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Abstract

Moving objects with a single robot is a common practice; however, the weight and
dimensions of the cargo oftentimes limit the task. To aid this, we propose using multiple
coordinating robots to move large objects. The main challenge in this approach is
that the robots do not know the geometry of the object they are moving, but do have
complete information regarding their own relative formation (that is, their position,
orientation and velocity). This fact motivates solving the problem using rigidity theory,
a tool recently used in formation control. Within this context, the planar motion of the
object can be decoupled into pure steady state translations and rotations by utilizing
the eigenvectors of the corresponding framework’s rigidity matrix. This formulation is
beneficial because it only requires local information to create any desired trajectory.
In other words, utilizing the robots’ position and velocity with respect to the system’s
center of mass, we are able to produce the forces needed for translations and rotations.
This work explores how the rigidity matrix can be used to find the forces needed to
shift and rotate an object, potentially allowing the robots to move that object anywhere

in the plane. Finally, we demonstrate the analytical results with numerical simulations.
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Abbreviations and Notations

FOC . Frame of coordinates.
CoM : Center of mass.

CoF :  Centroid of the formation.
ss . Steady state.

i.c. : Initial conditions.
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Chapter 1

Introduction and Motivation

Humans have been moving objects since the dawn of time. Whether it was hunters and
gatherers bringing the daily catch back to the village, or mine workers carrying the ore
to the closest market, the task remained the same. Nowadays our needs have changed
and we no longer have to hunt for our meals, we simply go to the supermarket; but
we still have to push the cart. We can also buy our products online, but we still have
to go to the post office to get them. Since the very beginning we’ve been looking for
solutions to our moving problems: getting animals to pull the plow in a field (which
later on were replaced by tractors), or wagons in a railroad to carry coal, or drones to
deliver our online purchases to our doorstep.

The main issue that we encounter when carrying payloads, is that to carry a large (or
heavy) object, we need another large object. This may not be an issue in a construction
site, where a crane is used to move tremendous weights, but is definitely an issue if we
want a drone to deliver something heavy to a customer, or if the heavy object has to be
transported indoors.

The solution we propose is not new in its robotic aspect, and it is based on human
behavior. When we need to move a heavy piece of furniture at home (say, a bed), we
don’t use a forklift, we simply ask someone to help us. Without realizing it perhaps,
what we’re asking of that person is to share the load in a distributed manner. It is
precisely this principle that guided us to the thesis of this work - utilizing multiple robots
to carry objects, instead of just one.

This way of carrying things has many benefits. To begin with, we can use the same
technique to move objects of all shapes and sizes, whereas forklifts for instance, are
categorized by their maximal capacity. This means that a warehouse that up until
today had to keep on site different (and expensive) forklifts could one day replace them
with a lot of small (and cheap) robots that work simultaneously on moving multiple
payloads, and collaborate when in need of moving something bigger. Another advantage
is the reliability of the new approach. A malfunctioning robot can easily be replaced
by another one in the fleet, while a malfunctioning crane brings construction to a halt.

With this same example we can clearly see that this new solution is better from an



economic point of view, but that is not all. The key advantage is the wide range of
applications for this. In the future we could replace cranes, forklifts, trains, trucks and
even planes with distributed carriers, where the only difference between the applications
would be the number of carriers.

This work deals with the manipulation of a rigid body in the plane. In contrast
to traditional ways to displace objects, where a single operator performs the task, we

propose moving large objects with cooperating robots.

1.1 Literature Survey

To be able to analyze the dynamics of a rigid body [3] manipulated by multiple robots
simultaneously, we need to understand the interaction between the robots involved.
Graph theory [8] is a branch of Mathematics that can be used to model the interactions
between these robots, by seeing them as the nodes of a graph and the passage of
information between them as the edges. Another interpretation of a group of agents is
a bar and joint framework, where the robots are the joints and the information between
them is the bars. Such a framework can be either flexible or rigid, depending on the
assembly. For instance in Figure 1.1a we can see a flexible framework. It is flexible
because we can change its shape without changing the length of the bars. However in
Figure 1.1b the framework is rigid, because even if the joints allow some motion of the
bars, any force on them will result in either the motion of the entire framework, or in

breaking the framework.

B I
[T

(a) A flexible bar and joint framework. (b) A rigid bar and joint framework.

Figure 1.1: Two simple bar and joint frameworks, flexible and rigid.

In our formulation the robots carrying the object are rigidly attached to it, therefore
the framework that they represent should be modeled as rigid (otherwise the robots
would be allowed motion with respect to the object, but this would mean that the robots
move instead of the object). This representation is useful because we can transform the
problem of having a group of robots push an object, into the problem of having a bar
and joint framework [10] conserve its shape after forces are applied through the joints.
To that end, we need to explore the rigidity properties of the framework, which have
been thoroughly studied in [2], [4]. In particular, we're interested in the rigidity matrix
and its relationship to the stresses of the framework, with the aim of establishing the

connection between the two. Similar work has been done by [16], where the authors



compute the eigenvectors of the symmetric rigidity matrix and apply them as velocities
to the nodes of a graph.

Other research groups have demonstrated how to move objects without utilizing
rigidity theory, such as in [17], where a leader applies a force to the payload and
the rest of the robots align their forces accordingly. Another example is [11], where
two robots use a depth camera to tilt an object onto wheels before pushing it to its
destination. The authors in [5] utilize a group of cooperating robots to compute the
mass, moment of inertia, center of mass (and more) of an object by applying forces to
it, with little limitations on the formation’s graph. In [15], an object is manipulated by
two quadcopters by suspending the object from a cable connected to the cooperating
robots. The authors of [13] enclose an object with 3 robots and plan the robots’ paths
such that the caged object is moved along a desired trajectory. In the same field, [1]
shows how to move an object of polygonal shape by planning a series of pushes that are
normal to the body’s laterals. Another example of object manipulation by caging is
described in [9], where using graph connectivity the formation of a group of robots is
preserved while allowing individual tasks of the agents.

In general, the problem of moving an object by cooperating robots is not new, and
some sides of it have been analyzed in [7] (for instance). The applications for such a
task have also been presented before (see [12]), but this work differs from the existing
studies, in the formulation of the dynamics, the generalization of the shape of the object

to be moved, and the tools with which the task is completed.

1.2 Thesis Contribution and Outline

This work’s main contributions can be summarized as follows:

e We find a connection between the forces required to move the object, and rigidity
theory, by showing that the null space of the rigidity matrix is the image of the

transposed motion matrix of the system.
e We fully analyze the dynamics of a rigid body moved by n cooperating robots.

