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Abstract

Abstract

In this work we tackle the problem of limited visual sensors in bearing-only
formation control. Existing control strategies in the literature are able to
stabilize formations for arbitrary number of agents but require a sensing
system that is able to track the entire surroundings. This assumption can not
be made in all real-world applications, therefor we look at the bearing-only
controller constrained by limited visual sensing. We propose a heading
controller, for the two agent case, that adjusts the direction of the visual
sensor such that its neighbor stays inside the field-of-view (FOV). The closed
loop, including the position and the heading, is then shown to reach the
desired bearing if at least one agent can sense the other initially. Analytically
this is proven for the two agent case, we provide numerical simulations
for more than two agents. This work also includes experimental results on
TurtleBotII robots, motivated by simulations on a unicycle model.

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem begrenzten Sichtfeld von Kamerasen-
soren, die dazu dienen Formationen zu stabilisieren. Basierend auf rela-
tiven Winkelinformationen zu Nachbaragenten wurde ein Regler entwickelt
der es ermöglicht steife Formationen, die als ein Set von Einheitsvektoren
beschrieben sind, zu stabilisieren. Um diesen Algorithmus auf einem System
zu implementieren, wird jedoch ein Sensor benötigt der sein komplettes
Umfeld wahrnehmen kann. Durch diese Annahme wird die Anzahl der
möglichen Systeme drastisch reduziert. Die vorliegende Arbeit befasst sich
mit dem Problem des begrenzten Sichtfelds, bei gleichbleibendem Position-
sregler. Dabei wird im ersten Schritt die Problemstellung erläutert und die
Zustandsgleichungen um einen Zustand, der die Blickrichtung repräsen-
tiert, erweitert. Für diesen Zustand wird dann ein Regler entworfen der
eine Verbindung zwischen zwei Agenten garantiert. Mithilfe dieses Reglers
und dem Positionsregler kann gezeigt werden, dass die gewünschte For-
mation, im zwei Agenten Fall, erreicht wird. Die Startbedingungen sind
dabei so zu wählen, dass ein Agenten den Andern “sehen” kann. Gestützt
wird die mathematische Analyse von numerischen Simulationen, die selbst
Formationen mit mehr als zwei Agenten stabilisieren können. Des Weit-
eren wurden Experimente an Boden Robotern durchgeführt (TurtleBotII),
die unsere Analyse weiter bestärken. Dabei ändert sich das dynamische

3



Abstract

Verhalten der Agenten von einem Integrator zu der Dynamik eines Einrads.
Die Experimente wurden im CoNeCt-Labor an der Fakultät für Luft- und
Raumfahrttechnik am Technion durchgeführt.
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1 Introduction

Multi-agent systems have gained a significant amount of research in both
control and robotics communities. The application as well as the theoretical
challenge in controlling multiple agents at the same time is an interesting,
widely open research question.

Multi-agent systems are mainly inspired by swarm animals like birds or
fishes. Swarms are moving in certain dynamic shapes, such that they can
travel over long distances and through different environments. Applications
of multi-agent systems can be found for example in underwater exploration,
surveillance, and deployment in space [6, 7]. One major advantage of multi-
agent systems is the complexity of each vehicle, where one complicated
agent can be replaced by a collection of simple agents that together are
capable of solving non-trivial tasks. In harsh environments, where humans
can not enter multiple robots would be able to handle certain tasks by com-
bining their tools. If one agent provides the tools for digging another robot
might support with cargo. Not only different tools can be combined to solve
difficult tasks, information from multiple sensors can for example provide a
greater view. Drones that fly over certain areas can combine their cameras
to track trapped persons after a natural catastrophe. Great interest in the
application of multi-agent systems is available in the filed of agriculture.
Autonomous vehicles that are able to drive over huge farms would replace
one tractor that has to be controlled by a human. The agents could be smaller
and be used more flexible but maintain the area that can be processed at the
same time.

Formation control is one of the most actively studied topics within the
field of multi-agent systems. Developing algorithms for multiple agents to
form a specific geometric pattern can be a good starting point for reaching
more complex objectives. In general the goal in formation control is to move
an arbitrary number of agents, such that they form a predefined shape.
Before stating the problem of this work, we want to point out the distinctions
that are made in formation control.
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1 Introduction

Multiple agents in an environment that should work together need to have
some kind of information about the other agents or knowledge about the
network. Since in general, we look at an arbitrary number of agents it is not
practical to share information with every agent in the network. For a great
number of agents a network that is capable to send and receive messages
to and from all of its nodes will soon be very complex. In this work we
look at a case where the agents know who its neighbors are and can sense
information about them, if they are inside the limited field-of-view (FOV).

The information we are able to obtain from our neighbors is crucial for
developing algorithms in formation control. Information can be obtained
by local sensors or provided over a communication link to other agents or
a centralized control unit. If an agent provides its state information over a
communication network, then the data represents the true values. Sensing
information, on the other hand can not guarantee to extract the right state
information, since they suffer from limitations. Common sensor information
that are used to do formation control are distances and bearings. Range
sensors are able to receive relative distance information to objects around
them. Often the distance can only be obtained in a certain area around the
sensor, once object are further away the range information is not available
anymore. Bearing information refers to unit vectors that can be obtained
by visual sensors such as cameras. Computer vision algorithms are capa-
ble to extract relative angle information to certain objects within a camera
frame, the angles are then used to extract unit vectors. Visual sensors often
are not able to track all the surroundings, but only a limited area, it can
obtain information about object that are inside the field-of-view, but once
objects are outside, no information is available. Due to the limitations of the
sensor a sensing network is not necessarily static, also the sensing link is
not guaranteed to be undirected. Here undirected refers to the case where
two agent are able to sense each other, however if we look at limited sensor
information this assumption is not guaranteed, since there are setups where
one agent can sense its neighbor but not the other way round. In this thesis
we look at controller that uses only information provided by a visual sensor
(e.g. bearings) and no communication link that provides state information
from other agents.

Another distinction we want to point out, is the calculation of the input
signal for the actuators. One way of controlling multiple agents is to setup
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Figure 1.1: Centralized controller that sends corresponding signals to each
agents (left). Decentralized controller where each agents calculates its own
input signal (right).

a centralized controller that communicates with each individual agent and
sends the corresponding control signal. In that case the agents do not require
powerful hardware to do complex calculations. Another way to do formation
control is to decentralize the calculation of the control signal, such that we
do not need a centralized, powerful controller with a communication link to
each individual. Our approach uses a decentralized controller that does not
require any communication, an illustration of the two different approaches
is shown in Figure 1.1.

