch of mathematics, known as graph theory,
with numerous applications in computer science, biology and social science, to
mention a few. Partitioning of the graph vertices combined with node and edge
contractions along those partitions lead to a reduced order graph known as a
graph contraction.

Graph contractions have ambiguous definitions in graph theory studies, and
in this chapter we try to formalize this important combinatorial operation. In
this process we construct edge-induced partitions, that will lead us in the fol-
lowing chapters to efficient graph-based model reductions. We also explore
edge-matching contractions, a class of graph contractions with a one-to-one cor-
respondence of a subset of edges in the full order graph to those in the contracted
graph. Additionally, we construct, for the first time, the relations between alge-
braic representations of graphs, such as incidence and Laplacian matrices, and
those of contracted graphs. Finally, based on a novel min-max theorem, it is
then shown how two types of such edge-matching contractions provide eigen-
value interlacing of Laplacian-type graph matrices.

2.1 Introduction

The effect of combinatorial operations on graph spectra is an evolving branch
of graph theory, linking together combinatorial graph theory with the spectral
analysis of the algebraic structures of graphs, e.g., Fiedler’s seminal results on
the Laplacian algebraic connectivity [21]. In general, there is an interest to
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

understand how certain graph reduction operations relate to spectral and com-
binatorial properties. Of particular interest are reductions that satisfy an inter-
lacing property between algebraic graph representations such as graph matrices.
Interlacing properties of graph matrices have shown to have combinatorial in-
terpretations: Haemers used adjacency and Laplacian interlacing to provide
combinatorial results on the chromatic number and spectral bounds [29], and
the neighborhood reassignment operation was shown to provide interlacing of
the normalized Laplacian [66].

Partitioning the vertices of a graph is a combinatorial operation extensively
studied in graph theory in the context of graph clustering [55] and network
communities [49], and for spectral clustering methods [50]. However, there are
only sparse results relating graph contractions based on vertex partitions and
spectral interlacing. Chen et al. provided an interlacing result on normalized
Laplacians based on a certain class of edge-based graph contractions [11].

In this work, we explore interlacing of reduced graph matrices and derive a
general spectral interlacing theorem for reduced graphs based on an extension of
the min-max theorem. In order to find classes of interlacing reduced graphs, we
conduct a rigorous combinatorial analysis of graph contractions. The outcome of
this analysis includes edge-induced partitions, and edge-matching contractions,
a class of graph contractions with a one-to-one correspondence of a subset of
edges in the full order graph to those in the contracted graph. An additional
novel result of this analysis, is the construction of several relations between
algebraic representations of graphs, such as incidence and Laplacian matrices,
and those of contracted graphs.

Utilizing the graph theoretical derivations and the interlacing theorem, we
show how two type of edge-matching contractions lead to interlacing of the
normalized-Laplacian and Laplacian graph matrices. Two algorithms are then
constructed for finding, if they exist, such contractions.

The remaining sections of this chapter are as follows. In Section 2.2 we
formulate the graph contraction operation for simple undirected graphs, de-
fine edge-induced graph contractions, and introduce the class of edge-matching
graph contractions. Section 2.3, investigates several relations between algebraic
representations of graphs, such as incidence and Laplacian matrices, and those
of contracted graphs. In Section 2.4, the interlacing graph reduction problem is
presented, and solved for two sub-classes of edge-matching contractions for the
Laplacian and normalized-Laplacian matrices. Section 2.5 provides case studies
of the interlacing methods, and Section 2.6 concludes this chapter.

2.2 Graph Contractions

Graph contractions are a graph reduction method based on partitions of the
vertex set. They are a useful algorithmic tool applied to a variety of graph-
theoretical problems, e.g., for obtaining the connected components [13] or find-
ing all spanning trees of a graph [46, 65]. We now define several graph operations
required for vertex partitions and graph contractions and derive results that will
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C1 (π) C2 (π) C3 (π)

v1
v2

v3

v4

v5
v7

v6

Figure 2.1: An example of a graph and a 3-partition π3 (V) of its vertices into
three cells C1 = {v1, v2, v3}, C2 = {v4, v5} and C3 = {v6, v7}. The correspond-
ing cell neighborhoods are NC1

(G) = {v1, v5}, NC2
(G) = {v1, v2, v3, v6} and

NC3 (G) = {v4, v6}.

allow us to relate graph contractions and graph interlacing. Hereafter in this
chapter G = (V, E) is a simple connected graph of order n.

For an integer r satisfying 1 ≤ r ≤ n, an r-partition of a vertex set V of
order n, denoted πr (V), is a set of r cells {Ci}ri=1 such that Ci ∩ Cj = ∅ and
∪ri=1Ci = V, and we denote the ith cell of a partition π as Ci (π). The cell
neighborhood NCi (G) is defined as NCi , {∪v∈CiNv (G)} \Ci (Figure 2.1).

For r = n, Ci (πn) = i is the identity partition, which contains n singletons (a
cell with a single vertex). An atom partition πn−1 (V) contains n− 2 singletons
and a single 2-vertex cell. The set of all r-partitions of V is denoted by Πr (V),
and the set of all partitions of V is Π (V) , ∪nr=1Πr (V). For a graph G = (V, E),
we may denote πr (V) and Πr (V) as πr (G) and Πr (G).

For a graph with ncc connected components, we define the connected com-
ponents partition πcc (G) as the partition πcc (G) = {Ci}ncci=1, such that G [Ci] is
the ith connected components of G (Figure 2.2).

Definition 2.1 (Partition function). For a graph G and r-partition π ∈ Πr (G),
the partition function is a map fπ : V (G) → [1, r] from each node in V to its
cell index, i.e., fπ (v) , {i ∈ [1, r] |Ci (π) ∩ v 6= ∅}. More generally, for a subset
VS ⊆ V (G) we have fπ (VS) , {i ∈ [1, r] |Ci (π) ∩ VS 6= ∅}.

The partition function allows us to precisely define the quotient and the
graph contraction, and their notations which are used interchangeably in the
literature.

Definition 2.2 (Quotient). The quotient of a graph G over a partition π ∈
Πr(G), denoted by G/π, is the multi-graph of order r with an edge {u, v} for

each edge between nodes in Cu (π) and Cv (π), i.e., G/π =
(

[1, r] , {ε̃j}|E|j=1

)
with

ε̃j = {fπ (hE (εj)) , fπ (tE (εj))} ,
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C1 (πcc) C2 (πcc) C3 (πcc)

v1 v2

v3

v4

v5
v7

v6

Figure 2.2: An example of a graph and its connected components parti-
tion πcc (G) with three components C1 = {v1, v2, v3}, C2 = {v4, v5} and
C3 = {v6, v7}.

where εj ∈ E (G) and hE (ε) , tE (ε) : E (G) → V (G) assign a head and a tail to
the end-nodes of each edge (thus, ε = (hE(ε), tE(ε))).

Definition 2.3 (Graph contraction). The graph contraction of G over π is
the simple graph denoted as G � π which is obtained from the quotient G/π by
removing all self-loops and redundant duplicate edges. Equivalently, G � π =
([1, r] , Er) with

Er =
{
ε̃ ∈ [1, r]

2 |ε̃ ∈ E (G/π) , hE (ε̃) 6= tE (ε̃)
}
.

If π is an atom partition we call G � π an atom contraction. For example,
consider the partition of π = {{v1} , {v2} , {v3} , {v4, v5}}, for the graph G shown
in Figure 2.3. The quotient G/π and the graph contraction G � π are shown
in Figure 2.3. Notice that this is an example of an atom partition and atom
contraction.

Node removal is the simplest graph-reduction method. However, in some
cases the same reduced graph can be obtained either from node-removal or
from a graph contraction. We define here these contractions as node-removal
equivalent contractions.

Definition 2.4 (Node-removal equivalent contraction). For the graph G and
its contraction G � π, we say that G � π is node-removal equivalent if there is a
subset VS ⊂ V (G) such that G � π = G\VS.

Cycles play an important role in the properties of graphs, and we define
here a cycle-invariant graph contraction as a contraction that preserves the
cycle structure of the full graph. To the best of our knowledge, such a relation
between contractions and cycles has not been previously defined.

Definition 2.5 (Cycle-invariant contraction). Consider a graph G and its con-
traction G � π, then we say that the contraction G � π is cycle-invariant if there
is one-to-one mapping between the set of simple cycles of the full-order graph
and the set of simple cycles of the contracted graph.
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v1 v2

v3

v5 v4

(a) Full order graph G and
its vertex partition π.

v1 v2

v3

v4

(b) The graph quotient G\π

v1 v2

v3

v4

(c) The graph contraction
G � π.

Figure 2.3: Full order graph and its quotient and contraction over the vertex
partition π = {{v1} , {v2} , {v3} , {v4, v5}}.

For example, consider the partition π = {{v1, v2, v3} , {v4} , {v5}} for the
graph shown in Figure 2.4. The resulting contraction over the graph is cycle-
invariant (Definition 2.5) with the cycle v3v4v5v3 of G mapped to the cycle
v1v2v3v1 of G � π, and is also node-removal equivalent (Definition 2.4) with
VS = {v1, v2}. Notice that if the edge {v1, v5} were added in Figure 2.4, the
same contraction would not be a cycle-invariant contraction; however, it would
still be node-removal equivalent with VS = {v1, v2}.

We derive the following three lemmas that provide combinatorial results
related to graph contractions: The first lemma (Lemma 2.1) shows that the
contraction of a subgraph obtained by removal of edges is a subgraph of the
graph contraction over the same partition. The second lemma (Lemma 2.2)
relates the connectivity of a graph contraction to the neighborhoods of the
graph. The third lemma (Lemma 2.3) dictates that if a graph is connected then
any of its contractions is connected.

Lemma 2.1 (Subgraph contraction lemma). Consider a graph G and its sub-
graph GR = G\ER for ER ⊆ E (G). Then for any π ∈ Π (G), GR � π ⊆ G � π.

Proof. For any ε̃ ∈ E (GR � π) we can find ε ∈ E (GR) such that ε̃ =
{fπ(hE (ε)), fπ (tE (ε))}. Since E (GR) ⊆ E (G), therefore ε ∈ E (G) and
{fπ(hE (ε)), fπ (tE (ε))} ∈ E (G � π). We conclude that E (GR � π) ⊆ E (G � π),
and since V (GR � π) = V (G � π) we obtain that GR � π ⊆ G � π.

Lemma 2.2. Consider a graph G and its contraction G�π for π ∈ Π (G). Then
∀u ∈ V (G) ,∀ũ ∈ V (G � π), we have u ∈ NCũ (G) if and only if fπ (u) ∼ ũ.
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v1 v2

v3

v5 v4

(a) Full order graph G and
its vertex partition π =
{{v1, v2, v3} , {v4} , {v5}}.

v1

v3 v2

(b) Cycle invariant graph and node-
removal equivalent contraction G � π.

Figure 2.4: Full order graph and its cycle-invariant and node-removal equivalent
contraction.

Proof. If u ∈ NCũ then ∃v ∈ Cũ such that u ∼ v with ε = {u, v} ∈ E (G),
and therefore {fπ (u) , fπ (v)} = {fπ (u) , ũ} ∈ E (G � π) and fπ (u) ∼ ũ. If
fπ (u) ∼ ũ, then ∃v ∈ Cũ such that u ∼ v and therefore u ∈ NCũ .

Lemma 2.3. If a graph G is connected then its graph contraction G � π is
connected.

Proof. If G is connected then ∀u, v ∈ V, there is a path uu1u2 . . . upv. For any
ũ, ṽ ∈ V (G � π) we can find u, v ∈ V such that fπ (u) = ũ and fπ (v) = ṽ. If we
then apply the partition function on the path uu1u2 . . . upv we obtain a walk
(including self loops) in G � π, ũfπ (u1) fπ (u2) . . . fπ (up) ṽ, therefore, G � π is a
connected graph.

Based on Lemma 2.2, the following proposition relates the degree of a node
in a contracted graph to its cell-neighborhood.

Proposition 2.1 (Degree-contraction). Consider a graph G and its contraction
G � π for π ∈ Π (G). Then ∀ṽ ∈ V (G � π), dṽ (G � π) = |fπ (NCṽ (G))|.
Proof. From Definition 2.1 we have

fπ (NCṽ (G)) = {i ∈ [1, r] |Ci (π) ∩NCṽ (G) 6= ∅} ,

and from Lemma 2.2 we obtain that ∀ũ, ṽ ∈ V (G � π), ṽ ∼ ũ if and only if
ũ ∈ fπ (NCṽ ) such that fπ (NCṽ ) = Nṽ (G � π), and therefore, dṽ (G � π) =
|fπ (NCṽ )|.
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

2.2.1 Graph Contraction Posets

Partially-ordered sets (posets) are an essential concept in order theory, and
a useful tool in proving graph-theoretical results [8]. Based on the one-to-
one correspondence between graph contractions and vertex partitions, we show
how graph contractions fall under the definition of a poset. We then establish
contraction chains and their corresponding contraction sequences as a basis for
proving cases of graph matrices interlacing.

Two partitions πr1 , πr2 ∈ Π (V) may comply with a refinement relation and
sets of partitions can construct chains, totally-ordered subsets of the posets.

Definition 2.6 (Refinement). Consider two partitions πr1 , πr2 ∈ Π (V) of a
vertex set V where r1 ≤ r2 ≤ |V|. Then we say πr2 is a refinement of πr1 if
∀j ∈ {1, 2, . . . , r2} we can find i ∈ {1, 2, . . . , r1} such that Cj (πr2) ⊆ Ci (πr1),
and we denote πr2 ≤ πr1 . If πr2 ≤ πr1 and r1 < r2 we denote πr2 < πr1 . An

N -chain is a partition set χ (V) = {πri}Ni=1 ⊆ Π (V) such that πr1 < πr2 < . . . <
πrN .

If two partitions πr1 , πr2 ∈ Π (V) comply with the refinement relation, we
can construct the coarsening partition δ (πr2 , πr1) ∈ Πr1 (Vr2) with

Cj (δ (πr2 , πr1)) = {k ∈ {1, 2, . . . , r2} |Ck (πr2) ⊆ Cj (πr1)} .
We can now define the coarsening sequence.

Definition 2.7 (Coarsening sequence). Consider a vertex set V and its N -chain

χ(V) ⊆ Π(V). Then we define the coarsening sequence as ∆(χ) = {δi}N−1i=1 with

δi , δ(πri+1 , πri).

The refinement relation is reflexive, anti-symmetric and transitive, therefore,
the set of partitions together with the refinement relation, (Π (V) ,≤), falls under
the definition of a finite partial-ordered set (poset). Let G = (V, E), we define
the contraction set

G � Π , {G � π|π ∈ Π (V)} ,
and define the contraction binary relation G � πr1 ≤ G � πr2 if πr1 ≤ πr2 . Since
there is a one-to-one correspondence between (G � Π,≤) and (Π (V) ,≤), the
contraction set with the contraction binary relation, (G � Π,≤), is also a poset,
and for each N -chain χ ⊆ Π (V) there is a corresponding contraction chain ,

G � χ = {G � πri}Ni=1 ⊆ G � Π.

For each coarsening sequence ∆ (χ) we can then define a corresponding con-
traction sequence, a series of graphs where each graph in the series is a graph
contraction of the former graph over the coarsening partition in the coarsening
sequence.

Definition 2.8 (Contraction sequence). Consider a graph G and an N-chain

χ(V) ⊆ Π (V (G)) with coarsening sequence ∆ (χ) = {δi}N−1i=1 . Then we define

the contraction sequence G � ∆ (χ) , {Gi}N−1i=0 with Gi = Gi−1 � δN−i and
G0 = G � πrN .
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

Proposition 2.2. Consider a graph G and its partition π ∈ Π (G), and let

χ = {πri}Ni=1 ⊆ Π (V) be a chain with πr1 = π and corresponding contraction

sequence G � ∆ (χ) = {Gi}N−1i=0 . Then GN−1 = G � π.

Proof. It is sufficient to prove for any two-chain π = πr1 < πr2 with ∆ (χ) =
δ (πr2 , πr1), i.e., G � π = (G � πr2) � δ (πr2 , πr1), and extend by induction for
N > 2. The order of G0 = G � πr2 is r2 and from the coarsening sequence
(Definition 2.7) we get that the order of G1 = (G � πr2) � δ (πr2 , πr1) is r1 = |π|,
therefore, V (G1) = V (G � π). It is left to show that E (G1) = E (G � π). Let
ε̃ ∈ E (G � π) then ∃ε ∈ EG such that ε̃ = fπ (ε). Now let ε1 = fπr2 (ε) and
ε2 = fδ (ε1), from the coarsening sequence (Definition 2.7) we then obtain that
the end nodes of ε2 are the end nodes of ε̃, therefore, E (G1) = E (G � π).

Corollary 2.1 (Atom-contraction sequence). Consider a graph G and its par-

tition π ∈ Πr (G) for r < n. Then there exists a chain χ (V) = {πri}n−r+1
i=1 ⊆

Π (Vn) such that G � ∆ (χ) = {Gi}n−ri=0 is an atom contraction sequence, i.e.,
δ
(
πri+1 , πri

)
is an atom-partition.

Proof. Choose πr1 = π (Vn), and then construct πr2 by extracting a singleton
from a non-singleton cell of π. Continue to extract singleton cells until all cells
are singletons, i.e., πrN = πn (Vn). The number of singleton extractions of
non-singleton cells in an r-partition is n− r, therefore, N = n− r + 1.

For example, consider the 2-chain χ (V5) = {π2, π3} with

π2 (V5) =




{v1, v2, v3}︸ ︷︷ ︸

C1

, {v4, v5}︸ ︷︷ ︸
C2




, and π3 (V5) =




{v1, v2}︸ ︷︷ ︸

C1

, {v3}︸︷︷︸
C2

, {v4, v5}︸ ︷︷ ︸
C3




.

We have C1 (π3) , C2 (π3) ⊆ C1 (π2) and C3 (π3) ⊆ C2 (π2), therefore, π3 <
π2. We can then construct the coarsening sequence ∆ (χ) = δ (π3, π2) with
δ(π3, π2) = {{1, 2}︸ ︷︷ ︸

C1

, {3}︸︷︷︸
C2

}. The resulting graph contraction sequence is presented

in Figure 2.5.

2.2.2 Edge-Based Graph Contractions

Graph contractions are defined over vertex partitions. However, there is also
an edge-based approach to perform graph contractions. Our contribution here
is the definition of edge-induced partitions and their utility as a combinatorial
relation between edge-based contractions and vertex-based contractions.

Definition 2.9 (Edge-induced partition). Consider a graph G and an edge
contraction set Ecs ⊂ E(G) with |Ecs| = n − r . Then we define the edge-
induced partition πc (G, Ecs) as the connected components partition of the graph
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v1
v2

v3

v4v5

G

v1

v2

v1

v2

v3v4

G0 = G � π3 G1 = G0 � δ

Figure 2.5: Graph contraction sequence.

Gc (G, Ecs) = (V (G) , Ecs), i.e., πc (G, Ecs) = πcc (Gc (G, Ecs)). The set of all edge
contraction sets of cardinality p is defined as

Ξp (G) , {Ecs ⊂ E (G) | |Ecs| = p} .