This thesis is organized as follows. We start at Chapter 2 by covering the basic fields
required to conduct this research, such as rigid body kinematics, graph and rigidity
theory. In Chapter 3 the dynamics of the system are fully analyzed and the symmetric
case is briefly covered analytically and in simulation. We then dictate the type of motion
we are after (in the general, asymmetric case), and find the forces required to do so
in Chapter 4. With those forces in hand we show that they can be computed via the
rigidity matrix of the corresponding framework, and thus show the connection between
this rigidity matrix and the motion matrix of the system (defined in this text). These

forces are then tested in simulation and the results are corroborated in Chapter 5.
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Chapter 2
Mathematical Background

In this chapter we’ll cover the essentials of the mathematical fields used in this work. We
begin with rigid body kinematics, which is needed to describe the velocity of different
points on the rigid body the robots will attempt to move. We then introduce basic
concepts from graph theory, used to describe the abstract sharing of information between
agents in the system. Finally, notions from rigidity theory are used to find the connection
between the rigidity matrix of the formation and the forces needed to move the object
as intended.

This work employs standard mathematical notations. The n dimensional Euclidean
space is denoted by R™, and R™*" is the set of m X n real matrices. For a matrix
A € R™*", [A],; denotes the ijth entry of A. The null space of A is denoted as Null{A}.

The image of the matrix is denoted as Im{A}. The n x n identity matrix is denoted I,,.
T
The n-dimensional vector of all ones is denoted 1,, = [ 1 1 ... 1| . The Euclidean

2-norm of a vector v € R? is denoted ||v]| = VvTv. Finally, for a time-varying signal

x(t), we denote its derivative as & = dz/dt.

2.1 Rigid Body Kinematics and Planar Motion

Consider a rigid body in the plane, such as the one depicted in Figure 2.1. Points A
and B are marked by the vectors p4, pr € R? respectively, with respect to the origin of
a stationary, right hand frame of coordinates (FOC). The vector pz, marks the position

of point B with respect to point A, and can be written as pgs = pg — pa.

Clearly if the line defined by the points A and B rotates about point A, then all the
points in that line would have the same rotational velocity, say, 6 € R. However, the
same cannot be said about the linear velocities p,, ps. Instead, the connection between

these can be written as follows:

Ps =pPa+0Tpsa, (2.1)



Figure 2.1: A representation of a rigid body with points A and B marked on it.

where T is the rotation matrix,
0 -1
T= . 2.2
o 22)

Next we develop the governing equations of motion of a rigid body under external
forces. Assume a rigid body with mass and moment of inertia m and I, respectively. Let
p; be the point on the body where a force f; is applied. The rigid body is also subject
to a friction force at the point p;, F; = —umgp;, where p and g are the friction and
acceleration constants. The angle § marks the orientation of the body, as illustrated in

Figure 2.2.

Figure 2.2: A rigid body moved by n forces f;.

We consider n forces applied to the rigid body. The equations of motion for the

center of mass of the body, denoted pg, are then

n

mps = Y (fi + F) (2:3)
=1

1= zn: (fi + F) ' T (2.4)
i=1

10



Equivalently, in matrix form they can be expressed as,

mps = (1, ® I) (f + F) (2.5)
W= (f+F" I, eT)r, (2.6)

where ® stands for the Kronecker Product [18]. We denote the stacked vector of forces
T T

as f=| ff - fF } and F' = [ Fl ... ET ] . In addition, r; = p; — pg marks

the position of point p; with respect to point pg,

T
Substituting the expression for the friction forces into (2.5) gives
mis = (17 & 1) (5 - 173) 28)
16 = ( - %p) (I, @ T)r. (2.9)

The linear velocity of the points p; can be expressed in terms of the linear velocity of

the center of mass as p; = ps + éTri, leading to

p=1,@ps+0 (L, @T)r (2.10)
and
miss = (15 Ip) { “ng[l @ ps+0(LoT)r|} (2.11)
. T
H={f-"2 [ eps+0(LoD)r|} (Lel)r (2.12)
n
After a bit more simplifications:
miss = (15 @ Ib) f = pg (s + 0T7) (2.13)
T T = 'TT’T’
16 = 1 (I, ®T)r — pmyg psTT+0— ), (2.14)

n
where 7 = % Z is the average of the relative positions vector.

2.2 Graph Theory

A graph is the mathematical representation of the relation between pairs of objects. It
is an abstract way to express the passage of information between agents in a network [8].
Let G = (V, ) be the undirected graph defined by the vertex set V = {1,--- ,n} and
the edge set £ C V x V, where n is the number of nodes in the graph, and ¢ is the

number of edges. A graph can also be directed, simply by setting an orientation to the

11



edges, that is, assigning a head and a tail to each edge. An orientation is useful to define

the incidence matrix of the graph H € R**™ whose entries are determined as follows,

1 node i is the head of edge k
[H],; =< —1 node i is the tail of edge k . (2.15)

(2

0 otherwise

If (i,j) € € then nodes i and j are adjacent. The neighborhood of node i is then

the set of all nodes that are adjacent to it,
Ni={jeV:(ij) e} (2.16)

An example of a graph can be seen in Figure 2.3. In this example the node and edge
sets are V = {1,2,3,4} and € = {(1,2); (1, 3);(1,4); (2,3)} . Figures 2.3a and 2.3b show
the difference between the directed and undirected graph, as well as the meaning of
adjacency and neighborhood. In this case nodes 4 and 1 are adjacent, but 4 and 3 are
not. In addition, the definitions of head and tail of edges can be seen in Figure 2.3b.
Take for instance edge number 1 (marked in the figure simply as ej): its tail is at node

1, and its head is at node 2. Here, the incidence matrix would be

-1 1 00
-1 0 10
H = (2.17)
-1 0 01
0 -1 10
T
Note that H1,, = [ 00 ---0 ] . That is, 1,, € null{H} for any graph [6].
(a) A 4 noded undirected graph. (b) A 4 noded directed graph.

Figure 2.3: The same graph (left) undirected and (right) directed.

2.3 Rigidity Theory

In this section we cover some topics of rigidity theory, which is a tool that we can use
to characterize frameworks. Rigidity plays a major role in this research because it will
help us find a shortcut to the forces we need to compute in order to move an object in

a distributed manner.

12



A framework [10] F = (G, P) is the pairing of a graph G and an embedding P onto
a metric space (for instance R?). This means simply assigning a position in the plane
to each of the nodes in the graph. Thus, P(v;) = p; is the position of node i under the
embedding P,
P:y—R?
T (2.18)
Vi > P = |:pj;c p?} .

Giving positions to the nodes of a graph is useful for comparing frameworks. In the

example of Figure 2.4, the embedding takes the nodes to the positions:

e B B [ 4 .
I e R R PR E (2.19)

T T
p:[p{pg’pgfpﬂ:[24556242}. (2.20)

or simply

S N W e ot O

Figure 2.4: A framework where the position vectors are marked in black and the
underlying graph with grey.

Next we mark the relative position of node i from node j (whom edge k connects)

as
pi — pj = dy, (2.21)

such that the length of that edge is

Ipi; || = llpi — psll = lldll - (2.22)

13



In the example of Figure 2.4,

m=m=[31r @ZMF[l—ﬂf

T (2.23)
ds=pa=| -1 —3| di=psu=[2 0]
Note that we arbitrarily write
i (2.24)
Pji > 9.

Referring to the lengths of edges gives us the ability to compare frameworks. This leads

to the following notions of equivalence and congruence of frameworks.