The survey paper on multi-agent formation control, [14], provides a high-
level classification of different formation control strategies. They include
position-based, displacement-based, distance-based, and bearing-based ap-
proaches, each depending on the sensing mediums available to the agents.
Distance-based approaches were extensively studied in [2], [10], [13] and [20].
Bearing-based formation control has become more popular in recent years
since visual sensing can be used to extract bearing information. Compared
to range sensors, cameras are cheaper, lighter, and require less power. Esti-
mating relative position information from bearings has been studied in [21],
whereas [24] used bearing information directly to stabilize formations for
an arbitrary number of agents. In both articles, it is assumed that the vi-
sual sensors can cover the entire surroundings to extract relative angles
to its neighbors. However, this assumption is not realistic in applications
using ground robots or UAVs. Usually cameras are only able to record a
bounded area defined by its field-of-view (FOV). If neighbors stay inside
that bounded area the agent is able to sense them, once they are outside no
information can be provided. This leads to state-dependent sensing graphs
where the neighbors are not static - they depend both on the position and
orientation of the sensing agent, and the FOV constraints of the sensor. In
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1 Introduction

a case where a neighbor enters the FOV the sensing graph gains a new
edge and once an agent moves outside the FOV an edge gets lost in the
graph. This setup makes the analysis more complex. Motivated by this
real-world problem, a number of approaches have been considered in the
literature. Formation control over directed sensing graphs have been studied
in [9] for distance constrained formations, and in [17, 18, 23] for bearing
formations. Limited sensor information in a distance based setup has been
studied in [20] and [16], and required a distributed estimation of various
quantities. The limited FOV problem has been studied in other multi-agent
problems. The authors of [3] study consensus on containment with limited
FOV. In the work of [5] a limited FOV is introduced but the sensing graph
remains static and range information is needed.

In this work, we aim to directly address the formation control problem
using bearing sensors with limited FOV constraints. Our starting point is the
bearing-only formation control strategy proposed in [24], which we augment
by introducing the state-dependent FOV constrained bearing measurement.
We assume the sensor is mounted rigidly to the body frame of the robot, and
we also propose a control for the heading, corresponding to the pointing
direction of the sensor, for the robot. Our main contributions can be stated
as follows:

i) We propose a novel controller for the heading direction based only on
sensed bearing measurements. This controller guarantees that once
an agent enters the FOV of the sensor, it will remain inside for the
remainder of the trajectories.

ii) We provide a complete characterization of the different equilibrium
configurations attainable by the two agent case and show that if at
least one agent is initially sensed the desired formation is a stable
equilibrium.

We also demonstrate the results with a number of simulation examples.
While this work focuses on the two-agent case, we also provide simulation
examples for the three and four agent case indicating the promise of this
approach for larger formations. The simulations are then validated by ex-
periments on TurtleBotII robots. Here we used the idea presented in [22] to
change the dynamics from integrators to a unicycle.

This thesis is organized as follows. In the remainder of this chapter we
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1.1 Bearing-Only Formation Control

introduce the bearing-only control strategy and the agent dynamics, we will
also give a short overview of bearing rigidity theory, which is crucial for an
arbitrary number of agents. In Chapter 2 we present the problem for the two
agent case with limited FOV constraint. We then show a complete stability
proof for the two agent case; here we also propose a controller for the head-
ing direction. The analysis is supported by some numerical simulations and
also extended for a higher number of agents. Chapter 3 gives an overview
of the Cooperative Networks and Controls Lab (CoNeCt) in the Faculty of
Aerospace Engineering at the Technion. Here we explain the tools that
we used for our experiments and then provide results on TurtleBotIIrobots.
Concluding remarks are given in Chapter 4 where we summarize our results
and give an outlook on possible future research topics.

1.1 Bearing-Only Formation Control

Bearing-only formation control was first introduced in [24] where the authors
provide an almost global stability proof for an arbitrary number of agents.
In this chapter we will discuss the details about that controller, by first
introducing the required notation, then presenting the control strategy and
conclude with an overview on bearing rigidity theory.

1.1.1 Preliminaries
The objective of a bearing only formation controller can be stated as the
following problem statement:

Problem 1.1.1. Given a desired geometric pattern and an initial starting point of
the agents, we want to design a controller for every agent that uses only bearing
information and stabilizes the desired formation.

In this section we introduce the tools that we will use in the controller and
give some remarks on the notation used in this thesis.

The position of the agents with respect to a global reference frame follows as

pi(t) =
[

xi
yi

]
,

where xi and yi describe the position in the plane and the subscript indicates
the agent. In this work we focus on ground robots and therefor have pi ∈ R2.
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1 Introduction

In general the theory of bearing-only formation control in [24] also works
for higher dimensions d > 2 (here d indicates the dimension). Bearing
information is a unit vector (in world coordinates) between two agents and
can formally be stated as

gij(t) :=
pj(t)− pi(t)
‖pj(t)− pi‖(t)

=
zij(t)
dij(t)

i,j ∈ V . (1.1)

In multi-agent systems the network connection can be described as an undi-
rected graph G = (V ,E), where V and E describe the node and edge set
respectively. The number of edges follows as e = |E | and the number of
vertices in a graph as n = |V|. For an undirected graph G, a connecting edge
between two agents means that both agents can sense each other. The graph
can be described through an incidence matrix H ∈ Rexn, where the elements
[H]ij = {−1,0,1} depend on the graph. By choosing arbitrary directions of
the edges, it follows that [H]ij = 1 if vertex j is head of edge i, [H]ij = −1 if
vertex j is tail of edge i and in all other cases [H]ij = 0. We refer to [8] for
more details.

The vertices that are connected through an edge to the same vertex are
called neighbors Ni := {j ∈ V|(i,j) ∈ E}. In general the neighbors are static
and follow from the incidence matrix.

We now introduce a projection matrix that we will use in the controller
proposed in the next section,

Pgij(t) = I2 − gij(t)gij(t)T .

By multiplying a non-zero vector to Pgij the result will give an projection onto
the orthogonal vector of gij, note that I2 represents the identity matrix with
dimension 2. The projection matrix is idempotent and therefor Pgij = P2

gij

and PT
gij

= Pgij holds. Moreover Pgij is positive semi-definite and gij is in the

nullspace of Pgij (Null
(

Pgij

)
= span

{
±gij

}
). For more useful properties

we refer to [24]. The introduced notation is now used to state the position
controller.

1.1.2 Controller
The objective of the bearing-only controller is to move all agents in such
a way that a desired formation is reached using only bearing information.
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1.1 Bearing-Only Formation Control

Figure 1.2: The projection matrix Pg12 projects the desired bearing g∗12 onto
the orthogonal of g12, the control input then follows as ui = −Pg12 g∗12.

We define the desired formation as a set of bearing vectors, denoted by

g∗ =
[(

g∗i
)T · · · (g∗e )

T
]T

. The agents dynamics are modeled as single
integrators

ṗi(t) = ui(t), (1.2)

where ui(t) ∈ R2, such that we can control the velocity in x− and y−direction
directly, without any motion constraints. The objective of the bearing only
formation control can formally be stated as:

Problem 1.1.2. Given a desired formation g∗ and an initial configuration p(0) =[
pi(0)T · · · pn(0)T]T , design a control input ui, such that the desired bearing

gij(t) = g∗ij is reached, as t→ ∞ ∀(i,j) ∈ E , using only bearing information.