With the edge contraction partition definition we can define an edge-based
graph contraction.

Definition 2.10 (Edge-based graph contraction). Consider a graph G and an
edge contraction set Ecs ∈ Ξn−r (G) for r < n. Then the edge-based contraction
is defined as the contraction over the edge-induced partition, i.e., G � Ecs =
G � πc (G, Ecs).

In this work we find that a class of edge-matching contractions has interlacing
properties.

Definition 2.11 (Edge-matching contraction). Consider a graph G and an edge
contraction set Ecs ∈ Ξn−r (G) for r < n. Then G�Ecs is an edge-matching con-
traction if there is one-to-one correspondence between E (G) \Ecs and E (G � Ecs).

A graph contraction cannot create new edges, therefore, edge-matching (Def-
inition 2.11) is equivalent to |E (G) \Ecs| = |E (G � Ecs)|.
Proposition 2.3. Consider a graph G and an edge contraction set Ecs ∈
Ξn−r (G). Then if G � Ecs is cycle-invariant (Definition 2.5) it is also edge-
matching (Definition 2.11).

Proof. If G � Ecs is cycle-invariant then from Definition 2.5 the edges in Ecs are
not part of any cycle of G. Therefore, the contraction does not map any two
edges in E (G) \Ecs to a single edge in E (G � Ecs), otherwise they would have
been part of a cycle with an edge in Ecs, and we obtain that |E (G) \Ecs| =
|E (G � Ecs)|.
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Proposition 2.4. Consider a graph G and a node v ∈ V (G), and let πcc (G\v)
be the connected component partition of G\v, then for Ci ∈ πcc (G\v) and Ecs =
E (G [Ci ∪ v]), the contraction G�Ecs is node-removal equivalent (Definition 2.4)
with VS = Ci, and is also edge-matching (Definition 2.11).

Proof. Since Ci is a connected component of G\E (G [Nv ∪ v]) then v is the
only node in any path between Ci and V (G) \ {Ci ∪ v}, therefore, by choosing
VS = Ci the graph G\Ci removes all edges E (G [Ci]) and all edges connecting
Ci to V (G) \Ci which are the edges between Ci and v and we obtain that
G\Ci = G�E (G [Ci ∪ v]), i.e., the contraction G�Ecs is node-removal equivalent
(Definition 2.4). Furthermore, contracting all edges E (G [Ci ∪ v]) does not effect
any other edges in G such that |E (G) \Ecs| = |E (G � Ecs)| and we obtain that
G � Ecs is edge-matching.

We can choose a subset of tree edges to create a tree-based contraction of a
graph.

Definition 2.12 (tree-based contraction). Consider a graph G and its spanning
tree T ∈ T (G) with an edge contraction set Ecs ∈ Ξn−r (T ). Then G � Ecs is a
tree-based contraction.

For example, the graph contraction G�π presented in Figure 2.4 can also be
performed as an edge-based contraction G � Ecs with Ecs = {{v1, v3} , {v2, v3}}
and a tree-based contraction (Definition 2.12).

If the contraction edge set is a subset of the edges of a spanning tree, then
the contracted tree edges will form a spanning tree of the contracted graph.

Proposition 2.5. Consider a graph G and its spanning tree T ∈ T (G) with an
edge contraction set Ecs ∈ Ξn−r (T ). Then T � Ecs ∈ T (G � Ecs), i.e., T � Ecs
is a tree of order r of the contracted graph.

Proof. A tree of order n has n − 1 edges, and by contracting n − r tree edges
we are left with (n− 1) − (n− r) edges, such that |E (T � Ecs)| = r − 1. It is
left to show that T � Ecs (T ) ⊆ G � Ecs (T ). From Lemma 2.3 we obtain that
T �Ecs is connected, therefore, T �Ecs is a connected graph of order r with r−1
edges, which is a tree of order r. Since Ecs (T ) ⊆ E (G) we have πc (T , Ecs (T )) =
πc (G, Ecs (T )), and since T = G\E (C) we obtain from the subgraph contraction
lemma (Lemma 2.1) that T � πc (T , Ecs (T )) ⊆ G � πc (T , Ecs (T )) and conclude
that T � Ecs (T ) ⊆ G � Ecs (T ), and therefore, T � Ecs (T ) ∈ T (G � Ecs).
Proposition 2.6. Consider a graph G and an edge contraction set Ecs ∈
Ξn−r (G). Then ∀ṽ ∈ V (G � Ecs)

dṽ (G � Ecs) ≤


 ∑

v∈Cṽ(π)
dv (G)


− 2 (|Cṽ (π)| − 1) , (2.1)

where π = πc (G, Ecs).
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Proof. From Proposition 2.1 we obtain that dṽ (G � π) = |fπ (NCṽ )|. We have
|fπ (NCṽ )| ≤ |NCṽ | and since Cṽ (π) ∈ πc is a connected component of G we get

|NCṽ | ≤


 ∑

v∈Cṽ(π)
dv (G)


− 2 |E (G [Cṽ (π)])| .

The number of edges in the cell |E (G [Cṽ (π)])| is at least the number of
spanning tree edges, therefore, |E (G [Cṽ (π)])| ≥ |Cṽ (π)| − 1, and we obtain
that

dṽ (G � Ecs) ≤


 ∑

v∈Cṽ(π)
dv (G)


− 2 (|Cṽ (π)| − 1) ,

completing the proof.

Corollary 2.2. Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G)
for r < n. Then if G � Ecs is cycle-invariant (Definition 2.4) then ∀ṽ ∈
V (G � Ecs),

dṽ (G � Ecs) =


 ∑

v∈Cṽ(π)
dv (G)


− 2 (|Cṽ (π)| − 1) , (2.2)

where π = πc (G, Ecs).

Proof. Since ∀ṽ ∈ V (G � Ecs) Cṽ (π) is a connected component of G, and G �
Ecs is cycle-invariant then |fπ (NCṽ )| = |NCṽ | and G [Cṽ (π)] is a tree of order
|Cṽ (π)|, such that from Proposition 2.1 we obtain that

dṽ (G � Ecs) =


 ∑

v∈Cṽ(π)
dv (G)


− 2 (|Cṽ (π)| − 1) .

Corollary 2.3. If a graph G is a tree then G � Ecs is edge-matching for any
Ecs ∈ Ξn−r (G).

Proof. If G is a tree then G � Ecs is cycle-invariant for any Ecs ∈ Ξn−r (G) and
from Proposition 2.3 we obtain that G � Ecs is edge-matching.

In the following section we investigate the algebraic relations between the
algebraic representations of graphs and contracted graphs.
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2.3 The Algebraic Representation of Con-
tracted Graphs

The algebraic representation of graphs, such as Laplacian matrices, finds nu-
merous applications [16]. Less known are the algebraic representations of graph
contractions as a function of the full order graph representation. In this section,
we derive, for the first time, several graph representations of contracted graphs
such as the incidence matrix, Laplacian and normalized-Laplacian matrices and
the Tucker representation.

The following definitions will be used throughout this section. We start by
defining the partition characteristic matrix (PCM) and the partition projection
matrix (PPM), which are the algebraic representations of vertex partitions and
will be building blocks for following representations of graph contractions. They
will also be useful in our application of graph contractions for model reduction
of MAS.

Definition 2.13 (Partition projection matrix). Given an r-partition π =
{Ci}ri=1, we define Pπ ∈ Rn×r, the partition characteristic matrix (PCM) with
entries [Pπ]ij = 1 if i ∈ Cj, and 0 otherwise, i.e., for vi ∈ V and vrj ∈ Vr

[Pπ]ij =

{
1 fπ (vi) = vrj
0 o.w.

(2.3)

The corresponding partition projection matrix (PPM) is

P (π) , PπD
− 1

2 (π) , (2.4)

where
D (π) , PTπ Pπ. (2.5)

We now define several algebraic structures related to the edges of a graph
that will be required for the following derivations.

Definition 2.14 (Edge contraction function). Consider a graph G and its
graph contraction G � π with head and tail functions hE , tE and hEr , tEr re-
spectively, where Er , E (G � π). Then the edge contraction function p :
E (G)× E (G � π)→ {±1, 0} is defined such that

p (ε, εr) =





1 fπ (hE (ε)) = hEr (εr) and fπ (tE (ε)) = tEr (εr)
−1 fπ (hE (ε)) = tEr (εr) and fπ (tE (ε)) = hEr (εr)
0 otherwise.

(2.6)

Definition 2.15 (Edge contraction matrix). Consider a graph G = (V, E) and
its graph contraction G � π = (Vr, Er), and let ES ⊆ E and ESr ⊆ Er. Then the
edge contraction matrix P(ES ,ESr ) ∈ R|ES |×|ESr | is defined such that

[
P(ES ,ESr )

]
km

= p (εk, ε
r
m) , (2.7)
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for εk ∈ ES and εrk ∈ ESr . The corresponding normalized edge contraction matrix
is defined as

U(ES ,ESr ) , P(ES ,ESr )D
†
(ES ,ESr ) (2.8)

with
D(ES ,ESr ) , PT(ES ,ESr )P(ES ,ESr ). (2.9)

The matrix D(ES ,ESr ) has a combinatorial interpretation given here.

Proposition 2.7. Consider a graph G = (V, E) and its graph contraction G�π =
(Vr, Er), and let ES ⊆ E and ESr ⊆ Er. Then D(ES ,ESr ) is diagonal where each
entry on the diagonal is the number of edges of ES mapped to each edge of ESr ,
i.e., [

D(ES ,ESr )
]
ii

= |{ε ∈ ES} |fπ (ε) = εri | . (2.10)

Proof. Let pi ∈ R|ESr | be the i’th column of P(ES ,ESr ) corresponding to εri ∈ ESr ,
then

[
D(ES ,ESr )

]
ij

= pTi pj =
∑|E|
k=1 p (εk, ε

r
i ) p

(
εk, ε

r
j

)
. For i 6= j if p (εk, ε

r
i ) =

±1 then p
(
εk, ε

r
j

)
= 0, such that

[
D(ES ,ESr )

]
ij

= 0. For i = j p (εk, ε
r
i ) = ±1 if

fπ (εk) = εri and we get pTi pi =
∑|E|
k=1 p

2 (εk, ε
r
i ) = |{ε ∈ ES |fπ (ε) = εri }|.

Based on the above definitions, in the following subsection we derive alge-
braic representations of the incidence matrix of graph contractions.

2.3.1 The Contracted Incidence Matrix

We start this subsection by deriving the algebraic representation of the incidence
matrix of the quotient graph (Definition 2.2) E (G/π) as the product of the
incidence matrix E (G) of the original graph and the PCM Pπ.

Proposition 2.8 (Quotient incidence matrix). Consider a graph G = (V, E)
with incidence matrix E (G) (Definition 1.1) and partition π ∈ Πr (G) for r < n
and PCM Pπ. Then incidence matrix of the quotient G/π takes the form

E (G/π) = PTπE (G) . (2.11)

Proof. Let ej ∈ Rn be the j’th column of E (G) corresponding to edge εj ∈ E (G),

[ej ]k =





1 hE (εj) = vk

−1 tE (εj) = vk

0 o.w.

, (2.12)

and let pi ∈ Rn be the i’th column of Pπ corresponding to the i’th cell Ci ∈ π,

[pi]k =

{
1 vk ∈ Ci
0 o.w.

. (2.13)
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From the product of (2.13) and (2.12) we obtain that

pTi ej =





−1 tE (εj) ∈ Ci, hE (εj) /∈ Ci
1 tE (εj) /∈ Ci, hE (εj) ∈ Ci
0 tE (εj) ∈ Ci, hE (εj) ∈ Ci
0 tE (εj) /∈ Ci, hE (εj) /∈ Ci

. (2.14)

Now let G/π be the quotient of G over π with edge set Ẽ = E (G/π), then
the jth column of E (G/π), ẽj ∈ Rr, takes the form

[ẽj ]k =





−1 tẼ (ε̃j) = vrk, hẼ (ε̃j) 6= vrk
1 tẼ (ε̃j) 6= vrk, hẼ (ε̃j) = vrk
0 tẼ (ε̃j) = vrk, hẼ (ε̃j) = vrk
0 tẼ (ε̃j) 6= vrk, hẼ (ε̃j) 6= vrk

. (2.15)

As according to Definition 2.2, tẼ (ε̃j) = vrk for ε̃j ∈ Ẽ and vrk ∈ V (G/π) if
and only if tE (εj) ∈ Ci for εj ∈ E and Ci ∈ π, and similarly all other conditions
in (2.14) and (2.15) are equivalent, therefore, we conclude that [ẽj ]k = pTi ej ,
and E (G/π) = PTπE (G).

Proposition 2.9 (Graph contraction incidence matrix). Let G = (V, E) and
G � π = (Vr, Er) with head and tail functions hE , tE and hEr , tEr respectively,
for π ∈ Πr (G). Then the contracted graph incidence matrix E (G � π) takes the
form

E (G � π) = PTπE (G)U(E,Er). (2.16)

Proof. From Proposition 2.8 we obtain that E (G/π) = PTπ E (G). It is left
to show that E (G � π) = E (G/π)U(E,Er). Let erj ∈ Rr be the jth column of
E (G � π) corresponding to edge εrj ∈ Er,

[
erj
]
k

=





1 hEr
(
εrj
)

= vrk
−1 tE

(
εrj
)

= vrk
0 o.w.

. (2.17)

Now let G/π =
(
Vr, Ẽ

)
, then the jth column of E (G/π), ẽj ∈ Rr, takes the

form

[ẽj ]k =





−1 tẼ (ε̃j) = vrk, hẼ (ε̃j) 6= vrk
1 tẼ (ε̃j) 6= vrk, hẼ (ε̃j) = vrk
0 tẼ (ε̃j) = vrk, hẼ (ε̃j) = vrk
0 tẼ (ε̃j) 6= vrk, hẼ (ε̃j) 6= vrk

. (2.18)

From Definition 2.3 the contracted graph is G � π = ([1, r] , Er) where

Er =
{
εr ∈ [1, r]

2 |εr ∈ E (G/π) , hE (εr) 6= tE (εr)
}
.
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Taking the product of E (G/π) and U(E,Er) (Definition 2.15) we get

[
E (G/π)U(E,Er)

]
jk

=
1

d (εrk)

|E|∑

t=1

p (εt, ε
r
k) [ẽt]k =





1 hEr
(
εrj
)

= vrk
−1 tE

(
εrj
)

= vrk
0 o.w.

,

where from Proposition 2.7 we have d (εrk) =
[
D(ES ,ESr )

]
kk

and we obtain that[
E (G/π)U(E,Er)

]
jk

=
[
erj
]
k

such that E (G � π) = PTπE (G)U(E,Er).

2.3.2 The Contracted Laplacian Matrix

The Laplacian matrix plays a key role in algebraic graph theory. We recall that
for a simple undirected graph, the Laplacian matrix L (G) ∈ R|V|×|V| can be
constructed as

L (G) = E (G)E (G)
T
.

In this section we present the general algebraic relation between the Lapla-
cian of the full graph G and the Laplacian of the contracted graph Gr = G � π.
We will also investigate the edge Laplacian matrix and the normalized Laplacian
matrix of graph contractions.

Definition 2.16 (Edge Laplacian matrix). Consider a graph G = (V, E) with
head and tail functions hE , tE , and incidence matrix E (G) (Definition 1.1) then
the edge Laplacian Le (G) ∈ R|E|×|E| is defined as [68]

Le (G) , ET (G)E (G) .

Definition 2.17 (Normalized Laplacian matrix). Let G = (V, E) be a simple
connected graph with Laplacian L (G). Then the normalized Laplacian matrix
L (G) ∈ R|V|×|V| is defined as

L (G) , D−
1
2 (G)L (G)D−

1
2 (G)

where D (G) ∈ R|V|×|V| is the degree matrix, a diagonal matrix with entries
[D (G)]ii = d (vi).

The following theorem provides the algebraic representations of the three
Laplacian matrices of a graph contraction as a function of algebraic representa-
tions of the full-order graph.

Theorem 2.1 (Contracted Laplacian matrices). Consider a graph G = (V, E)
and its contraction Gr = G � π, for π ∈ Πr (G), with head and tail functions
hE , tE and hEr , tEr respectively. Then the contracted graph Laplacian matrices
take the forms

L (Gr) = PTπE (G)U(E,Er)U
T
(E,Er)E

T (G)Pπ, (2.19)

Le (Gr) = UT(E,Er)Le (G/π)U(E,Er), (2.20)

L (Gr) = D−
1
2 (Gr)PTπ E (G)U(E,Er)U

T
(E,Er)E

T (G)PπD
− 1

2 (Gr) . (2.21)
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Proof. The Laplacian matrix of the contracted graph is L (Gr) = E (Gr)ET (Gr)
and with E (Gr) = PTπE (G)U(E,Er) from Proposition 2.9, the reduced Laplacian
matrix L (Gr) = E (Gr)ET (Gr) takes the form

L (Gr) = PTπE (G)U(E,Er)U
T
(E,Er)E

T (G)Pπ.

Similarly Le (Gr) , ET (Gr)E (Gr) with E (Gr) = PTπE (G)U(E,Er) takes the
form

Le (Gr) = UT(E,Er)E
T (G)PπP

T
π E (G)U(E,Er),

and

L (Gr) , D−
1
2 (Gr)L (Gr)D−

1
2 (Gr)

= D−
1
2 (Gr)PTπ E (G)U(E,Er)U

T
(E,Er)E

T (G)PπD
− 1

2 (Gr) .

2.3.3 The Graph Contraction Tucker Representation

Trees and cycle-completing edges are the building blocks of any connected graph,
and the edges of a graph can be ordered accordingly as defined be the tree
partition matrix.

Definition 2.18 (Edge selection matrix). Consider a graph G = (V, E) with a
subset of edges ES ⊆ E (G). Then we define the edge selection matrix M (E , ES)
where

[M (E , ES)]ij =

{
1 εi (E) = εj (ES)
0 o.w.,

(2.22)

for i = 1, . . . , |E| and j = 1, . . . , |ES |.
Definition 2.19 (Tree partition matrix). Let G = (V, E) be a simple connected
graph and let T ∈ T (G) be a tree of G with co-tree C (T ). Then we define the
tree partition matrix as the permutation

MT = [M (E , ET ) ,M (E , EC)] . (2.23)

The tree and co-tree structure of the graph is described by the Tucker rep-
resentation [53, p.113].

