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Abstract

Model reduction is an active branch of linear system theory with increasing im-
portance, as modern applications may be extremely large-scale. Reduced-order
models are required whenever it is computationally infeasible to implement, an-
alyze or simulate the full order system, of which orthogonal projection-based
reduced order models (PROM) are the most widely-used.

Graphs are mathematical objects composed of a set of vertices and a set of
interconnecting edges. As simple as they are constructed, the study of graphs
has developed into a formal branch of mathematics, with numerous applica-
tions in computer science, biology and social science, to mention a few. Graphs
characterize the structure of multi-agent systems, where each node is an agent
with a low-order dynamical system, and edges represent the local interaction be-
tween adjacent agents. As the number of agents increases, multi-agent systems
may be extremely large-scale and require model-reduction. Graph contractions
over vertex partitions have been extensively studied in the context of model
reductions of multi-agent systems. We define such model reduction methods
that preserve the networked structure of the system, as a new kind of model
reduction, named ” graph-based model reduction”.

In the first part of the study, we investigate classes of graph contractions
where the edges of the graph are the basis for the contraction operation. The
combinatorial operation of these edge-based contractions is derived, and we
construct, for the first time, the algebraic representations of graph contractions,
such as incidence and Laplacian matrices. A spectral interlacing theorem is then
proven for two types of edge-matching contractions, and two efficient algorithms
are provided for finding Laplacian-type interlacing contractions.

In the second part of the thesis, we reexamine the well known orthogonal
PROMSs and their realizations. A novel product form is derived for the reduc-
tion error system of these reduced models, and investigating the error system
product form, we then define interface-invariant PROMs, model order reduc-
tions with projection-invariant input and output matrices. It is shown that for
such PROMs the error product systems are strictly proper. Furthermore, ex-
ploiting this structure, an analytic H, reduction error bound is obtained and
an H., bound optimization problem is defined. We then present a sub-optimal
greedy-edge efficient algorithm for H., graph-based model reduction of multi-
agent systems utilizing the derived edge-matching graph contractions and the
analytic Hoo reduction error bound.



Table of Notation

In this dissertation, we will also use the following notation:

Notation Meaning

|A| The cardinality (size) of the set A.

R The set of real numbers.

R4 The set of non-negative real numbers.

C The set of complex numbers.

Q The set of rational numbers.

Z The set of integers.

x5,z The i’th variable of vector x.

Aqj,[Al; The i-j entry of a matrix A.

04, Ogaxad The all-zero vector of length d, all-zero matrix of size d x d.
14 The all-one vector of length d.

égd) The i-th standard basis vector in R,

Taxa The identity matrix of size d x d.

ker(A) The kernel of the linear transformation A.

Ut The orthogonal complement of the linear subspace U.
Diag (A, B) The block diagonal of matrices A and B.
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Izl The Euclidean norm of the vector z.

|A]l & The Frobenius norm of a matrix A.

Af The left pseudo-inverse of a square matrix A
A> B The matrix A — B is positive semi-definite.
A>B The matrix A — B is positive-definite.

Omin(A) The minimal singular value of A

Omax(A4) The maximal singular value of A

Amin (A) The minimal eigenvalue of A
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A(A) The spectrum of A
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% A set of vertices.
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G=W¢&) A graph G with vertices V and edges £.

&, & The incidence matrix of the graph G.

A2(9) The algebraic connectivity of the graph G.

hF The i-th agent in a multi-agent system.
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Big-O notation for algorithm run time complexity




We will also use the following acronyms:

Acronym Meaning

LTI Linear and Time-Invariant
MIMO Multiple-Input Multiple-Output
SISO Single-Input Single-Output

TF Transfer Function

TFM Transfer Function Matrix

PD Positive Definite

NP Non-Polynomial

MAS Multi-Agent System

PROM Projection-based Reduced-Order Model
PCM Partition Characteristic Matrix

PPM Partition Projection Matrix




Chapter 1

Introduction

1.1 Introduction and Focus

There is currently a rapid growth in the usage of multi-agent systems in many
modern technologies, such as robotic flocking and swarming [61], enabling ro-
bust operations in the most harsh environments [31]. Other applications include
power grids [37], and models in physics, economy and sociology [41], to name
a few. As the number of agents increases, multi-agent systems (MAS) may be
extremely large-scale, causing analysis and simulation to become computation-
ally infeasible, and presenting new challenges in the design of controllers to such
systems.

Multi-agent systems are characterized by their networked structure, where
each agent is represented by a node in a graph and edges (and their assigned
weights) represent the local interactions between adjacent agents, e.g., local
observations or data links [45]. Generally, an agent, is any dynamical system
coupled to other systems; however, for large scale MAS, where the scale is
determined by the large number of agents, a multi-type agent model seems less
relevant. Therefore, in this study, we only consider MAS compromised of a set
of functionally-homogeneous agents, i.e., all agents have the same dynamical
model up to some specified parameters (Figure 1.1). The most extensively
studied MAS are consensus models [51]. In a consensus model, all agents try to
achieve the same state as adjacent agents using a local control law. Under some
conditions, depending on the specific model, the entire ensemble may converge
to the same state, and consensus or agreement is obtained [45].

The unique network structure of MAS allows to model and analyze global
properties of such systems using graph theoretic tools [45]. Explicit relations
have been found between properties of consensus models and their underlying
graph structure: the system Hs-performance has been found to be a function of
cycle-completing edges [69], and system 7{,-norms were relates directly to zeta
functions of the graph Laplacian [57]. The combined forces of control theory
and graph theory have also provided new powerful methods for controlling MAS
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(a) An example of a multi-agent system con-  (b) The multi-drone system is modeled by a

sisting of four drones interacting over a net- graph where each node represents an agent-

work. subsystem and each edge represents an in-
teraction between adjacent agents.

Figure 1.1: A representation of a multi-agent system.

[56]; however, as the complexity and size of such networked systems increases,
the design and synthesis of controllers become computationally infeasible, and
reduced order controllers are required.

Model-order reduction is an essential tool for the design and study of large-
scale with various scientific and engineering applications such as weather forecast
schemes [44] or the design of trajectories of spacial probes sent to other planets
[62]. Of particular interest is the study of model reduction for the implementa-
tion of controllers for large-scale systems. Internal model principle implies that
the order of the controller is at least as the order of the plant [22], as reflected
in the solution of Hs and H control problems [19, 27, 38]. In order to imple-
ment low-order controllers for large scale systems, model reduction of the design
model or full-order controller is commonly performed [32, 39].

A widely-used family of reduced-order models are the projection-based re-
duced order models (PROMs) [1, 24]. Well established PROM producing meth-
ods, such as balanced truncation [3], preserve stability, guarantee minimality
and provide a priori reduction error bounds [48]. These methods, however,
may be unfeasible for very large-scale systems due to their computational com-
plexity [6, 9], and reduced-order control problems of LTI systems introduce a
great computational challenge even when the design is carried out off-line [9].
For example, computational methods for solving fixed-order output feedback
design problems are proven to be NP-hard [23]. As a result, many works aimed
at finding sub-optimal efficient solutions, e.g. by alternating projection meth-
ods [28], or Krylov-subspace techniques which are computationally efficient and
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suitable for extremely large-scale systems [4]. Such methods, however, may fail
to provide stable and minimal reduced order realizations [35].

A great challenge in the study of multi-agent systems is to find efficient re-
duction methods that guarantee stability and assure minimality of their reduced
order realizations, preferably, with optimal or suboptimal reduction errors. For
networked systems, as MAS, the interconnection properties of the underlying
graph can be related in some cases to the stability, controllability and observ-
ability of the system [2]. Therefore, it is desirable that reduced-order models are
found that preserve, in some sense, the network structure of the full-order sys-
tem. If we treat such systems as a general large-scale MIMO system, standard
model reduction techniques can be applied; however, the resulting reduced-order
system will generally not have the structure of a multi-agent system. Structured
model reductions have been developed for systems composed of a small number
of interconnected large-scale subsystems [42, 54], and were applied for model
reduction of networked power systems [59]. Such methods, however, are not
applicable for MAS consisting of large number of low-order agents.

An LTI MAS can be describes as a system with a realization that is a func-
tion of the graph. Utilizing this property, graph-based model reduction is a
family of MAS reduction methods where a graph reduction is performed, rather
than a direct model-order reduction. The resulting realization is a function of
the reduced-order graph and produces a reduced order model [40], which is a
reduced order MAS. In that direction, several recent studies were performed. In
[47, 34], PROMs of consensus-type multi-agent models were considered based
on graph-contractions over vertex partitions. In [36], removal of cycle complet-
ing edges was suggested for model simplification of the consensus protocol. The
reduction of second-order network systems with structure preservation using
hierarchical Ho clustering was demonstrated in [12]. A framework for optimal
structured model-order reduction of MAS was recently presented in [67]. Here,
a convex relaxation technique was derived for the Hs model reduction of diffu-
sively coupled second-order networks.

While these methods are limited to first or second-order multi-agent mod-
els, the goal of this research is to develop efficient graph-based model reduc-
tion methods for the general class of LTI MAS. As a first step, we formulate
graph-based model reduction as a graph reduction optimization problem. This
problem, however, is found to be computationally infeasible. In order to derive
efficient sub-optimal solutions of the graph reduction optimization problem, we
investigate graph-based model reduction algorithms based on vertex partitions.
Vertex partitions have been extensively studied in graph theory in the context
of graph clustering and network communities [49, 55, 58], and graph contrac-
tions over vertex partitions are widely used as a combinatorial graph reduction
tool. It has also been observed in previous studies that partition-based PROMs
maintain an MAS structure [47, 34], i.e., the PROM is an MAS defined over a
reduced order graph.

An important part of this research is a thorough study of vertex partitions
and of graph contractions, reduced-order graphs based on vertex partitions. We
construct a sub-class of vertex partitions denoted as “edge-induced partitions”,
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and derive a spectral analysis theorem for reduced-order graph Laplacian ma-
trices resulting from graph contractions. Novel efficient algorithms are provided
for finding two types of a Laplacian interlacing contractions.

In a second part of this work, we reexamine the well known PROMs and their
realizations. A new product form is derived for the reduction error system of
these reduced models, an analytic H, reduction error bound is derived, and an
Hoo bound optimization problem is defined. We then utilize edge-induced par-
titions to obtain an efficient suboptimal model reduction method for MAS. We
introduce the notion of edge-induced PROMs, PROMSs which are constructed
over edge-induced partitions of the graph. This graph-based model reduction
method allows us to derive sub-optimal but efficient PROMs of MAS based on
the derived H, reduction error bound.