Definition 2.3.1 (Equivalent frameworks). Two frameworks F; = (G, P) and F» (G, Q)

are equivalent if
Ipisll = llass 1 ¥ (i, ) € €. (2.25)

Definition 2.3.2 (Congruent frameworks). Two frameworks F; = (G, P) and F2 (G, Q)
are congruent if
Ipii |l = llaijll i, 5 € V. (2.26)

In other words, two frameworks are equivalent if every edge has the same length in
the two frameworks, and two frameworks are congruent if the distance between any
two nodes (whether there is and edge connecting them or not) is the same in the two

frameworks.

c : d
Figure 2.5: An example of 4 frameworks, where 2 of them are congruent, and 2 of them

are just equivalent.

Figure 2.5 exhibits the difference between equivalency and congruency. Frameworks

a and b are equivalent because the lengths of their edges are the same, however they

14



are not congruent because the distance between nodes 1 and 3 is not the same. On the
other hand, frameworks ¢ and d are congruent because the distance between any two

nodes is equal.

Another notion that should be discussed, is the possibility of having the nodes of the
framework move over time, and even follow a predetermined path. We can imagine that
some paths will preserve the framework’s shape, and some won’t. In this research we
explore the motion of an object having multiple forces applied to it, therefore it is key
to understand what happens to a framework when velocities are assigned to the nodes.
To that end, instead of looking at two frameworks at the same time, we could compare
the same framework at two different times. This idea will enable us to characterize a

framework in motion.

A framework is equivalent over time if
LY OIF =0 k=1,2,- e (2.27)

In other words, a framework is equivalent over time if the length of the edges remains
unchanged as the framework moves along its predetermined trajectory. Now, if the
distance between any two nodes (whether there is an edge connecting them or not) in
the framework is constant over time, we say that the framework is congruent over time.

Formally, a framework is equivalent over time if

lpis GOl = llpi ()1 (3,5) € € Vi, to - (2.28)

where t; and ty are any (and every) two times at which the edges lengths are measured.

Similarly, a framework is congruent over time if

lpi (E)I| = llpij )|l 4,5 €V Vi, bz - (2.29)

Note that (2.27) has to be satisfied for all the edges in the graph. Take for instance the

example of Figure 2.4:

d d .
%sz‘jH? =% (piipis) = 203D (2.30)

di = p1a = piapi2 =0
dz = pag = paapz =0

- (2.31)
d3 = pas = poyP2s =0

dy = p3s = paypas = 0.

These 4 equations can be written in matrix form, as they describe a system of linear

15



equations,

p{2 *p{g 00 00 D1
00 ply —ply 00 P

. (2.32)
00 p3 00 —p3, b3

00 00 pi, —pi, Pa

|
o o o o

The matrix in (2.32) is called the rigidity matriz of the framework, denoted R(p), and
the vector it’s multiplying is called an infinitesimal motion. In general, (2.27) leads to e

equations that have to be satisfied, which in turn lead to the matrix form:
R(p)u = Ocx1, (2.33)

where R(p) € R®*?" and u € R?" is the infinitesimal motion (a set of velocities that
when applied to the nodes, equivalency is preserved). Observe that for any framework,
the rigid body translations and rotations will always be infinitesimal motions - these

are referred to as the trivial motions of the framework, and can be expressed as

T
u1=1n®[1 0]
u2:1n®[0 1 ]T (2.34)

US(p) = (In & T) b,

T
where p is the concatenation of the position vectors p = [ p{ e pg } and T is the

rotation matrix defined in (2.2).

This intuitive definition of the rigidity matrix is useful because it gives us an insight
on what it represents; however to formally define it we’re going to make use of the edge
function of the framework

fo (p) : R?" — Re. (2.35)

This function receives the concatenation of all the positions of the nodes in the framework,

and returns a concatenation of (half) the lengths of the edges (squared):

1 T
fo @)= 5| larl* - ) |- (2:36)
In the example of Figure 2.4,
1 T
fo) =510 10 10 2] (2.37)

With the edge function in hand, the rigidity matrix is simply the Jacobian of the edge

function,

R(p) = afg;p). (2.38)

We can see through this definition that the rigidity matrix is the first term in the Taylor

16



series of the edge function. Therefore motions in the null space of R(p) (or infinitesimal
motions) maintain the lengths of the edges to first order. This rigidity matrix will be of
help when trying to find just “how rigid” a framework is, but in order to do that, we

first provide some additional formal definitions of rigidity.

Definition 2.3.3 (Rigid frameworks). A framework Fi (G, P1) is rigid if there exists
an € > 0 such that every framework F, (G, P») that is equivalent to Fi (G, P;) and
satisfies ||p1(v) — p2(v)|| < € Yv € V, is congruent to Fi (G, P1).

Definition 2.3.4 (Globally rigid frameworks). A framework is globally rigid if every

other framework that is equivalent to it, is also congruent.

This definition is fairly straightforward, we say that a framework is globally rigid when
equivalency and congruency lead to the same mathematical condition. Finally, we can
discuss the type of rigidity that is most relevant to this work, that is, infinitesimal
rigidity. Recall the intuitive definition of the rigidity matrix, explained through the
steps of (2.27) - (2.32); we introduced the rigidity matrix and the infinitesimal motions.

Definition 2.3.5 (Infinitesimally rigid frameworks). A framework is infinitesimally rigid

if the only infinitesimal motions that it has are rotations and translations.

The connection between the infinitesimal motions and the rigidity matrix can be seen

in the following lemma

Lemma 2.3.6 ( [14]). A framework in R? is infinitesimally rigid if and only if
rank{R(p)} = 2n — 3.

In the case of Lemma 2.3.6 we can see that to span the null space of R(p) we’ll need
3 vectors. These 3 vectors are the translations and rotations mentioned above. Take

T
for instance wuq: it is composed of n times the vector [ 10 } , and the framework

has also n nodes; so if we look at each vector [ 10 }T as a velocity to be applied at
the nodes we would indeed end up translating the framework in the z direction. In the
same manner us would cause a translation in the ¢ direction, and ug(p) would cause a
rotation around the centroid of the formation.

An interesting interpretation of these null space vectors is described in [16]. There,
instead of computing the null space of R(p), the authors compute the eigenvectors
of the matrix R(p)” R(p), termed the symmetric rigidity matriz. This matrix has 2n

eigenvalues and corresponding eigenvectors, ordered as follows:
0=XA=X=A3< - < Aoy (2.39)

The matrix R(p)T R(p) is symmetric and positive semi-definite, therefore its eigenvalues

are real and non-negative. In addition, if the framework is infinitesimally rigid, and in

17



R?, R(p)”T R(p) will have exactly 3 zero eigenvalues. Thus, for an infinitesimally rigid
framework in the plane, it follows that Ay = Aa = A3 =0and A\; >0 fori=4,...,2n.