Definition 2.20 (Tucker representation). The Tucker representation of the
co-tree is the matrix T(T ,C) ∈ R|E(T )|×|E(C)| where the jth column of T(T ,C) is

the signed path vector (Definition 1.4) tj ∈ R|E(T )| of the corresponding edge
εj ∈ E (C).
Proposition 2.10 (Incidence matrix tree mapping). Let G = (V, E) be a simple
connected graph with head and tail functions, hE , tE , and let T ∈ T (G) be a tree
of G with co-tree C (T ). Then the incidence matrix takes the form [69]

E (G) = E (T )R(T ,C)M
T
T , (2.24)

where R(T ,C) ,
[
I|ET | T(T ,C)

]
.
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Proof. From Definition 2.19 we obtain that [E (T ) E (C)] = E (G)MT , MT
is a permutation matrix and therefore MTMT

T = I|ET |and we get E (G) =
[E (T ) E (C)]MT

T . From the Tucker representation (Definition 2.20) we obtain
that E (C) = E (T )T(T ,C). The rank of an incidence matrix of a connected graph
of order n is n − 1 [25], therefore, E (T ) ∈ Rn×n−1 has full column rank and

Le (T ) = E (T )
T
E (T ) is invertible, such that T(T ,C) = L−1e (T )E (T )

T
E (C)

and we obtain that [E (T ) E (C)] = E (T )
[
I|ET | T(T ,C)

]
.

Proposition 2.11. Let G and Gr = G�π with head and tail functions hE , tE and
hEr , tEr respectively, and let T ∈ T (G) and Tr ∈ T (Gr) with co-trees C and Cr
respectively. If we reorder the edge sets E and Er according to the permutations
MT and MTr , then the edge contraction matrix of the permuted sets E ′ and E ′r
takes the form

P(E′ ,E′r) =

[
P(ET ,ETr ) P(ET ,ECr )
P(EC,ETr ) P(EC,ECr )

]
, (2.25)

and the normalized edge contraction matrix takes the form

U(E,′E′r) =

[
P(ET ,ETr )D

−1
Tr P(ET ,ECr )D

†
Cr

P(EC,ETr )D
−1
Tr P(EC,ECr )D

†
Cr

]
, (2.26)

with DTr , PT(ET ,ETr )P(ET ,ETr ) + PT(EC,ETr )P(EC,ETr ) and DCr ,
PT(ET ,ECr )P(ET ,ECr ) + PT(EC,ECr )P(EC,ECr ).

Proof. The edge contraction matrix P(E,′E′r) is obtained by applying the tree

partition matrices MT and MTr on P(E,Er),

P(E,′E′r) = MT
T P(E,Er)MTr

= [M (E , ET ) ,M (E , EC)]T P(E,Er) [M (Er, ETr ) ,M (Er, ECr )] ,

=

[
MT (E , ET )P(E,Er)M (Er, ETr ) MT (E , ET )P(E,Er)M (Er, ECr )
MT (E , EC)P(E,Er)M (Er, ETr ) MT (E , EC)P(E,Er)M (Er, ECr )

]
.

Since ET , EC ⊆ E and ETr , ECr ⊆ Er, then from Definition 2.18 and Definition
2.15 we obtain that

MT (E , ET )P(E,Er)M (Er, ETr ) = P(ET ,ETr ), (2.27)

MT (E , ET )P(E,Er)M (Er, ECr ) = P(ET ,ECr ), (2.28)

MT (E , EC)P(E,Er)M (Er, ETr ) = P(EC,ETr ) (2.29)

and
MT (E , EC)P(E,Er)M (Er, ECr ) = P(EC,ECr ). (2.30)
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Expanding D(E′ ,E′r) with P(E,′E′r) = MT
T P(E,Er)MTr we obtain

D(E′ ,E′r) =
(
MT
T P(E,Er)MTr

)T (
MT
T P(E,Er)MTr

)

= MT
TrP

T
(E,Er)MTM

T
T P(E,Er)MTr

= MT
TrP

T
(E,Er)P(E,Er)MTr

= [M (Er, ETr ) ,M (Er, ECr )]T D(E,Er) [M (Er, ETr ) ,M (Er, ECr )] ,

and since D(E,Er) is diagonal we get that D(E′ ,E′r) = Diag (DTr , DCr ) with

DTr , PT(ET ,ETr )P(ET ,ETr ) + PT(EC,ETr )P(EC,ETr )

and
DCr , PT(ET ,ECr )P(ET ,ECr ) + PT(EC,ECr )P(EC,ECr ).

We notice that DTr is regular and DCr may be singular. Expanding

U(E,′E′r) = P(E′ ,E′r)D
†
(E′ ,E′r)

completes the proof.

Proposition 2.12. Let G = (V, E), T ∈ T (G) and Ecs ∈ Ξn−r (T ), and let Gr =
G � Ecs, with Tr = T � Ecs and Cr = C (Tr). Then P(ET ,ETr ) = M (ET , ET \Ecs)
and P(ET ,ECr ) = 0. If in addition G �Ecs is cycle-invariant (Definition 2.5) then

U(E,Er) = P(E,Er) = M (E , E\Ecs), where M (E , E\Ecs) = MT P(E′ ,E′r)M
T
Tr and

P(E′ ,E′r) = Diag
(
M (ET , ET \Ecs) , I|EC|

)
.

Proof. We have ET = E∗cs ∪ Ecs where E∗cs , ET \Ec. Since Tr = T � Ecs from
Proposition 2.5 we get that there is a one-to-one correspondence between E∗cs and
ETr such that P(ET ,ECr ) = 0 and

[
P(ET ,ETr )

]
ij

= 1 if εi (ET ) = εj (E∗cs) and zero

otherwise, which is exactly how M (ET , ET \Ecs) is defined (Definition 2.18). If
G�Ecs is cycle-invariant then there is one-to-one correspondense between C and
Cr such that P(EC,ECr ) = I|EC| and P(EC,ETr ) = 0. We then get from Proposition
that DTr = I|ETr | and DCr = I|EC| and

U(E,′E′r) = P(E′ ,E′r) =

[
M (ET , ET \Ecs) O|ETr |×|EC |
O|EC |×|ETr | I|EC|

]
. (2.31)

Multiplying by MT and MTr we get U(E,Er) = P(E,Er) = M (E , E\Ecs) where
M (E , E\Ecs) = MT P(E′ ,E′r)M

T
Tr .

Proposition 2.10 allows us to derive the following Tucker representation of
graph contractions.
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Theorem 2.2 (Contracted Tucker representation). Let G = (V, E) and G�π =
(Vr, Er), π ∈ Πr (G), with head and tail functions hE , tE and hEr , tEr respectively,
and let T ∈ T (G) and Tr ∈ T (G � π) with cycle completing graphs C (T ) and
Cr = C (Tr). Then the contracted tree graph and contracted cycle-completing
graph incidence matrices take the forms

E (Tr) = PTπE (T )U(T ,Tr), (2.32)

and
E (Cr) = PTπE (T )U(T ,Cr), (2.33)

and the Tucker representation of the graph contraction is

T(Tr,Cr) = L−1π (T , Tr)UT(T ,Tr)Le (T /π)U(T ,Cr), (2.34)

where
Le (T /π) = ET (T )PπP

T
π E (T ) (2.35)

is the edge Laplacian of the quotient T /π and we define

Lπ (T , Tr) , UT(T ,Tr)Le (T /π)U(T ,Tr) (2.36)

and
U(T ,Tr) ,

(
P(ET ,ETr ) + T(T ,C)P(EC,ETr )

)
D−1Tr , (2.37)

U(T ,Cr) ,
(
P(ET ,ECr ) + T(T ,C)P(EC,ECr )

)
D†Cr . (2.38)

Proof. Using
E (Gr) = PTπE (G)U(E,Er),

E (Gr) = [E (Tr) E (Cr)]MT
Tr

and
E (G) = E (T )R(T ,C)M

T
T

we get
[E (Tr) E (Cr)]MT

Tr = PTπ E (T )R(T ,C)M
T
T U(E,Er).

Multiplying by MTr and with

MT
TrMTr = I|ETr |

and
U(E′,E′r) = MT

T U(E,Er)MTr

the normalized edge reduction matrix (Eq. (2.26)) we get

[E (Tr) E (Cr)] = PTπ E (T )R(T ,C)U(E′,E′r). (2.39)

Expanding R(T ,C) and U(E′,E′r) we get E (Tr) = PTπ E (T )U(T ,Tr) and E (Cr) =

PTπ E (T )U(T ,Cr) with U(T ,Tr) and U(T ,Cr) given in Eq.(2.37) and Eq.(2.38). Ex-
panding the Tucker representation of the contracted graph

T(Tr,Cr) = L−1e (Tr)E (Tr)T E (Cr) , (2.40)

with Eq.(2.32) and Eq.(2.33) we obtain Eq. (2.3.5).
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Proposition 2.13. Let G = (V, E), T ∈ T (G) and Ecs ∈ Ξn−r (T ), and let
Gr = G�Ecs, with Tr = T �Ecs and Cr = C (Tr). Then if G�Ecs is cycle-invariant
(Definition 2.5) then the Tucker representation of the graph contraction is

T(Tr,Cr) = MT (ET , ET \Ecs)T(T ,C). (2.41)

Proof. From Proposition 2.12 we obtain that P(ET ,ETr ) = M (ET , ET \Ecs) and
P(ET ,ECr ) = 0, and since G � Ecs is cycle-invariant then P(EC,ETr ) = 0 and
P(EC,ECr ) = I|EC|. From Theorem 2.2 we then obtain

U(T ,Tr) = M (ET , ET \Ecs) ,

U(T ,Cr) = T(T ,C),

E (Tr) = PTπE (T )M (ET , ET \Ecs) ,
E (Cr) = PTπE (T )T(T ,C)

and
T(Tr,Cr) = L−1π (T )MT (ET , ET \Ecs)Le (T /Ecs)T(T ,C).

We notice that

I|ET | = M (ET , ET \Ecs)MT (ET , ET \Ecs) +M (ET , Ecs)MT (ET , Ecs)

such that

T(Tr,Cr) = MT (ET , ET \Ecs)T(T ,C)
+ L−1π (T )MT (ET , ET \Ecs)Le (T /Ecs)M (ET , Ecs)MT (ET , Ecs)T(T ,C).

We have

Le (T /Ecs)M (ET , Ecs) = ET (T /Ecs)E (T /Ecs)M (ET , Ecs)

and from Proposition 2.8 we obtain that E (T /Ecs)M (ET , Ecs) = 0, such that

T(Tr,Cr) = MT (ET , ET \Ecs)T(T ,C).

2.3.4 Summary of Definitions of Graph Contraction Alge-
braic Representations

For clarity and easiness of reading, Table 2.1 summarizes summarizes definitions
of graph contraction algebraic representations used throughout this chapter.
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Table 2.1: Summary of definitions of graph contraction algebraic representa-
tions.

Definition Symbol Expression

Partition
characteristic
matrix

Pπ

[Pπ]ij =

{
1 fπ (vi) = vrj
0 o.w.

for vi ∈ V and vrj ∈ Vr.

Partition pro-
jection matrix

P (π)
P (π) = PπD

− 1
2 (π)

where
D (π) = PTπ Pπ

Edge contrac-
tion matrix

P(ES ,ESr )

[
P(ES ,ESr )

]
km

= p (εk, ε
r
m) ,

for εk ∈ ES and εrk ∈ ESr .

Normalized
edge contrac-
tion matrix

U(ES ,ESr )

U(ES ,ESr ) = P(ES ,ESr )D
†
(ES ,ESr )

where
D(ES ,ESr ) = PT(ES ,ESr )P(ES ,ESr )

Incidence ma-
trix

E (G)

[E(G)]ij =





1 hE (εj) = vi
−1 tE (εj) = vi
0 otherwise

Laplacian ma-
trix

L (G) L (G) = E (G)ET (G)

Edge Laplacian
matrix

Le (G) Le (G) = ET (G)E (G)

Normalized
Laplacian
matrix

L (G)
L (G) = D−

1
2 (G)L (G)D−

1
2 (G)

where
[D (G)]ii = d (vi)

Edge selection
matrix

M (E , ES)
[M (E , ES)]ij =

{
1 εi (E) = εj (ES)
0 o.w.,

for
i = 1, . . . , |E| and j = 1, . . . , |ES |

35

 

 

 



Chapter 2. Graph Contractions and Their Spectral Interlacing Properties
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G � πG

Figure 2.6: An example of a graph G and its contraction G�π over a 3-partition
π (G) = {C1, C2, C3} with C1 = {v1, v4}, C2 = {v2} and C3 = {v3}.

2.3.5 An Illustrative Example

The following example illustrates the above definitions and derivations of alge-
braic representations for graph contractions. Consider a graph G = (V, E) of
order 4 and its graph contraction G � π, shown in Figure 2.6.

The corresponding PCM and PPM (Definition 2.13) are given in Table
2.2. The edges E (G) are (with assigned direction) ε1 = (v1, v2), ε2 = (v1, v3),
ε3 = (v2, v3) and ε4 = (v3, v4), and the edges Er = E (G � π) are (with assigned
direction) εr1 = (v1, v2), εr2 = (v1, v3), εr3 = (v2, v3). The resulting edge contrac-
tion matrix and the normalized edge contraction matrix (Definition 2.15) for
this example are given in Table 2.2

We now examine for the same graph contraction example (Figure 2.6) the
incidence and Laplacian matrices of the graph and contracted graph (Table 2.3).
It can be verified that as according to Proposition 2.9 and Theorem 2.1 that

E (G � π) = PTπ E (G)U(E,Er)

and
L (Gr) = PTπE (G)U(E,Er)U

T
(E,Er)E

T (G)Pπ

Le (Gr) = UT(E,Er)Le (G/π)U(E,Er)

where Pπ and U(E,Er) are given in Table 2.2.
In order to demonstarte the Tucker representation of the graph contraction

we choose a spanning tree T with edges ε1 (E (T )) = (v1, v2), ε2 (E (T )) =
(v2, v3) and ε3 (E (T )) = (v3, v4). The co-tree C edges are then ε1 (E (C)) =
(v1, v3). The spanning tree Tr of the reduced graph G�π has edges ε1 (E (Tr)) =
(vr1, v

r
2) and ε2 (E (Tr)) = (vr2, v

r
3) and the co-tree Cr edges are then ε1 (E (Cr)) =

(vr1, v
r
3). The Tucker representations T(T ,C) and T(Tr,Cr) of the full graph and

the graph contraction are given in Table 2.2. It can be verified that as according
to Theorem 2.2 that

T(Tr,Cr) = L−1π (T )UT(T ,Tr)Le (T /π)U(T ,Cr).,
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Table 2.2: Example of the PCM, PPM and (normalized) edge contraction matrix
of a graph contraction.

Algebraic representation Symbol Value

PCM Pπ




1 0 0
0 1 0
0 0 1
0 0 −1




PPM P (π)




1√
2

0 0

0 1 0
0 0 1
1√
2

0 0




Edge contraction matrix P(E,Er)




1 0 0
0 1 0
0 0 1
0 −1 0




Normalized edge contraction matrix U(E,Er)




1 0 0
0 1

2 0
0 0 1
0 − 1

2 0




In the next section we derive efficient algorithms for finding Laplacian-
interlacing graph contractions, based on a novel min-max interlacing theorem.

2.4 Interlacing Graph Contractions

The interlacing property of matrices has been extensively studied with classic
algebraic results such as the Poincare separation theorem [5, p. 119], and ma-
trix combinatorial results such as the relation of equitable partitions with tight
interlacing [26]. Here we study what types of reduced graphs have interlacing
graph matrices. We start by defining spectral interlacing. The spectrum of a
real symmetric matrix A ∈ Rn×n is the set of eigenvalues {λk (A)}nk=1. In this
chapter we always take λk as the kth eigenvalue of A in ascending order.

Definition 2.21 (Interlacing). Let A ∈ Rn×n and B ∈ Rr×r be real symmetric
matrices with 0 < r < n. Then the eigenvalues of B interlace the eigenvalues
of A, denoted B ∝ A, if λk (A) ≤ λk (B) ≤ λn−r+k (A) for k = 1, 2, . . . , r. The
interlacing is tight if λk (A) = λk (B) or λk (B) = λn−r+k (A) for k = 1, 2, . . . , r.

It is straight forward to show that interlacing is a transitive property.

Proposition 2.14. Let A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 and A3 ∈ Rn3×n3 be real
symmetric matrices with 0 < n3 < n2 < n1. If A3 ∝ A2 and A2 ∝ A1, then
A3 ∝ A1.
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Table 2.3: Example of incidence and Laplacian matrices and the Tucker repre-
sentation of a graph contraction.

Algebraic representation Symbol Value

Incidence matrix E (G)




−1 −1 0 0
1 0 −1 0
0 1 1 −1
0 0 0 1




Incidence matrix E (G � π)



−1 1 0
1 0 −1
0 −1 1




Laplacian matrix L (G)




2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1




Laplacian matrix L (G � π)




2 −1 −1
−1 2 −1
−1 −1 2




Edge Laplacian matrix Le (G)




2 1 −1 0
1 2 1 −1
−1 1 2 −1
0 −1 −1 2




Edge Laplacian matrix Le (G � π)




2 1 −1
1 2 1
−1 1 2




Tucker representation T(T ,C)
[

1 1 0
]T

Tucker representation T(Tr,Cr)
[

1 1
]T
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Proof. From A3 ∝ A2 and A2 ∝ A1 we have λk (A2) ≤ λk (A3) ≤ λn2−n3+k (A2)
for k = 1, 2, . . . , n3 and λl (A1) ≤ λl (A2) ≤ λn1−n2+l (A1) for l = 1, 2, . . . , n2.
From l = k we get λk (A1) ≤ λk (A2) ≤ λk (A3), and from l = n2 − n3 + k we
get λk (A3) ≤ λn2−n3+k (A2) ≤ λn1−n3+k (A1), such that λk (A1) ≤ λk (A3) ≤
λn1−n3+k (A1) for k = 1, 2, . . . , n3 and we obtain that A3 ∝ A1.

We now extend the notion of spectral interlacing properties to graphs. For a
given graph G of order n with m edges, and a real symmetric matrix associated
to the graph, M (G) ∈ Rn×n, the interlacing graph reduction problem is to find
a graph Gr of order r < n such that the eigenvalues of M (Gr) interlace the
eigenvalues of M (G).

Definition 2.22 (Interlacing graphs). Consider two graphs Gn and Gr of or-
der n and r respectively, with n > r, and let M(G) ∈ Rn×n be any real sym-
metric matrix associated with the graph G. We say that the two graphs are
M -interlacing if M (Gr) ∝M (Gn), and denote the property by Gr ∝M Gn.

A problem arising naturally from the definition of interlacing graphs is the
interlacing graph reduction problem.

Problem 2.1 (Interlacing graph reduction). Consider a graph Gn of order n
and let M(G) ∈ Rn×n be any real symmetric matrix associated with the graph
G. Find a graph Gr of a given order r < n such that Gr ∝M Gn.

Finding a solution to Problem 2.1 may be numerically intractable for a mod-
erate number of nodes, as the number cr of simple connected graphs of order

r increases exponentially according to the recurrence
∑
k

(
r
k

)
kck2(r−k2 ) = r2(r2)

for r ≥ 1 [64, p.87], e.g., for r = 1, . . . , 6, cr = 1, 1, 4, 38, 728, 26704.
A powerful tool for proving interlacing results is the Courant-Fischer the-

orem, e.g., that a symmetric matrix and a principle submatrix of that matrix
interlace [29], which leads to an adjacency interlacing theorem for node-removal
graph reductions:

Theorem 2.3 (Adjacency interlacing node-removal). Consider a graph G and
a node subset VS ⊂ V (G). Then G\VS ∝A G.