Notation

First, we use some standard notation from set theory. The cardinality (or
size) of a set A is denoted by |A|. The set R denotes the real numbers, the
set C denotes the complex numbers, and the set Z denotes the integers. The
integer set {1,...,n} C Z is denoted as [1,n]. We use the O() notation (“big
O notation”), whose precise meaning is the following. Let f and g be functions
that map positive numbers to positive numbers. We write f(z) € O(g(x)) if
there exists M > 0 and zy > 0 such that f(z) < Mg(x) for all x > xy.

Second, we use standard notation from linear algebra and matrix analysis
[30]. The vector 04 denotes the d-dimensional zero vector. The vector 14 denotes
the d-dimensional all-ones vector. In both cases, the subscript may be omitted
when the dimension is clear. The vector éz(-d) will denote the i-th standard basis

vector, i.e., égd) € R? and [éz(.d)] = 0;5, where 0;; is Dirac’s delta. The identity
J

matrix of size d x d will be denoted I;. For two matrices A and B, Diag(A, B) is
a block diagonal matrix with A,B on the diagonal. The entries of a matrix A are
denoted [A],;. For two matrices A, B, we'll let A® B denote the corresponding
Kronecker product.

The spectrum of a real matrix A € R™*™ is the set of eigenvalues A (A) =
{\k (A)},_, where \; (A) € C is the kth eigenvalue of A. The corresponding
eigenvectors are {uy, (A)},_,. For a symmetric matrix we have an eigenvalue de-
composition A = U (A) A (A) UT (A), where U (A) = [ug (A) ,uz (A), ..., uy, (A)]
is an orthonormal matrix and A (A) = Diag (A (A4)) € R™*™. A symmetric ma-
trix is positive-definite if \; (A) > 0 for i € [1,n] and is denoted as A > 0. If
A, B are both square symmetric matrices of the same dimension, we’ll write
A » B if A— B is positive semi-definite. Moreover, we’ll write A > B if A— B
is positive-definite. If A is a map from a linear space to itself, then we denote its
minimal singular value by o/, (A), and its maximal singular value by oy,4. (A).
Similarly, if all of A’s eigenvalues are real, we’'ll let Apin (A) be the minimal eigen-
value of A, and Apax(A) be the maximal value of A. If U is a linear subspace of
R", we'll let U~ be its orthogonal complement. The Euclidean norm of a vector
2 will be denoted by ||z||. The 2-norm of a matrix A is ||All2 = 0maz(A). The
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Frobenius norm of a matrix A € R™*" is ||A| » = /Tr {AT A}.

We also go over several acronyms repeatedly used throughout the thesis.
Namely, multi-agent systems will be abbreviated as MAS, single-input single-
output systems will be called SISO systems, where multiple-input multiple-
output systems will be called MIMO systems. Projection-based reduced order
models will be called PROMs. Lastly, linear and time-invariant systems will be
denoted as LTI systems, and their transfer function will be abbreviated as TF.

1.2 Background

In this section, we present an overview of system theory and model reduc-
tion theory, along with some basic notions from graph theory introduce used
throughout the thesis.

1.2.1 System Theory

An LTT system ¥ is a mapping u (t) — y (¢) from the inputs u(t) € R™ to the

outputs y(t) € R™. A realization ¥ := (A, B,C, D) is the dynamical system,
z(t) = Az(t) + Bu(t) (1.1)
y(t) = Cx(t) + Du(t)’ '

where z(t) € R" is the system state, and the matrices A € R"*"= B ¢
Re>mu € R™*" and D € R™*™ are the system parameters. The corre-
sponding transfer function matrix (TFM) representation of ¥ is given as

S (s)=C(sl, —A)~ ' B+D. (1.2)

Hereafter, the notation 3 will be used, without the explicit dependence on s, to
denote the TFM of a system 3.

A realization ¥ := (A4, B, C, D) is minimal if it is controllable and observable.
The order of a system is its McMillan degree, denoted as deg (), which is the
order of any minimal realization of ¥ [15]. For a strictly-proper system D = 0.
The system X is stable if A is Hurwitz, i.e., A (A) C C~, where C~ is the open
left-half complex plane and X (A) = {\;}!_, is the spectrum of A [18, p. 37].

For a minimal realization of a stable system, the controllability and observ-
ability Gramians X, and X, are positive-definite matrices which are the unique
solutions to the Lyapunov equations

(1.3)

AX.+ X, AT+ BBT =0
ATX + X A+CTC =0

If ¥ := (4,B,C,D) is a minimal then for any invertible matrix 7', also
Y= (TAT_l7 TB,CT !, D) is a minimal realization of ¥. We can always find
an invertible matrix 7} such that the realization % := (T b AT, bfl, T,B, Cbel, D)
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is a balanced realization, i.e., X. = X, [48]. The Hankel singular values (HSVs)
of ¥ are the singular-values of the matrix X.X,, and for any minimal realization
0; (X X,) >0 for i € [1,n] [6].

The two most studied system norms are the Ho-norm and the H..-norm
[17]. The He-norm of a system ¥ is

IS, = ;Tmiwuidw . (1.4)

For a strictly-proper and stable system the 75 norm is finite and it can be
calculated from the controllability or observability Gramians X, and X,

12l = /Tr (BTX,B) = {/Tr (CX.C0T). (1.5)

The Ho-norm can also be interperted as a measure of the steady-state LTI
output dispersion as a function of the input noise power

10, = lim E[y7 (1)y(2)]. (1.6)

The Hso-norm of a system ¥ is

12, = 59D Omas (5 () - (1.7)
weR

1.2.2 Model Reduction

A reduced-order model of ¥ is any system with realization ¥, := (4,, B,, Cy., D,.)
mapping u () — y, (t), with w (¢) € R™ and y, (t) € R™, such that deg (X2,) <
deg (¥). Reduction error analysis can be performed by constructing an aug-
mented error system,

Ye=X—-%,, (1.8)
with realization X, := (Ae, Be, Ce, D.), where z.(t) = [z () :UT(t)]T7 Ye(t) =

y(t) — yr(t), Ac = Diag(A, A,), B, = [BT B,.T]T, C, = [C fC’T] and D, =
D—D,. The reduction error can then be quantified using any system norm [|X.||
with the two most studied model reduction system norms being the Hs-norm
and the H,.-norm.

A family of reduction producing methods are projection-based reduced-order
models (PROMs). Given a system ¥ with minimal realization ¥ := (A, B, C, D),
a projection-based reduction is a system 3, with realization

2, = (UTAV,U"B,CV, D),

for any two matrices U,V € R™ " such that UV7 is a projection matrix [24].
Recall that a matrix II € C**" is called a projection whenever II = II2. If
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U2
€1

he(61) =vi, tg(e1) =2
V1 €9 hg (€2) =v2, tp(e2) =3

U3

Figure 1.2: An example of head and tail assignment.

U =V the PROM is denoted as orthogonal, otherwise it is said to be oblique

[1].

Given a system X with a balanced realization

A Ag B
¥= , 1 C1 Cs |,D),
([ Agy Ay By [ ! 2 ]
a balanced truncation is the reduced system X, with realization X, :=

(A1, B1,C1, D) [48]. The HSVs of X, are then the r smallest HSVs of ¥ and
the H o, reduction error is bounded by

n—r

[Belly. <2 0i (%), (1.9)
k=1

where {o;}7_, are in ascending order [20]. In fact, this classical balanced trun-
cation model reduction scheme is a prime example of employing oblique PROMs
[48].

1.2.3 Graph Theory

A graph G = (V, &, W) of order n with m edges consists of a vertex set V (G) =
[1,n], an edge set £ (G) = {ex}y, with €, € V?, and a set of edge weights,
W (G) = {wg} 7, with w; € R. Two nodes u,v € V (G) are adjacent if they are
the endpoints of an edge {u, v}, and we denote this by u ~ v. The neighborhood
N, (G) is the set of all nodes adjacent to v in G. The degree of a node v, denoted
dy (G), is the number of nodes adjacent to it, d, (G) = [N, (G)|- A path in a
graph is a sequence of distinct adjacent nodes. A simple cycle is a path with an
additional edge such that the first and last vertices are repeated. A graph G is
connected if we can find a path between any pair of nodes. We denote G\ Vg as
the graph obtained from G by removing all nodes v € Vg C V from V (G) and
removing all edges in € (G) adjacent to v.

Given a graph G = (V, £, W), we assign an orientation to the edges using head
and tail functions, hg,te : € — V where hg (€x) and tg (e;) return, respectively,

10
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(a) A simple undi- (b) A simple di- (c) A simple undi-

rected graph. rected graph. rected multi-graph.

(d) A simple directed (e) An undirected (f) A directed multi-

multi-graph. graph  with  two graph with two self-
self-loops. loops.

Figure 1.3: Examples of the different graph classes.

the head and tail nodes of edge ¢, (Fig. 1.2). If G is an undirected graph then
the head and tail of each edge are arbitrary; if G is a directed graph (digraph)
then the head and tail define the edge direction. A self-loop is an edge €, € £
such that he (ex) = te (ex), and duplicate edges are any pair €;, ¢; € £ such that
i # 7, te (e;) = te (¢) and hg (¢;) = he (¢5). A simple graph does not include
self-loops. A multi-graph is a graph that includes duplicate edges. Figure 1.3
provides examples of the different graph classes. The head and tail functions
can be used to define the incidence matriz E (G).

Definition 1.1 (Incidence matrix). Let G = (V, E) with head and tail functions
he andte. Then the corresponding incidence matriz, E (G) € RIVIXIEl is defined
with entries
1 hg (6]') = V;
[E(g)]ij =4 -1 tele) = (1.10)
0 otherwise

Subgraphs, spanning trees and co-trees are key concepts in graph theory
which will be used throughout the thesis.

Definition 1.2 (Subgraph). A subgraph Gs = (Vs,Es) of a graph G = (V, &),
denoted as Gs C G, is any graph such that Vs CV and Es C emvg. An induced
subgraph G [Vs] is a subgraph Gs C G such that Es = £ (G) N VE. An induced
subgraph G [Vs]| is a connected component of G if it is connected and no node in
Vg is adjacent to a node in V (G)\Vs.

11
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€5
Vs ¢------ (Y
€2 €4
° Vg

V1 €1 Uy €3

Figure 1.4: An example of a signed path vector. The tree edges are £ (T) =
{€1,€2,€3,€4}, and the sole co-tree edge is €; (C) = €5 (dashed) with the corre-
sponding signed-path vector t; = [0,1, —1, 1]T.

Definition 1.3 (Spanning tree and co-tree). A spanning tree T (G) of a con-
nected graph G = (V, ) is any connected subgraph Gs = (V, Es) with a minimal
number of edges. The set T (G) denotes all spanning trees of a connected graph
G. For T € T(G), the co-tree graph G\E (T) is denoted as C (T) [25].

Based on the tree and co-tree representation of the graph, each co-tree edge
can be described by a corresponding signed-path vector defined below, with an
example given in Figure 1.4. We will find signed-path vectors useful in our
graph theoretical derivations.