The controller ui, that solves the problem is stated in [24] and follows as

ui(t) = − ∑
j∈Ni

Pgij(t)g∗ij, (i,j) ∈ E , i ∈ V (1.3)

it uses only bearing information gij(t). Here the projection matrix introduced
in Section 1.1.1 is multiplied by the desired formation. The result can be
seen in Figure 1.2, where the read vector indicates the projection result.
Since the desired formation g∗12 refers to a horizontal line it makes sense to
use the negative projection result (−Pg12 g∗12) in order to reach the desired
bearing. This Illustration shows an geometric interpretation of the bearing
only controller for a two agent setup. The controller (1.3) was first introduced
in [24] and was shown to be almost globally stable for an arbitrary number of
agents (Theorem 11). There exists an initial condition from which the desired
bearing will not be reached, we call this initial condition the undesired
equilibrium point or undesired bearing. Since the nullspace of the projection

matrix contains the positive and the negative bearing (Null
(

Pgij

)
=
{
±gij

}
),
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1 Introduction

the undesired initial condition follows as gij(0) = −g∗ij, ∀(i,j) ∈ E . While the
number of agents for controller (1.3) is arbitrary, the desired formation has
to satisfy some geometric conditions, in order to be unique. If for example,
the desired formation is a square then it is not enough to have a right angle
in every corner since it does not guarantee that all the outer edges have
the same length. In order to have a unique square, described by a set of
desired bearings, a diagonal edge is needed, more details on the geometric
conditions, including examples, are given in the next section. Such unique
formation are called rigid formations.

1.2 Bearing Rigidity

The theory of bearing rigidity is extensively studied in [24], in this chapter
we give an overview of the main results and refer to the corresponding
proofs. In general bearing rigidity deals with the problem how a desired
formation can be uniquely specified up to a scaling and translation factor.
The main goal of this section is to get conditions on the desired formation
such that they can be reached by controller (1.3) proposed in Section 1.1.2.
In the sequel we call the specific desired formation, described by a set of
unit bearing vectors, framework.

Before we are able to state the conditions for a specific framework the
bearing function is defined as

FB(p) :=
[
gT

1 · · · gT
e
]T ∈ R2e, (1.4)

where 2 is the dimension of the position vector, referring to the plane. FB(p)
describes all the bearings in the framework, the bearing rigidity matrix is
then defined as the Jacobian of (1.4)

R(p) :=
∂FB(p)

∂p
∈ R2ex2n. (1.5)

An infinitesimal bearing motion of G(p) is a variation δp for which R(p)δp =
0 holds. Note that G(p) refers to a setup of the graph given by the position
p. In contrast to distance based frameworks, bearing preserving motions
are translations and scalings of the entire framework, which in the sequel
are called trivial motions. Figure 1.3 shows examples where motions are
not trivial, in Figure 1.3a a line with three agents is shown, the agent in
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1.2 Bearing Rigidity

(a) Line with three
agents.

(b) Square with
four edges.

Figure 1.3: The red arrow shows non trivial motions that preserve the bearing
but not the formation, frameworks like that are not infinitesimally bearing
rigid.

the the middle can move freely on a horizontal line without changing the
relative bearing to its left neighbor. The square illustrated in Figure 1.3b
shows that if both agents on the right move at the same time on a horizontal
line the bearing is preserved but the shape of the formation is not. Following
Definition 5 in [24] a framework is called infinitesimally bearing rigid if all
infinitesimally bearing motions are trivial. The conditions therefor are stated
in Theorem 5 and follow as

Rank (R(p)) = 2n− 2− 1

Null (R(p)) = span {1⊗ I2,p} = textspan {1⊗ I2,p− 1⊗ p̄} ,

where p̄ refers to the position of the centroid. The all ones vector is indi-
cated by 1 and ⊗ refers to the Kronecker product. Frameworks that are
infinitesimally bearing rigid do have a unique shape (Theorem 6 in [24]) and
are invariant to space dimensions (Theorem 7 in [24]). Infinitesimal bearing
rigidity implies global beraing rigidity (defined in Definition 4) as well as
bearing rigidity (defined in Definition 3), shown in Theorem 5 together with
Theorem 3 (all definitions and Theorems are from [24]).

To get a better understanding of what infinitesimally bearing rigid for-
mations are we illustrated some examples in Figure 1.4. All formations that
are infinitesimally bearing rigid, with an arbitrary number of agents and
for two as well as higher dimensions, can be stabilized by controller (1.3)
from almost every initial conditions. In Figure 1.4a it can be seen that trivial
motions such as scaling and translations maintain the bearing formation.
The two agents can be close together or far away from each other but still
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1 Introduction

(a) Line. (b) Triangle. (c) Square. (d) Cube.

Figure 1.4: Infinitesimally bearing rigid formations.

preserve a static relative angle to each other. Also the position where the
line is shaped does not change the bearing angle. The same properties can
be obtained by the formations shown in Figure 1.4b-1.4d. In the next Section
we restrict the visual sensor to track only a limited area.

1.3 Limited field-of-view Sensing Model

This work focuses on a bearing-only controller that is capable to stabilize
formations in a predefined shape. Since the objective is of great interest in
applications, we formulate a realistic sensing framework. Therefor we take
a limited FOV into account, often 360◦-cameras are expensive, heavy and
require more computational hardware power to process images. To bring
the controller proposed in [24] closer to be applicable we augment the state
space of every agent with a facing direction of the camera. The statespace of
agent i then follows as χi(t) =

[
pi(t)T ψi(t)

]T , where ψi(t) ∈ S1 refers to
the facing direction of the camera.1 Note that this extension is designed for
the plane (d = 2) and might have to be defined as vector when considering
higher dimension d > 2. The dynamics of the agents defined in Section 1.1.1
are then also extended with one more integrator for the facing direction,

χ̇i(t) =
[

ṗi(t)
ψ̇i(t)

]
=

[
ui(t)
ωi(t)

]
, (1.6)

where ωi(t) ∈ R is a controller for the facing direction, directly affecting the
rotation rate.

1Here, S1 denotes the 1-dimensional manifold on the unit circle.
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1.3 Limited field-of-view Sensing Model

Figure 1.5: Two agent configuration with FOV constrained bearing sensing,
note that |δψ21 | > γ̄/2.

In order to deal with limited sensor information we introduce γ̄ as the
maximum area that is covered by the visual sensor, or the maximum limited
FOV. If a neighboring agent is inside the limited FOV then the sensor is able
to extract a relative angle with respect to the facing direction. We denote by
δψij the angle between the facing direction ψi of agent i and the bearing gij.
That is

|δψij | = cos−1
([

cos(ψi) sin(ψi)
]

gij

)
.

We are now able to state |δψij | < γ̄/2 as a formal condition for being inside
the limited FOV, if this condition holds then agent i is able to extract bearing
information of its neighboring agent j, described by the bearing gij. The
limited FOV is illustrated in Figure 1.5.

In the next Chapter we propose a controller for ωi that only requires
bearing measurements and state the closed loop dynamics for the two agent
case. We then characterize the different equilibrium points and show their
stability. Note that the theory of infinitesimally bearing rigidity and the
bearing-only formation controller without limited FOV constraints proposed
in this introduction can directly be extended to an arbitrary number of
agents and for higher dimensions.
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2 Bearing-only Formation Control with
Limited FOV: Two Agent Case

In this chapter we propose a controller for the facing direction ωi to guaran-
tee that a neighbor stays inside the FOV. Controlling ψi is crucial to reach
the desired formation when there is limited visual sensing. If the facing
direction is static such that ψi(0) = ψi(t) for all t > 0, then the trajectories of
the bearing-only controller (1.3) can evolve such that a neighbor leaves the
FOV. Once a neighbor leaves the FOV an agent can not obtain the bearing to
that neighbor and therefor does not move anymore. In Figure 2.1 a simu-
lation is shown where the facing direction is not controlled (e.g. ωi(t) = 0
for i = 1,2 and t ≥ 0) for the two agent case. It can be seen that the facing
direction does not change during the movement of the agents. The desired
bearing g∗12 =

[
1 0

]T is not reached by only controlling the positions of
the agents by a bearing-only controller (1.3). In this simulations example
both agents can sense each other initially but the trajectories evolve such
that first agent two looses track of agent one and then also agent one looses
its neighbor. Once both agents are unable to track each other, they do not
move, since they do not have a sensing input. The final position where no
sensing is available does not refer to the desired bearing, which is illustrated
by a green dashed line g12(t). In the simulation shown in Figure 2.1 the
bearing only controller (1.3) is not able to reach the desired formation. To
tackle that problem we propose a control strategy for the facing direction,
that guarantees a connection link.