Proof. The matrix A (G\VS) is a principle submatrix of A (G), therefore,
G\VS ∝A G.

Utilizing the Courant-Fischer theorem [33] and the following min−max in-
equalities (Proposition 2.15) an interlacing graph reduction theorem is derived.
We first introduce some notations to simplify the statement. A k-dimensional

subspace of Rn is denoted as F (k)
n . For an r-dimensional subspace F (r)

n , we

define the injective map pF(r)
n

: Rr → Rn, such that x ∈ Rr 7→ y ∈ F (r)
n .

Theorem 2.4 (Courant-Fischer). Consider a real symmetric matrix M ∈
Rn×n, then for k ∈ [1, n]

λk (M) = max
F(n−k+1)
n

min
x∈F(n−k+1)

n
x 6=0

R (M,x) , (2.42)
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and
λk (M) = min

F(k)
n

max
x∈F(k)

n
x 6=0

R (M,x) , (2.43)

where R (M,x) , xTMx
xT x

is the Rayleigh quotient.

Proposition 2.15. Consider a subspace F (r)
n for r < n, and let f (x) : Rn → R

be a real-valued function that attains a minimum and a maximum on Rn\ {0}.
Then the following holds for k ∈ [1, r]:

i) max
F(n−k+1)
n

min
x∈F(n−k+1)

n
x6=0

f (x) ≤ max
F(r−k+1)
r

min
x̃∈F(r−k+1)

r
x̃6=0

f
(
pF(r)

n
(x̃)
)

,

ii) min
F(n−r+k)
n

max
x∈F(n−r+k)

n
x 6=0

f (x) ≥ min
F(k)
r

max
x̃∈F(k)

r
x̃ 6=0

f
(
pF(r)

n
(x̃)
)

.

Proof. We first prove (i). Let s ≡ n− k + 1. For all F (s)
n ⊆ Rn

min
x∈F(s)

n
x 6=0

f (x) = min





min
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) , min
x∈F(s)

n \{F(s)
n ∩F(r)

n }
x 6=0

f (x)





≤ min
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) , (2.44)

and we obtain that

max
F(s)
n

min
x∈F(s)

n
x6=0

f (x) ≤ max
F(s)
n

min
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) . (2.45)

Since k ≤ r then s = n− k + 1 > n− r and

dim
(
F (s)
n ∩ F (r)

n

)
≥ s− (n− r) , (2.46)

therefore,

max
F(s)
n

min
x∈F(s)

n ∩F(r)
n

x6=0

f (x) = max
F(s−(n−r))
n ⊆F(r)

n

min
x ∈ F (s−(n−r))

n

x 6= 0

f (x) . (2.47)

For each F (s−(n−r))
n ⊆ F (r)

n we can find F̃ (s−(n−r))
r ⊆ Rr that is mapped to

it by pF(r)
n

(x̃),

F̃ (s−(n−r))
r =

{
x̃ ∈ Rr|pF(r)

n
(x̃) ∈ F (s−(n−r))

n

}
, (2.48)
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such that

min
x ∈ F (s−(n−r))

n

x 6= 0

f (x) = min
x̃ ∈ F̃ (s−(n−r))

r

x̃ 6= 0

f
(
pF(r)

n
(x̃)
)
. (2.49)

Maximizing over all F (s−(n−r))
n ⊆ F (r)

n we obtain

max
F(s−(n−r))
n ⊆F(r)

n

min
x ∈ F (s−(n−r))

n

x 6= 0

f (x) = max
F(s−(n−r))
r

min
x̃ ∈ F̃ (s−(n−r))

r

x̃ 6= 0

f
(
pF(r)

n
(x̃)
)
,

(2.50)

and

max
F(n−k+1)
n

min
x∈F(n−k+1)

n ∩F(r)
n

x 6=0

f (x) = max
F(r−k+1)
r

min
x̃ ∈ F̃ (r−k+1)

r

x̃ 6= 0

f
(
pF(r)

n
(x̃)
)
,

(2.51)
completing the proof of (i).

The proof of (ii) is as follows. Let s ≡ n− r + k . For all F (s)
n ⊆ Rn

max
x ∈ F (s)

n

x 6= 0

f (x) = max





max
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) , max
x∈F(s)

n \{F(s)
n ∩F(r)

n }
x 6=0

f (x)





≥ max
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) , (2.52)

and
min
F(s)
n

max
x∈F(s)

n
x 6=0

f (x) ≥ min
F(s)
n

max
x∈F(s)

n ∩F(r)
n

x 6=0

f (x) . (2.53)

Since k ≥ 1 then s = n− r + k > n− r and

dim
(
F (s)
n ∩ F (r)

n

)
≥ s− (n− r) , (2.54)

and we can then replace max min with min max in the above proof of (i) and
obtain

min
F(n−r+k)
n

max
x∈F(n−r+k)

n ∩F(r)
n

x6=0

f (x) = min
F(k)
r

max
x̃∈F(k)

r
x̃ 6=0

f
(
pF(r)

n
(x̃)
)
,

completing the proof of (ii).
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Theorem 2.5 (Interlacing graph reduction theorem). Consider two graphs Gn
and Gr of order n and r respectively, with n > r, and let M(G) ∈ Rn×n be any
real symmetric matrix associated with the graph G. If there exists r-dimentional
subspaces A,B ⊆ Rn such that ∀x ∈ Rr\ {0}

R (M (Gn) , pA (x)) ≤ R (M (Gr) , x) , (2.55)

and
R (M (Gn) , pB (x)) ≥ R (M (Gr) , x) , (2.56)

then Gr ∝M Gn.

Proof. In order for Gn and Gr to be M -interlacing (Definition 2.15) we must
prove that λk (M (Gn)) ≤ λk (M (Gr)) ≤ λn−r+k (M (Gn)) for k ∈ [1, r]. From
the Courant–Fischer theorem (Theorem 2.4) we have

λk (M (Gn)) = max
F(n−k+1)
n

min
x∈F(n−k+1)

n
x6=0

R (M (Gn) , x) , (2.57)

and from the min-max properties (Proposition 2.15) with F (r)
n ≡ A we have for

k ∈ [1, r]

λk (M (Gn)) ≤ max
F(r−k+1)
r

min
x∈F(r−k+1)

r
x6=0

R (M (Gn) , pA (x)) . (2.58)

Since R (M (Gn) , pA (x)) ≤ R (M (Gr) , x), therefore,

λk (M (Gn)) ≤ max
F(r−k+1)
r

min
x∈F(r−k+1)

r
x 6=0

R (M (Gr) , x)

= λk (M (Gr)) , (2.59)

and λk (M (Gn)) ≤ λk (M (Gr)) for k ∈ [1, r]. In order to complete the interlac-
ing proof it is left to show that λk (M (Gr)) ≤ λn−r+k (M (Gn)) for k ∈ [1, r].
From the Courant–Fischer theorem (Theorem 2.4) we get

λn−r+k (M (Gn)) = min
F(n−r+k)
n

max
x∈F(n−r+k)

n
x 6=0

R (M (Gn) , x) , (2.60)

and from the min-max properties (Proposition 2.15) with F (r)
n ≡ B we have

λn−r+k (M (Gn)) ≥ min
F(k)
r

max
x∈F(k)

r
x 6=0

R (M (Gn) , pB (x)) . (2.61)

Since R (M (Gn) , pB (x)) ≥ R (M (Gr) , x), therefore,

λn−r+k (M (Gn)) ≥ min
F(k)
r

max
x∈F(k)

r
x 6=0

R (M (Gr) , x)

= λk (M (Gr)) , (2.62)

and λk (M (Gn)) ≤ λn−r+k (M (Gr)) for k ∈ [1, r], completing the proof.
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The general interlacing graph reduction problem (Problem 2.1) is combina-
torial hard. If we restrict the class of reduced-order graphs to graph contractions
then we get the following interlacing graph contraction problem.

Problem 2.2 (interlacing graph contraction). Consider a graph G and a real
symmetric graph matrix M (G) ∈ Rn×n. Then given r < n find π ∈ Πr (G) such
that G � π ∝M G.

The number of r-partitions is |Πr (G)| = S (n, r) where

S (n, r) =

r∑

k=1

(−1)
r−k kn

k! (r − k)!
(2.63)

is the Stirling number of the second kind [64, p.18], which for r � n is asymp-
totically S (n, r) ∼ rn

r! . If we restrict the problem to edge-based contractions
then the number of partitions is the number of n− r edge contractions is

|Ξn−r (G)| =
(

m
n− r

)
,

where m = |E (G)|. Finding an interlacing contraction is, therefore, combina-
torial hard as well and in the following section we show how cycle-invariant
and node-removal equivalent contractions have associated subspaces required
by Theorem 2.5 and lead to interlacing graphs. Two algorithms of complexity
O (mn) and O

(
n2 + nm

)
are then provided for finding, if they exist, a cycle-

invariant contraction and a node-removal equivalent contraction respectively for
a given graph with n vertices and m edges.

The following subspaces are now defined: the partition subspace, the anti-
partition subspace and the node-removal subspace. These will be used for ap-
plying the min-max interlacing theorem (Theorem 2.5).

Consider a graph G = (V, E) of order n and an r-partition π ∈ Πr (G) and
consider a subset VS ⊂ V (G), |VS | = n − r for r < n. Then we define the
following subspaces of dimension r. The partition subspace Fπ ⊆ Rn is the
space of all vectors in Rn such that variables with indexes in the same partition
cell are equal,

Fπ , {x ∈ Rn|xj = xk,∀j, k ∈ Ci (π) ,∀i ∈ [1, r]} , (2.64)

and the corresponding partition mapping pFπ (x̃) : Rr → Rn,

[pFπ (x̃)]k = {x̃i|k ∈ Ci (π)} . (2.65)

We define the anti-partition subspace F̃π ⊆ Rn such that for x ∈ F̃π the sum
of all vector variables in non-singleton partition cells is zero

F̃π ,
{
x ∈ Rn|xvj(Ci(π)) = − xv1(Ci(π))

|Ci (π)| − 1
,
∀i ∈ [1, r] , |Ci (π)| > 1
∀j ∈ [2, |Ci (π)|]

}
, (2.66)
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and the corresponding anti-partition mapping, pF̃π (x̃) : Rr → Rn,

[
pF̃π (x̃)

]
k

=

{
x̃k k = v1 (Ci (π))

− x̃k
|Ci(π)|−1 k = vj (Ci (π)) , j ≥ 2

, (2.67)

where vj (Ci (π)) denotes the j’th node of the i’th partition cell.
The node-removal subspace, FVS ⊆ Rn, is defined as

FVS , {x ∈ Rn|xi = 0, i ∈ VS} , (2.68)

and the corresponding node-removal mapping pFVS (x̃) : Rr → Rn,

[
pFVS (x̃)

]
k

=

{
x̃k k /∈ VS
0 o.w.

. (2.69)

Proposition 2.16. Consider a graph G and an edge-matching and node-removal
equivalent contraction G � Ecs (Definitions 2.11&2.9) with Ecs ∈ Ξn−r (G) for
r < n. Then for x̃ ∈ Rr we have

R (L (G) , pFπ (x̃)) ≤ R (L (G � Ecs) , x̃) , (2.70)

and
R
(
L (G) , pFVS (x̃)

)
≥ R (L (G � Ecs) , x̃) . (2.71)

Proof. Let x = pFπ (x̃) for x̃ ∈ Rr. The Rayleigh quotients of the Laplacian
takes the form [11]

R (L (G) , x) =

∑
{u,v}∈E(G)

(xv − xu)
2

∑
v∈V(G)

x2v
. (2.72)

Separating the edges to Ecs and E\Ecs, the sum
∑

{u,v}∈E(G)
(xv − xu)

2
can be

written as
∑

{u,v}∈E(G)
(xv − xu)

2
=

∑

{u,v}∈E(G)\Ecs
(xu − xv)2 +

∑

{u,v}∈Ecs
(xu − xv)2 . (2.73)

Therefore, if x ∈ Fπ and {u, v} ∈ Ecs then
∑

{u,v}∈Ecs
(xu − xv)2 = 0 and

∑

{u,v}∈E
(xv − xu)

2
=

∑

{u,v}∈E\Ecs
(xu − xv)2 . (2.74)

Since G�Ecs is edge-matching (Definition 2.11) there is one-to-one correspon-
dence between E (G) \Ecs and E (G � Ecs) (Proposition 2.3), and substituting the
partition lifting x = pFπ (x̃) (Eq. (2.65)) we get

∑

{u,v}∈E\Ecs
(xu − xv)2 =

∑

{u,v}∈E(G�Ecs)
(x̃u − x̃v)2 . (2.75)
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Rearranging the sums
∑
v∈V

x2v over the vertices of each partition cell and

substituting the partition lifting x = pFπ (x̃) (Eq. (2.65)) we get,

∑

v∈V(G)
x2v =

r∑

i=1

∑

v∈Ci(π)
x2v

=
∑

u∈V(G�Ecs)
x̃2u |Cu (π)| , (2.76)

The Rayleigh quotients of the Laplacian is then

R (L (G) , pFπ (x̃)) =

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

∑
u∈V(G�Ecs)

x̃2u |Cu (π)| , (2.77)

and we have |Ci (π)| ≥ 1, therefore,

R (L (G) , pFπ (x̃)) ≤

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

∑
u∈V(G�Ecs)

x̃2u

= R (L (G � Ecs) , x̃) . (2.78)

If G � Ecs is node-removal equivalent (Definition 2.4) then by substituting
the node-removal lifting x = pFVS (x̃) (Eq. (2.65)) we get

∑

{u,v}∈E\Ecs
(xu − xv)2 =

∑

{u,v}∈E(G�Ecs)
(x̃u − x̃v)2

and ∑

v∈V(G)
x2v =

∑

u∈V(G�Ecs)
x̃2u, (2.79)

and we obtain that

R
(
L (G) , pFVS (x̃)

)
≥

∑
{u,v}∈E\Ecs

(xv − xu)
2

∑
v∈V(G)

x2v

=

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

∑
u∈V(G�Ecs)

x̃2u

= R (L (G � Ecs) , x̃) . (2.80)
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Proposition 2.17. Consider a graph G and a cycle invariant contraction G�Ecs
(Definition 2.5) with Ecs ∈ Ξn−r (G) for r < n. Then for x̃ ∈ Rr we have

R (L (G) , pFπ (x̃)) ≤ R (L (G � Ecs) , x̃) , (2.81)

and if G � Ecs is a single edge contraction with Ecs = εcs then

R
(
L (G) , pF̃π (x̃)

)
≥ R (L (G � εcs) , x̃) . (2.82)

Proof. The Rayleigh quotient of the normalized-Laplacian takes the form [11]

R (L (G) , x) =

∑
{u,v}∈E(G)

(xv − xu)
2

∑
v∈V(G)

x2vdv (G)
. (2.83)

Since G�Ecs is a cycle-invariant contraction it is edge-matching (Proposition
2.3) and there is one-to-one correspondence between E (G) \Ecs and E (G � Ecs)
(Proposition 2.3), and substituting the partition mapping x = pFπ (x̃) for x̃ ∈ Rr
(Eq. (2.65)) we get as in Eq. (2.75)

∑

{u,v}∈E(G)
(xv − xu)

2
=

∑

{u,v}∈E\Ecs
(xu − xv)2

=
∑

{u,v}∈E(G�Ecs)
(x̃u − x̃v)2 . (2.84)

Rearranging the sum
∑

v∈V(G)
x2vdv (G) over the vertices of each partition cell

and substituting the partition lifting x = pFπ (x̃) (Eq. (2.65)) we get,

∑

v∈V(G)
x2vdv (G) =

r∑

i=1

∑

v∈Ci(π)
x2vdv (G) ,

=
∑

u∈V(G�Ecs)
x̃2u


 ∑

v∈Cu(π)
dv (G)


 . (2.85)

The graph contraction G � Ecs is cycle-invariant, therefore, from Proposi-

tion 2.2 we have du (G � Ecs) =

(
∑

v∈Cu(π)
dv (G)

)
− 2 (|Cu (π)| − 1), and

∑

v∈V(G)
x2vdv (G) =

∑

u∈V(G�Ecs)
x̃2u [du (G � Ecs) + 2 (|Cu (π)| − 1)] . (2.86)

The Rayleigh quotients of the normalized-Laplacian is then

R (L (G) , pFπ (x̃)) =

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

∑
u∈V(G�Ecs)

x̃2u [du (G � Ecs) + 2 (|Cu (π)| − 1)]
. (2.87)
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We have |Ci (π)| ≥ 1 such that 2 (|Ci (π)| − 1) ≥ 0, therefore,

R (L (G) , pFπ (x̃)) ≤

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

∑
u∈V(G�Ecs)

x̃2udu (G � Ecs)
= R (L (G � Ecs) , x̃) . (2.88)

Let G � εcs be a cycle-invariant edge contraction with corresponding edge
contraction partition π ∈ Πn−1 (G). For an atom-contraction there is only one
non-singlet cell, and without loss of generality we can choose it to be Cn−1 (π) =
{n− 1, n} such that the contracted edge is εcs = {xn−1, xn}, and

R (L (G) , x) =

∑
{u,v}∈E\Ecs

(xu − xv)2 + (xn−1 − xn)
2

n−2∑
v=1

x2vdv (G) + x2n−1dn−1 (G) + x2ndn (G)

. (2.89)

For this atom-contraction we have the anti-partition space F̃π =
{x ∈ Rn |xn−1 = −xn} (Eq. (2.66)) and anti-partition mapping pF̃π (x̃) :

Rn−1 → Rn is (Eq. (2.67))

[
pF̃π (x̃)

]
k

=

{
x̃k k ≤ n− 1

−x̃n−1 k = n
, (2.90)

such that

R
(
L (G) , pF̃π (x̃)

)
=

∑
{u,v}∈E\Ecs

(x̃u − x̃v)2 + 4x̃2n−1

n−2∑
v=1

x̃2vdv (G) + x̃2n−1 (dn−1 (G) + dn (G))

. (2.91)

There is one-to-one correspondence between E (G) \εcs and E (G � εcs)
(Proposition 2.3), therefore,

∑
{u,v}∈E\Ecs

(x̃u − x̃v)2 =
∑

{u,v}∈E(G�εcs)
(x̃u − x̃v)2,

and from Proposition 2.2 we get

dv (G � εcs) =

{
dv (G) v ≤ n− 2

dn−1 (G) + dn (G)− 2 v = n− 1
, (2.92)

such that

R
(
L (G) , pF̃π (x̃)

)
=

∑
{u,v}∈E(G�εcs)

(x̃u − x̃v)2 + 4x̃2n−1
∑

v∈V(G�εcs)
x̃2vdv (G � εcs) + 2x̃2n−1

= R (L (G � εcs) , x̃)

1 +
4x̃2
n−1∑

{u,v}∈E(G�εcs)
(x̃u−x̃v)2

1 +
2x̃2
n−1∑

v∈V(G�εcs)
x̃2
vdv(G�εcs)

. (2.93)
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For any G we have R (L (G) , x) ≤ 2 [14], therefore,

∑

{u,v}∈E(G�εcs)
(x̃u − x̃v)2 ≤ 2

∑

v∈V(G�εcs)
x̃2vdv (G � εcs) (2.94)

and

1 +
4x̃2
n−1∑

{u,v}∈E(G�εcs)
(x̃u−x̃v)2

1 +
2x̃2
n−1∑

v∈V(G�εcs)
x̃2
vdv(G�εcs)

≥ 1, (2.95)

and we obtain that R
(
L (G) , pF̃π (x̃)

)
≥ R (L (G � εcs) , x̃) for any cycle invari-

ant single edge contraction.