Definition 1.4 (Signed path vector). Consider a graph G and its spanning
tree T € T (G) with co-tree C(T), with arbitrary head and tail assigned to the
end-nodes of each edge in £ (G). For each edge €; € £ (C) there is a path from
head to tail in T, and we define a corresponding signed path vector t; € RIEDI
[ti]l, =1 if ex (T) is along the path, [t;], = —1 if € (T) is opposite to the path,
and [t;], = 0 otherwise.

The most commonly studied matrices in algebraic graph theory are the ad-
jacency matriz A (G) € RVI*IVI the Laplacian matriz L (G) € RIVI*IVI and the
normalized Laplacian matriz £(G) € RIVIXIVI all of which are real symmetric
matrices. They are defined below, where each row and column is indexed by a
vertex in the graph G [25],

4O ={ 5 e

otherwise
d,(G), u=v
[L(G)]uw = -1 u~v )
0, otherwise

12
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and
1, uU="0
-1
L@ =1 (VA (@4 (@)  u~v
0, otherwise

For a simple undirected graph, the Laplacian matrix L (G) € RVI*IVI can
be written as

L(G)=E@)W () E@)", (1.11)
where W(G) is a diagonal matrix with edge weights along the diagonal [25].

1.3 Contributions and Thesis Outline

The following overview presents the outline of this thesis and briefly summarizes
its contributions. The second chapter of the thesis deals with graph theoretical
derivations of graph contractions, the third chapter studies PROMs and the
fourth chapter applies results from these two chapters to the model reduction
of multi-agent systems, the fifth and final chapter summarizes the work.

Chapter 2 - Graph Contractions and Their Spectral Inter-
lacing Properties

In this chapter we investigate the combinatorial operation of graph contractions.
We show how classes of graph contractions where the edges of the graph are the
basis for the contraction operation are a result of a combinatorial operation
on the vertices of the graph. We construct, for the first time, the relations
between algebraic representations of graphs, such as incidence and Laplacian
matrices, and those of contracted graphs. We then derive a general interlacing
graph reduction theorem based on a set-theoretical extension of the min-max
theorem. A class of edge-matching graph contractions is defined, and utilizing
the extension of the min-max theorem it is proven how two types of edge-
matching contractions provide Laplacian and normalized Laplacian interlacing.
An O (mn) algorithm is provided for finding a normalized Laplacian interlacing
contraction and an O (n2 + nm) algorithm is provided for finding a Laplacian
interlacing contraction of a given graph with n vertices and m edges.

Chapter 3 - Product Form of Projection-Based Model Re-
duction

In this chapter, we reexamine the well known orthogonal PROMs and their real-
izations. A novel product form is derived for the reduction error system of these
reduced models, and it is shown that any such PROM can be obtained from a
sequence of 1-dimensional projection reductions. Investigating the error system
product form, we then define interface-invariant PROMSs, model order reduc-
tions with projection-invariant input and output matrices, and it is shown that

13
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for such PROMs the error product systems are strictly proper. Furthermore,
exploiting this structure, an analytic H ., reduction error bound is obtained and
an H., bound optimization problem is defined.

Chapter 4 - Model Reduction of Multi-Agent Systems by
Graph Contractions

Based on the edge-based contractions derived in Chapter 2, in this chapter we
introduce the notion of edge-induced PROMs. These are PROMs which are
constructed over edge-induced partitions of the graph. This graph-based model
reduction method allows us to derive sub-optimal but efficient PROMs of MAS
utilizing the PROM H ., bound derived in Chapter 3. The resulting algorithm
is demonstrated on a large-scale consensus model.

Chapter 5 - Summary

This final chapter provides some conclusive remarks, both summarizing the
thesis and hinting at possible future directions of research.

1.4 Publications

The research presented in this thesis has been presented in the following publi-
cations

e N. Leiter and D. Zelazo, Graph-based model reduction of the controlled
consensus protocol, in IFAC World Congress, Toulouse, France, 2017.

e N. Leiter and D. Zelazo, Edge-matching graph contractions and their in-
terlacing properties, Linear Algebra and its Applications, vol. 612, pp.
289-317, 2021.

Some material in this thesis is also contained in the following manuscripts,
submitted for review:

e N. Leiter and D. Zelazo, Product Form of Projection-Based Model Reduc-
tion and its Application to Multi-Agent Systems, submitted to Automat-
ica.
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Chapter 2

Graph Contractions and
Their Spectral Interlacing
Properties

Graphs are mathematical objects composed of a set of vertices and a set of
interconnecting edges. As simple as they are constructed, the study of graphs
has developed into a formal branch of mathematics, known as graph theory,
with numerous applications in computer science, biology and social science, to
mention a few. Partitioning of the graph vertices combined with node and edge
contractions along those partitions lead to a reduced order graph known as a
graph contraction.

Graph contractions have ambiguous definitions in graph theory studies, and
in this chapter we try to formalize this important combinatorial operation. In
this process we construct edge-induced partitions, that will lead us in the fol-
lowing chapters to efficient graph-based model reductions. We also explore
edge-matching contractions, a class of graph contractions with a one-to-one cor-
respondence of a subset of edges in the full order graph to those in the contracted
graph. Additionally, we construct, for the first time, the relations between alge-
braic representations of graphs, such as incidence and Laplacian matrices, and
those of contracted graphs. Finally, based on a novel min-max theorem, it is
then shown how two types of such edge-matching contractions provide eigen-
value interlacing of Laplacian-type graph matrices.

2.1 Introduction
The effect of combinatorial operations on graph spectra is an evolving branch
of graph theory, linking together combinatorial graph theory with the spectral

analysis of the algebraic structures of graphs, e.g., Fiedler’s seminal results on
the Laplacian algebraic connectivity [21]. In general, there is an interest to
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understand how certain graph reduction operations relate to spectral and com-
binatorial properties. Of particular interest are reductions that satisfy an inter-
lacing property between algebraic graph representations such as graph matrices.
Interlacing properties of graph matrices have shown to have combinatorial in-
terpretations: Haemers used adjacency and Laplacian interlacing to provide
combinatorial results on the chromatic number and spectral bounds [29], and
the neighborhood reassignment operation was shown to provide interlacing of
the normalized Laplacian [66].

Partitioning the vertices of a graph is a combinatorial operation extensively
studied in graph theory in the context of graph clustering [55] and network
communities [49], and for spectral clustering methods [50]. However, there are
only sparse results relating graph contractions based on vertex partitions and
spectral interlacing. Chen et al. provided an interlacing result on normalized
Laplacians based on a certain class of edge-based graph contractions [11].

In this work, we explore interlacing of reduced graph matrices and derive a
general spectral interlacing theorem for reduced graphs based on an extension of
the min-max theorem. In order to find classes of interlacing reduced graphs, we
conduct a rigorous combinatorial analysis of graph contractions. The outcome of
this analysis includes edge-induced partitions, and edge-matching contractions,
a class of graph contractions with a one-to-one correspondence of a subset of
edges in the full order graph to those in the contracted graph. An additional
novel result of this analysis, is the construction of several relations between
algebraic representations of graphs, such as incidence and Laplacian matrices,
and those of contracted graphs.

Utilizing the graph theoretical derivations and the interlacing theorem, we
show how two type of edge-matching contractions lead to interlacing of the
normalized-Laplacian and Laplacian graph matrices. Two algorithms are then
constructed for finding, if they exist, such contractions.

The remaining sections of this chapter are as follows. In Section 2.2 we
formulate the graph contraction operation for simple undirected graphs, de-
fine edge-induced graph contractions, and introduce the class of edge-matching
graph contractions. Section 2.3, investigates several relations between algebraic
representations of graphs, such as incidence and Laplacian matrices, and those
of contracted graphs. In Section 2.4, the interlacing graph reduction problem is
presented, and solved for two sub-classes of edge-matching contractions for the
Laplacian and normalized-Laplacian matrices. Section 2.5 provides case studies
of the interlacing methods, and Section 2.6 concludes this chapter.

2.2 Graph Contractions

Graph contractions are a graph reduction method based on partitions of the
vertex set. They are a useful algorithmic tool applied to a variety of graph-
theoretical problems, e.g., for obtaining the connected components [13] or find-
ing all spanning trees of a graph [46, 65]. We now define several graph operations
required for vertex partitions and graph contractions and derive results that will
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Seo - - ’ Uy . So-

Sem ="

Cl (7’() CQ (7’() 03 (7’()

Figure 2.1: An example of a graph and a 3-partition 73 (V) of its vertices into
three cells C; = {v1,v2,v3}, C2 = {v4,v5} and C3 = {vg, v7}. The correspond-
ing cell neighborhoods are N¢, (G) = {v1,v5}, Ne, (G) = {v1,v2,vs3,v6} and
Nes (9) = {va, ve}

allow us to relate graph contractions and graph interlacing. Hereafter in this
chapter G = (W, €) is a simple connected graph of order n.

For an integer r satisfying 1 < r < n, an r-partition of a vertex set V of
order n, denoted m, (V), is a set of r cells {C;};_, such that C; N C; = 0 and
Ul_1C; =V, and we denote the ith cell of a partition 7 as C; (w). The cell
neighborhood N, (G) is defined as No, £ {Uyec, N, (G)}\Ci (Figure 2.1).

For r = n, C; (m,) = 1 is the identity partition, which contains n singletons (a
cell with a single vertex). An atom partition m,_1 (V) contains n — 2 singletons
and a single 2-vertex cell. The set of all r-partitions of V is denoted by IL,. (V),
and the set of all partitions of V' is IT (V) £ UP_, 11, (V). For a graph G = (V, ),
we may denote 7, (V) and II, (V) as 7, (G) and II, (G).

For a graph with n.. connected components, we define the connected com-
ponents partition m.. (G) as the partition 7. (G) = {C;};<7, such that G [C;] is
the ith connected components of G (Figure 2.2).

Definition 2.1 (Partition function). For a graph G and r-partition 7 € 11, (G),
the partition function is a map fr : V(G) — [1,7] from each node in V to its
cell index, i.e., fr (v) = {i € [1,7]|C; (7) Nw # 0}. More generally, for a subset
Vs CV(G) we have fr (Vs) = {i € [1,7]|C; (1) N Vs # 0}.

The partition function allows us to precisely define the quotient and the
graph contraction, and their notations which are used interchangeably in the
literature.

Definition 2.2 (Quotient). The quotient of a graph G over a partition ™ €
IL.(G), denoted by G/x, is the multi-graph of order r with an edge {u,v} for

each edge between nodes in C, () and C, (), i.e., G/m = ([1, ], {éj}ljil) with
€ = {fx (he (¢)) ; [ (te (€5))}

17
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Figure 2.2: An example of a graph and its connected components parti-
tion 7., (G) with three components Cy = {v1,v2,v3}, Co = {vg,v5} and
Cg = {1)6, U7}.

where €; € £(G) and hg (€) ,te (€) : £(G) = V(G) assign a head and a tail to
the end-nodes of each edge (thus, € = (hg(€),tg(€))).