This means that the eigenvectors corresponding to the first 3 eigenvalues span the
null space of the matrix, and are no other than u;,us,uz(p) depicted in (2.34) (the
rigidity matrix and its symmetric counterpart share the same null space). In other
words the first 3 eigenvectors cause trivial motions on the framework. This poses the
following question: what do the rest of the eigenvectors cause? To answer this question

let us take a closer look at the eigenvectors of R(p)T R(p),

R(p)"R(p)u’ = M. (2.40)
Here, u’ is the eigenvector and ), is the eigenvalue; £ =1,2,--- ,2n. Now let us define
R(p)u’ =uw' e R® (2.41)
' T
w = | wi o owh o wt ] ) (2.42)

such that wﬁ = wfj since edge k connects nodes i and j, and

R(p)Tw® = Apu’. (2.43)
Now (2.40) can be rewritten as
Z ’wfjpij = )\Zuf (2.44)
JEN;

Note that A; marks the neighborhood of node i. Also, the eigenvector u’ has 2n entries,

or n pairs of entries,

’ T

Ut = [u{ uf ufl } (2.45)
‘ T

uf = [ up, ul, } : (2.46)

This representation is useful because it will help answer the question of what will the
rest of the eigenvectors (not ui, uz and us(p)) cause on the framework when applied
as forces on the vertices. We can view wfj as the magnitude of the force (per unit
length) exerted on the edge connecting nodes i and j, through the nodes ¢ and j. When
wfj > 0 the force is called a tension, and when wfj < 0 the force is called a compression.
This visualization of forces on edges leads us to finding the forces that, along with the

tensions and compressions, reach an equilibrium:

Ji+ Z wfjpz‘j = [ 00 }T. (2.47)

JEN;

18



If there exist scalars wfj satisfying equation 2.47, we say that f; is a resolvable force.
But since ) wfjpij = \juf , we can rewrite (2.47):
JEN;
fi = =i, (2.48)
which leads to Theorem 2.1, by [16]:

Theorem 2.1 ( [16]). Let F be an infinitesimally rigid framework in R?. Every vector
fi= —)\iuf for any it = 4,5,--- ,2n s a resolvable force, where u;, i = 1,2,3 are the

etgenvectors of the symmetric rigidity matrix corresponding to the zero eigenvalue.

The vectors that span the null space of R(p) cause pure motions to the framework
when applied as velocities. In this work we show the effect of the null space and image of
R(p) when applied as forces to a rigid body attached to a formation of robots, including
the case where the COM of the system (robots plus object) does not coincide with the

centroid of the framework.
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Chapter 3

Dynamics of Cooperative Object

Manipulation

The first step towards moving an object cooperatively, should be to define how it will be
done in terms of the setup. In this work we consider the manipulation of a square table
placed on top of a group of mobile robots. We assume the robots are mechanically fixed
to the table such that the robots can rotate with respect to the table, but cannot shift.

In this chapter we model the dynamics of a system composed of an object along
with n robots whose total mass and moment of inertia about the COM are m and [
respectively. In this setup the robots are the intermediary of the floor and the object to
be moved, and therefore the robots are subject to friction, but not the payload. The
center of mass (COM) of the system (that is, the object and the robots together) is
marked by the vector pg with respect to a stationary FOC, as depicted in Figure 2.2.
Here, p; is the position of robot ¢ with respect to the stationary FOC, and r; is the
position of robot ¢ with respect to the COM, r; = p; — ps. The angle § marks the
orientation of the object, f; is the force applied by robot ¢ and Fj is the friction the
robot is subject to, modeled here as F; = —%pi, where p is the friction coefficient
between the robot and the floor, and ¢ is the gravitational constant. With this setup

the equations of motion are as derived in (2.13),

mps = (]12 ® Iz) f— pmg <p5 + 9Tf)

T ) | (3.1)

1= 17 (1, ) g (77 487
n
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3.1 State Space Definition

In this part we define a state space to be used, and we implement it in the equations of
motion (2.13),

x1 =10
2 =10
X (3.2)
X3 =Ps
X4 = pSa
this leads to the following state-space representation of the dynamics
X1 = X2
. 1 _ rlr
X2 =1 T (L, @ T)r — pmg <X4TT7' + m)}
" (3.3)
X3 = X4

X4 = % (1) ® I2) f — pmg (xa + x2T7)] -

The first part in the analysis of these non-linear dynamics is to check the effect of simple
forces in the symmetric case. If we were to grab a square table by the corners and pull
to the right (for instance), we would expect to see the table moving to the right. Next

we corroborate our intuition with numerical simulations.

3.2 Symmetric Analysis

In this section we assume that the robots are positioned symmetrically around the table’s
center of mass, and then apply u;, ug and us(p) as forces. A symmetric positioning
(shown in Figure 3.1) means that the sum of the positions of the robots is zero both
in the & and ¢ coordinates, with respect to the center of mass of the system. In other

words,
f:[o O}T. (3.4)

When substituting (3.4) in the dynamics, we arrive at the following simplified version,

X1 = X2
. 1 rly
X2 =7 [fT (L @T)r— umgmn]
(3.5)
X3 = X4

. 1
Xa=_ [(15 ® Iy) f — pmgxa) -
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Figure 3.1: A rigid body moved by n robots positioned at the corners.

To start, we apply u; (defined in 2.34) as a force, and examine the resulting trajectory

of the system,
T
f:lln®[1 o} . (3.6)

This force represents the case where all robots pull the table to the right, and it appears

explicitly only in the linear and angular acceleration, that is, xo and x4,

XQ:T

™7T T
(o1 0]") e me]

’I“TT

— THmaxaT (3.7)
1

Y4 = ~ [(15@)[2) (]ln® { 10 ]T> —umgx4]
= —pgxa + [ n/m 0 ]T.

Note that »Zr is constant over time:

Proposition 3.2.1. For a system composed of n robots rigidly attached to an object,

the size rI'r is constant over time. In other words:
d (TT’I”)
=0. 3.8
o (3-8)
Proof.

n

T 2
ror = 7|7, 3.9
El 7] (3.9)

=1 const

because even though r; changes over time, its size does not (the robots are modeled as
“bolted” to the object and therefore their distance to the object’s COM is constant).[]
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Hence these now decoupled equations turn into a linear system that can be solved

explicitly,

xa(t) = ¢ 9Ty (0)
(3.10)
X4(t) - [ 1y ] (1 _efugt) —|—X4(O)e*“~‘”

The meaning of (3.10), is that even if the system starts with some angular velocity
x2 (0), that velocity will decay and only a constant linear velocity will remain. This
corroborates our intuition, and furthermore, it can be seen in the following simulation,
whose parameters are as follows: the mass of the system is m = 32.7 [kg], the friction
coefficient is g = 0.25, the system’s moment of inertia is I = 52.0447 [k:ng], the number
of robots is n = 4, the gravitational constant is g = 9.81 [;”—2], the force applied by each

T
robot is f; = [ 5 0 } [N], the initial position of the robots is at the corners of the
T
table, the initial position of the COM is at the origin - x3(0) = [ 00 } [m], the
T
initial linear velocity of the COM is x4 (0) = [ 00 } [], the initial angular velocity

is x2(0) = 0.5 [@], and the initial orientation is x1 (0) = 30 [deg].