The only graph contraction interlacing result known to the authors has been
presented by Chen et. al. [11]:

Theorem 2.6 (normalized-Laplacian interlacing cycle-invariant contraction).
Consider a graph G and two vetices u, v ∈ V (G) with corresponding partition
π ∈ Πn−1 (G) with only one non-singlet cell Cn−1 (π) = {u, v}. Then if Nu (G)∩
{Nv (G) ∪ v} = ∅ the atom contraction is normalized-Laplacian interlacing, i.e.,
G � π ∝L G.

Proof. The proof is given in [11] and is based on a sequence of min-max
ineuqalities and the Courant–Fischer theorem (Theorem 2.4). In the perspec-
tive of this work, Theorem 2.6 can be seen as a specific case of Theorem
2.5 as follows: Let G � π be an atom contraction with Cn−1 (π) = {u, v}
and Nu (G) ∩ {Nv (G) ∪ v} = ∅. Without loss of generality we can label the
vertices such that Cn−1 (π) = {n− 1, n}. Similar to Proposition 2.17 it can
be shown that R (L (G) , pFπ (x)) ≤ R (L (G � π) , x) and R

(
L (G) , pF̃π (x̃)

)
≥

R (L (G � π) , x), therefore, from Theorem 2.5 with A ≡ Fπ and B ≡ F̃π we
then get that G � π ∝L G.

In this study, based on Theorem 2.5, we derive two interlacing theorems,
Laplacian interlacing for node-removal equivalent edge-matching contractions
(Theorem 2.7) and normalized Laplacian interlacing for cycle-invariant contrac-
tions (Theorem 2.6).

Theorem 2.7 (Laplacian interlacing node-removal equivalent contraction).
Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n.
If G � Ecs is edge-matching (Definition 2.11) and node-removal equivalent (Def-
inition 2.4) then G � Ecs ∝L G.

Proof. The contraction G � Ecs is edge-matching and node-removal equivalent
such that from Proposition 2.16 we have R (L (G) , pFπ (x)) ≤ R (L (G � Ecs) , x)

and R
(
L (G) , pFVS (x)

)
≥ R (L (G � Ecs) , x). Therefore, from Theorem 2.5

with A ≡ Fπ and B ≡ FV we then get that G � Ecs ∝L G.
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

Theorem 2.8 (normalized-Laplacian interlacing cycle-invariant contraction).
Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n. Then
if G � Ecs is cycle-invariant (Definition 2.4), G � Ecs ∝L G.

Proof. The graph contraction can be performed by a sequence of atom-
contractions (Corollary 2.1), therefore, it is sufficient to show that the inter-
lacing property holds for a single edge-contraction, i.e., G � εcs ∝L G where
εcs is a single contracted edge. The interlacing of the sequence will then fol-
low from Proposition 2.14. Let G � εcs be a cycle-invariant edge contraction
with corresponding edge contraction partition π ∈ Πn−1 (G). Without loss
of generality we can label the vertices such that the contracted edge is εcs =
{xn−1, xn}, and the anti-partition space is F̃π (x̃) = {x ∈ Rn |xn−1 = −xn} (Eq.
(2.90)). From Proposition 2.17 we have R (L (G) , pFπ (x)) ≤ R (L (G � εcs) , x)
and R

(
L (G) , pF̃π (x̃)

)
≥ R (L (G � εcs) , x), therefore, from Theorem 2.5 with

A ≡ Fπ and B ≡ F̃π we then get that G � εcs ∝L G. By performing the
contraction sequence (Proposition 2.14) we get G � Ecs ∝L G.

Corollary 2.4. Consider a tree T = (V, E) of order n, and its contraction
T � Ecs for any Ecs ∈ Ξn−r (T ). Then T � Ecs ∝L T .

Proof. The contraction T �Ecs is cycle-invariant for any Ecs ∈ Ξn−r (T ) , there-
fore, from Theorem 2.8 we obtain that T � Ecs ∝L T .

Theorem 2.7 and Theorem 2.8 allow us to try and solve the interlacing
graph contraction problem (Problem 2.2) for normalized Laplacian and Lapla-
cian interlacing by finding a cycle-invariant contraction (Problem 2.3) or a node-
removal equivalent and edge matching contraction (Problem 2.4) respectively.

Problem 2.3 (Cycle-invariant contraction). For a graph G and a given re-
duction order r < n, find Ecs ∈ Ξn−r (G) such that G � Ecs is cycle-invariant
(Definition 2.5).

Problem 2.4 (Node-removal equivalent contraction). For a graph G and a given
reduction order r < n, find Ecs ∈ Ξn−r (G) such that G � Ecs is node-removal
equivalent (Definition 2.4) and edge-matching (Definition 2.11).

From Proposition 2.18, we can obtain a cycle-invariant contraction, if exists,
from the zero rows of the Tucker representation.

Proposition 2.18. Consider a graph G and an edge contraction set Ecs ∈
Ξn−r (G) for r < n, and let T ∈ T (G). Then G � Ecs is cycle-invariant (Defini-
tion 2.5) if and only if Ecs ⊆ E (T ) and the corresponding rows of T(T ,C) are all
zeros.

Proof. If G � Ecs is cycle-invariant then from Definition 2.5 the edges in Ecs are
not part of any cycle of G, therefore, Ecs ⊆ E (T ) for any T ∈ T (G). If ε ∈ E (T )
is not part of any cycle in G then form the Tucker representation (Definition
2.20) we get that the corresponding row of T(T ,C) is all zeros.
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

If Ecs ⊆ E (T ) and the corresponding rows of T(T ,C) are all zeros, then the
edges in Ecs are not part of any cycle in G, such that the tree-based contraction
(Definition 2.12) G � Ecs is cycle-invariant.

A Tucker representation T(T ,C) can be calculated by finding a spanning tree
T ∈ T (G) and then finding the path in T between the end-nodes of each edge of
C (T ) as described in Algorithm 2.1. Each path finding operation, e.g., with a
depth-first search, is of complexity O (n), and since O (|E (C)|) = O (|E (G)|) the
overall complexity of constructing T(T ,C) is O (mn), where m = |E (G)|. There-
fore, the cycle-invariant contraction algorithm (Algorithm 2.1) is of complexity
O (mn) .

From Proposition 2.4, we can obtain a node-removal equivalent and edge
matching contraction, if exists, by first finding for all vertices of G the connected
components partition πcc (G\v) and then constructing Ecs by choosing from all
partitions {πcc (G\v)}nv=1 a subset of cells with a total number of n− r unique
nodes (Algorithm 2.2). Each connected component finding operation, e.g., with
a depth-first search, is of complexity O (n+m), and repeated n times, the
overall complexity of the algorithm is O

(
n2 + nm

)
.

Algorithm 2.1 Cycle-invariant contraction algorithm

Input: graph G of order n, required reduction order r
1. Find a spanning tree T ∈ T (G) and the co-tree C (T ).

2. Calculate the tucker representation T(T ,C) (Definition 2.20).

3. Choose n−r cycle-invariant edges from the zero rows of T(T ,C) and obtain
Ecs.

Output: Gr = G � Ecs

Algorithm 2.2 Node-removal equivalent contraction algorithm

Input: graph G of order n, required reduction order r
1. For v ∈ V (G): Calculate πcc (G\v), the connected components partition

of G\v.

2. Choose a subset of cells S ⊆ {πcc (G\v)}nv=1 with a total number of n− r
unique nodes.

3. Construct Ecs = ∪Cv∈SE (G [Cv ∪ v]).
Output: Gr = G � Ecs

2.5 Case Studies

As a small-scale normalized Laplacian interlacing example, we consider a graph
of order 6 presented in Figure 2.7, and we require the reduced graph to be of or-
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Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

Figure 2.7: Small scale normalized-Laplacian interlacing graph contraction (con-
tracted edges dashed-red).

der r = 4. A cycle-invariant graph contraction is then performed with two edges
(Figure 2.7). The resulting reduced graph (Figure 2.7) has normalized-Laplacian
spectra {λk (L (Gr))}rk=1 given in Figure 2.8 with the upper and lower interlac-
ing bounds λk (L (G)) and λn−r+k (L (G)). Since G � Ecs is cycle-invariant, then
as according to Theorem 2.8, we get G�Ecs ∝L G and the reduced-order spectra
is within the interlacing bounds (Figure 2.8).

As a small-scale Laplacian interlacing example, we consider a graph of order
6 presented in Figure 2.9 and require the reduction to be of order r = 4. For this
case the only node-removal equivalent and edge-matching contraction is with the
three edges shown in Figure 2.9. The resulting reduced graph (Figure 2.9) has
Laplacian spectra given in Figure 2.10 with the interlacing bounds λk (L (G))
and λn−r+k (L (G)). Since G�Ecs is node-removal equivalent and edge-matching,
then as according to Theorem 2.7 we get G � Ecs ∝L G and the reduced-order
Laplacian spectra is within the interlacing bounds (Figure 2.10). Notice that
for this case there is no cycle-invariant contraction, and for the same choice of
Ecs (Figure 2.9) the reduced-order normalized-Laplacian does not interlace with
the full-order normalized-Laplacian as λ4 (L (Gr)) > λ6 (L (G)) (Figure 2.11).
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Figure 2.8: Reduced-order normalized-Laplacian spectra (stared-red) and inter-
lacing bounds (circled-blue).

Figure 2.9: Small scale Laplacian interlacing graph contraction (contracted
edges dashed-red).
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Figure 2.10: Reduced-order Laplacian spectra (stared-red) and interlacing
bounds (circled-blue).
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Figure 2.11: Reduced-order normalized-Laplacian spectra (stared-red) and in-
terlacing bounds (circled-blue).
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Figure 2.12: Large scale normalized-Laplacian interlacing graph contraction
(contracted edges dashed-red).

As a larger and more complicated example, a random tree of order 50 is
created and 10 cycle-completing edges are randomly added to it resulting in a
graph of order 50 with 59 edges (Figure 2.12). The required reduction order
is r = 30. Using the cycle-invariant contraction algorithm (Algorithm 2.1)
an edge-contraction set Ecs with n − r = 20 edges is chosen from the edges
of G (Figure 2.12), and the graph contraction is performed. As according to
Theorem 2.8, the resulting reduced-order graph Gr = G � Ecs is normalized-
Laplacian interlacing with G and the reduced spectra is within the interlacing
bounds (Figure 2.13).

Using the node-removal equivalent contraction algorithm (Algorithm 2.2) a
different edge-contraction set Ecs with n−r = 20 edges is chosen from the edges
of G (Figure 2.14), and the graph contraction is performed. As according to
Theorem 2.7, the resulting reduced order graph Gr = G � Ecs (Figure 2.14) is
Laplacian interlacing with G and the reduced spectra is within the interlacing
bounds (Figure 2.15).

2.6 Conclusions

The derived general reduced graph interlacing theorem (Theorem 2.5) extends
the seminal min-max theorems and can be utilized as a spectral graph analy-
sis tool. The found sub-classes of interlacing edge-matching contractions are a
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Figure 2.13: Reduced-order normalized-Laplacian spectra (stared-red) and in-
terlacing bounds (circled-blue).

Figure 2.14: Large scale Laplacian interlacing graph contraction.
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Figure 2.15: Reduced-order Laplacian spectra (stared-red) and interlacing
bounds (circled-blue).

substantial contribution to the limited examples of interlacing graph contrac-
tions previously known. The feasibility of the cycle-invariant and node-removal
equivalent problems requires further study. The edge-induced partitions and
their usage for edge-based contractions will be found useful for the construction
of an efficient graph-based model reduction method in the following chapters.
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Chapter 3

Product Form of
Projection-Based Model
Reduction

Orthogonal projection-based reduced order models (PROM) are the output of
widely-used model reduction methods. In this chapter, we reexamine the well
known orthogonal PROMs and their realizations. A novel product form is de-
rived for the reduction error system of these reduced models, and it is shown
that any such PROM can be obtained from a sequence of 1-dimensional pro-
jection reductions. Investigating the error system product form, we then define
interface-invariant PROMs, model order reductions with projection-invariant
input and output matrices, and it is shown that for such PROMs the error
product systems are strictly proper. Furthermore, exploiting this structure, an
analytic H∞ reduction error bound is obtained and an H∞ bound optimization
problem is defined.

3.1 Introduction

The error system of PROMs is naturally described with an augmented system
realization, allowing the PROM reduction error to be evaluated with standard
system performance metrics, such as theH∞ andH2 norms. However, this error
system realization usually does not provide any analytic insight, and various
transformation techniques were derived to bring it to more useful forms. These
include an upper triangular block structure [34], allowing derivation of analytical
bounds. In this study we show that any orthogonal PROM error system can
be presented as a product of three LTI systems, capturing the reduction effect
of the input to state, state to output, and the internal dynamical structure.
Investigating this error system product form, an analytic H∞ reduction error
bound is obtained and an H∞ bound optimization problem is defined as a
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Chapter 3. Product Form of Projection-Based Model Reduction

relaxation of the optimal PROM problem. Furthermore, it is shown that any
orthogonal PROM can be obtained from a sequence of singleton projections,
projections from dimension n to n− 1.

Of particular interest in this work are interface invariant PROMs
(IIPROMs). These are reduced models that maintain the input-output structure
of the full order model. It is shown that for IIPROMs the error product systems
are strictly proper. IIPROMs are natural to multi-agent systems where a sub-
set of agents serve as input and output ports of the network. These I/O ports
may be interconnected with an external controller and it is required, therefore,
that any reduced model preserves this interface structure. For this purpose, we
propose an edge-based graph contraction method and utilize it in a tree-based
greedy-edge heuristic to solve the PROM H∞ bound optimization problem.
We then apply an this graph contraction algorithm to obtain suboptimal H∞
IIPROMs of Laplacian consensus systems.

The remaining sections of this chapter are as follows. In Section 3.2, we
formulate the optimal orthogonal PROM and IIPROM problems. In Section
3.3.1, the product form of orthogonal PROMs is derived. In Section 3.3, the
H∞ error bound is derived for PROMs and PROM sequences. Section 4 presents
model reduction of multi-agent systems by graph contractions and the greedy-
edge optimization method, and Section 3.5 provides concluding remarks.

3.2 Problem Formulation

A widely used family of reduction methods are projection-based reductions.
Given a system with realization Σ := (A,B,C,D) of order n, a projection-
based reduced order model (PROM) is a system Σr :=

(
P>AV,P>B,CV,D

)
,

for any two matrices P, V ∈ Rn×r such that P>V = Ir [24]. If in addition
P = V , the PROM is termed orthogonal, i.e.,

Σr (Σ, P ) :=
(
P>AP,P>B,CP,D

)
. (3.1)

Hereafter, all PROMs referred to in this study are orthogonal.
In this work we will examine a special class of PROMs that we term interface-

invariant PROMs . These are reduced models that maintain the input-output
structure of the full order model under the projection operation. Such PROMs
are required, for example, for the reduction of controlled MAS (4.2) where the
interface agent structure is maintained in the reduced model. We will also show
that IIPROMs arise naturally when examining the error system (1.8) of PROMs.
We now define formally the notion of an interface-invariant PROM (IIPROM).

Definition 3.1 (IIPROM). Given a system with realization Σ := (A,B,C,D),
an IIPROM of Σ is any PROM Σr (Σ, P ) :=

(
P>AP,P>B,CP,D

)
such that

C = CPP> and B = PP>B.

With the above notions in place, we can now formally state the optimal
IIPROM problem.
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Problem 3.1 (optimal IIPROM). Consider a stable proper system of order
n with realization Σ := (A,B,C,D) . Find P ∈ Rn×r with P>P = Ir such
that the PROM Σr (Σ, P ) (3.1) minimizes the H∞-norm of the reduction error
system (1.8) and is interface-invariant, i.e.,

min
P∈Rn×r

‖Σe‖H∞ (3.2)

s.t. P>P = Ir

C = CPP>

B = PP>B.

The constraints P>P = Ir, C = CPP> and B = PP>B make Problem 3.1
non-convex, and there is, in general, no closed-form or computationally efficient
solution. In the following section we investigate the error system structure of
IIPROMs and derive an IIPROM H∞ error upper bound. This bound will then
be utilised for obtaining suboptimal solutions of Problem 3.1.

3.3 The PROM H∞ Bound

The error system of PROMs can be described with the augmented system real-
ization (1.8) of dimension dim(x) + dim(xr). In the following section we show
that any orthogonal PROM error system can be presented as a product of three
appropriately defined LTI systems, two of dimension dim(xr) and the third of
dimension dim(x). This product form is then applied for the derivation of a
PROM H∞ error bound.

3.3.1 The Product Form of Orthogonal PROMs

The following theorem presents a PROM error system product form, and this
new error system structure will allow us to derive an H∞ bound for the PROM
error system.

Theorem 3.1 (PROM error system product form). Let Σ := (A,B,C,D),
and consider a PROM Σr(Σ, P ). Then the error reduction system Σe(Σ, P ) =
Σr(Σ, P )− Σ has the TFM

Σ̂e(Σ, P ) = CΦ−1Q(Q>Φ−1Q)−1Q>Φ−1B, (3.3)

where Φ , sIn − A, and Q is any projection such that Q>P = 0 and Q>Q =
In−r. Furthermore, Σe can be expressed as the product of three systems,

Σe(Σ, P ) = Θ(Σ, P )∆(Σ, P )Γ(Σ, P ), (3.4)

with realizations

Θ(Σ, P ) := (APP , APQ, CP,CQ), (3.5)

Γ(Σ, P ) := (APP , P
>B,AQP , Q

>B), (3.6)

∆(Σ, P ) := (A,Q,Q>, 0p×m), (3.7)
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where APP , P>AP , APQ , P>AQ and AQP , Q>AP .

The proof of Theorem 3.1 is given in Section 3.4.
Investigating the error systems Θ(Σ, P ) and Γ(Σ, P ) we observe that if the

PROM is an IIPROM, then its realization is strictly-proper.

Corollary 3.1 (IIPROM error system). If Σr(Σ, P ) :=
(
P>AP,P>B,CP,D

)

is an IIPROM, then Θ(Σ, P ) in (3.5) and Γ(Σ, P ) in (3.6) are strictly-proper
with realizations

Θ(Σ, P ) := (APP , APQ, CP, 0p×m) , (3.8)

and
Γ(Σ, P ) :=

(
APP , P

>B,AQP , 0p×m
)
. (3.9)

Proof. Since Σr(Σ, P ) is an IIPROM, from Definition 3.1 we have C = CPP>

and B = PP>B. From Q>P = 0 and Q>Q = In−r we get PP> = In − Q>Q
such that C = C

(
In −QQ>

)
and B =

(
In −QQ>

)
B, therefore, CQ = 0 and

Q>B = 0 obtaining our desired result.