Compared to the bearing-only controller without limited visual sensing
the set of neighbors is time dependent. In the simulation example (Figure
2.1) initially |Ni(0)| = 1 for i = 1,2 but during the movement both sets
become empty, since the neighbors leave the FOV. Even for the two agent
case this results in non trivial analysis, since the dynamics of the agent
change with the number of neighbors it can sense.

In this chapter we first state the notation for the two agent case. Then
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

Figure 2.1: Simulation of bearing-only controller (1.3) for the two agent case,
the desired bearing is not reached, since the facing direction is not controlled
g∗12 6= g12(t).

20



2.1 System and Sensing Model for the two agent case

we propose a controller for the facing of the camera and finally provide
a complete stability analysis of the closed loop dynamics. The analysis
also includes a characterization of the different initial conditions. In this
preliminary work we focus on the two agent case, however we are able to
provide simulation results for three and four agents.

Note that in the two agent case rigidity theory described in Section 1.2
is not required, since there is only one edge connecting two agents.

2.1 System and Sensing Model for the two agent case

In this section, we introduce the multi-agent system model with limited
FOV bearing sensing for the two agent case. Each agent is described by its
position vector and its facing direction (χi(t)) defined in Section 1.3. From
here on, we will neglect the time dependency of our signals where it is
obvious but include it when necessary.

Each agent is equipped with a sensor that is able to measure the relative
bearing (in a common reference frame) to the other agent. We assume the
sensor is mounted such that it points in the direction of the agent heading,
ψi. The unit bearing vector between agent 1 and 2 defined in (1.1) follows
for the two agent case as

g12 :=
p2 − p1
‖p2 − p1‖

=
z12
d12

. (2.1)

The initial distance is denoted as d̄12 = d12(0).

As the bearing vector is expressed in a global reference frame, it follows that
g12 = −g21.

The bearing angle of g12 with respect to the (world frame) x-axis is de-
fined as

α12 = tan−1
(
[g12]y
[g12]x

)
= cos−1([g12]x) = sin−1([g12]y). (2.2)

Note that α21 = α12 ± π defines the angle of g21 at the position of agent two.
The facing error follows as δψi = αij − ψi, i,j = 1,2 (here we use a single
subscript for the bearing error since in the two agent case there is only one
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

bearing that can be obtained). The sign of δψi indicates if an agent is on the
right- or on the left-side with respect to the facing direction. These notations
are illustrated in Figure 1.5.

We introduce an indicator function for each agent that indicates if a neighbor
can be sensed or not,

wi(t) =

{
1 if |δψi (t)| <

γ̄
2

0 else.
(2.3)

Here we use γ̄ introduced in Section 1.3 as the maximum limited FOV. Since
the facing direction indicates the middle of a cone shown in Figure 1.5, each
agent in the range [ψi − γ̄/2,ψi + γ̄/2] can be sensed. The indicator weights
for both agents can be compactly written in matrix form as

W(t) :=
[

w1(t) 0
0 w2(t)

]
. (2.4)

In the next section, we will include the weight matrix in the position con-
troller (1.3) for the two agent case, and propose an extension to this law to
cope with the limited FOV sensor constraints.

2.2 Positions and Facing Controller

The position controller from [24] described in Section 1.1.2 controls the linear
velocity of each agent and results in the states pi. The desired formation
shape is specified by a constant unit bearing vector g∗12 (the angle of the

desired bearing follows as α∗ij = tan−1
(
[g∗ij]y/[g∗ij]x

)
). For n = 2, controller

(1.3) follows as,
ṗi = −Pgij g

∗
ij, i = 1,2, j ∈ Ni. (2.5)

When the FOV constraints of the sensor are considered, the dynamics de-
scribed in (2.5) become

ṗ = u =

[
−w1(t)Pg12 g∗12
w2(t)Pg12 g∗12

]
= (W(t)H ⊗ I2)Pg12 g∗12, (2.6)

where H =
[
−1 1

]T is the incidence matrix and vertex 1 and 2 corresponds
to the tail and head of the connecting edge. The indicator matrix is noted
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2.2 Positions and Facing Controller

as W(t) (e.g. (2.4)). Note that ṗi = 0 when g12 = ±g∗12 or when wi = 0. It
is thus clear that if the agents do not also control their facing direction, it
may be they will not converge to the desired formation (compare simulation
shown in Figure 2.1).

In the two agent case, a natural approach for controlling the facing direction
is to align the facing direction with the bearing measurement, ensuring it is
inside the FOV of the sensor. That is, we would like to design a control for
the facing direction that drives δψi to zero.

With this setup, we state the FOV constrained bearing formation control
problem below.

Problem 2.2.1. Given a desired bearing g∗12, an initial formation χ(0), and the
limited FOV γ̄, find the control inputs ui and ωi, such that δψi → 0 and g12 → g∗12
as t→ ∞.

To solve this problem, we propose the following controller for the facing
direction to augment the bearing-only formation control in (2.6),

ωi = wi(κ
(
[g12]x[g∗12]y − [g12]y[g∗12]x

)︸ ︷︷ ︸
v(κ,g12)

+δψi ), (2.7)

for some scalar κ > 0 and wi the FOV indicator function (2.3). This con-
troller is decoupled from the position controller (2.6) and uses only local
information that can be obtained by a visual sensor.

We begin our analysis by first providing a bound for the term v(κ,g12),
which will be useful to prove our main result.

Proposition 2.2.2. The control term v(κ,g12) is bounded by |κ|, that is, v(κ,g12) ≤
κ for all time t.

Proof. Since g12 and g∗12 are unit vectors [g12]
2
x + [g12]

2
y = 1 holds. Therefore(

[g12]x[g∗12]y − [g12]y[g∗12]x
)
≤ 1, and we conclude v(κ,g12) ≤ κ.

The complete dynamics of the closed loop system can be written as

χ̇ =

[
u
ω

]
=

[
(WH ⊗ I2)Pg12 g∗12

W
(
v(κ,g12)1− δψ

)] , (2.8)

23



2 Bearing-only Formation Control with Limited FOV: Two Agent Case

where δψ =
[
δψ1 δψ2

]T and 1 =
[
1 1

]T .

In the next section we describe the different equilibrium configurations
of the system and prove their stability.

2.3 Stability Analsyis: Two Agent Case

The proposed control strategy presented in (2.8) naturally will depend on
the initial conditions of the agents. Indeed, if the facing direction of both
agents are such that neither are in the sensor’s FOV, then both agents will
remain stationary, and the objective can not be met. In this direction, we
identify four different possible initial conditions, characterized by the value
of the indicator function wi(0), that lead to different behaviors of the system.
For each set of initial conditions, we provide a complete stability and conver-
gence analysis of the closed-loop system. Qualitatively, the trajectories of the
agents can produce four behaviors of the indicator function: i) both agents
never sense eachother, ii)both agents sense eachother, iii) only one agent
senses the other, iv) an agent enters or leaves the FOV during the trajectory.