S

Trajectories in the 2D plane.

-1 s |
E Iy
= R

=2 s [
s v e C'O M
wnnnmi (0 F
-3 oo, Beginning
oot End

Table

Figure 3.2: The planar motion caused by pulling to the right from the corners of the
table. CoM marks the center of mass of the system, which in this symmetric case
coincides with the centroid of the formation CoF'.
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0 over time

Velocity of the CoM over time
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w over time
2
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(a) The orientation and angular velocity

of the table over time.

Figure 3.3: After applying the force uq, the
spite of the inital rotational velocity.

t [s]

(b) The linear velocity of the table over time.

table develops a steady state translation in

Figure 3.2 shows the resulting trajectory of the table and robots, and it can be seen

that the angular motion decays as expected. This can also be seen in the Figure 3.3a.

Naturally the analysis of the force f = 1,,® {

T
01 ] is similar to the one just presented,

and therefore will be omitted. However the effect of the rotating force f = (I, ® T') p is

not as straightforward.

The equations of motion for this case are

X2 =

T

e

r ©wmg
)
n

TTT
{itn e " (o) r - pmgna” )

T (3.11)
. 1
Xa=—{(1y ® b) [(In ® T) p] — pimgxa}
1
= — {nT'x3 — pmgx4}
m
So we can rewrite our system as
[0 1 00 00 | 0 ]
T T
0 —smarlt 5 o 0 0 o
. 0 0 00 10 0
X = X+ (3.12)
0 0 0 0 01 0
0 0 n 0
2T —pugl
0 0 m Kgi2 0
L - J L J
A B

From (3.12) we can see that the dynamics can be decoupled. The angular part of the
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dynamics can be rewritten as two scalar equations and be solved immediately:

nl n _umgrTr, nt

Xlt:[xg()—]<1—€ T >++><10 3.13
)= e O = sta) (313)

n _ngrT”'t n
Xa(t) = [m 0) - ] el T ——. 3.14
(0= 0) - o (3.14)

The linear part can be rewritten as:

X 0 I

>.<3 _ n2 2 X3 7 (3.15)
X4 I —pgls X4
A

where 02 is a 2 X 2 zeros matrix. The solution to this system is then:

[ X3 (t) ] _ A [ x3 (0) ] , (3.16)
xa () x4 (0)

The solution presented in (3.16) shows that the initial conditions play an important role
in this case, since the matrix A has eigenvalues in the open right half plane (this can be

seen from the Routh-Hurwiz criterion, since the coefficient of A! is zero):

det [\, —A] =0« (3.17)

M 20903 + 126202 + (n/m)* = 0. (3.18)

In other words for any non-zero initial conditions the linear part of the system (3.16) will
grow unbounded, and this is also shown in simulation. Figure 3.4 shows the trajectory

of the system from zero initial conditions (applying the force us(p), where all the states

start from zero) :
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T'rajectories in the 2D plane.

a——_ "
0.6 e
0.4 — Ry
e C'OM
0.2 IIIIIICOF
— a3 Beginning
£ 9 ey End
= Table
-0.2
-0.4
-0.6
-0.5 0 0.5 1

Figure 3.4: The planar motion caused by applying the force f = (I,, ® T') p on the rigid
body. In this symmetric case the result is a pure rotation about the centroid of the
formation, and the center of mass of the system, which coincide.

Velocity of the CoM over time

2 0 over time
— — 50 —
Elw > _—
= 0 i /
o~ B /
2 0
0 5 10 15 20 25 0 5 10 15 20 25
2 w over time
Sl 0 -§ - 2 /
= L
~ 3 1
2 0
0 5 10 15 20 25 0 5 10 15 20 25
t[s] t[s]
(a) The linear velocity of the CoM (b) The angular velocity and orientation of the
remains zero as expected. table.

Figure 3.5: The linear and angular velocities of the table, from zero initial conditions.

From looking at these results it seems that the rotating force causes a pure rotation
about the COM, however the moment we change the initial conditions the motion is
not a pure rotation anymore. It is instead, a rotation and a translation. The following

graphs show the result of the same simulation, with the only difference being in the

T
initial linear velocity, randomly chosen to be: x4 (0) = [ T 4e ]
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Trajectories in the 2D plane.

— Rl
2 Ry
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— R4
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Figure 3.6: The planar motion caused by applying the force us(p) on the table. Starting
with an initial shift, the system does not rotate as intended.

These results show clearly that even though the first two trivial motions cause pure
translations, the last trivial motion us(p) caused a pure rotation only from zero initial
conditions. The motivation of this work, is to compute forces that create pure motions

when applied on an object, and this analysis shows us that to do so we need to come up

with a more reliable input.

Velocity of the CoM over time 0 over time
3 400
5| =2 = —]
o =200 /
S ES
0 0
0 50 100 150 0 50 100 150
2 w over time
g 1 ~§; “ 2
3
0 0
0 50 100 150 0 50 100 150
t [s] ¢ [s]
(a) The linear velocity of the CoM (b) The angular velocity and orientation of the
oscillates. table.

Figure 3.7: The linear and angular velocities of the table, with a linear velocity as initial

conditions.
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3.3 Asymmetric Analysis

In this section we no longer assume that the robots are positioned symmetrically around
the table’s center of mass. That is, they are randomly positioned around the table. We
then apply wui, ug and ug(p) as forces. The dynamics in the general positioning case are
depicted in (3.3) and are too complex to solve. For this reason, to see the effect of the
discussed forces on the system, a simulation was run and the results are presented in
chapter 5.

For the case where f = u; or f = us, we can see in Figures 5.1 and 5.3 that when
starting from rest, the forces u; and uo create translations in & and ¢, respectively. In
addition, we may see in Figures 5.2b and 5.4b that the translations are pure only after
the transient dies out.

For the case where f = u3(p), we can see in section 5.2 that for all the initial conditions
that were tried, the force creates a combination of translations and rotations. Meaning

that the force does not create a pure rotation.
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Chapter 4

Desired Motion

In this work we are interested in computing the forces required to enable an object to
follow a desired path. Since we’re dealing with a general case where the path is unknown,
we should be able to produce all basic motions - that is, rotations and translations.
In order to do that, we look at the steady state of the dynamics of the system, and
translate the words “rotations and translations at a constant velocity” into mathematical
conditions that these dynamics should satisfy. For instance, a steady state translation
is a type of motion characterized by no accelerations (that’s the steady state part), and
a constant linear velocity in the desired direction (Z or ¢). Similarly, a steady state
rotation is a type of motion characterized by no accelerations and a constant angular
velocity.

Going back to enabling an object to go from a to b, we shouldn’t forget about a very
important part - which is to stop after we reach b. In other words, another force that
should be found within this context, is a force that causes no motion. This force can be
seen as an equilibrium force, since the motion that it produces is characterized by no

accelerations nor velocities.