Definition 2.3 (Graph contraction). The graph contraction of G over m is
the simple graph denoted as G || ™ which is obtained from the quotient G/m by
removing all self-loops and redundant duplicate edges. Equivalently, G | m =
([1,7],&) with

& = {g e (L2 e € E(G/n) , he (8) # te (g)} .

If 7 is an atom partition we call G J m an atom contraction. For example,
consider the partition of 7 = {{v1},{v2},{vs}, {vs,vs5}}, for the graph G shown
in Figure 2.3. The quotient G/m and the graph contraction G J/ 7 are shown
in Figure 2.3. Notice that this is an example of an atom partition and atom
contraction.

Node removal is the simplest graph-reduction method. However, in some
cases the same reduced graph can be obtained either from node-removal or
from a graph contraction. We define here these contractions as node-removal
equivalent contractions.

Definition 2.4 (Node-removal equivalent contraction). For the graph G and
its contraction G [/ w, we say that G /| w is node-removal equivalent if there is a
subset Vs C V (G) such that G J/ m = G\Vs.

Cycles play an important role in the properties of graphs, and we define
here a cycle-invariant graph contraction as a contraction that preserves the
cycle structure of the full graph. To the best of our knowledge, such a relation
between contractions and cycles has not been previously defined.

Definition 2.5 (Cycle-invariant contraction). Consider a graph G and its con-
traction G J/ 7, then we say that the contraction G J| 7 is cycle-invariant if there
is one-to-one mapping between the set of simple cycles of the full-order graph
and the set of simple cycles of the contracted graph.
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U1 () Ul ’1}2
U2 4

v3
Vs U3

U4

(%) y Uy
U4
(a) Full order graph G and (b) The graph quotient G\mw (c) The graph contraction
its vertex partition . G /).

Figure 2.3: Full order graph and its quotient and contraction over the vertex
partition 7 = {{v1},{va}, {vs}, {va,v5}}.

For example, consider the partition 7 = {{v1,ve,v3},{vsa},{vs}} for the
graph shown in Figure 2.4. The resulting contraction over the graph is cycle-
invariant (Definition 2.5) with the cycle vzvqvsvs of G mapped to the cycle
v1vavsvy of G J/ w, and is also node-removal equivalent (Definition 2.4) with
Vs = {v1,v2}. Notice that if the edge {vi,v5} were added in Figure 2.4, the
same contraction would not be a cycle-invariant contraction; however, it would
still be node-removal equivalent with Vs = {v1, va}.

We derive the following three lemmas that provide combinatorial results
related to graph contractions: The first lemma (Lemma 2.1) shows that the
contraction of a subgraph obtained by removal of edges is a subgraph of the
graph contraction over the same partition. The second lemma (Lemma 2.2)
relates the connectivity of a graph contraction to the neighborhoods of the
graph. The third lemma (Lemma 2.3) dictates that if a graph is connected then
any of its contractions is connected.

Lemma 2.1 (Subgraph contraction lemma). Consider a graph G and its sub-
graph Gr = G\Eg for Er C E(G). Then for any w € 1 (G), Gr /7 C G ) 7.

Proof. For any € € E(Gr /) m) we can find € € &£(Gr) such that é =
{fx(he (€)), fx (ts (€))}. Since £(Gr) C £(G), therefore ¢ € £(G) and
{fx(he (€)), fx (te (€))} € £(G J/ w). We conclude that £ (Ggr J/ 7) C E(G ) ),
and since V (Gg J/ m) =V (G J/ m) we obtain that G /7 C G J/ 7. O

Lemma 2.2. Consider a graph G and its contraction G /7 for m € I1(G). Then
Vu € V(G),Ya € V(G ) w), we have u € N¢, (G) if and only if fr (u) ~ @.
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v1
d
a ‘ U3 U2
(a) Full order graph G and (b) Cycle invariant graph and node-
its vertex partition ™ = removal equivalent contraction G // .

{{Ulv v2, U3} ) {’U4} ) {U5}}'

Figure 2.4: Full order graph and its cycle-invariant and node-removal equivalent
contraction.

Proof. If u € N¢, then Jv € Cf such that u ~ v with € = {u,v} € £(G),

and therefore {fz (u), fr (v)} = {fr (v),a} € (G /m) and fr (u) ~ 4. If
fx (u) ~ @, then Jv € Cy such that u ~ v and therefore u € N, . O

Lemma 2.3. If a graph G is connected then its graph contraction G J| w is
connected.

Proof. If G is connected then Vu,v € V, there is a path wujus ... uyv. For any
U, € V(G J/ m) we can find u,v € V such that f (v) =@ and fr (v) = 0. If we
then apply the partition function on the path wujus...u,v we obtain a walk
(including self loops) in G J w, @fr (1) fr (u2) ... fr (up) 0, therefore, G J/mwis a
connected graph. O

Based on Lemma 2.2, the following proposition relates the degree of a node
in a contracted graph to its cell-neighborhood.

Proposition 2.1 (Degree-contraction). Consider a graph G and its contraction

G/ m formell(G). ThenVo € V(G ) =), ds (G )| 7) = |fr Nc, (G))].
Proof. From Definition 2.1 we have
fr (Ne, (G)) ={i € [Lr]|Ci (m) N Ne, (G) # 0},

and from Lemma 2.2 we obtain that Yu,o € V(G /), © ~ @ if and only if
@ € fr(Ng,) such that fr (Ne,) = N5 (G J/ ©), and therefore, d; (G ) 7) =
|[f= Nes;) 0
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2.2.1 Graph Contraction Posets

Partially-ordered sets (posets) are an essential concept in order theory, and
a useful tool in proving graph-theoretical results [8]. Based on the one-to-
one correspondence between graph contractions and vertex partitions, we show
how graph contractions fall under the definition of a poset. We then establish
contraction chains and their corresponding contraction sequences as a basis for
proving cases of graph matrices interlacing.

Two partitions 7., 7., € II(V) may comply with a refinement relation and
sets of partitions can construct chains, totally-ordered subsets of the posets.

Definition 2.6 (Refinement). Consider two partitions w7, € II(V) of a
vertex set V where r1 < ro < |V|. Then we say m,, is a refinement of m,, if
Vi e {1,2,...,re} we can find i € {1,2,...,r1} such that C; (7,,) C C; (7, ),
and we denote wp, < wp,. If mp, < m and 71 < ro we denote m,, < W . An
N-chain is a partition set x (V) = {mi}ijil CII(V) such that mp, < Ty < ... <
Ty -

If two partitions 7,,, 7., € II(V) comply with the refinement relation, we
can construct the coarsening partition § (7., 7, ) € I, (V,,) with

Cj (5 (7T7‘277TT1)) = {k € {17 2,..., TQ} |Ck (777”2) < Cj (7‘—7“1)} .
We can now define the coarsening sequence.

Definition 2.7 (Coarsening sequence). Consider a vertex setV and its N-chain
x(V) CII(V). Then we define the coarsening sequence as A(x) = {(51}2]\!11 with
5 = MMy Try)-

The refinement relation is reflexive, anti-symmetric and transitive, therefore,
the set of partitions together with the refinement relation, (II (V) , <), falls under
the definition of a finite partial-ordered set (poset). Let G = (V, &), we define
the contraction set

GJNE{G)nlmeI(V)},
and define the contraction binary relation G J 7, <G J 7y, if m, < m.,. Since
there is a one-to-one correspondence between (G /II, <) and (II(V), <), the
contraction set with the contraction binary relation, (G / II, <), is also a poset,
and for each N-chain x C II (V) there is a corresponding contraction chain ,

G)x=1{G)m i, CG/IL

For each coarsening sequence A (x) we can then define a corresponding con-
traction sequence, a series of graphs where each graph in the series is a graph
contraction of the former graph over the coarsening partition in the coarsening
sequence.

Definition 2.8 (Contraction sequence). Consider a graph G and an N-chain
x(V) CII(V(G)) with coarsening sequence A (x) = {52}1]\:11 Then we define
the contraction sequence G J A (x) £ {gi}ﬁi‘ol with G; = Gi—1 /| dn—i and
Go=G [ Try-
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Proposition 2.2. Consider a graph G and its partition 7 € I1(G), and let
X = {77”}2]-\]:1 CII(V) be a chain with m,, = ® and corresponding contraction

sequence G | A(x) = {Qi}f\;gl. Then Gny-_1 =G || 7.

Proof. It is sufficient to prove for any two-chain 7 = m,, < m,, with A(x) =
O (Tryymry), 1€y G @ = (G )| 7py) J| 6 (7py, Ty ), and extend by induction for
N > 2. The order of Gy = G J/ 7, is 79 and from the coarsening sequence
(Definition 2.7) we get that the order of Gy = (G J/ 7ry) ) 6 (g, Ty ) I8 11 = |70,
therefore, V (G1) = V(G J m). It is left to show that £(G1) = £(G /7). Let
€ € £(G ) m) then Je € & such that € = f (€). Now let €1 = fr,, (€) and
€2 = f5 (1), from the coarsening sequence (Definition 2.7) we then obtain that
the end nodes of ez are the end nodes of €, therefore, £ (G1) = £ (G J 7). O

Corollary 2.1 (Atom-contraction sequence). Consider a graph G and its par-
tition m € 11, (G) for r < n. Then there exists a chain x (V) = {mni}?:_lr"'l C
I (V) such that G ) A(x) = {Gi}i— is an atom contraction sequence, i.e.,

O (Tr,r, ;) 18 an atom-partition.

[

Proof. Choose m,, = 7 (V,), and then construct ., by extracting a singleton
from a non-singleton cell of 7. Continue to extract singleton cells until all cells
are singletons, i.e., m, = 7, (V,). The number of singleton extractions of
non-singleton cells in an r-partition is n — r, therefore, N =n —r 4+ 1. O

For example, consider the 2-chain x (V5) = {m2, 73} with

T2 (VS) = {'U17'02,U3},{U4,U5} 9 and 3 (V5) = {U17U2}7{U3}7{U47U5}
Cl 02 Cl C42 CB

We have Cj (m3),Cs (m3) € C1 (m2) and Cs (m3) € Cs (me), therefore, m3 <

ma. We can then construct the coarsening sequence A (x) = § (w3, m2) with

d(ms, m2) = {{1,2}, {3} }. The resulting graph contraction sequence is presented
——

Cy Cy
in Figure 2.5.

2.2.2 Edge-Based Graph Contractions

Graph contractions are defined over vertex partitions. However, there is also
an edge-based approach to perform graph contractions. Our contribution here
is the definition of edge-induced partitions and their utility as a combinatorial
relation between edge-based contractions and vertex-based contractions.