The cases proposed are analyzed in the next Sections.

2.3.1 No Sensing: w1(0) = w2(0) = 0

Formally, the first case is stated as |δψi (0)| > γ̄/2, i = 1,2 which means
that the visual sensor cannot extract any information of its neighbor, and
both weights are zero. Thus, we have that u = 0 and ω = 0. It follows that
the equilibrium point is the initial condition, and the agents simply do not
move. This clearly degenerate case motivates the inclusion of the following
assumption on our dynamics, which ensures that at least one agent is inside
the FOV of the other.

Assumption 2.3.1. The initial condition χ(0) is such that w1(0) + w2(0) ≥ 1.

2.3.2 Complete Sensing: w1(0) = w2(0) = 1

In the second case both agents can sense each other and |δψi (0)| < γ̄/2, i =
1,2. Controller (2.6) becomes the bearing-only control law introduced in [24]
and described in Section 1.1.2. This has been shown to be stable when
γ̄ = 2π. In the limited FOV setup, however, the facing direction has to
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2.3 Stability Analsyis: Two Agent Case

change to ensure the agents remain inside the FOV. The first result shows
that the controller (2.7) guarantees that the facing error, δψi is bounded by
d̄−1

12 .

Proposition 2.3.2. If the indicator function wi(0) = 1, i = 1,2, controller (2.7)
guarantees that the facing error stays bounded, such that |δψi (t)| ≤ 1/d̄12 holds
for all time t.

Proof. First, observe that cos(α12) =
[
1 0

]
g12. Therefore,

d
dt

cos(α12) = −α̇12 sin(α12) =
[
1 0

]
ġ12

=
[
1 0

] Pg12

d̄12
(H ⊗ I2)

T ṗ

=
1

d̄12

[
1 0

]
((w1 + w2)I2)Pg12 g∗12

=
(w1 + w2)[g12]y

d̄12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
.

Since sin(α12) = [g12]y we obtain

α̇12 = α̇21 =
w1 + w2

d̄12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
. (2.9)

Note that α12 = α21 ± π, and therefore α̇12 = α̇21.1 In the case w1(0) =
w2(0) = 1, the dynamics of δ̇ψi , i = 1,2 become

δ̇ψi = α̇ij − ψ̇i

=
1

d̄12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
− δψi

= v(1/d̄12,g12)− δψi .

Here we choose κ = 1/d̄12, such that we can subtract the terms. By using
Proposition 2.2.2 we conclude that v(1/d̄12,g12) ∈ [−1/d̄12, 1/d̄12]. In a next
step we look at the solution of the differential equation

δψi (t) = e−tδψi (t0) +
∫ t

t0

e−(t−τ)v(1/d̄12,g12(τ))dτ

1For more details on the dynamics on ġ12, we refer to [18].
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

which satisfies the bound

|δψi (t)| ≤ e−t|δψi (t0)|+
1

d̄12

∫ t

0
e−(t−τ)dτ

≤ e−t
[
|δψ1 (t0)| −

1
d̄12

]
+

1
d̄12

.

It follows that the bearing error does not exceed ±1/d̄12.

Proposition 2.3.2 can be used to establish a relationship between the initial
distance of the agents and the required FOV of the sensor to ensure that if
w1(0) = w2(0) = 1 that the agents will not leave the FOV of their neighbors
under the trajectories of the system.

Corollary 2.3.3. If γ̄/2 > 1/d̄12 and w1(0) = w2(0) = 1, then under control
law (2.8), w1(t) = w2(t) = 1 for all t ≥ 0.

Proof. In Proposition 2.3.2 we showed that |δψi | ≤ 1/d̄12 holds under control
law (2.7). Therefor we conclude that if the maximum FOV satisfies the
condition γ̄/2 > 1/d̄12, the indicator function will be constantly active, if it
is active initially.

Note that if d̄12 ≤ 1/π the sensor has to cover 360 degrees.

Remark 2.3.4. The closer the agents are initially, the faster the sensor has to turn
in order to keep track of their neighbor. This makes intuitive sense since trajectories
of the bearing controller are circles defined by the initial positions (see [24]). If
the agents are closer together the radius of that circle is smaller and the bearing
measurement will change faster.

Corollary 2.3.3 leads to another Assumption on the system that will
guarantee agents will not leave the FOV of their neighbor once sensed.

Assumption 2.3.5. The sensor FOV satisfies γ̄/2 > 1/d̄12.

We now examine the equilibrium point of the closed loop (2.8) under
Assumption 2.3.5. The equilibrium point of controller (2.6) is given as
g12 = ±g∗12, as shown by the following,

ṗi = 0 = (I2H ⊗ I2)Pg12 g∗12

= (g∗12)
T (I2H ⊗ I2)

T (I2H ⊗ I2)Pg12 g∗12

= (g∗12)
T Pg12 g∗12.

26



2.3 Stability Analsyis: Two Agent Case

Note that from the properties of Pg12 it follows that (g∗12)
T Pg12 g∗12 = gT

12Pg∗12
g12.

Here we used Lemma 8 from [24] and since the kernel of the projection

matrix contains the bearing measurement, it follows that Null
(

Pg∗12

)
=

span
{
±g∗12

}
and therefore we can conclude that ṗ = 0 only holds if

g12 = ±g∗12. Note that if g12 = ±g∗12 holds then the bearing dynamics
become zero, which leads to v(1/d̄12,g12) = 0. From Proposition 2.3.2 we
then conclude that δψi , i = 1,2 will exponentially converge to zero under
control law (2.7).

In order to show the stability of the equilibrium point we introduce δg =
g12− g∗12 as the bearing error. Then we show that δg = −2g∗12 is unstable and
δg = 0 is stable, which refers to g12 = g∗12 and g12 = −g∗12 respectively. First,
we note that |δψi (0)| < γ̄/2, i = 1,2 holds whenever the facing direction
belongs to the intervals below,

B1 :=
[

α12(0)−
γ̄

2
, α12(0) +

γ̄

2

]
, B2 :=

[
α21(0)−

γ̄

2
, α21(0) +

γ̄

2

]
.

Theorem 2.3.6. Under Assumption 2.3.5 and initial conditions satisfying ψ1(0) ∈
B1 and ψ2(0) ∈ B2, then δg → 0 and δψ → 0 for almost all initial configurations
pi(0) ∈ R2, i = 1,2, except for the point corresponding to g12(0) = −g∗12.

Proof. First we show that δg = −2g∗12 is an unstable equilibrium point for
controller (2.6). Consider the dynamics of the bearing error, δg,

δ̇g = f (δg) = ġ12

=
Pg12

d̄12
(H ⊗ I2)

T (I2H ⊗ I2) Pg12 g∗12

=
2

d̄12
Pg12 g∗12.

then we obtain the Jacobian

A =
∂ f (δg)

∂δg
= − 2

d̄12

(
gT

12g∗12 I2 + g12(g∗12)
T
) ∂g12

∂δg

= − 2
d̄12

(
gT

12g∗12 I2 + g12(g∗12)
T
)

.
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

After inserting δg = −2g∗12 we get

A|δg=−2g∗12
=

4
d̄12

(
(g∗12)

T g∗12 I2 + g∗12(g∗12)
T
)

=
4

d̄12
(I2 + g∗12(g∗12)

T) � 0 (2.10)

The last line of (2.10) is true since g∗12 is a unit vector with length one. The
Jacobian is positive semi-definite and therefore we conclude that g12 = −g∗12
corresponds to an unstable equilibrium point.