As mentioned above, a steady state trajectory is characterized by no acceleration,
that is:



when substituting this into the dynamics of the system (3.3), we arrive at:

v 1 T Tr— ’I“T’I"
)(2:0:i P, ®@T)r —umg X4TT‘+XQT (4.3)
T ss\T rn= S8 TTT
= [T L@ T)r = pmg | (XF) 17 + x5 (4.4)
. 1 B
Xa=0=—[(1; ®h) f = umg (x4 + x2T7)] (4.5)
= (17 ® L) f = pmg (x§* + x3°T7), (4.6)

where 7 is defined in (2.1). Alternatively we can rewrite these equations in matrix form:

T I T _ (~,88 TTf_ ss&
P ET) g | )T (4.7)
(17 ® I) Xi* + x5 TT

M B

The matrix M € R3*?" is the motion matrix of the system, and the vector B
dictates the ss motion that the force f will create. Note that the matrix M is always
of full rank, since this is a representation of a physical system, and two robots cannot

occupy the same spot.

Proposition 4.0.1. The motion matriz M is of full rank, i.e., rank{M} = 3.

Proof. If rank{M } # 3 then it is either 2 or 1. The proof that rank{ M} # 1 is trivial
and therefore omitted. Assume by contradiction that rank{M} = 2. Without loss of
generality, the first row of M can be written as a linear combination of the last 2 rows,

i.e., there exists some constants ¢; and ¢y such that

(1 e e|M=0 - o]
T
This implies that r; = [—cl —02} for ¢ = 1,...,n which is not a valid positioning
(two robots cannot occupy the same spot), leading to a contradiction. ]

In this chapter we discuss the steady state (ss) trajectories we’d like the body to
follow, and find the forces to be applied in order for that to happen. In general, any
in-plane motion can be described as a sum of translations and rotations; therefore, if
the aim is to be able to move an object from a to b, we should be able to produce these

basic motions.
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4.1 Equilibrium

In this section we look for the forces that will bring the system to a steady state

equilibrium, that is - no motion whatsoever,

x1 =0

X2 =0

X3=[0 O}T (4.8)
' T

X4={0 O} .

When substituting this constraints and solving for f:

0
[0 o

In other words, we need to find the null space of M. Since the matrix is of rank 3, and

T (I, ®T)
(17 ® Iz)

has 2n columns, we’ll need 2n — 3 null space vectors, marked as fM', where

f/\/z:{f{\@ f]ﬁ\fz fé\/nw}T (4.10)

In this representation, entry number k& in the null space vector is defined as

e If4is odd
( —% k=1
-1 k=2
K= 8 k=3
1 k=143 (4.11)
0  otherwise

. 1+3
7=
o If 7 is even

R .
T3
T k=3

fir=q T N7
1 k=i1+3 (4.12)
0 otherwise

. i+4

7=

Proposition 4.1.1. In the general case, where the positioning of the robots is not

necessarily symmetric about the center of mass, an equilibrium can be achieved in steady
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state, by applying the forces described in (4.10) through the robots, regardless of the

initial conditions.

Proof. To prove this claim, we need to substitute the proposed forces into the steady
state dynamics and show that the resulting vector corresponds to the desired motion,
depicted in (4.8).

Let us start with the case where i is odd. In detail, the motion matrix is:

Tf —r{ rg —ry .- ry —ry
M=|1 0 1 o - 1 0 . (4.13)
0 1 0 1 -0
The nullspace vector fVi, in this case is:
© « T
: L T i B
A B AN (4.14)

note that there’s a 1 somewhere in * (precisely in entry number i 4+ 3), and all the rest

of the entries are zeros. To prove that fVi is in the null space of M, we need to show

T
thathNi:[O 0 O} , and indeed

4 Yy =] y
J T J T
—g ]+t gy =
AR A

; J
M N = e : (4.15)
721 721
—1+4+1
In the case where 7 is even, the nullspace vector fM is:
r Y T
: _j2 gy
f'/\/;‘ = 7.?2/1 0 TIQJI \ , (4.16)

*

Again, there’s a 1 in *, precisely in entry i + 3 (note that now i is even, so i + 3 is odd).

Also in this case:

yf2 Yy i1,..Y )
—= _ I 4
r L r rj

M N = e Ty (4.17)
T21 T21
0

T
Since in both the odd and even cases MfNi = [ 0 0O } , the proposed forces fNi

cause indeed a steady state equilibrium. O
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4.2 Pure ss Rotation

In terms of the dynamics of the system, a pure ss rotation is defined by a constant

angular velocity, and no linear motion at all. That is,

X1 = const = x5°

x2 =0
s = [ 0 0 }T (4.18)
X4 = [0 O}T.

The conditions of (4.18) pose a constraint on the dynamics, which can be used to find
the force that will produce the desired motion. In order to do that, we need to substitute
(4.18) in (4.7) and solve for f.

_rTr
n

rT(I,T
[ ( ) f = umgxs’ " (4.19)
Tr

(1] © 1)

Since M is of full row rank and for n > 2 we have 2n > 3, it follows that null{M} # 0,
that is, it has a non-trivial nullspace. Therefore, the set of vectors solving M f =
B includes some particular solution plus any vector in the null-space of M. The
homogeneous solution is the set of all the vectors fM found in the null space of M. The

particular solution is simply:

z mg Ss
f= =00 Lo T, (4.20)

Proposition 4.2.1. In the general case, where the positioning of the robots is not
necessarily symmetric about the center of mass, a pure rotation can be achieved in steady
state, by applying the force described in (4.20) through the robots, regardless of the initial

conditions.

Proof. To prove this claim, we need to substitute the proposed force into the steady
state dynamics and show that the resulting vector corresponds to the desired motion,
depicted in (4.18).

T (I, ®T)

pimg
Mf:, = —x ([, T)r 4.21
frot [ (1£®12) n X2 ( n ) ( )
r’r
= pmgxs | |- (4.22)
Tr
rir
Since M f7,; = pmgxs’ ,1:1 , the proposed force causes indeed a steady state rota-
T
tion. ]
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4.3 Pure ss Translation

Similarly to the ss rotation, we need to define what a steady-state translation means in
terms of the dynamics of the system, and then impose those constraints on the equations

containing f. A ss translation means no angular movement, with a constant linear

velocity,
x1=0
X2 =10
X3 = const = xj° (4.23)
) T
X4 = { 0 O } .
This, in turn, leads to the following:
T (I, ®T) —() ' TE
[ ]lTTE@ I f=pmg 438 . (4.24)
n 2 4
The particular solution in this case is:
_ e _ MMy P 4
f_ftran_ n 10 X4 ]ln® 10
(4.25)

= = ([0 1 ) (o [0 1 ).

where f{.. and f{... correspond to translations in the & and § direction respectively.

Proposition 4.3.1. In the general case, where the positioning of the robots is not
necessarily symmetric about the center of mass, a pure translation in the T or  direction
can be achieved in steady state, by applying the force described in (4.25) through the

robots, regardless of the initial conditions.

Proof. To prove this claim, we need to substitute the proposed forces into the steady
state dynamics and show that the resulting vector corresponds to the desired motion,
depicted in (4.25).