Definition 2.9 (Edge-induced partition). Consider a graph G and an edge
contraction set E.; C E(G) with |E.s| = n —r . Then we define the edge-
induced partition 7. (G, Exs) as the connected components partition of the graph
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U1

V2

g go:g//ﬁ?, g1=go//(5

Figure 2.5: Graph contraction sequence.

Ge (G, Ecs) = (V(G),Ecs), i, e (G, Ecs) = Tee (Ge (G, Ees)). The set of all edge

contraction sets of cardinality p is defined as
Ep(9) = {€es CE(G)|[Ees| = p}-

With the edge contraction partition definition we can define an edge-based
graph contraction.

Definition 2.10 (Edge-based graph contraction). Consider a graph G and an
edge contraction set E.s € 2, (G) for r < n. Then the edge-based contraction
is defined as the contraction over the edge-induced partition, i.e., G [| Ecs =

g // Te (gygcs)-

In this work we find that a class of edge-matching contractions has interlacing
properties.

Definition 2.11 (Edge-matching contraction). Consider a graph G and an edge
contraction set Ecs € iy (G) forr < n. Then G [/ E.s is an edge-matching con-
traction if there is one-to-one correspondence between € (G) \Ecs and E (G /] Ecs)-

A graph contraction cannot create new edges, therefore, edge-matching (Def-
inition 2.11) is equivalent to | (G) \Ees| = |€ (G /) Ecs)]-

Proposition 2.3. Consider a graph G and an edge contraction set E.s €
En—r(G). Then if G || Ecs is cycle-invariant (Definition 2.5) it is also edge-
matching (Definition 2.11).

Proof. It G JJ €. is cycle-invariant then from Definition 2.5 the edges in &5 are
not part of any cycle of G. Therefore, the contraction does not map any two
edges in € (G)\Es to a single edge in £ (G J/ E.5), otherwise they would have
been part of a cycle with an edge in &.s, and we obtain that | (G) \Ees| =
IE(G ) ). O
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Proposition 2.4. Consider a graph G and a node v € V (G), and let m.. (G\v)
be the connected component partition of G\v, then for C; € me. (G\V) and E.s =
E (G [C; Uw)), the contraction G || Ecs is node-removal equivalent (Definition 2.4)
with Vg = C;, and is also edge-matching (Definition 2.11).

Proof. Since C; is a connected component of G\E (G [N, Uv]) then v is the
only node in any path between C; and V (G) \ {C; U v}, therefore, by choosing
Vs = C; the graph G\C; removes all edges £ (G [C;]) and all edges connecting
C; to V(G)\C; which are the edges between C; and v and we obtain that
G\C; =G JE(G[C; Uv]), i.e., the contraction G /&, is node-removal equivalent
(Definition 2.4). Furthermore, contracting all edges € (G [C; U v]) does not effect
any other edges in G such that |€ (G) \Ees| = |€ (G /] Ecs)| and we obtain that
G /| Ecs is edge-matching. O

We can choose a subset of tree edges to create a tree-based contraction of a
graph.

Definition 2.12 (tree-based contraction). Consider a graph G and its spanning
tree T € T (G) with an edge contraction set E.s € Zp—y (T). Then G ) Ecs is a
tree-based contraction.

For example, the graph contraction G // m presented in Figure 2.4 can also be
performed as an edge-based contraction G J £.s with .5 = {{v1,v3},{v2,v3}}
and a tree-based contraction (Definition 2.12).

If the contraction edge set is a subset of the edges of a spanning tree, then
the contracted tree edges will form a spanning tree of the contracted graph.

Proposition 2.5. Consider a graph G and its spanning tree T € T (G) with an
edge contraction set Ees € Ep_r (T). Then T [ Ecs € T(G [ Ecs), ie., T J Ees
is a tree of order r of the contracted graph.

Proof. A tree of order n has n — 1 edges, and by contracting n — r tree edges
we are left with (n — 1) — (n — r) edges, such that |E(T ) &) =7 — 1. Tt is
left to show that T ) E.s (T) C G )/ Ecs (T). From Lemma 2.3 we obtain that
T /] Ecs is connected, therefore, T )/ E.s is a connected graph of order r with r —1
edges, which is a tree of order r. Since &, (T) C € (G) we have 7. (T,&cs (T)) =
e (G, Ecs (T)), and since T = G\& (C) we obtain from the subgraph contraction
lemma (Lemma 2.1) that 7 )/ 7. (T,Ecs (T)) € G ) me (T, Ecs (T)) and conclude
that T ) Ecs (T) € G ) Ecs (T), and therefore, T ) Ecs (T) € T(G ) Ecs)- O

Proposition 2.6. Consider a graph G and an edge contraction set E.s €
En—r(G). Then V0o € V(G J Ecs)

ds (G Es) < | D du(G) | —2(IC5 (m)| - 1), (2.1)
veCH(m)

where T = 7. (G, Ees)-
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Proof. From Proposition 2.1 we obtain that d; (G J 7) = |fx (Nc,)|. We have
|f= Ne,)| < |Ne,| and since Cj (1) € . is a connected component of G we get

Neo < | D0 do(G) ] —21E(G[Cs (m)])] -

veCs ()

is at least the number of

The number of edges in the cell |€ (G [Cj (7)])]
|C5 (m)] — 1, and we obtain

spanning tree edges, therefore, |€ (G [Cs (7)])| >
that
i (G Es) < | Y d(9) ] —2(IC5 (m) - 1),
veCy(m)
completing the proof. O

Corollary 2.2. Consider a graph G and an edge contraction set E.s € E,,— (G)
for r < n. Then if G || Es is cycle-invariant (Definition 2.4) then Yo €
V(G [ Ees),

ds (G )= D du(G) | —2(Cs(m)|—1), (2:2)

veCy ()
where m = 7. (G, Ecs)-

Proof. Since Yo € V(G /| Ecs) Cy () is a connected component of G, and G //
Ecs is cycle-invariant then |fr (Ne,)| = [Ne,| and G [C5 (7)] is a tree of order
|Cs ()], such that from Proposition 2.1 we obtain that

A (G Es)=| D d(G)] —2(Cs(m)—1).

veCsH ()
O

Corollary 2.3. If a graph G is a tree then G | E.s is edge-matching for any
gcs S Enfr (g)

Proof. If G is a tree then G J/ & is cycle-invariant for any &.s € E,_, (G) and
from Proposition 2.3 we obtain that G // & is edge-matching. O

In the following section we investigate the algebraic relations between the
algebraic representations of graphs and contracted graphs.
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2.3 The Algebraic Representation of Con-
tracted Graphs

The algebraic representation of graphs, such as Laplacian matrices, finds nu-
merous applications [16]. Less known are the algebraic representations of graph
contractions as a function of the full order graph representation. In this section,
we derive, for the first time, several graph representations of contracted graphs
such as the incidence matrix, Laplacian and normalized-Laplacian matrices and
the Tucker representation.

The following definitions will be used throughout this section. We start by
defining the partition characteristic matriz (PCM) and the partition projection
matriz (PPM), which are the algebraic representations of vertex partitions and
will be building blocks for following representations of graph contractions. They
will also be useful in our application of graph contractions for model reduction
of MAS.

Definition 2.13 (Partition projection matrix). Given an r-partition © =
{Ci}._,, we define P, € R"*", the partition characteristic matrix (PCM) with
entries [Pw]ij =11ifi € Cj, and 0 otherwise, i.e., for v; €V and vj € V,

= {3 00
The corresponding partition projection matriz (PPM) is
P(x) 2 P.D"% (), (2.4)
where
D(r) 2 PIP,. (2.5)

We now define several algebraic structures related to the edges of a graph
that will be required for the following derivations.

Definition 2.14 (Edge contraction function). Consider a graph G and its
graph contraction G || m with head and tail functions hg,te and hg_,te, re-
spectively, where &. = £(G J/m). Then the edge contraction function p :
E(G) x E(G ) m) — {£1,0} is defined such that

1 fr(he (€)) = he, (€") and fx (te (€)) = te, (")
ple,e) =9 —1 frlhe(e)) =te (") and fr (te (€)) = he, (€7) (2.6)

0 otherwise.

Definition 2.15 (Edge contraction matrix). Consider a graph G = (V,€) and
its graph contraction G | m = (Vr, &), and let E¢ C € and Es, C E,.. Then the
edge contraction matriz Peg s ) € RI&s1x18s:1 s defined such that

[Pes.eon)] o =P €Rr€m) s (2.7)
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fore, € Es and €}, € Es,.. The corresponding normalized edge contraction matriz
is defined as

Uleses,) 2 Pes.es) Dles g (2:8)
with
A
D(gs,ffs,.) = P(,Z;‘s,SST)P(gS,SST»)' (2'9)
The matrix D g5 ) has a combinatorial interpretation given here.
Proposition 2.7. Consider a graph G = (V, ) and its graph contraction G /7 =
Vi, &), and let Eg C E and Es, C E,.. Then D(gs,gsr) is diagonal where each
entry on the diagonal is the number of edges of Es mapped to each edge of Es,.,
i.e.,
[Dies.es,));; = He € Es} I fx (€) = €. (2.10)
Proof. Let p; € RI®s| be the i’th column of Pleg 5, corresponding to € € Es,.,

& r r - .. r
then [D(Ss,fs,.)]ij =pip = Zlczllp(ek,ei)p(ek,e]—). For i # j if p(ex,€) =
+1 then p (ex,€}) = 0, such that [D(gsygsr)]ij =0. Fori=j p(ex, €)= £1 if
fr () = e and we get pTp; = S p? (e, ) = [{e € Es|fr () =€} O

Based on the above definitions, in the following subsection we derive alge-
braic representations of the incidence matrix of graph contractions.

2.3.1 The Contracted Incidence Matrix

We start this subsection by deriving the algebraic representation of the incidence
matrix of the quotient graph (Definition 2.2) E (G/m) as the product of the
incidence matrix E (G) of the original graph and the PCM P.