3.3.2 The PROM Error System Bound

The PROM error system is the product of three systems (3.4), and we will make
use of this form to derive an H∞ reduction error upper bound.

Proposition 3.1 (PROM error bound). Let Σ := (A,B,C,D) with A Hurwitz,
and consider a PROM Σr(Σ, P ) :=

(
P>AP,P>B,CP,D

)
. Then the H∞ norm

of the error reduction system (1.8) is bounded as

‖Σe(Σ, P )‖H∞ ≤ b(Σ, P ),

where
b(Σ, P ) = ‖Θ(Σ, P )‖H∞‖∆(Σ, P )‖H∞‖Γ(Σ, P )‖H∞ . (3.10)

Proof. The proof follows directly from the submultiplicative of the H∞-norm
applied to (3.4).

For linear systems (1.1) with a symmetric matrix A, such as the controlled-
consensus multi-agent systems studied in Section 4, we can simplify the calcu-
lation of the bound (3.10). The following Lemma, proven in [43, Appendix A]
will be used for the derivation of Corollary 3.2, presenting this simplified bound.

Lemma 3.1 ([43]). Let A be symmetric and Hurwitz. Then for any B of
appropriate dimension,

‖B> (sI −A)
−1
B‖H∞ = ‖B>A−1B‖2. (3.11)

Symmetric passive systems, as in Lemma 3.1, are a particular case of
positive-real rational functions which have been extensively studied for model
reduction [52, 60]. The following corollary provides a new bound for such sys-
tems.
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Corollary 3.2. Let Σ := (A,B,C,D) with A symmetric and Hurwitz, and
consider a PROM Σr(Σ, P ) :=

(
P>AP,P>B,CP,D

)
. Then the H∞ norm of

the error reduction system (1.8) is bounded as

‖Σe(Σ, P )‖H∞ ≤ b(Σ, P ),

where
b(Σ, P ) = ‖Θ(Σ, P )‖H∞‖Γ(Σ, P )‖H∞‖Q>A−1Q‖2. (3.12)

Proof. Applying Lemma 3.1, we get ‖∆(Σ, P )‖H∞ = ‖Q>A−1Q‖2 and substi-
tuting it in (3.10) we obtain (3.12).

The PROM error bound is the product of the H∞-norms of the three LTI
systems (3.5)-(3.7) constructing the error system. We observe that with the
unitary transformation Σ̃ :=

(
U>AU,U>B,CU,D

)
with U =

[
P Q

]
, the full-

order system Σ̃ has a realization

Σ̃ :=

([
APP APQ
AQP AQQ

]
,

[
PTB
QTB

]
,
[
CP CQ

]
, D

)
,

where the PROM is

Σr(Σ, P ) :=
(
APP , P

>B,CP,D
)
,

and the block-diagram of Σr − Σ̃ in additive form is shown in Figure 3.1a. If
APQ, AQP , AQQ, CQ and QTB are all zeros, then Σr−Σ = 0 (and in this case
Σ := (A,B,C,D) is not a minimal realization). If the reduction error is not
zero, and each of the three product systems implicitly captures the contribution
to the reduction error of these parts of Σ̃ left out in Σr. The map Θ(Σ, P )
captures APQ and CQ, Γ(Σ, P ) captures AQP and QTB and ∆(Σ, P ) captures
AQQ (Figure 3.1).

Since there are no closed-form solutions to the optimal IIPROM Problem 3.1,
this structure suggests that minimizing the three reduction error contributions
can provide good PROMs. As a first step in obtaining a suboptimal solution,
we define the following suboptimal IIPROM problem that attempts to minimize
the error reduction upper bound derived in Proposition 3.1.

Problem 3.2 (suboptimal IIPROM). Consider a stable proper system of order
n with realization Σ := (A,B,C,D). Find P ∈ Rn×r with P>P = Ir such that
the PROM Σr (Σ, P ) (3.1) minimizes the reduction error bound (3.10) and is
interface-invariant, i.e.,

min
P∈Rn×r

b(Σ, P ) (3.13)

s.t. P>P = Ir

C = CPP>

B = PP>B.
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Figure 3.1: The PROM error system block diagram in (a) additive form and
(b) product form (3.1).
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The following simple example provides a comparison between the solutions
for the optimal IIPROM Problem 3.1 and the optimal IIPROM bound Problem
3.2.

Example 3.1. Consider the SISO system Σ := (A,B,C,D) where

A =



−2 1 0
1 −2 1
0 1 −1


 , B =




1
0
0


 , C =

[
1 0 0

]
, D = 0.

The corresponding TF is

Σ̂ =
s2 + 3s+ 1

s3 + 5s2 + 6s+ 1

and ‖Σ‖H∞ = 1. We observe that all matrices P ∈ R3×2 complying with P>P =
I2, CPP> = C and PP>B = B, can be parametrized by a scalar α ∈ [−1, 1] in
the following form,

P (α) =




1 0
0 α
0 β(α)


 ,

where β (α) =
√

1− α2. All matrices Q ∈ R3×1 such that P>Q = 0 are
parametrized by

Q (α) =
[
0 − β (α) α

]>
.

All IIPROMs Σr (Σ, P ) are then parameterized also by α, such that the matrices
of the product form system realizations of Theorem 3.1 are

APP (α) =

[
−2 α
α −α2 − (β(α)− α)2

]

and

APQ (α) =

[
−β(α)

2α2 + αβ(α)− 1

]
= AQP (α)>.

The PROM TF is

Σ̂r =
s+ γ2

s2 + (γ2 + 2) s+ 2γ2 − α2
,

and the product systems (3.5)-(3.7) TFs are

Θ̂ = Γ̂ =
−βs+ α3 − α2β + αβ2 − β3

s2 + (α2 + γ2 + 2) s+ α2 + 2γ2

and

∆̂ =

(
α2 + β2

)
s2 +

(
2γ2 + 2α2 + β2

)
s+ 2γ2 + α2)

s3 + 5s2 + 6s+ 1
,

where γ ,
√
α2 + (α− β)

2
.
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Figure 3.2: The IIPROM reduction error and bound of the second order system
as a function of the projection parameter α.

The PROM reduction error and reduction error bound are plotted in Figure
3.2. It is observed that the solution of the optimal IIPROM problem (Problem
3.1) is minα ‖Σ − Σr‖∞ = 0.03 obtained for α∗ = 0.76. The solution of the
optimal IIPROM bound problem (Problem 3.2) is minα b(Σ, P ) = 0.039 obtained
for α∗∗ = 0.73. We observe that the optimal IIPROM error is close to the sub-
optimal bound.

3.3.3 The PROM Sequence Bound

In the following subsection we present a Lemma showing that any projection
from Rn to Rr can be obtained from a sequence of n−r projections, each reduc-
ing the dimension by one. We denote such projections as singleton projections.
This sequential projection representation is then utilized to obtain a sequential
PROM bound that is useful for obtaining sub-optimal solutions to Problem 3.2.

Lemma 3.2. Let P ∈ Rn×r with P>P = Ir be a projection for r < n. Then

there exists a sequence
{
P(k)

}n−r
k=1

with P(k) ∈ Rn−k+1×n−k, P>(k)P(k) = In−k
such that P = Πn−r

k=1P(k).

Proof. Let P ∈ Rn×r, P>P = Ir, then there exists Q ∈ Rn×n−r with Q>Q =
In−r such that P>Q = 0. Construct P(1) = [P, q1, q2, . . . , qn−r−1], where qi

is the ith column of Q, and P(k) = [In−k, 0n−k×1]
>

for k ∈ [2, n− r]. Since

P>P = Ir and P>Q = 0 we have P>(1)P(1) = In−1, and for k ∈ [2, n− r] it is
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trivial that P>(k)P(k) = In−k. From the construction we get

(
n−r∏

k=1

P(k)

)
= P(1)

(
n−r−1∏

i=1

P(1+i)

)

= P(1)

(
n−r−1∏

i=1

[In−i, 0n−1×1]
>
)

= P.

Note that infinite other sequences P = Πn−r
k=1 P̃(k) can be produced by the

transformations P̃(1) = P(1)U(1), P̃(k) = U>(k−1)P(k)U(k) for k ∈ [2, n− r − 1],

and P̃(n−r) = U>(n−r−1)P(n−r), where U(k) ∈ Rn−k×n−k is an orthogonal matrix.
By expressing a PROM as a sequence of singleton projections, we obtain the

following PROM sequence bound.

Proposition 3.2 (Singleton PROM sequence bound). Let Σ be an LTI sys-
tem with realization (A,B,C,D) with A Hurwitz, and consider the PROM,

Σr := (P>AP,P>B,CP,D), and let
{
P(k)

}n−r
k=1

be a sequence with P(k) ∈
Rn−k+1×n−k, P>(k)P(k) = In−k such that P = Πn−r

k=1P(k). Then the H∞ norm of

the error reduction system Σe (1.8) is bounded by

‖Σe‖H∞ ≤
n−1∑

k=1

b
(
Σ(k−1), P(k)

)
, (3.14)

with b(Σ(k−1), P(k)) given in (3.10), and

Σ(k) :=
(
P>(k)A(k−1)P(k), P

>
(k)B(k−1), C(k−1)P(k), D

)
(3.15)

with Σ(0) := (A,B,C,D).

Proof. We express Σe (s) = Σr−Σ as the telescoping sum
∑n−r
k=1

(
Σ(k) − Σ(k−1)

)

with Σ(0) = Σ and Σ(n−r) = Σr, such that

‖Σe (s) ‖H∞ = ‖Σr − Σ‖H∞

= ‖
n−r∑

k=1

(
Σ(k) − Σ(k−1)

)
‖H∞

and from the triangle inequality we get

‖Σe (s) ‖H∞ ≤
n−r∑

k=1

‖Σ(k) − Σ(k−1)‖H∞ .
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Chapter 3. Product Form of Projection-Based Model Reduction

The system Σ(k) has realization

Σ(k) :=
(
A(k), B(k), C(k), D

)

=
(
P>(k)A(k−1)P(k), P

>
(k)B(k−1), C(k−1)P(k), D

)
,

which is an IIPROM of Σ(k−1), therefore, from Theorem 3.1,

‖Σ(k) − Σ(k−1)‖H∞ ≤ b
(
Σ(k−1), P(k)

)
,

and we obtain that

‖Σe (s) ‖H∞ ≤
n−r∑

k=1

b
(
Σ(k−1), P(k)

)
.

In the following section, we will utilize graph contractions for obtaining
suboptimal solutions of Problem 3.2 for multi-agent systems, and therefore,
also Problem 3.1.

3.4 Proof of the PROM Error System Product
Form

In this section, we present the proof of Theorem 3.1. The proof is based on the
matrix inverse lifting lemma along with a projection inversion corollary that we
present here.

Definition 3.2 (Projected Schur complement). Let M ∈ Cn×n and let P and
Q be projections such that P>P = Ir, Q

>Q = In−r and Q>P = 0. Then for
P>MP invertible, we define the projected Schur complement of S by P as

S (M,P ) ,MQQ −MQPM
−1
PPMPQ, (3.16)

and the projected Schur complement of S by Q as

S (M,Q) ,MPP −MPQM
−1
QQMQP , (3.17)

where MPP , P>MP , MPQ , P>MQ, MQP , Q>MP and MQQ , Q>MQ.

With the definition of the projected Schur complement we can derive the
following corollary of the matrix inversion Lemma [7].

Lemma 3.3. Let M ∈ Cn×n and M−1 be a matrix and its inverse with corre-
sponding block structures

M =

[
M11 M12

M21 M22

]
M−1 =

[
W X
Y Z

]
,
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then

W = (M11 −M12M
−1
22 M21)−1, (3.18)

and
X = −M−111 M12Z. (3.19)

Corollary 3.3. Consider a matrix M ∈ Cn×n, and let P and Q be matrices
such that P>P = Ir, Q

>Q = In−r and Q>P = 0. Then

P>M−1P = S−1 (M,Q) , (3.20)

and
P>M−1Q = −M−1PPMPQ

(
Q>M−1Q

)
. (3.21)

Proof. Apply the matrix inversion Lemma to the matrix M̃ = [PQ]
>
M [PQ]

and obtain P>M−1P = S−1 (M,Q) and P>M−1Q = −M−1PPMPQ

(
Q>M−1Q

)
.

We denote a matrix lifting fP : Rr×r → Rn×n as the function fP (M) ,
PMP>. The following lemma extends the matrix inversion lemma to the matrix

lifting of
(
P>MP

)−1
.

Lemma 3.4 (Matrix Inverse Lifting). Consider a matrix M ∈ Cn×n and let P
and Q be matrices such that P>P = Ir, Q

>Q = In−r and Q>P = 0. Then

P
(
P>MP

)−1
P> = Υ (M,Q) , (3.22)

where we define Υ (M,Q) as,

Υ (M,Q) ,M−1 −M−1Q
(
Q>M−1Q

)−1
Q>M−1.

Proof. We have In = PP> +QQ> such that

Υ (M,Q) =
(
PP> +QQ>

)
Υ (M,Q)

(
PP> +QQ>

)

= PP>Υ (M,Q)PP> + PP>Υ (M,Q)QQ>

+QQ>Υ (M,Q)PP> +QQ>Υ (M,Q)QQ>.

Evaluating the four expressions in the sum we get

P>Υ (M,Q)Q = P>M−1Q− P>M−1Q
(
Q>M−1Q

)−1
Q>M−1Q = 0,

Q>Υ (M,Q)P = Q>M−1P −Q>M−1Q
(
Q>M−1Q

)−1
Q>M−1P = 0,

Q>Υ (M,Q)Q = Q>M−1Q−Q>M−1Q
(
Q>M−1Q

)−1
Q>M−1Q = 0,

P>Υ (M,Q)P = P>M−1P − P>M−1Q
(
Q>M−1Q

)−1
Q>M−1P.
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We observe that the last term P>Υ (M,Q)P is the projected Schur comple-
ment S

(
M−1, Q

)
(Def. 3.2). From the projection inversion corollary (Corollary

3.3) we then obtain

P>Υ (M,Q)P =
(
P>MP

)−1
,

and therefore
Υ (M,Q) = P

(
P>MP

)−1
P>.

We are now prepared to proceed with the proof of Theorem 3.1.

Proof. We begin by proving the first part of the theorem, i.e.,

Σ̂e(Σ, P ) = CΦ−1Q(Q>Φ−1Q)−1Q>Φ−1B. (3.23)

The error system TFM is

Σ̂e = Σ̂r − Σ̂

= CP
(
sIr − P>AP

)−1
P>B − CΦ−1B

= CP
(
P>ΦP

)−1
P>B − CΦ−1B

= C
(
P
(
P>ΦP

)−1
P> − Φ−1

)
B.

We now employ the matrix inverse lifting lemma (Lemma 3.4),

P (P>ΦP )−1P> − Φ−1 = Φ−1Q(Q>Φ−1Q)−1Q>Φ−1,

thus leading to the expression (3.23). Next, we prove the second part of the
theorem, i.e.,

Σe(Σ, P ) = Θ(Σ, P )∆(Σ, P )Γ(Σ, P ), (3.24)

with the three realizations

Θ(Σ, P ) := (APP , APQ, CP,CQ)

Γ(Σ, P ) := (APP , P
>B,AQP , Q

>B)

∆(Σ, P ) := (A,Q,Q>, 0p×m).

With I =
(
Q>Φ−1Q

) (
Q>Φ−1Q

)−1
we get

CΦ−1QΞ(Φ, Q)Q>Φ−1B = Θ̂ (Σ, P ) ∆̂ (Σ, P ) Γ̂ (Σ, P ) ,

where Ξ(Φ, Q) ,
(
Q>Φ−1Q

)−1
and

Θ̂ (Σ, P ) , CΦ−1QΞ(Φ, Q),

∆̂ (Σ, P ) , Q>Φ−1Q,

Γ̂ (Σ, P ) , Ξ(Φ, Q)Q>Φ−1B.
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We have I = PP> +QQ> such that

Φ−1Q
(
Q>Φ−1Q

)−1
=
(
PP> +QQ>

)
Φ−1QΞ(Φ, Q)

= Q+ P
(
P>Φ−1Q

)
Ξ(Φ, Q).

From the projection inversion corollary (Corollary 3.3), we have

P>Φ−1Q = −Φ−1PPΦPQ
(
Q>Φ−1Q

)

=
(
sIr − P>AP

)−1
P>AQ

(
Q>Φ−1Q

)

and
Φ−1QΞ(Φ, Q) = Q+ P

(
sIr − P>AP

)−1
P>AQ, (3.25)

such that
Θ̂(Σ, P ) = CP

(
sIr − P>AP

)−1
P>AQ+ CQ,

which is the TFM with realization Θ(Σ, P ) := (APP , APQ, CP,CQ). Similarly
we get

Γ̂(Σ, P ) =
[
Q>Φ−1Q

]−1
Q>Φ−1B

= Q>AP
(
sIr − P>AP

)−1
P>B +Q>B,

and the realization Γ(Σ, P ) :=
(
APP , P

>B,AQP , Q>B
)
. Finally ∆̂(Σ, P ) =

QΦ−1Q has realization ∆(Σ, P ) :=
(
A,Q,Q>, 0p×m

)
.

3.5 Conclusions

In this chapter we have derived a unique product form of the error system of
orthogonal projection-based reduced models from which the notion of interface-
invariant PROMs has emerged. The proof of this theorem was based on a
matrix-inverse lifting lemma, an extension of the matrix inversion lemma. The
derived product form was then used to construct an H∞ error bound for the
PROM error system and a corresponding bound optimization PROM problem,
which will be applied for the reduction of MAS in the following chapter.
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Chapter 4

Model Reduction of
Multi-Agent Systems by
Graph Contractions

Interface-invariant reduced models are natural to graph-based model reduction
of multi-agent systems where subsets of agents function as the input and output
of the system. In this chapter, graph contractions are used as a constructive
solution approach to the H∞ bound optimization problem for MAS. Edge-based
contractions are then utilized in a greedy-edge reduction algorithm, and these
results are demonstrated with some numerical examples of model reduction of
a first-order Laplacian controlled consensus protocol.

4.1 Introduction

Multi-agent systems may be of extremely large scale, and designing and imple-
menting full order controllers for such systems is not feasible without applying
model reduction on the design model or the full-order controller. Several recent
studies were performed in order to derive PROM producing methods for the
reduction of MAS that utilize the underlying network structure of MAS. In [47],
a projection reduction of the controlled consensus protocol is performed based
on partitioning of the graph vertices. The resulting reduced order projected
system is then interpreted as an input-output consensus system over a directed
graph, and it is shown that the reduction error is H2-optimal for a special class
of partitions. In [34], a similar partition-based projection method is used for
reduction of a single input networked dynamic system, resulting in a reduced
networked system over a non-simple graph with H∞ reduction error bounds. It
has been observed in these previous studies that partition-based PROMs main-
tain an MAS structure, i.e., the PROM is an MAS (4.2) defined over a reduced
order graph.
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Chapter 4. Model Reduction of Multi-Agent Systems by Graph Contractions

These methods, while contributing analytical results such as error bounds,
did not provide efficient algorithms for optimal, or suboptimal model reduction
of MAS. In that direction, in this work we investigate PROMs based of vertex
partitions. We are able to utilize the edge-induced partitions introduced in
Chapter 2, together with the PROM bound derived in Chapter 3, to construct
a suboptimal efficient model reduction method for MAS.