MfE, = [ T;ggg) % ([ 10 }xff) (1n ® [ 10 }T) (4.26)
— wmg [ _(XE;TTF (4.27)
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A4ﬁ5m1=:[7fggéfi£) R (Lo 1) <L1® o 1]T> (4.28)
= ymg [ ~bdIT (1.29)
4

where 5° is the desired steady state linear velocity. The forces fZ . and f. . indeed

produce the expected outcome, concluding this proof. ]

4.4 Connection to Rigidity Theory

One of the main goals of this work, is to establish a connection between rigidity theory,
and the forces needed to move an object utilizing cooperating robots. The idea is to find
a simple way to compute the desired forces (instead of going through the dynamics of
the system), and in this section we demonstrate that this simpler way can be achieved
by utilizing tools from rigidity theory.

After analyzing the motion matrix of the system, we found the forces required in order
to create ss translations and rotations, and also the forces for equilibrium. Next we

show that the translation and rotation forces are in the null space of the rigidity matrix
R(p):

Proposition 4.4.1. The forces f& .., [toans [Zor are in the null-space of R(p).

Before we prove this proposition, we need the following useful result relating the rigidity
matrix R(p) to R(r).

Proposition 4.4.2. The rigidity matriz R(p) can be expressed in terms of the relative

position vectors r. That is,

R(p) = R(r) (4.30)
Proof. The relative position of robot i with respect to robot j is described as:

Pij = Pi — Py (4.31)

in addition, the position of robot i can be expressed in terms of the COM:

P = Ds + 1. (4.32)
As a result:
Dij = Pi — Dy
=ps+Ti—Ps—7Tj
s (4.33)
=T —Tj
= ’]"Z-j
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In short p;; = 7. Note that R(p) is composed of relative positions, that is, p;;. Also the
positions of the robots can be described by the position of the center of mass p; = ps+7;.

Consequently we can also write the rigidity matrix in terms of the position vector r.[J

With this result in hand, we can continue to prove Proposition 4.4.1:

Proof. The translation forces can be rearranged as follows:

o= ([ 10 ]s) (105 [ 1 0] = (1 0w
o= ([0 1)) (o [0 1)) =22 ([0 4 ]xp)

n

(4.34)

where u; and wug are the trivial motions described in (2.34). Clearly f}.,,, is proportional
to uy and f.,, is proportional to ug, thus fZ,, and f. . are in the null space of R(p).
Regarding f7,,, we need some more steps. Recall the intuitive definition of the rigidity
matrix and the example of (2.32). Next, let’s have a detailed look at the rows of the
rigidity matrix. The matrix has one row for each edge in the graph, and a pair of
columns for each node. So we can associate the entries of the matrix to a certain edge
and node. For instance, a row that corresponds to an edge that connects nodes ¢ and j
will look like this:

R =| - o - =, ] (4.35)

note that piTj is in columns 2¢ — 1 and 2i, and —piTj = p]Ti is in columns 25 — 1 and 27,
other than these entries the row is filled with zeroes. This property helps us see that
Rij(p)ur = Rij(p)uz = 0, and if we rewrite the rigidity matrix in terms of the relative

positions, then also R;;(r)us(r) = 0. O

The meaning of all this, is that we can span both the null space of the rigidity matrix,

and the image of the transposed motion matrix with the same 3 vectors. Namely:

Lemma 4.4.3. Given an infinitesimally rigid framework in R?, and a system with
the dynamics described in (3.3), such that the motion matrix of the system is M as
introduced in (4.7); the null space of the rigidity matriz is the image of the transposed

motion matriz of the system:
Null{R(r)} = Im{M"}, (4.36)

furthermore:
Null{M} = Im{R"(r)}. (4.37)

Proof. Within this context, the null space of the rigidity matrix can be spanned by the

following vectors:

Null{R(r)} = span {uy,u2,us(r)}, (4.38)
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where

T
w=1,@[1 0] (4.39)

T
u2:lln®[0 1} (4.40)
us(r) = (I, @T)r. (4.41)

Note that these 3 vectors produce all possible trivial motions when applied as forces
to the system. That is, any motion can be produced by applying a linear combination
of u1, uy and wg(r). Mathematically speaking, for some constants cj,co,c3 € R:

f = cru1 + cous + c3uz(p), the product M f can be any B € R3. In other words:
Im{M7T} = span {uy,ug, us(r)} = Null{R(r)}, (4.42)
and by the fundamental theorem of linear algebra:
Null {M} =Im {R"(r)}. (4.43)
This concludes our proof. ]

This result is very interesting because it shows a connection between rigidity theory
and the dynamics of an object to be moved by a group of cooperating robots. It shows
us, in particular, that when looking for the forces required to create basic motions (i.e.
translations and rotations), there is no need to compute the dynamics of the system.
Instead, we may compute the rigidity matrix of the corresponding underlying graph,
and find the needed forces from its null space.

In detail, for a group of robots that are tasked with moving an object in a cooperative
manner, the forces required to create the basic motions are the null space vectors of

T
the corresponding rigidity matrix. That is, the translation force is u; = 1 ® [ 10 }
T
(in other words each robots applies the force f; = [ 10 } ) if movement in the z
T
direction is required, us = 1 ® [ 0 1 } (in other words each robots applies the force

T
fi = [ 0 1 } ) if movement in the g direction is required, and the rotation force is

us(r) = (I, ® T) r (in other words each robot applies the force f; = T'r;).
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Chapter 5
Simulation Results

In this chapter we analyze the results of a Matlab simulation, where the system presented
in (3.3) is subject to the various forces of interest. The parameters of the simulation
are the following: The mass of the system is m = 32.7 [kg]. The Z moment of inertia of
the system about the center of mass is I = 52.0447 [k:g . mQ]. The friction coefficient
between the robots and the floor is = 0.25. The gravitational constant is g = 9.81 [S%]

The number of robots is n = 4, and the initial (asymmetric) position of the robots is

T
p(0) =] -0.0303 0.3459 0.1697 0.3459 - 0.2303 0.1459 - 0.2303 —0.6541} .

In this simulation the required forces that the robots have to apply are computed via the
null space of the rigidity matrix of the framework, and these forces are then substituted

as an input in the dynamics of the system (3.3).

5.1 Translation Forces

Here, the forces applied to the system correspond to the vectors u; and uso, from two
initial conditions: rest and motion, in the general case where the positioning of the
robots is not symmetric. The variables of the simulation are as follows: The applied

T
forceis f =1, ® { 10 } , and the initial conditions are

x1(0) =0

x2(0) =0

wO=[0 0] (51)
T

X4(0):[0 o} .



Trajectories in the 2D plane.
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Figure 5.1: The planar motion caused by applying the force u; on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide

with the centroid of the formation CoF'.
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(a) The linear velocity of the CoM reaches (b) The angular velocity and orientation of the

a steady state in the & direction. table.

Figure 5.2: Trajectories created by the force u; on the table, the initial conditions are

zZero.