Proposition 2.8 (Quotient incidence matrix). Consider a graph G = (V,€)
with incidence matric E (G) (Definition 1.1) and partition w € IL,. (G) forr <n
and PCM P. Then incidence matriz of the quotient G/ takes the form

E(G/m)=PITE(G). (2.11)
Proof. Let e; € R™ be the j’th column of E (G) corresponding to edge ¢; € £ (G),

1 he (ej) = Vg
lejl, = =1 te(e) =i , (2.12)
0 o.w.

and let p; € R™ be the i’th column of P, corresponding to the i’th cell C; € 7,

pil), = {1 ok € G (2.13)

0 o.w.
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From the product of (2.13) and (2.12) we obtain that
—1 te(ej) € Ci, he (€ ¢ C;
piej = (2.14)

0 te (€5 ¢Ci, he € ¢CZ

Now let G/7 be the quotient of G over 7 with edge set £ = £ (G/n), then
the jth column of E (G/7), é; € R”, takes the form

—1 tg(¢5) = v}, hz (&) # v

— 1 tg(gj)#UL hé(gj)zvz

[ej]lc o tz (gj) —of, hg (gj) — o . (2.15)
0 tz(&) # vy, hg (&) # v

As according to Definition 2.2, tz (¢;) = v} for & € € and v} € V (G/7) if
and only if tg (¢;) € C; for €¢; € £ and C; € 7, and similarly all other conditions

in (2.14) and (2.15) are equivalent, therefore, we conclude that [¢;], = ple; ,
and E (G/7) = PLE(G). O

Proposition 2.9 (Graph contraction incidence matrix). Let G = (V,&) and
G ) nm = (V&) with head and tail functions he,te and hg,, te, respectively,
for m € 11, (G). Then the contracted graph incidence matriz E (G J| w) takes the
form

E(G [ m)=PrEG) Ugc.ge,)- (2.16)

Proof. From Proposition 2.8 we obtain that E (G/7) = PIE(G). It is left
to show that E(G Jm) = E(G/m)Ug,). Let e € R" be the jth column of
E (G /| m) corresponding to edge €} € &,

1 he () =1
lef], =< =1 te(ef) =) . (2.17)
0 ow.

Now let G/m = (V,,,5~>7 then the jth column of E (G/m), €; € R", takes the

form

-1 g (Ej) =y, hg (gj) # vy,

. 1 tg ('éj) #UZa h{f (gj) :UZ

[ej]k n 0 t‘g (gj) = UZ, h;f (gj) = U; . (2.18)
0 tz(&) #vp he () # vy,

& ={e el ler € £(G/m) he () £ 1e ()}
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Taking the product of £ (G/7) and Ue ¢,y (Definition 2.15) we get

L U e () =k
[E (g/ﬂ-) U(S,é’,,)]jk = d(ﬁr) Zp(etﬁ};) [ét]k =491 f¢ (6;) = 'U; ’
Fot=1 0 ow.

where from Proposition 2.7 we have d (¢},) = [D(gs7gs7.)j|kk and we obtain that
[E (G/7) U(g’gr)]jk = [eﬂk such that E (G J 7) = PTE(G) Ug,e,)-
0

2.3.2 The Contracted Laplacian Matrix

The Laplacian matrix plays a key role in algebraic graph theory. We recall that
for a simple undirected graph, the Laplacian matrix L (G) € RIVI*IVI can be
constructed as

LG =E@GE@G".

In this section we present the general algebraic relation between the Lapla-
cian of the full graph G and the Laplacian of the contracted graph G, = G // .
We will also investigate the edge Laplacian matriz and the normalized Laplacian
matriz of graph contractions.

Definition 2.16 (Edge Laplacian matrix). Consider a graph G = (V, ) with
head and tail functions he,tg, and incidence matriz E (G) (Definition 1.1) then
the edge Laplacian L. (G) € RIEIXIEl s defined as [68]

Le () = ET (G) E(9).

Definition 2.17 (Normalized Laplacian matrix). Let G = (V, &) be a simple
connected graph with Laplacian L (G). Then the normalized Laplacian matriz
L(G) € RVXWI js defined as

1

L(G)2D7%(G)L(G) D% (G)

where D (G) € RVIXWVI is the degree matriz, a diagonal matriz with entries

[D(9))i; = d(vi)-

The following theorem provides the algebraic representations of the three
Laplacian matrices of a graph contraction as a function of algebraic representa-
tions of the full-order graph.

Theorem 2.1 (Contracted Laplacian matrices). Consider a graph G = (V, &)
and its contraction G, = G )/ w, for m € 11, (G), with head and tail functions
he,ts and he, ,tg, respectively. Then the contracted graph Laplacian matrices
take the forms

L(G,) = PTE(G) Ut e, \ UL ¢ E™ (G) Pr, (2.19)
Le(Gr) = Ulg g.)Le (G/7) U ), (2.20)
L(G,)=D"%(G,) PTE(G) U e, \Ule e BT (G) P-D72(G,).  (221)
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Proof. The Laplacian matrix of the contracted graph is L (G,) = E (G,.) ET (G,)
and with F (G,) = PLE (G) U(e,¢,) from Proposition 2.9, the reduced Laplacian
matrix L (G,) = E(G,) ET (G,) takes the form

L(G,) = PYE(G) Uee,\Uls e, ET () Px.

Similarly L. (G,) £ ET (G,) E (G,) with E (G,) = PTE (G) U ¢,) takes the
form
Le(Gr) = Ule e ET (G) PxP{ E (G) Ug .,

and

“2(G,)L(G,) D% (Gy)
“3(G,) PTE(G) Ue.e, Ul e, ET (G) PD7% (G,) .

2.3.3 The Graph Contraction Tucker Representation

Trees and cycle-completing edges are the building blocks of any connected graph,
and the edges of a graph can be ordered accordingly as defined be the tree
partition matrix.

Definition 2.18 (Edge selection matrix). Consider a graph G = (V,€) with a
subset of edges Es C E(G). Then we define the edge selection matriz M (€,Eg)

where
(M (£,€5)],, = { L e =)

fori=1,...,1& and j=1,...,|Es|.

(2.22)

Definition 2.19 (Tree partition matrix). Let G = (V, &) be a simple connected
graph and let T € T (G) be a tree of G with co-tree C(T). Then we define the
tree partition matrix as the permutation

My = [M(E,67), M (£,&)]. (2.23)

The tree and co-tree structure of the graph is described by the Tucker rep-
resentation [53, p.113].

Definition 2.20 (Tucker representation). The Tucker representation of the
co-tree is the matriz T c) € RIEMIXIEC yhere the jth column of Tircy 18
the signed path vector (Definition 1.4) t; € RIEDI of the corresponding edge
€; € & (C)

Proposition 2.10 (Incidence matrix tree mapping). Let G = (V,€) be a simple
connected graph with head and tail functions, he,ts, and let T € T (G) be a tree
of G with co-tree C (T). Then the incidence matriz takes the form [69]

E(G) = B(T) Rer.o)MF, (224)
where R¢r e £ [I\gﬂ T(T,C)]'
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Proof. From Definition 2.19 we obtain that [E(T) E(C)] = E(G) My, Mr
is a permutation matrix and therefore M7M¥ = I jand we get E(G) =
[E(T) E(C)] ME. From the Tucker representation (Definition 2.20) we obtain
that £ (C) = E(T) T(r,c). The rank of an incidence matrix of a connected graph
of order n is n — 1 [25], therefore, E (T) € R™*"~! has full column rank and
L.(T) = E(T)" E(T) is invertible, such that Tirey =L (TE (M"E©)
and we obtain that [E (T) E(C)] = E(T) [Liey T(1.c)]- O

Proposition 2.11. Let G and G, = G )/ 7 with head and tail functions hg,te and
he, te. respectively, and let T € T(G) and T, € T (G,) with co-trees C and C,
respectively. If we reorder the edge sets € and &, according to the permutations
My and M., then the edge contraction matriz of the permuted sets & and 5;
takes the form

P, P,
Pig oy = | JEmeT) (ETfer) } , 2.25
(8 7£T) |: P(“"Cngr) P(EC’ECT») ( )
and the normalized edge contraction matrix takes the form
1 +
Ugg = | Demera D Peree,)De, (2.26)
(£7¢0) Plec.er) D1, Plecge,)De,

. A A
with DTT = P£T7£TT)P(8T7£7—7‘) + Péc,ETT)P(gcngr) and DCT =
T T
P(gT,gcT)P(gTvgcr) + P(SC,SCT)P(E‘C ey ).

Proof. The edge contraction matrix P(g 'el) is obtained by applying the tree
partition matrices M7 and M7, on P ¢y,

T
P(s,’s;) = M7 Pe.e,)Mr,

= [M (&,&7), M (£,€)|" Piee,y [M (E:,67,) , M (&, €c,)]
_ MT (5, 57*) P(g’gr)M (cc:r, STT) MT (5, 57*) P(g’gr)M (5T, SCT)
M7T (£,&c) Pee M (£,,E7.) M7 (E,€c) PieenM (Er,8c,) |

Since E7,& C £ and &7, &, C &, then from Definition 2.18 and Definition
2.15 we obtain that

MT(€,€7) Pee )M (€r,67.) = Pey 1), (2.27)

M* (5, &r) P(E,ST)M (gra &) = P(ST,Scr)a (2'28)

M7 (€,&c) Pe.eyM (E,€7,) = Pec.er) (2.29)
and

MT(€,&c) Pe.g )M (Er,€c,) = Pec e, ) (2.30)
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Expanding D(S’,E;) with P(S,'S;) = M71:P(6,51,)M7} we obtain

Digr o1y = (MFPige)Mr,) " (MFPie.g,)Mr.)
= M7 Ple ¢ \M7MT Pg ¢,y M7,
= M. Ple ¢\ P, Mr,
= [M (&, 67,), M (&,€c,)]" Dig.g,y [M (E:,E7.), M (£, Ec,)],

and since D(g ¢, ) is diagonal we get that D(gz £y = Diag (Dr., D¢, ) with

T T
D1, & Ple, ey Plerer) + Plee ey Plec.er,)

and
A pT T
DCT = P(gT,gc,,.)P(ST:ECT) + P(SC7£C7.)P(Ec,£cT)'

We notice that D7, is regular and D¢, may be singular. Expanding
— )
Uterer) = Hleren)Plerer)

completes the proof. O

Proposition 2.12. Let G = (V,E), T € T(G) and Ecs € Ep—rr (T), and let G, =
G Ecs, with Tp =T [ Ecs and C = C(T;). Then Py ey = M (E7,E7\Ees)
and P, gy = 0. If in addition G || £, is cycle-invariant (Definition 2.5) then
U(g’gr) = P(g’gr) = M(g,g\gcs), where M(g,g\gcs) = MTP(E',SL)M%~ and

P(5’7g;) = Dz'ag (M (57*,57*\565> 7I|gc|) .