In this work we introduce the notion of edge-induced PROMs. These are
PROMs which are constructed over edge-induced partitions of the graph. This
graph-based model reduction method allows us to derive sub-optimal but effi-
cient IIPROMs of MAS.

We first provide the system theoretic basis of MAS. We consider a multi-
agent system as a set of n agents connected over a network described by a graph
G = (V, E ,W). Each agent has LTI dynamics, which depend on their internal
dynamics and a response to their local neighborhood Ni ⊆ V. The state space
realization of each agent system is then

{
ẋi (t) = Aixi (t) +

∑
j∈Ni Aijxj (t) +Biui (t)

yi (t) = Cixi (t) +Diui (t)
(4.1)

where xi ∈ Rdx is the i’th agent state vector, Ai, Aij , Bi, Ci, Cij and Di are
realization parameters, and ui ∈ Rdu is an external input signal. We assume
further that in such a network, a subset of the agents may be subject to external
control inputs, and a subset may be accessed for measurements. Formally, we
denote the input nodes by the set U ⊆ V (G), and the set of output nodes by the
set Y ⊆ V (G). In the case of linear MAS, we then have the realization

Σ (G,U ,Y) := (A (G) , B (G,U) , C (G,Y) , D (U ,Y)) , (4.2)

where the matrices A (G) ∈ Rnx×nx , B (G,U) ∈ Rnx×nu , C (G,Y) ∈ Rny×nx
and D (U ,Y) ∈ Rny×nu are the system matrices as a function of the underlying
graph structure, with nx = dx × n, nu = du × |U| and ny = dy × |Y|. Here,
dx, du, and dy represent the dimension of the state, input, and output of each
agent in the network. The TFM representation of (4.2) is,

ΣM (s) = C (G,Y) (sI −A (G))
−1
B (G,U) . (4.3)

This system is visualized in Figure 4.1. Note that MAS models of this form
include classical setups such as diffusively coupled networks [10] and Laplacian
dynamics [45].

If Y = U we define Σ (G,U ,Y) as an interface system, a multi-agent sys-
tem where a subset of agents are the interface of the system with an exter-
nal observer-controller. If C (G,U) = BT (G,U) and A (G) is symmetric then
Σ (G,U ,Y) is a balanced interface system.
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Σ (G,U ,Y)

output
input

Figure 4.1: A controlled MAS with interface agents, red nodes identify the set
U , blue nodes the set Y.

The Laplacian matrix plays a key role in networked an multi-agent systems.
For a multi-graph, i.e., a graph that may include duplicate edges and self loops,
the Laplacian matrix L (G) ∈ R|V|×|V| is defined as [25]

[L(G)]uv =





∑
v∈{Nu∪u} w ({u, v}) u = v

−w ({u, v}) u ∼ v
0 o.w.

, (4.4)

where w({u, v}) denotes the weight of the edge {u, v}.
As a test case model of an interface MAS of the form (4.2), we consider the

Laplacian controlled consensus model (LCC) (4.5), a generalisation of the Lapla-
cian Consensus protocol ẋ = −L (G)x, a benchmark model of an uncontrolled
multi-agent system [45],. The LCC has a realization

{
ẋ = −L (G)x+B (U)P

y = C (Y)x+D (U ,Y)u
, (4.5)

where B (U) ∈ R|V|×|U| maps each of the inputs to the corresponding node in
the network, i.e., [B (U)]ij = 1 if i is the j’th input node and 0 otherwise, and

similarly C (U) ∈ R|Y|×|V| maps each of the outputs to the corresponding node
in the network, i.e., [C (U)]ji = 1 if i is the j’th output node and 0 otherwise.

4.2 Graph-Based Model Reduction

Based on the networked structure of linear MAS, we define its graph-based
model reduction:

Definition 4.1 (Graph-based model reduction). Consider an MAS consisting
of n agents with realization

Σ (G,U ,Y) := (A (G) , B (G,U) , C (G,Y) , D (U ,Y)) ,

then we define a graph-based model reduction of Σ as an MAS consisting of
r < n agents with realization

Σ (Gr,U ,Y) := (A (Gr) , B (Gr,U) , C (Gr,Y) , D (U ,Y)) ,

where Gr is any graph of order r.

72

 

 

 



Chapter 4. Model Reduction of Multi-Agent Systems by Graph Contractions

(a) (b) (c)

Figure 4.2: A set of 9 nodes, with subset I of three nodes (marked with x), (a)
is an I-invariant 3-partition, (b) is a strongly I-invariant 5-partition, and (c) is
a 2-partition which is not I-invariant.

Problem 4.1 (Graph-based model reduction problem). Consider an MAS
Σ (G,U ,Y) of order n. Find a graph Gr of a given order r < n such
that the reduced system Σr = Σ (Gr,U ,Y) minimizes the H∞ reduction error
‖Σe (Σ,Σr)‖H∞ .

Finding a solution to Problem 4.1 may be numerically intractable for a mod-
erate number of nodes, e.g., the number of simple connected graphs of order r
increases exponentially and for r = 1, . . . , 6, it is 1, 1, 4, 38, 728, 26704 [64,
p.87].

The general statement of Problem 4.1 does not suggest any constructive
way to find the optimal reduced MAS. However, it is expected that an optimal
solution will have some functional dependency on the MAS structure. Vertex
partitions have been widely used in graph theory, e.g., for graph clustering [55]
and in the study of network communities [49]. Vertex partitions have been also
used for constructing projection-based model reductions of multi-agent systems
as the consensus protocol [47] and bidirectional networks [34].

We recall some definitions of partitions and graph contractions discussed in
Chapter 2. An r-partition, π, of a vertex set V is the partition {Ci}ri=1 of V
to r cells such that ∪ri=1Ci = V and |Ci ∩ Cj | = 0 for i 6= j. An r-partition
π = {Ci}ri=1 is I-invariant for I ⊆ V if ∀i ∈ [1, r], one has |Ci ∩ I| ≤ 1, i.e., no
partition cell contains more than one node in I. The r-partition is strongly I-
invariant if all partition cells containing nodes in I are singletons, i.e., |Ci| = 1
whenever Ci ⊂ I. We denote the set of all strongly I-invariant r-partitions as
Sr (V). Figure 4.2 illustrates these definitions.

We recall from Chapter 2 Definition 2.9 that given a graph G = (V, E), and
an n− r edge subset ES ⊆ E , an edge-induced partition π(ES) is an r-partition
of V constructed as follows: (i) A graph G(V, ES) is created from the vertices of
G and the edge-subset ES , (ii) the connected components of G(V, ES) are found,
(iii) the vertices of each component is registered as a partition cell, and the set
of all components cells constitutes the partition π(ES) of V (Figure 4.3).

In the following section, we will utilize the edge-induced partitions to con-
struct partition-based PROMs in a model reduction method suboptimal in the
H∞ IIPROM reduction error bound (Eq. (3.1)) derived in Chapter 3.
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4.3 H∞ - Suboptimal PROMs of Controlled
MAS

In this section, graph contractions are used as a constructive solution approach
to the H∞ bound optimization problem for multi-agent systems. Edge-induced
partitions are then utilized in a greedy-edge reduction algorithm and are demon-
strated for the model reduction of a first-order Laplacian controlled consensus
protocol.

We first construct the optimal partition PROM problem that we are aiming
to solve.

Problem 4.2 (Optimal partition PROM). Consider a stable MAS Σ (G,U ,Y)
with n agents, each with local state of dimension dx. Find an r-partition π such
that the PROM Σr (Σ, P (π)) minimizes the H∞ reduction error, where P (π)
is the PPM (Definition 2.13).

Interface systems are natural to MAS where a subset of agents interact with
an external controller. Therefore, we restrict the PROM to be an IIPROM
(Definition 3.1) by requiring the partition to be I-invariant. Additionally, we
replace the PROM error with the IIPROM bound derived in Chapter 3, which
has lower computational complexity. The resulting partition IIPROM bound
problem is then introduced:

Problem 4.3 (Optimal partition IIPROM bound). Consider a stable MAS
Σ (G,U ,Y) with n agents, each with local state of dimension dx, and an inter-
face set I = U ∪ Y. Find an I-invariant r-partition π such that the PROM
Σr (Σ, P (π)) minimizes the reduction error bound b (Σ (G,U ,Y) , Idx ⊗ P (π))
given in (3.12).

Similar to the interlacing graph reduction problem (Problem 2.1) of Chap-
ter 2, finding a solution to Problem 3.2 may be numerically intractable for a
moderate number of nodes, and we seek for an efficient suboptimal solution.

Given a subset of edges Ec ⊆ E , an edge-induced partition π (Ec) can be
constructed as described above. Here we utilize the edge-induced partition to

1

2

3

4 5

6

(a)

1

2

3

4 5

6

(b)

Figure 4.3: An edge-induced partition of a graph of order r, (a) a graph G =
(V, E) with a selected edge subset ES = {{1, 2}, {4, 5}, {5, 6}} (dashed red),
(b) the graph G(V, ES) and its connected components inducing the partition
π(ES) = {{1, 2}, {3}, {4, 5, 6}} on V(G).
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derive a greedy-edge IIPROM bound (GEIB) algorithm (Algorithm 4.1). The
input to the algorithm is an MAS Σ (G,U ,Y) (4.2), the required reduction order
r and a subset of candidate edges Ec ⊆ E (assuming there are more than n− r
edges in Ec). The first step of the algorithm is to check if each of the edges
is strongly I-invariant by examining if both end nodes of an edge are not in
I. If an edge is found to be strongly I-invariant, a PPM in constructed with
its induced edge partition and the PROM error bound (3.1) is calculated. The
PPM of the induced-edge partition of the n− r edges with lowest bound is then
used to obtain a PROM and serves as a suboptimal solution to Problem 4.3.

Algorithm 4.1 Greedy-edge IIPROM bound Algorithm

Input: An MAS Σ (G,U ,Y) of order n with realization Σ :=
(A (G) , B (G,U) , C (G,Y) , D (U ,Y)), interface set I = U ∪ Y, edge subset
Ec ⊆ E , reduction order r.

1. For each {u, v} ∈ Ec
• if u ∈ I or v ∈ I, skip to next edge,

• else construct the edge-induced partition π ({u, v}) and its PPM
P (π), and calculate b (Σ, P (π)) .

2. Find n− r edges E∗ ⊆ Ec with the lowest bound values.

3. Construct the edge-induced r-partition π (E∗).
Output: Σr (Σ, P (π (E∗))) (3.1)
Notation: Σr = GEIB (Σ (G,U ,Y) , Ec, r)

The greedy-edge IIPROM bound algorithm does not specify the method to
choose the edge subset Ec. Trees are the building blocks of any connected graph.
A basic graph-theoretic principle is that a spanning tree of a connected graph
G = (V, E) of order n is a subgraph with a minimal set of n−1 edges connecting
all vertices. Furthermore, trees and cycle-completing edges are strongly related
to the performance of networked systems [69]. With this intuition, we derive
the tree-based IIPROM bound (TBIB) algorithm (Algorithm 4.2), where given
an MAS Σ (G,U ,Y) (4.2), a spanning-tree is found. The edges of the tree are
then used as the subset Ec when applying the GEIB algorithm.

We have derived the TBIB algorithm utilizing the PROM error bound as
a general framework for model reduction of MAS. In the following case study
section, we examine the performance of the algorithm, and it will be shown to
provide excellent results for the reduction of large-scale MAS.

4.4 Case Studies

In this section we present some numerical examples illustrating the results of
this work. In the following subsections we will demonstrate the effectiveness
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Algorithm 4.2 Tree-based IIPROM bound Algorithm

Input: An MAS Σ (G,U ,Y) of order n with realization Σ :=
(A (G) , B (G,U) , C (G,Y) , D (U ,Y)), interface set I = U ∪ Y, reduction order
r.

1. Find a spanning tree T of G.

2. Perform greedy edge algorithm

Σr = GEIB (Σ (G,U ,Y) , E (T ) , r) .

Output: Σr
Notation: Σr = TBIB (Σ (G,U ,Y) , r)

of the graph-based model reduction Algorithms derived in Section 4 for the
reduction of small and large-scale LCC models.

Example 4.1. As a first case study we consider the reduction of an LCC model
(4.5) associated to a small-scale graph G with 20 nodes and 23 edges with 2
interface nodes (Figure 4.4a). We perform an edge-based IIPROM for each of
the I-invariant singleton partitions induced by the edges of G. In this case, only
the partitions induced by edge 1 are not I-invariant since both its end nodes
are interface nodes. For each of these IIPROMs, the H∞-norm of the error
system (3.1) and the H∞ error bound (3.1) are calculated and normalized by
‖Σ‖H∞ (Figure 4.4b). We observe that the choice of edge has a great effect
on the reduction error magnitude, some edges produce reduction errors smaller
than 1% of ‖Σ‖H∞ , while other edges induce IIPROM errors that are 10% of
‖Σ‖H∞ . It is also observed that the error bound is relatively tight for small
reduction errors, while for larger errors the bound may differ more than an
order of magnitude from the error.

We then demonstrate the tree-based IIPROM bound algorithm (Algorithm
4.2) on the LCC. The spanning tree edges are found and Algorithm 4.2 is then
performed for r ∈ [10, 19]. Figure 4.4c plots the reduction error ‖Σe‖H∞ , and
the error bound br (G, Ur) (3.10), as a function of the normalized reduction
depth n−r

n . We observe that the log reduction error has a quasi-linear trend as a
function of n−r

n , and that the bound is tight for low reduction depths and differs
as the reduction increases; however, the bound follows the same trend as the
error, therefore, minimizing the bound is consistent with minimizing the error
in this case.

Example 4.2. As a large-scale case study, a small-world graph is created with
the Watts-Strogatz random rewiring procedure with k = 5 and β = 0.15 [63]
starting from a 5-regular graph of order 100 with 5 interface nodes U = Y =
{1, . . . , 5} (Figure 4.5).

An LCC is constructed over this graph and the tree-based IIPROM bound al-
gorithm (Algorithm 4.2) is then performed. Figure 4.6 plots the reduction error
‖Σe‖H∞ , and the error bound br (G, Ur) (3.10) (normalized by ‖Σ‖H∞), as a
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Figure 4.4: A small-scale edge-based IIPROM case study (a) The graph asso-
ciated to the Laplacian consensus in this example, interface nodes marked red,
labels on edges indicate the edge numbers, a spanning tree is highlighted in
blue and (b) The reduction error and reduction error bound of each edge-based
IIPROM of the Laplacian consensus associated to the graph in Figure 4.4a. No-
tice that no values are assigned to edge 1 since it does not induce an interface
invariant PROM. (c) The reduction error and reduction error bound resulting
from applying the tree-based IIPROM bound algorithm to the the Laplacian
consensus associated to the graph.
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Figure 4.5: The Laplacian consensus in this example is associated to a small-
world graph with 5 interface nodes (marked red).
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Figure 4.6: The reduction error and reduction error bound of the Laplacian
consensus associated to the graph in Figure 4.5.
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Chapter 4. Model Reduction of Multi-Agent Systems by Graph Contractions

function of the normalized reduction depth n−r
n . As a comparison to the reduc-

tion error and bound results, we calculate the empirical mean-IIPROM µP (Σ),
the mean reduction error ‖Σe‖H∞ of N = 50 randomly selected IIPROMs,
and the empirical mean edge-based IIPROM µε (Σ), the mean reduction error
‖Σe‖H∞ of N = 50 randomly selected edge-based PPM IIPROMs.

We observe that bound is tight for the entire reduction depth range. Fur-
thermore, the reduction with the proposed tree-based method is several orders
of magnitude lower than the empirical mean-IIPROM, and for lower reduction
depth is significantly better than the empirical mean edge-based IIPROM. As ex-
pected, for high reduction depth, the tree-based method converges to the empirical
mean edge-based IIPROM.

4.5 Conclusions

A suboptimal bound optimization solution for MAS is obtained with a graph-
based spanning tree algorithm. Applying this algorithm on a Laplacian consen-
sus model constructed with a large-scale small-world network, demonstrates the
utility of the method to large scale multi-agent systems. In the examined case
studies, the bound obtained with the tree-base algorithm is tight, therefore, the
optimal PROM bound for those cases is close to the optimal reduction error
PROM. The same technique presented can be applied to various multi-agent
systems other than the consensus models.
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Chapter 5

Summary

In this chapter, we conclude the research presented in this thesis. We begin
with a brief summary of the contributions, followed by suggestions for future
research paths.

5.1 Conclusions

This research thesis aimed to provide efficient graph-based model reduction
methods for multi-agent systems, a crucial tool for implementing controllers for
the emerging field of large scale multi-agent systems. Although an efficient op-
timal solution to the graph-based model reduction problem has yet to be found,
the endeavour has resulted in significant contributions, including combinatorial,
algebraic and spectral graph theorems, a system-theoretic model reduction the-
orem and a framework for suboptimal model reduction of MAS preserving their
networked structure.

The graph theoretic part of the work was performed in Chapter 2. It pro-
vided a comprehensive study of vertex partitions and graph contractions, and
introduced edge-induced partitions (Definition 2.9) and edge-based graph con-
tractions (Definition 2.10), combinatorial graph reduction operations that, later
in the thesis, were found to be highly useful for deriving efficient reduction
methods. We also explore for the first time, the algebraic representations of
graph contractions including the algebraic representation of the incidence ma-
trix (Proposition 2.9), three type of Laplacian matrices (Theorem 2.1), and the
Tucker representation (Theorem 2.2).

An important spectral graph theory finding is the graph reduction inter-
lacing theorem (Theorem 2.1) that provides a set-theoretic extension of the
min-max theorem for interlacing graph matrices. Additionally, we define two
classes of edge-matching graph contractions, node-removal equivalent contrac-
tions (Definition 2.4) and cycle-invariant contractions (Definition 2.5). It was
proven how these two classes provide Laplacian interlacing (Theorem 2.7) and
normalized-Laplacian interlacing (Theorem 2.8), and two efficient algorithms
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Chapter 5. Summary

were constructed for finding such contractions in a graph (Algorithm 2.2&2.1).
In Chapter 3 of the thesis, the well known orthogonal PROM is studied. A

novel product form is derived for the PROM reduction error system in Theorem
3.1 based on an extension of the matrix inversion lemma we denoted as the ma-
trix lifting lemma (Lemma 3.4). Investigating the PROM error system product
form, we define interface-invariant PROMs, PROMs with projection-invariant
input and output matrices (Definition 3.1), and it is proven that for such PROMs
the error product systems are strictly proper (Proposition 3.1). Furthermore,
exploiting this structure, an analytic H∞ reduction error bound is obtained and
shown to be tight for a toy model (Example (3.1). We then present a sub-
optimal greedy-edge efficient algorithm for H∞ graph-based model reduction of
multi-agent systems utilizing the derived edge-matching graph contractions and
the analytic H∞ reduction error bound.