Now we will show that g12(0) = g∗12 is a stable equilibrium point which
will be reached from every initial condition satisfying Assumption 2.3.5,
except the unstable equilibrium point (g12 = −g∗12). We define the Lyapunov
function V1 := 1/2(δT

g δg + δ2
ψ1

+ δ2
ψ2
) which is positive semi-definite and

zero only at δg = 0, δψ1 = δψ2 = 0. Its time derivative follows as

V̇1 =δT
g δ̇g + δψ1

˙δψ1 + δψ2
˙δψ2

=− 2
d12

(g∗12)
T Pg12 g∗12

+ δψ1

(
1

d12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
− δψ1

)
+ δψ2

(
1

d12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
− δψ2

)
=− 2

d12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)2

+ δψ1

(
1

d12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
− δψ1

)
+ δψ2

(
1

d12

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
− δψ2

)
V̇1d12 =− δ2

ψ1
+ δψ1

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
−
(
[g12]x[g∗12]y − [g12]y[g∗12]x

)2

− δ2
ψ2

+ δψ2

(
[g12]x[g∗12]y − [g12]y[g∗12]x

)
−
(
[g12]x[g∗12]y − [g12]y[g∗12]x

)2 ≤ 0.
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2.3 Stability Analsyis: Two Agent Case

The last line is true since it is an elliptic paraboloid that is smaller then zero
everywhere but the origin, concluding the proof.

We showed that if both neighbors see each other initially and Assumption
2.3.5 is fulfilled, then the desired bearing will be reached and the proposed
facing controller (2.7) guarantees that the connection does not get lost during
the movement of the agents.

2.3.3 Partial Sensing: w1(0) = 1,w2(t) = 0, t ≥ 0

Without loss of generality, we will consider the case where agent one can
sense its neighbor, but is outside the FOV of agent two (i.e., |δψ1 (0)| < γ̄/2
and |δψ2 (0)| > γ̄/2, see Figure 1.5). The equilibrium point of (2.8) now
clearly depends on the facing direction of agent two. We now focus on the
scenario where agent one can achieve the desired formation without ever
entering the FOV of agent two. We will define initial conditions for ψ2(0)
that ensures this behavior. Before defining the interval explicitly, we first
analyze the movement of agent one assuming |δψ2 (t)| > γ̄/2 holds (and also
w2(t) = 0) for all t ≥ 0. The dynamics of agent two will be zero and agent
one will move on a static circle around agent two.

Lemma 2.3.7. If w1(0) = 1 and w2(t) = 0 for all t ≥ 0, agent one evolves on a
circle with radius r = d̄12 and center c = p2(0).

Proof. First, observe that the distance between the agents remains invariant
along the trajectories of (2.6). Indeed, d2

12 = zT
12z12 and

d
dt

d2
12 = 2zT

12 ż12

= −2zT
12Pg12 g∗12 = 0,

since z12 ∈ Null(Pg12 ). Furthermore, p2 is stationary if w2 = 0 and we
conclude that it is the center of a circular movement with radius r = d12, for
more details we refer to [24](Lemma 7). Due to the invariance of the distance,
d̄12(t) = d̄12 holds for all t ≥ 0.

In a next step, we define the direction in which agent one moves on the
circle. This is important to formalize the interval for ψ2(0) that ensures
w2(t) = 0 holds. The rotation direction is indicated by the sign of the angle
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

(a) Agent one moves counter-
clockwise αδg > 0.

(b) Agent one moves clockwise
αδg < 0.

Figure 2.2: Direction of agent one if p2 is stationary.

between g12 and g∗12 which we define as αδg = α∗12 − α12. The directions
follow as

αδg =

{
> 0 p1 moves clockwise
< 0 p1 moves counter-clockwise.

(2.11)

Note that αδg = 0 only holds if g12 = g∗12, which is the desired equilibrium
point. An illustration is shown in Figure 2.2. Now we define two intervals
for which |δψ2 (t)| > γ̄/2 holds for all t ≥ 0, depending on the direction that
agent one moves,

ML :=
[

α12(0) +
γ̄

2
, α∗12 −

γ̄

2

]
, MU :=

[
α∗12 +

γ̄

2
, α12(0)−

γ̄

2

]
.

Now we will provide a stability proof that fist shows that the facing controller
(2.7) guarantees that agent two will always be inside the FOV of agent one.
In a second step we analyze the intervalsML andMU and show that if the
facing direction of agent two is in one of the sets (depending on the sign of
αδg ), agent two will never be able to track agent one. Finally we show that
agent one is able to reach the objective without agent two moving.

Theorem 2.3.8. Under Assumption 2.3.1 and initial conditions satisfying ψ2(0) ∈
ML if αδg < 0, or ψ2(0) ∈ MU if αδg > 0, then δg → 0, δψ1 → 0, and
δψ2 = α∗21 − ψ2(0) for almost all initial configurations pi(0) ∈ R2, i = 1,2,
except for the point corresponding to g12(0) = −g∗12.

Proof. First we will show that the sets ML and MU are invariant under
the dynamics of the system (2.8). To do so we look at the upper and lower
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bound of δg. We then define the region in which it is possible for agent two
to track agent one and then conclude that every facing direction of agent two
outside those bounds will never be able to track agent one. We introduce a
Lyapunov function V2 = 1/2δT

g δg which is positive definite everywhere but
zero. Its time derivation follows as

V̇2 = δT
g δ̇g = − (g∗12)

T Pg12

d12
g∗12 ≤ 0. (2.12)

Now we see that 0 ≤ |δg(t)| < |δg(0)| holds. From the error dynamics we
also see the initial as well as the final bearing (e.g. g12(0) and g∗12). Then we
add ±γ̄/2 to the upper and lower bound of the bearings, since agent two is
able to track its neighbors in the area ψ2 ± γ̄/2. The sign depends on the
moving direction of agent one and therefor on αδg . Combining the bounds
of the bearings and the limited FOV, we are able to state a set in which agent
two can track agent one |δψ2 (T)| <

γ̄
2 for some time T, under the dynamics

of (2.8). For αδg > 0 we get the bounds of

α21(t)±
γ̄

2
∈
(

tan−1
(
[g21(0)]y
[g21(0)]x

)
− γ̄

2
, tan−1

(
[g21]

∗
y

[g21]
∗
x

)
+

γ̄

2

)
, (2.13)

and if αδg < 0 we get

α21(t)±
γ̄

2
∈
(

tan−1

(
[g21]

∗
y

[g21]
∗
x

)
− γ̄

2
, tan−1

(
[g21(0)]y
[g21(0)]x

)
+

γ̄

2

)
. (2.14)

If ψ2 is inside these bounds then it will sense g12(t) before the objective is
met, and if not then |δψ2 (t)| > γ̄/2 holds for all t ≥ 0. By building the union
of intervals MU and (2.13) we get an interval covering all angles [−π, π],
the same is true for the union ofML and (2.14). We conclude that if αδg < 0,
ML is invariant, and if αδg > 0,MU is invariant, both under the dynamics
of the closed loop (2.8).