Proof. We have &1 = £X, U E., where £, 2 E7\E.. Since T, = T /| &5 from
Proposition 2.5 we get that there is a one-to-one correspondence between £, and
&7, such that Pg, ¢, y = 0 and [P(gT)gTr)]ij =1if ¢ (1) = ¢ (£2,) and zero
otherwise, which is exactly how M (&7, E7\Es) is defined (Definition 2.18). If
G /| Ecs is cycle-invariant then there is one-to-one correspondense between C and
C; such that P, g. ) = ljg.| and Pe. g, ) = 0. We then get from Proposition
that DTT» = I‘gTT| and DCT' = I\gc\ and

M (57-757-\505) O|€7'r\><|fc| )
Olec|xler, | g

U(E,'S;) - P(g/’gi) - (231)

Multiplying by M7 and M7, we get Ug e,y = Pie e,y = M (€,E\Ecs) where
M(g,g\gcs) :MTP(S/,SL)M%' D

Proposition 2.10 allows us to derive the following Tucker representation of
graph contractions.
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Theorem 2.2 (Contracted Tucker representation). Let G = (V,€) and G ) 7 =
Vr, &), m €11, (G), with head and tail functions he,te and he,, te,. respectively,
and let T € T(G) and T, € T(G J/ 7) with cycle completing graphs C (T) and
C. = C(T;). Then the contracted tree graph and contracted cycle-completing
graph incidence matrices take the forms

E(T;) = PLE(T) Ut 1.9, (2.32)
and
E(C;) = PYE(T)Utc.) (2.33)
and the Tucker representation of the graph contraction is
T(T,«,CT) = L;l (T, 7;) U(q;—,Tr)Le (T/T() U(T,Cr)a (2.34)
where
L (T/m)=E" (T) PP E(T) (2.35)
is the edge Laplacian of the quotient T /7 and we define
Lo (T, T2) 2 Ul 1y Le (T/7) Uit 1) (2.36)
and
Uirry = (Peren) + TroPlec.er)) D7, (2.37)
Utico) 2 (Peree,) + Tiro)Piec.ee,)) D, (2.38)

Proof. Using
E(G;) = PTE(9) Ug.e,),

E(G,) = [E(T;) E(C,)]| M7,

and
E(G) = E(T) Rer.e)M7

we get
[E(T:) E(C)] M7, = PLE(T) Rir.oyM7Us ¢,).

Multiplying by M7, and with
M7 My, = ligy, |

and
Uter 1) = M7Ug e,)MT,

the normalized edge reduction matrix (Eq. (2.26)) we get
[E(T:) E(Cr)) = PYE(T)RireyUer - (2.39)

Expanding R(r ¢y and U g1y we get E(T;) = PYE(T)Ur,7.) and E (C,) =
PEE (T) Ur.en with Ut and U(r,c,) given in Eq.(2.37) and Eq.(2.38). Ex-
panding the Tucker representation of the contracted graph

Tircy =L (T E(T) E(C,), (2.40)
with Eq.(2.32) and Eq.(2.33) we obtain Eq. (2.3.5). O
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Proposition 2.13. Let G = (V,€), T € T(G) and &5 € Z,—r (T), and let
Gr =G| Ecs, withT, =T J€cs and C,. = C (Ty). Then if G )/ Ees is cycle-invariant
(Definition 2.5) then the Tucker representation of the graph contraction is

Tiricy = MT (E7,E7\Ees) T ) (2.41)

Proof. From Proposition 2.12 we obtain that P, ey = M (7,E7\E) and
Pere.,y = 0, and since G /J & is cycle-invariant then P, ¢y = 0 and
Piec ge,) = ljgc)- From Theorem 2.2 we then obtain

U,y =M (Er,E7\Es),

Uty =TT
E (7;’) = PZE (T) M (57-, ET\SCS) )
(Cr) =PIE(T) T(1.)

and
T(T,,,C,,.) = L;rl (T) MT (87—, gT\gcs) Le (T/gcb) T(T,C)-

‘We notice that
Ligy| = M (E7,E7\Ecs) MT (E7,E7\Ees) + M (E7, Ecs) M (E7, Ecs)
such that

Titcn) = M" (E7,E7\Ees) Ti7 0
+ LN (T) M (E7,E7\Ees) Le (T /Ecs) M (E7,Ecs) MT (E7,Ecs) Ti7 ).

We have
Le (T/€es) M (€7, Ec5) = BT (T [Ecs) E (T /) M (7, Ecs)
and from Proposition 2.8 we obtain that F (T /E.s) M (E7,Ecs) = 0, such that
Tty = MT (E7,E7\Ees) T )

O

2.3.4 Summary of Definitions of Graph Contraction Alge-
braic Representations

For clarity and easiness of reading, Table 2.1 summarizes summarizes definitions
of graph contraction algebraic representations used throughout this chapter.
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Table 2.1: Summary of definitions of graph contraction algebraic representa-

tions.
’ Definition \ Symbol \ Expression
1 fr(v;) =07
[Pw]ij:{o ovxfz) ’
Partition P, o
characteristic
. for v; € V and v € V,.
matrix J
P(r)= P,D™% (m)
Partition pro- | P (m) where
jection matrix D (n)=PI'P,
[Pes.es)] ., = Persem)
Edge contrac- | Preg es.)
tion matrix for €, € £s and €}, € &g, .
_ T
U(£S7£S7~) - P(851£ST)D(55755T)
Normalized Ues.es.) where
edge contrac- Deg.es.) = P£5755T)P(gs7gs7.)
tion matrix
Incidence ma- | E (G)
trix 1 he () = vi
[E(g)]ij = -1 te (ej) =
0 otherwise
Laplacian ma- | L (G) L(G)=FE(G)ET(G)
trix
Edge Laplacian | L. (G) L.(G)=ET(G)E(Q)
matrix
L(G)=D"3(G)L(GD (9
Normalized L(G) where
Laplacian [D(G)],;; = d(vy)
matrix
1 (&) =¢; (&
[M(gags)]ij_{ 0 0\5,> i (Es)
Edge selection | M (£,E&s) for U
matrix i=1,...,|6land j = 1,...,|Es|
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T
V]

G/

Figure 2.6: An example of a graph G and its contraction G // w over a 3-partition
m(G) = {C1,Cq,C3} with Cy = {v1,v4}, Cy = {v2} and C5 = {vs}.

2.3.5 An Illustrative Example

The following example illustrates the above definitions and derivations of alge-
braic representations for graph contractions. Consider a graph G = (V,€) of
order 4 and its graph contraction G // 7, shown in Figure 2.6.

The corresponding PCM and PPM (Definition 2.13) are given in Table
2.2. The edges € (G) are (with assigned direction) €1 = (v1,v2), €2 = (v1,v3),
€3 = (v2,v3) and ¢4 = (v3,v4), and the edges &, = £ (G J/ 7) are (with assigned
direction) €] = (v1,v2), €5 = (v1,v3), €5 = (v2,v3). The resulting edge contrac-
tion matrix and the normalized edge contraction matrix (Definition 2.15) for
this example are given in Table 2.2

We now examine for the same graph contraction example (Figure 2.6) the
incidence and Laplacian matrices of the graph and contracted graph (Table 2.3).
It can be verified that as according to Proposition 2.9 and Theorem 2.1 that

E(G [ 7) =P EG) Ugcge,

and
L (gr) = PfE (g) U(£,£T)U(€,5T)ET (g) P

Le(Gr) = Ulg gy Le (G/m) Us g,

where P and Ug ¢,y are given in Table 2.2.

In order to demonstarte the Tucker representation of the graph contraction
we choose a spanning tree 7 with edges €1 (£ (7)) = (vi,v2), €2 (E(T)) =
(vg,v3) and €3 (€ (T)) = (v3,vq). The co-tree C edges are then € (£ (C)) =
(v1,v3). The spanning tree 7, of the reduced graph G /7 has edges €; (€ (7)) =
(v7,v%) and es (€ (7)) = (v5,v}) and the co-tree C, edges are then €; (£ (C,)) =
(vi,v5). The Tucker representations T(7 ¢y and T(r, c,) of the full graph and
the graph contraction are given in Table 2.2. It can be verified that as according
to Theorem 2.2 that

Tircn) = Ly (T Ulp 7y Le (T/7) Uit e,y -
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Table 2.2: Example of the PCM, PPM and (normalized) edge contraction matrix
of a graph contraction.

Algebraic representation \ Symbol \ Value
1 0 0
e po| 010
00 -1
- 1 -
7 0 0
PPM P (x) oo
1
L 5 0 0]
1 0 0
. . 0 1 0
Edge contraction matrix Pee) 0 0 1
0 -1 0
1 0 0
0 %+ o0
Normalized edge contraction matrix U(g,gr) 0 (2) 1
0 -2 0

In the next section we derive efficient algorithms for finding Laplacian-
interlacing graph contractions, based on a novel min-max interlacing theorem.

2.4 Interlacing Graph Contractions

The interlacing property of matrices has been extensively studied with classic
algebraic results such as the Poincare separation theorem [5, p. 119], and ma-
trix combinatorial results such as the relation of equitable partitions with tight
interlacing [26]. Here we study what types of reduced graphs have interlacing
graph matrices. We start by defining spectral interlacing. The spectrum of a
real symmetric matrix A € R™*" is the set of eigenvalues {\j (4)},_,. In this
chapter we always take A\, as the kth eigenvalue of A in ascending order.

Definition 2.21 (Interlacing). Let A € R™*™ and B € R"™*" be real symmetric
matrices with 0 < r < n. Then the eigenvalues of B interlace the eigenvalues
of A, denoted B < A, if \i, (A) < g (B) < Mp—pgi (A) for k=1,2,...,r. The
interlacing is tight if A, (A) = A (B) or Mg (B) = Ap—rgi (A) fork=1,2,... 7.

It is straight forward to show that interlacing is a transitive property.

Proposition 2.14. Let A; € R™*™ Ay € R™*"2 gnd A3 € R™*™3 he real
symmetric matrices with 0 < ng < no < ny. If Az o< As and As < Ay, then
A3 X Al.

37



Chapter 2. Graph Contractions and Their Spectral Interlacing Properties

Table 2.3: Example of incidence and Laplacian matrices and the Tucker repre-
sentation of a graph contraction.

’ Algebraic representation \ Symbol \ Value
-1 -1 0 0
. . 1 0 -1 0
Incidence matrix E(G) 0 1 1 -1
0 0 0 1
-1 1 0
Incidence matrix E(G ) ) 1 0 -1
0 -1 1
2 -1 -1 0
Laplacian matrix L(G) -2 10

2 -1 -1
Laplacian matrix L(G ) ) -1 2 -1
-1 -1 2
2 1 -1 0
Edge Laplacian matrix L. (9) _11 ? ; :i
o -1 -1 2
2 1 -1
Edge Laplacian matrix | L. (G J ) 1 2 1
-1 1 2
Tucker representation Tir.0) [ 1 1 0 ]T
Tucker representation Ti1.c) [ 1 1 ]T
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Proof. From A3 < Ay and Ay o< Ay we have A\, (As) < Mg (A3) < Ay—natk (A2)
for k = 1,2, ...,Nn3 and >\l (Al) S /\l (AQ) S >‘n1—VL2+l (Al) for l = 1,2, ey N
From | = k we get A (A1) < Mg (A2) < A; (As), and from | = ng — ng + k we
get Mg (A3) < Anp—ngtk (A2) < Apy—natk (A1), such that Ay (A1) < Ap (4g) <
Any—nstk (A1) for k=1,2,...,n3 and we obtain that A3 o A4;. O

We now extend the notion of spectral interlacing properties to graphs. For a
given graph G of order n with m edges, and a real symmetric matrix associated
to the graph, M (G) € R™*", the interlacing graph reduction problem is to find
a graph G, of order r < n such that the eigenvalues of M (G,) interlace the
eigenvalues of M (G).