Combining results from Chapters 2 and 3, in Chapter 4, a suboptimal so-
lution is derived for the graph-based model reduction problem of MAS. The
solution is based on a greedy-edge spanning tree algorithm (Algorithm 4.2)
optimizing the H∞ PROM error bound (3.1). The utility of the method to
large scale multi-agent systems is then demonstrates for a Laplacian consensus
model constructed with a large-scale small-world network. The reduction error
obtained with the suboptimal tree-base algorithm provides promising results,
scale of magnitude smaller than the average random PROM.

5.2 Outlook

The closing of the thesis is an outlook into possible extensions of the the main
three categories of research conducted in this work.

Graph contractions Several attempts have been performed during this re-
search to combine combinatorial operations related to graph contractions
to system theoretic metrics of reduced models. These included the work
initiating this research that established the framework for the graph-based
model reduction of the controlled consensus protocol [40]; however, with
no concrete analytic results. A major effort was then performed to link
spectral graph theorems such as interlacing graph matrices and a model
reduction bound for MAS, utilizing mathematical tools such as spectral
majorization theorems, again with no worthy results. These attempts em-
phasized the inherent complexity of model reduction both from the system
theoretical approach and the graph theoretical perspective.

The natural extension of this work will be to successfully connect graph
contractions and model reduction error bounds, e.g., via interlacing of
graph matrices. Such results, if found, will provide a deeper understanding
of the effect of graph theoretical properties to system performance, and
may lead to improved model reduction methods of MAS.

The significant contributions of this work in the graph theoretical study
of graph contractions suggest further research. The same spectral inter-
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lacing theorem (Theorem 2.5) can be applied for finding other classes of
graph contractions providing interlacing graph matrices. The proposed
algorithms for finding classes of interlacing contractions will benefit from
the addition of a prior feasibility step determining if there are no cycle-
invariant or node-removal equivalent contractions in a graph.

Finally, the algebraic representations of graph contractions may be used
for the development of various other graph-based model reduction methods
of MAS.

Model reduction The established PROM error system product form (3.1)
can be useful for the derivation of model reduction optimization methods,
such as convex relaxations. Furthermore, if one restricts the projections
to be orthogonal, as in this thesis, it appears that the orthogonal matrices
may be parametrized through Givens or Householder rotations, which
constitute a convex set.

The realizations of the product form systems opens new possibilities in
the analysis of PROMs, and further research is required to explain the
tightness of the PROM error bound, as seen in the case study (Figure
3.2). The notion of interface-invariant PROMs (Definition 3.1), natural
to graph-based model reduction of MAS, and the derivedH∞ bound (The-
orem 3.1), may be applicable to model reduction problems from various
other domains.

Application to MAS The same graph-based model reduction framework
used in Chapter 4 can be applied to the reduction of generally any con-
trolled MAS of the form (4.2). Various other suboptimal structure reduc-
tion methods can be derived for such problems, with other reduction error
metrics.
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passivity-based cooperative control. Automatica, 50(8):2051–2061, 2014.
4.1

[11] G. Chen, G. Davis, F. Hall, Z. Li, K. Patel, and M. Stewart. An interlacing
result on normalized laplacians. SIAM Journal on Discrete Mathematics,
18(2):353–361, 2004. 2.1, 2.4, 2.4, 2.4, 2.4

83

 

 

 



BIBLIOGRAPHY

[12] X. Cheng, Y. Kawano, and J. M. Scherpen. Reduction of second-order
network systems with structure preservation. IEEE Transactions on Auto-
matic Control, 62(10):5026–5038, 2017. 1.1

[13] K. W. Chong and T. W. Lam. Finding connected components in o (log n
log log n) time on the erew pram. Journal of Algorithms, 18(3):378–402,
1995. 2.2

[14] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92. Amer-
ican Mathematical Soc., 1997. 2.4

[15] B. De Schutter. Minimal state-space realization in linear system theory:
an overview. Journal of computational and applied mathematics, 121(1-
2):331–354, 2000. 1.2.1

[16] N. Deo. Graph theory with applications to engineering and computer sci-
ence. Courier Dover Publications, 2017. 2.3

[17] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space
solutions to standard h2 and h∞ control problems. IEEE Transactions on
Automatic control, 34(8):831–847, 1989. 1.2.1

[18] J. C. Doyle and G. Stein. Multivariable feedback design: Concepts for a
classical/modern synthesis. In IEEE Trans. on Auto. Control. Citeseer,
1981. 1.2.1

[19] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory: A
Convex Approach. Springer New York, 2000. 1.1

[20] D. F. Enns. Model reduction with balanced realizations: An error bound
and a frequency weighted generalization. In The 23rd IEEE conference on
decision and control, pages 127–132. IEEE, 1984. 1.2.2

[21] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czechoslovak Mathematical Journal,
25(4):619–633, 1975. 2.1

[22] B. A. Francis and W. M. Wonham. The internal model principle of control
theory. Automatica, 12(5):457–465, 1976. 1.1

[23] M. Fu and Z.-Q. Luo. Computational complexity of a problem arising in
fixed order output feedback design. Systems & Control Letters, 30(5):209–
215, 1997. 1.1

[24] K. Gallivan, A. Vandendorpe, and P. Van Dooren. Sylvester equations and
projection-based model reduction. Journal of Computational and Applied
Mathematics, 162(1):213–229, 2004. 1.1, 1.2.2, 3.2

[25] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001. 1.3,
1.2.3, 1.2.3, 2.3.3, 4.1

84

 

 

 



BIBLIOGRAPHY

[26] C. D. Godsil. Compact graphs and equitable partitions. Linear Algebra
and its Applications, 255(1-3):259–266, 1997. 2.4

[27] M. Green and D. J. Limebeer. Linear robust control. Courier Corporation,
2012. 1.1

[28] K. M. Grigoriadis and R. E. Skelton. Low-order control design for lmi
problems using alternating projection methods. Automatica, 32(8):1117–
1125, 1996. 1.1

[29] W. H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra and
its applications, 226:593–616, 1995. 2.1, 2.4

[30] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, New York, NY, 1991 (1st edition 1985, (expanded) 2nd
edition 2013). 1.1

[31] X. Huang, F. Arvin, C. West, S. Watson, and B. Lennox. Exploration in
extreme environments with swarm robotic system. In 2019 IEEE Interna-
tional Conference on Mechatronics (ICM), volume 1, pages 193–198, 2019.
1.1

[32] D. Hyland and D. Bernstein. The optimal projection equations for fixed-
order dynamic compensation. IEEE Transactions on Automatic Control,
29(11):1034–1037, 1984. 1.1

[33] Y. Ikebe, T. Inagaki, and S. Miyamoto. The monotonicity theorem,
cauchy’s interlace theorem, and the courant-fischer theorem. The American
Mathematical Monthly, 94(4):352–354, 1987. 2.4

[34] T. Ishizaki, K. Kashima, J.-i. Imura, and K. Aihara. Model reduction and
clusterization of large-scale bidirectional networks. IEEE Transactions on
Automatic Control, 59(1):48–63, 2014. 1.1, 3.1, 4.1, 4.2

[35] I. M. Jaimoukha and E. M. Kasenally. Implicitly restarted krylov subspace
methods for stable partial realizations. SIAM Journal on Matrix Analysis
and Applications, 18(3):633–652, 1997. 1.1

[36] H. Jongsma, H. Trentelman, and M. Camlibel. Model reduction of consen-
sus networks by graph simplification. In 2015 54th IEEE Conference on
Decision and Control (CDC), pages 5340–5345, 2015. 1.1

[37] S. Kamboj, W. Kempton, and K. S. Decker. Deploying power grid-
integrated electric vehicles as a multi-agent system. In The 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume
1, pages 13–20, 2011. 1.1

[38] I. Khalil, J. Doyle, and K. Glover. Robust and optimal control. prentice
hall, new jersey, 1996. 1.1

85

 

 

 



BIBLIOGRAPHY

[39] N. Leiter and D. K. Geller. Optimal reduced-order LQG synthesis: Non-
separable control and estimation design. Optimal Control Applications and
Methods, 40(5):961–977, 2019. 1.1

[40] N. Leiter and D. Zelazo. Graph-based model reduction of the controlled
consensus protocol. volume 50, pages 9456–9461, 2017. 20th IFAC World
Congress. 1.1, 5.2

[41] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das. Introduction to
synchronization in nature and physics and cooperative control for multi-
agent systems on graphs. In Cooperative Control of Multi-Agent Systems,
pages 1–21. Springer, 2014. 1.1

[42] L. Li and F. Paganini. Structured coprime factor model reduction based
on lmis. Automatica, 41(1):145–151, 2005. 1.1

[43] W. Liu, V. Sreeram, and K. L. Teo. Model reduction for state-space sym-
metric systems. Systems & Control Letters, 34(4):209–215, 1998. 3.3.2,
3.1

[44] A. J. Majda, C. Franzke, and D. Crommelin. Normal forms for reduced
stochastic climate models. Proceedings of the National Academy of Sci-
ences, 106(10):3649–3653, 2009. 1.1

[45] M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent net-
works. Princeton University Press, 2010. 1.1, 4.1, 4.1

[46] G. Minty. A simple algorithm for listing all the trees of a graph. IEEE
Transactions on circuit theory, 12(1):120–120, 1965. 2.2

[47] N. Monshizadeh, H. L. Trentelman, and M. K. Camlibel. Projection-
based model reduction of multi-agent systems using graph partitions. IEEE
Transactions on Control of Network Systems, 1(2):145–154, 2014. 1.1, 4.1,
4.2

[48] B. Moore. Principal component analysis in linear systems: Controllabil-
ity, observability, and model reduction. IEEE transactions on automatic
control, 26(1):17–32, 1981. 1.1, 1.2.1, 1.2.2, 1.2.2

[49] M. E. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004. 1.1, 2.1, 4.2

[50] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in neural information processing systems,
pages 849–856, 2002. 2.1

[51] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233,
2007. 1.1

86

 

 

 



BIBLIOGRAPHY

[52] J. R. Phillips, L. Daniel, and L. M. Silveira. Guaranteed passive balanc-
ing transformations for model order reduction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 22(8):1027–
1041, 2003. 3.3.2

[53] R. T. Rockafellar. Network flows and monotropic optimization. Number
1-237. Wiley-Interscience, 1984. 2.3.3

[54] H. Sandberg. An extension to balanced truncation with application to
structured model reduction. IEEE Transactions on Automatic Control,
55(4):1038–1043, 2010. 1.1

[55] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007. 1.1, 2.1, 4.2

[56] M. Sharf and D. Zelazo. Analysis and synthesis of mimo multi-agent sys-
tems using network optimization. IEEE Transactions on Automatic Con-
trol, 64(11):4512–4524, 2019. 1.1

[57] M. Siami and N. Motee. Systemic measures for performance and robustness
of large-scale interconnected dynamical networks. In 53rd IEEE Conference
on Decision and Control, pages 5119–5124. IEEE, 2014. 1.1

[58] D. A. Spielman and S.-H. Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM
Journal on computing, 42(1):1–26, 2013. 1.1

[59] C. Sturk, L. Vanfretti, F. Milano, and H. Sandberg. Structured model
reduction of power systems. In 2012 American Control Conference (ACC),
pages 2276–2282. IEEE, 2012. 1.1

[60] H. L. Trentelman. Bounded real and positive real balanced truncation using
σ-normalised coprime factors. Systems & control letters, 58(12):871–879,
2009. 3.3.2
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II

משפט הצגת היא נוספת חשובה תרומה מכווצים. גרפים המייצגות מטריצות של האלגברי התיאור את ומפתחים גרפים,

סוגים שני למציאת מסופקים חדשים יעילים אלגוריתמים מופחת. מסדר גרפים של מטריצות לשזירות כללי ספקטרלי

לפלס. מטריצות של שזירות המבטיחים גרפים התכווצויות של

מבנה מפתחים אנו השלכה. מבוססת סדר הפחתת של המבנה את מחדש בוחנים אנו התזה של השלישי בפרק

חסם מפותח זה מכפלה מבנה בסיס על השלכה. מבוססת סדר מהפחתת הנובעת השגיאה מערכת של חדשני מכפלה

החסם. של אופטימיזציה בעיית ומוגדרת הסדר, הפחתת שגיאת של אנליטי

מבוססת סדר הפחתת שיטות פיתוח לצורך הקודמים הפרקים משני תוצאות ביישום עוסק התזה של הרביעי הפרק

סדר הפחתת של כאופטימיזציה הסדר הפחתת בעית את מנסחים אנו ראשון, כצעד סוכנים. מרובות למערכות גרפים

יעילים אופטימליים לא פתרונות להפיק מנת ועל חישובית, קשה היא זו בעיה כי נמצא זאת, עם הגרפים. בתורת

איגוד על המבוסס סדר להפחתת יעיל אלגוריתם מפתחים אנו הגרפים, סדר הפחתת של האופטימיזציה בעיית של

קונסנזוס מערכת על מודגמת השיטה ההשלכה. שיטת של השגיאה בחסם שימוש ועושים בגרף, וקשתות קודקודים

גדול. מידה בקנה

לעתיד. מחקר כיווני ומציג אותה מסכם התזה של והאחרון החמישי הפרק
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עברי תקציר
ולהקות רובוטיים נחילים כגון רבות, מודרניות בטכנולוגיות סוכנים מרובות במערכות בשימוש ניכר גידול כיום יש

סוכנים מרובות מערכות של אחרים יישומים ביותר. הקשות בסביבות מורכבות אוטונומיות פעולות המאפשרים רחפנים,

וסוציולוגיה. כלכלה פיזיקה, לרבות רבים מדע בתחומי ומודלים מבוזרות, חשמל רשתות כוללים

מייצגות וקשתות בגרף צומת ידי על מיוצג סוכן כל כאשר סוכנים, מרובות מערכות של המבנה את מאפיינים גרפים

הוא זה בהקשר סוכן נתונים. תקשורת או יחסיות מדידות למשל, סמוכים, סוכנים בין המקומיות האינטראקציות את

יש הסוכנים לכל בהן הומוגניות במערכות נעסוק זה ובמחקר אחרות למערכות בצימוד הפועלת דינמית מערכת כל

ואחרים. (Olfati) אולפטי ידי על שפותח הקונצנזוס מודל הוא זה מסוג למערכת בולטת דוגמא דינמי. מודל אותו את

מקומי. בקרה חוק באמצעות ברשת להם הסמוכים הסוכנים של לזה זהה למצב להגיע שואפים הסוכנים כל זה במודל

המצב לאותו מתכנסת כולה המערכת הספציפי, למודל ובהתאם תנאים, כמה תחת ,(Mesbahi) מסבחי שמראה כפי

הסכמה. ומתקבלת

מערכות כגון מודרניים יישומים שכן גוברת, חשיבות עם הלינאריות המערכות תורת של פעיל ענף היא סדר הפחתת

פעם בכל נדרשים אלו מערכות של מופחתי־סדר מודלים במיוחד. גדול מידה בקנה להיות עשויים סוכנים, מרובות

מודלים בקרים. ומימוש תכנון ולצורך המלאה, מערכת את לדמות או לנתח ליישם, חישובית מבחינה אפשרי בלתי שזה

יציבות על לשמור מאפשרים זה מסוג ומודלים ביותר, הנפוצים הם (PROM) אורתוגונלית השלכה מבוססי מופחתי־סדר

אלה שיטות זאת, עם הסדר. הפחתת שגיאת של גבולות ולספק הסדר, מופחתת המערכת של מינימליות ולהבטיח

ובעיות שלהם, החישובית המורכבות בשל מאוד גדול מידה בקנה מערכות עבור לביצוע ניתנות בלתי להיות עשויות

למצוא שמטרתן רבות עבודות מכך, כתוצאה מורכב. חישובי אתגר מציגות לינאריות מערכות של מופחתות־סדר בקרה

חישוביות יעילות שהן קרילוב טכניקות או מתחלפות, השלכה שיטות ידי על למשל אופטימליים, לא יעילים פתרונות

ומינימליות. יציבות מבטיחות לא אלו שיטות זאת, עם במיוחד. גדול מידה בקנה למערכות ומתאימות

ומינימליות. יציבות המבטיחות סדר להפחתת יעילות שיטות למצוא הוא סוכנים מרובות מערכות בחקר גדול אתגר

גדול מידה בקנה תת־מערכות של קטן ממספר המורכבות מערכות עבור פותחו מבנה המשמרות סדר הפחתת שיטות

מרובות מערכות עבור ישימות אינן זאת, עם כאלה, שיטות . חשמל רשתות של סדר להפחתת ויושמו לזו, זו המחוברות

המרושת במבנה המאופיינות סוכניםת מרובות מערכות עבור נמוך. מסדר סוכנים של רב ממספר המורכבות סוכנים

וכפי המערכת, ליציבות מסוימים במקרים קשורים להיות יכולים המערכת את המתאר הגרף של המאפיינים שלהן,

המשמרות סדר להפחתת שיטות שימצאו רצוי לכן, המערכת. של ולצפיות לבקירות גם (Aguilar) אגוילאר שהראה

הנקראת סדר הפחתת שיטת של חדש כסוג כאלו סדר הפחתת שיטות מגדירים אנו המערכת. של הרשתי המבנה את

עדכניים. מחקרים כמה בוצעו זה ובהקשר גרפים`, מבוססת סדר `הפחתת

את המתארת השלכה המבוססות סדר הפחתת שיטות חקרו ,(Ishizaki) ואישיזאקי (Monshizadeh) מונשיזאדה

שני מסדר מערכות של סדר הפחתת ראשון. מסדר הקונסנזוס מודל עבור שגיאה חסמי ופיתחו בגרף, הקודקודים איגוד

אופטימלית סדר להפחתת שיטה .(Cheng) צ'נג ידי על הודגמה היררכיים באשכולות שימוש באמצעות מבנה שימור עם

ידי על לאחרונה הוצגה שני, מסדר סוכנים מרובות במערכות הרשתי המבנה את המשמרת קונווקצית הרפיה מבוססת

שיטות לפתח היא זה מחקר של והמטרה שני, או ראשון מסדר סוכנים מרובות למערכות מוגבלות אלו שיטות .(Yu) יו

כללי. מסדר סוכנים מרובות מערכות עבור גרפים מבוססות סדר להפחתת יעיל

ומושגים שלהן, סדר והפחתת הלינאריות המערכות בתורת הנדרש הרקע של סקר כולל התזה של המבוא פרק

התזה. מפרקי אחד בכל הממצאים של תמצית גם כולל זה פרק הגרפים. בתורת מרכזיים

המבוססים מופחת בסדר גרפים מכווצים, גרפים של הגרפים בתורת יסודי מחקר מהווה התזה של השני הפרק

לכיווץ קשתות מבוססת גישה מנסחים קודקודים, איגוד של יחודיים תתי־מחלקות מזהים אנו קודקודים. איגוד על
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