An illustration of the angles can be seen in Figure 2.3. Since we assume
that ψ2 is in one of the invariant intervals (e.gML,MU) depending of the
sign of αδg it follows that w2 ≡ 0 and we get ψ2(t) = ψ2(0). From Theorem
2.3.6 we conclude that δg = 0 is a stable equilibrium point for controller (2.6)
and δg = −2g∗12 is unstable. Now we are ready to show that controller (2.8)
reaches the desired bearing and that the facing direction of agent one aligns
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

Figure 2.3: When ψ1 ∈ B1 holds, there are three possible trajectories depend-
ing on the facing of agent two, marked by three different colors.

with it.

First we show that w1(t) = 1 for all t ≥ 0 by introducing V3 = 1/2δ2
ψ1

,
which is positive definite everywhere but zero, from

V̇3 = δψ1 δ̇ψ1 = δψ1 (α̇12 − ψ̇1) = −δ2
ψ1

, (2.15)

we conclude |δψ1 (t)| < |δψ1 (0)| and δψ1 → 0 as t→ ∞. We choose κ = 1/d̄12,
such that we can eliminate α̇12 dynamics. In (2.12) we showed that V̇2 ≤ 0
and therefor conclude that δg → 0 as t→ ∞.

Note that in this case Assumption 2.3.5 is not required since the dynamics
of g12 change slower if only one agent moves.

2.3.4 Partial Sensing: w1(0) = 1,w2(0) = 0 and w2(t) = 1 for
t > T.

Now we look at the case where agent one moves inside the FOV of agent
two, such that |δψ2 (T)| ≤ γ̄/2 for some time T > t, but |δψ2 (0)| > γ̄/2
initially. First only agent one moves and once the trajectory enters the FOV
of agent two the indicator function w2 becomes active.

As before we first define an interval for the facing direction of agent two. We
further define a switching point s which specifies the point where agent one
enters the FOV of agent two. In a last step we show that the desired bearing
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will be reached after agent one hits the switching point. The intervals for
the facing direction depends on αδg defined in (2.11),

SL :=
[

α∗21 −
γ̄

2
, α21(0)−

γ̄

2

]
, SU :=

[
α21(0) +

γ̄

2
, α∗21 +

γ̄

2

]
.

Theorem 2.3.9. Under Assumptions 2.3.1 and 2.3.5 and initial conditions sat-
isfying ψ2(0) ∈ SL if αδg < 0 or ψ2(0) ∈ SU if αδg > 0, then δg → 0 and
δψ1 = δψ2 → 0 from almost all initial configurations pi(0) ∈ R2, i = 1,2, except
for the point corresponding to g12(0) = −g∗12.

Proof. Agent two is only able to track agent one if it satisfies the intervals de-
fined in Theorem 2.3.8, from there we remove the part where |δψ2 (0)| ≤ γ̄/2
holds and get SL and SU . If the facing direction is in that region the trajec-
tory of agent one will come into the FOV of agent two, before the desired
bearing is reached.

In Theorem 2.3.6 we showed that g12 = −g∗12 is a unstable equilibrium
point of controller (2.6) and therefor undesired.

Now we can define a switching point and show that controller (2.6) will con-
verge first to that point. Furthermore w2 jumps from zero to one when agent
one reaches the point, then both agents can see each other and converge to
the desired formation, as shown in Theorem 2.3.6. We define the switching
point as

s =

cos
(

ψ2(0)− sgn(αδg )
γ̄
2

)
sin
(

ψ2(0)− sgn(αδg )
γ̄
2

)− g∗12, (2.16)

in terms of bearing error. In Theorem 2.3.8 we showed that controller (2.7)
guarantees that agent one keeps track of agent two. Since

0 ≤ s < δg(0) (2.17)

holds, we have to show that δg decreases constantly. The Lyapunov function
V2 is positive-semidefinite, radially unbounded and zero only at the equilib-
rium point. The time derivative defined in (2.12) is negative semi-definite
and zero only at the equilibrium point. Now we have shown that the bearing
error constantly decreases and since (2.17) holds we guaranteed that agent
one will hit the switching point s in finite time t > T. Once s is reached the
stability of the equilibrium point follows as in Theorem 2.3.6.
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

We showed now that g12 = g∗12 will be stabilized if Assumption 2.3.1
and 2.3.5 hold and g12(0) 6= −g∗12. The introduced controller for the facing
direction (2.7) therefor gives a criteria on the required FOV (Corollary 2.3.3)
and uses only information locally available on each agent. In the next section
we will provide some simulation results.

2.4 Simulations for n = 2 agents

The control law (2.8) is applied for different initial facing directions but static
positions in the two agent case. The results are shown in Figure 2.4. The
simulation in Figure 2.4d shows the case where agent one moves into the
FOV of agent two. The initial position is set to

p1(0) =
[
3 2

]T p2(0) =
[
1.5 0.5

]T ,

ψ(0) is different in all four cases, the desired bearing is g∗12 =
[
1 0

]T , which
corresponds to a horizontal line (e.g. Figure 1.4a). The limited FOV is set to
γ̄ = π/2. In Figure 2.4a both agents are outside the FOV of their neighbor
and therefor are not able to extract the bearing information, its analysis is
presented in Section 2.3.1. Figure 2.4b shows an initial conditions where
|δψi | < π/4 for i = 1,2, which means that both agents are able to sense
their neighbor, this refers to the undirected case. However this configuration
also requires controller (2.7) to ensure that the neighbor stays inside the
FOV, as shown in Section 2.3.2. The partial sensing cases are shown in
Figure 2.4c-2.4d, which we have shown to be stable in Section 2.3.3 and 2.3.4
respectively.

2.5 Simulations for n > 2 agents

While the analysis in this work focused exclusively on the two agent case,
we demonstrate in Figures 2.5a and 2.5b that the proposed strategy may also
work for n > 2 agents. The main modification relates to the facing direction
control. In the three agent case the desired facing direction was chosen to
be the closest neighbor, while in the four agent case we choose it to be in
the middle of all neighbors that can be sensed (details on the two different
strategies are explained in Chapter 3). The stars on the trajectories in Figure
2.5b indicates when the number of sensed agents changes. The FOV is set to
γ̄ = 90◦ and γ̄ = 100◦ for the three and four agent case respectively. In both
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2.5 Simulations for n > 2 agents

(a) No Sensing: w1(0) = w2(0) = 0. (b) Complete sensing: w1(0) = w2(0) = 1.

(c) Partial sensing: w1(0) = 1, w2(t) =
0, t ≥ 0.

(d) Partial sensing:w1(0) = 1, w2(t) =
1, t ≥ T.

Figure 2.4: Simulation results for n = 2 agent cases.
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2 Bearing-only Formation Control with Limited FOV: Two Agent Case

examples, the agents successfully attain the desired formations, even while
the number of sensed agents changes along the trajectories. The desired
formation was set to

g∗ =
[

1 −1/2 −1/2
0
√

3/2 −
√

3/2

]T

and

g∗ =
[

0 1 0 −1
√

2/2
1 0 −1 0

√
2/2

]T

,

for the three and four agent case respectively. We only used desired forma-
tions that are infinitesimally bearing rigid, where we stated the conditions
in Section 1.2. The desired formation in the three agent case shown in
Figure 2.5a refers to an equilateral triangle (e.g. Figure 1.4b) and the desired
formation from Figure 2.5b to a square (e.g. Figure 1.4c).