Definition 2.22 (Interlacing graphs). Consider two graphs G, and G, of or-
der n and r respectively, with n > r, and let M(G) € R"*™ be any real sym-
metric matrix associated with the graph G. We say that the two graphs are
M-interlacing if M (G,) «x M (G,,), and denote the property by G, xpr Gp.

A problem arising naturally from the definition of interlacing graphs is the
interlacing graph reduction problem.

Problem 2.1 (Interlacing graph reduction). Consider a graph G, of order n
and let M(G) € R™ "™ be any real symmetric matriz associated with the graph
G. Find a graph G, of a given order r < n such that G, xp; G,.

Finding a solution to Problem 2.1 may be numerically intractable for a mod-
erate number of nodes, as the number ¢, of simple connected graphs of order
r increases exponentially according to the recurrence ), (,’;) kck2(T;k) — r2(2)
for r > 1 [64, p.87), e.g., forr=1,...,6, ¢, =1, 1, 4, 38, 728, 26704.

A powerful tool for proving interlacing results is the Courant-Fischer the-
orem, e.g., that a symmetric matrix and a principle submatrix of that matrix
interlace [29], which leads to an adjacency interlacing theorem for node-removal
graph reductions:

Theorem 2.3 (Adjacency interlacing node-removal). Consider a graph G and
a node subset Vg C V (G). Then G\Vs x4 G.

Proof. The matrix A(G\Vs) is a principle submatrix of A(G), therefore,
G\Vs x4 G. 0

Utilizing the Courant-Fischer theorem [33] and the following min — max in-
equalities (Proposition 2.15) an interlacing graph reduction theorem is derived.
We first introduce some notations to simplify the statement. A k-dimensional
subspace of R" is denoted as ]-",(Lk). For an r-dimensional subspace }",(f), we
define the injective map Py R"™ — R"™, such that x € R" — y € .Fr(f).

Theorem 2.4 (Courant-Fischer). Consider a real symmetric matric M €
R™* ™ then for k € [1,n]

M) = i M 2.42
Ak (M) S zef?19k+l)R( ), (2.42)
z#0
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and
Ak (M) = min max R(M,x), (2.43)
F e FE
x#0

where R (M, z) & x;{\iﬁ‘ is the Rayleigh quotient.

Proposition 2.15. Consider a subspace ]:,(f) forr <mn, andlet f (x) : R" - R
be a real-valued function that attains a minimum and a mazimum on R™\ {0}.
Then the following holds for k € [1,7]:

) max min z) < max min ( T )
) FlrktD xeffl'rL—k+1)f( ) T FrRRD e F(rektD f Pgn ( ) ’
z#0 Z#0
i min max T) > min max ( » (T )
) FpmrHR) ge Fn=rth) f( ) TR geF® f Prm ( )
z#£0 0

Proof. We first prove (). Let s =n — k + 1. For all .7-"728) C R"

min f (x) = min min  f(x), min
zeF) zeF O nF e FIN{FEnF}
z#0 x#0 A0
< min  f(x), (2.44)
zeF I nFM
x#0

and we obtain that

max min f (z) < max min  f(z). (2.45)
F) zeFY F aeFOnFD
z#0 #0

Since k <rthens=n—-k+1>n—r and

dim (.F,(LS) N ]-',S”) >s—(n—r), (2.46)
therefore,
i = i . 24
WY ertnre DT B e B T 4D
W weRI0R " <Dz e F
x#0

For each F{*~ (=) C F') we can find FE~) C R” that is mapped to
it by pre (),

]}7(‘3—(17,—7’)) _ {i‘ c Rr|p}_(” (i‘) c ]:7(13—(n—r))}7 (248)
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such that

I (pro @) (2.49)

min (x) = ‘min
v e Flm(n=r) i e Flm(n=m)

x#0 z#0

Maximizing over all }",(Ls_(n_r)) C }',(Lr) we obtain

~ max min f(z)= max ‘min f (p]_.m (i)) ,
FEmOmICED ¢ o) FEmOS) s Flemner) "
r#0 F#£0
(2.50)
and
ff?li}frn e F kD () f o) = fﬁl,%}ﬁl) = ]r?rtlrlikﬂ) / (PE(;» (m)) ’
n 20 n xr € / r
T#0
(2.51)
completing the proof of (7).
The proof of (ii) is as follows. Let s =n —r + k . For all ]-'T(LS) C R®
max  f(x) = max max  f(x), max
xe FyY ) e FInF @ reFN{FnF}
n x#0 x#0
x#0
> max f(x), (2.52)
z€F S NFM
x#0
and
min max f(z) >min  max f(x). (2.53)
F zeF® F zeFOnFD
z#0 z#0
Sincek>1thens=n—-r+k>n—r and
dim (]—',(f) N f,(LT)) >s—(n—r), (2.54)

and we can then replace max min with minmax in the above proof of (i) and
obtain

min max T) = min max o (T )
FrortR) g Fln—rtk) () f( ) FE e f (p]:n ( ) ’
TH£0 F£0
completing the proof of (ii). O
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Theorem 2.5 (Interlacing graph reduction theorem). Consider two graphs G,
and G, of order n and r respectively, with n > r, and let M(G) € R™*™ be any
real symmetric matriz associated with the graph G. If there exists r-dimentional
subspaces A, B C R™ such that Yz € R"\ {0}

R(M(Gn),pa(x)) < R(M(Gr), ), (2.55)

and
R(M(Gn).ps(z)) > R(M(G;),2), (2.56)
then G, o< Gn-

Proof. In order for G, and G, to be M-interlacing (Definition 2.15) we must
prove that A\ (M (Gp)) < A (M (Gr)) < Mk (M (Gy)) for k € [1,7]. From
the Courant—Fischer theorem (Theorem 2.4) we have

Ak (M (Gn)) = f;glgﬁl) IGFI?}PH])R (M (Gy) ,z), (2.57)
z#0

and from the min-max properties (Proposition 2.15) with Fr =

kell,r]

A we have for

M (M (Gr)) < max min  R(M (G,),pa(z)). (2.58)
FUr—ktD) pe F(r—kt1)
z#0

Since R(M (G),pa(x)) < R(M (G,),x), therefore,
A (M (Gr)) < max min  R(M (G,),x)

Fr—kt) pe Fr=k+D)
z#0

and A\, (M (Gn)) < g (M (G,)) for k € [1,r]. In order to complete the interlac-

ing proof it is left to show that Ay, (M (G,)) < M—rak (M (G,)) for k € [1,7].
From the Courant—Fischer theorem (Theorem 2.4) we get

An—rti (M (Gn)) = ]_.;,IP&;C) re;?i)i”)R (M (Gn) ), (2.60)
z#0

and from the min-max properties (Proposition 2.15) with ]—",ST) = B we have

An—rtk (M (Gn)) 2 min max R (M (Gn),ps (2))- (2.61)
FF zeF®
z#0

Since R (M (G,) ,p5 (x)) > R(M (G,),x), therefore,
An—rik (M (Gr)) > min max R(M (G,),x)

FO peF®
z#0
— M (M (G)), (2.62)

and A\g (M (Gn)) < A—rgx (M (G;)) for k € [1, 7], completing the proof. O
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The general interlacing graph reduction problem (Problem 2.1) is combina-
torial hard. If we restrict the class of reduced-order graphs to graph contractions
then we get the following interlacing graph contraction problem.

Problem 2.2 (interlacing graph contraction). Consider a graph G and a real
symmetric graph matriz M (G) € R"*™. Then givenr < n find w € 1L, (G) such
that G | ™ o<pr G.

The number of r-partitions is |11, (G)| = S (n,r) where

S(n,r)::j{:(-J)T—kkﬂ(:fi}G! (2.63)

k=1

is the Stirling number of the second kind [64, p.18], which for r < n is asymp-
totically S (n,7) ~ “5. If we restrict the problem to edge-based contractions

then the number of partitions is the number of n — r edge contractions is

Bnr (9)] = ( o )

where m = |€ (G)|. Finding an interlacing contraction is, therefore, combina-
torial hard as well and in the following section we show how cycle-invariant
and node-removal equivalent contractions have associated subspaces required
by Theorem 2.5 and lead to interlacing graphs. Two algorithms of complexity
O (mn) and O (n2 + nm) are then provided for finding, if they exist, a cycle-
invariant contraction and a node-removal equivalent contraction respectively for
a given graph with n vertices and m edges.

The following subspaces are now defined: the partition subspace, the anti-
partition subspace and the node-removal subspace. These will be used for ap-
plying the min-max interlacing theorem (Theorem 2.5).

Consider a graph G = (V, &) of order n and an r-partition = € II, (G) and
consider a subset Vs C V(G), |[Vs| = n —r for r < n. Then we define the
following subspaces of dimension r. The partition subspace Fr C R™ is the
space of all vectors in R™ such that variables with indexes in the same partition
cell are equal,

Fr 2 {x € R"2; = 21,Vj,k € C; (7),Vi € [1,r]}, (2.64)
and the corresponding partition mapping pr,_ () : R" — R™,

[pr. ()], = {&:lk € Ci(m)} . (2.65)

We define the anti-partition subspace F, C R™ such that for z € F, the sum
of all vector variables in non-singleton partition cells is zero

Toy(Ci(m)) Vi€ [Lr],[C;(m)] > 1

N N o
Fr = {x ER ‘mw(Ci(w)) - |Cz (ﬂ_)| 1 Vj e [2’ |Cz (7‘(‘)” }7 (2'66)
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and the corresponding anti-partition mapping, pz_(¥) : R" — R",
~ .ik k = V1 (Cz (71'))
) _ ] , 2.67
[pfw (I)]k {_ \Ci(frk)kl k= v, (C; (ﬂ_)) j>2 ( )

where v; (C; ()) denotes the j’th node of the i’th partition cell.
The node-removal subspace, Fy, C R", is defined as

Fys 2 {x € R"|z; =0,i € Vs}, (2.68)
and the corresponding node-removal mapping pr, (Z) : R" —» R",

s, @] = {j’“ bV, (2.69)

0 omw.

Proposition 2.16. Consider a graph G and an edge-matching and node-removal
equivalent contraction G || E.s (Definitions 2.1162.9) with E.s € =, (G) for
r <n. Then for T € R" we have

R(L(G),pF, (2)) < R(L(G [ &cs) ), (2.70)

and

R(L(9),pry, (8)) = R(L(G [ €s) 7). (2.71)

Proof. Let © = pg_ (%) for & € R". The Rayleigh quotients of the Laplacian
takes the form [11]

(y — xu)z
_ {uw}eg(9)

>, @