Figures 5.1, 5.2a and 5.2b show that after the transient dies out, the steady state

velocity is in the & direction.
T
And when the forceis f =1, ® [ 0 1 ] as expected the results are not that different:
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Trajectories in the 2D plane.
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Figure 5.3: The planar motion caused by applying the force uo on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide

with the centroid of the formation CoF'.
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Figure 5.4: Trajectories created by the force ug on the table, the initial conditions are

Z€ero.

These results are similar to the ones just presented, which makes sense, since the
only difference was the direction of the desired translation.

Now we change the initial conditions, and repeat the process. That is, apply the force
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u1 and then wuo, with the following initial conditions:

x(©0)=[0 30 00 OO}T (5.2)

Trajectories in the 2D plane.
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Figure 5.5: The planar motion caused by applying the force u; on the table. This
simulation began with the table spinning.
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direction, despite the initial spin.
Figure 5.6: Trajectories created by the force u; on the table, with an initial spin of

30 [deg/s] as initial conditions.
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Trajectories in the 2D plane.
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Figure 5.7: The planar motion caused by applying the force uo on the table. CoM

marks the center of mass of the system, which in this asymmetric case does not coincide
with the centroid of the formation CoF'.
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Figure 5.8: The linear velocity of the center of mass reaches a steady state in the g
direction.

Figures 5.5, 5.6a and 5.6b show that an initial rotation does not stop the system
from reaching a steady state translation. This can also be seen in the case of Figures

5.7, 5.8a and 5.8b, which present motion in the ¢ direction.
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Now, if instead of an initial rotation we apply an initial linear velocity:

X(o):[o 0 00 vrve ]| (5.3)

Trajectories in the 2D plane.
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Figure 5.9: The planar motion caused by applying the force u; on the table. This
simulation began with the table shifting.
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Figure 5.10: An initial shift does not prevent the angular velocity from decaying, allowing
the system to reach a steady state with a linear velocity.
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Trajectories in the 2D plane.
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Figure 5.11: The planar motion caused

by applying the force ug on the table. CoM

marks the center of mass of the system, which in this asymmetric case does not coincide

with the centroid of the formation CoF'.
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Figure 5.12: Here the initial conditions are initial velocity, and the outcome is a steady

state translation with no rotation.

Figures 5.9, 5.10a and 5.10b show that an initial shift does not stop the system from

reaching a steady state translation, as can also be seen in Figures 5.11, 5.12a and 5.12b.
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5.2 Rotation Forces

In this section we repeat the sequence of simulations, with the only difference being the

applied force. The initial conditions are the same as in (5.1), and the applied force is

f=us(p) =1, @T)p.

Trajectories in the 2D plane.
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Figure 5.13: The planar motion caused by applying the force us(p) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide

with the centroid of the formation CoF .
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Figure 5.14: The outcome of applying the force us(p) is a linear combination of rotation

and translations.
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Clearly this force does not create a pure rotation. This can be seen in Figure 5.14a,
where the linear velocity is shown to be fluctuating. We now change the initial conditions

to the ones depicted in (5.2).

Trajectories in the 2D plane.
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Figure 5.15: The planar motion caused by applying the force ug(p) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide
with the centroid of the formation CoF'.
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Figure 5.16: An initial spin does not seem to affect the uncontrollable fluctuations in
the linear velocity.

And in the case of (5.3) (linear velocity as initial conditions):
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Trajectories in the 2D plane.
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Figure 5.17: The planar motion caused by applying the force us(p) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide

with the centroid of the formation CoF'.
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does not converge.
Figure 5.18: When the system starts with a shift, the linear velocity does not converge

The result that can be seen from these figures is that the initial conditions do not

help in the general case with an asymmetric positioning.
Now we’re in a position to compare the results to the ones obtained by the force

f=wus(r)= (I, ®T)r. Initial conditions - (5.1)
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T'rajectories in the 2D plane.
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Figure 5.19: The planar motion caused by applying the force ug(r) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide
with the centroid of the formation CoF'.
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Figure 5.20: As expected, from zero initial conditions the forces us(p) and ug(r) produce
the same output.

These figures show that from zero initial conditions, the force uz(r) causes a steady
state rotation about the formation’s centroid. Next we’ll see the effect of other initial
conditions on the outcome of this force.

When starting with an initial rotation (5.2):
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Trajectories in the 2D plane.
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Figure 5.21: The planar motion caused by applying the force ug(r) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide
with the centroid of the formation CoF'.
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Figure 5.22: The initial spin does not prevent the table from reaching a steady state
rotation with no translations.

We can learn form these figures that when the system starts with an angular velocity
of 30 [deg/s] as initial conditions, a steady state rotation is achieved. When the initial

conditions are a linear velocity (5.3):
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Trajectories in the 2D plane.
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Figure 5.23: The planar motion caused by applying the force ug(r) on the table. CoM
marks the center of mass of the system, which in this asymmetric case does not coincide
with the centroid of the formation CoF'.
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Figure 5.24: Even with an initial shift as initial conditions, the table reaches a steady
state with a constant angular velocity, and no translations.

Figures 5.24a, 5.24b and 5.23 point out that even with an initial linear velocity, the
force us(r) causes a steady state rotation.
Concluding these results, we’ve seen that both in the symmetric and asymmetric cases,
the forces u; and us produce steady state translations, regardless of the initial conditions.

The force ug(p) causes a steady state rotation in the symmetric case, but only from zero
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initial conditions (this was explained analytically in (3.17), and the simulation results
shown in Figure 3.6). In the asymmetric case the force ug(p) causes a linear combination
of translations and rotations, from all kinds of initial conditions (rest, initial rotation
or linear velocity). On the other hand, the force us(r) causes a steady state rotation
regardless of the initial conditions, or robots positioning - corroborating the analytical

results presented in Chapter 4.
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Chapter 6

Summary and Future Research

6.1 Research Summary

This research started by analyzing the dynamics of an object moved in the plane by
multiple manipulators. Since a group of agents apply forces at the same time, graph
theory was utilized to describe the interaction between those agents. Rigidity theory
was connected to the forces needed to move the object through the rigidity matrix of the
corresponding framework, and it was shown that the null space of the rigidity matrix is
the range of the transposed motion matrix of the system. In other words to find the
required forces to move the object in the very basic motions (steady state translations
and rotations), we need only to compute the null space vectors of the rigidity matrix,
and not necessarily go through the dynamics of the system. Finally these forces were

tested in simulation and the results were corroborated.

6.2 Future Research

Extend to R? : Even though a lot of applications require in-plane motion, it would
be beneficial to develop the connection between the rigidity and motion matrices in the
3D case. In such a scenario the friction should be modeled differently, the object would
tilt in flight, and these are just some of the changes that should be addressed in terms
of the dynamics. In addition, for the rigidity matrix to be of full column rank (3n — 6)
the formation should not be co-planar, and this poses yet another requirement to be

met when planning the positioning of the robots around the cargo.

Moving cargo : In the existing analysis the cargo to be transported is modeled as a
non-moving object. In reality perhaps animals or liquids in tanks are moved, and could
induce disturbances that should be modeled as well. Of course this opens the door to
developing a control strategy to move payloads from a to b, which is yet another action

item to be dealt with in future research.
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