The incidence matrices follows as

H =

−1 0 1
1 −1 0
0 1 −1

T

and

H =


−1 0 0 1 −1
1 −1 0 0 0
0 1 −1 0 1
0 0 1 −1 0


T

for the three and four agent case. The simulations show that the desired
bearing is reached in both cases, however this is only a simulation result
which was not yet analytically proven. In the next chapter we apply the
proposed controller (2.6) and (2.7) for ground robots.
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2.5 Simulations for n > 2 agents

(a) Three agents where the desired bearing is an equilateral triangle.

(b) Four agent case where the desired bearing is a rigid square.

Figure 2.5: Simulation results for n = 3,4 agent cases.
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3 Experiments in the CoNeCt Lab

The lab of the CoNeCt group at the faculty of Aerospace Engineering is
equipped with multiple TurtleBotII robots that can be used to validate our
control strategy. In this chapter we will explain the setup that is available in
the lab and how we used it to implement our controller. We first describe the
equipment that we used, then give a short introduction into ROS, followed
by a color detection algorithm realised in openCV. We then transform the
controller from Chapter 2 to the dynamics of the TurtleBotII robots and pay
special attention to the facing direction of the camera. The chapter will be
concluded by experimental results that support our analysis from Section
2.3.

3.1 Setup

Before implementing the controller we will give an overview of the equip-
ment, frameworks and libraries that are available in the lab.

3.1.1 TurtleBotII

TurtleBot is a mobile robotic platform that has range as well as visual sen-
sors [19]. It is a ground robot that has a Kobuki base and a Microsoft
Kinect Sensor [4]. The Kinect Sensor is able to create a depth image that
uses visual as well as a range information. For our controller we mod-
ified the platform, such that we disconnected the Kinect Sensor and use
a Logitech webcam [11] that has a wider limited FOV than the Kinect camera.

The dynamics of the Kobuki base can be modeled as unicycle, such that we
can control the linear and angular velocity. For agent i the dynamics follow
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3 Experiments in the CoNeCt Lab

(a) color coded TurtleBotII robot. (b) States of the unicycle model, top view.

Figure 3.1: Equipment of the CoNeCt lab from the Faculty of Aerospace
Engineering.

as

ẋi = vilin
cos(θi)

ẏi = vilin
sin(θi) (3.1)

θ̇i = viang .

A picture of a TurtleBotII is shown in Figure 3.1a. The states introduced in
(3.1) are shown in Figure 3.1b. The robots are color-coded, such that multiple
agents can be distinguished. We will use the color to obtain a relative angle
with respect to the facing direction of the camera.

The TurtleBotII robot is controlled by an Acer TravelMate Netbook run-
ning a Linux distribution. The code is written is C++ and the Kobuki base is
connected via ROS (Robot Operating System). In our setup we create a ROS
message that takes the linear- and angular velocity is created and then sent
to the motors.

3.1.2 ROS, OptiTrack and Local Sensing
In our experiments ROS is mainly used to send control signals to the motors
on the robots [12]. In general it is an extensive framework to control, track
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3.1 Setup

and manage robots, therefor a centralized master is collecting all data and
distributes it over a set of nodes. Since our approach is decentralized such a
master is not necessary. We use the ROS network to start the agents at the
same time. Therefor one agent keeps the Kinect sensor to measure range
information. This information is distributed over the ROS network to all
other agents see Figure 3.2a. The decentralized controller running on each
agent individually is executed only if the range of that specific agent is
above a predefined threshold, which is illustrated in Figure 3.2b. So we
run the program on every agent but cover the range sensor that connects
all agents. Once the sensor is uncovered it exceeds the threshold and the
agents start to move. That way we are able to have a nearly synchronized
starting time. Another advantage of this realization is that we can abort
an experiment if agents are not moving as expected, by simply covering
the sensor. The flowchart in Figure 3.2 shows how the information of one
common sensor is propagated through the network, note that also another
common information could be used to generate a synchronized starting
point. However this realization was straight forward since the sensors and
the network already existed.

Another information that is available on the Kobuki base is the relative
position of each agent with respect to its starting point. This information is
obtained by counting cycles of the wheels. However it is not accurate since it
has a high drift and therefor will not be used. The lab is also equipped with
OptiTrack cameras that can obtain positions of reflecting markers [15]. We
used three markers on each agent to get its position as well as its orientation.
The position is relative to a fixed coordinate system in the middle of the lab.
An illustration of the data that is obtained by OptiTrack is shown in Figure
3.3, the subscript of the robots refers to the specific name of each agent (e.g.
Simeon, Gad and Reuben).

Our controller is based on local, visual sensing information obtained
by a camera. From that camera image we extract relative angle information
to the neighbors that are inside the limited FOV (e.g. δψi , i = 1,2 in Figure
1.5). This information is stored in a logfile on each agent individually, we
also track the input values and the facing direction of the camera.

This setup allows us to store all relative information to analyze the experi-
ments afterwards. It should be mentioned that even though ROS connects all
agents the controller run independent, we just use one sensor to synchronize
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3 Experiments in the CoNeCt Lab

(a) We use one common sensor in order to
synchronize the robots, this information is
propagated through a ROS network.

(b) The controller is only executed if the
sensor value exceeds a certain threshold,
this is used to start and stop the experi-
ments at the same time.

Figure 3.2: Flowchart of the connecting sensor that allows a synchronized
starting time.

the starting point of all robots. In the next Section we will explain how to
get relative angle information from a camera frame by using the OpenCV
library.

3.1.3 OpenCV

Open Source Computer Vision Library is used for real-time computer vision
[1]. In our setup we use it to detect the color-coded agents in a camera
frame and then calculate a relative angle with respect to the middle of the
camera. In a first step we have to define a color range of the color-coded
robots. The colors are represented in HSV-model (hue, saturation, value),
which is an alternative representation of the well known RGB color model.
HSV is supposed to be more robust to changing light conditions, compared
to the classic RGB representation. With a built in function we convert the
camera frame to HSV.

//convert frame from BGR to HSV colorspace
cvtColor(*CAMERA_FRAME*,*OUTPUT_FRAME*,COLOR_BGR2HSV);
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3.1 Setup

Figure 3.3: Top view of the CoNeCt Lab with three TurtleBotII robots. Opti-
Track senses the marker on top of each robot and Simulink is processing the
data.
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3 Experiments in the CoNeCt Lab

Now we are able to obtain the neighboring agents by checking if the colors
range between *LOW_HSV_VALUES* and *HIGH_HSV_VALUES* , are inside the
HSV image by calling the inRange() function.

inRange(*INPUT_FRAME*,*LOW_HSV_VALUES*,*HIGH_HSV_VALUES*,*
OUTPUT_FRAME*);

The *OUTPUT_FRAME* is then used to calculate moments of the colors that are
inside the FOV. With the moments we are able to track the average position
of a specified color,

x̄i =
m10i

m00i

ȳi =
m01i

m00i

.

The values x̄i and ȳi refer to a mass center of the color value, the spatial
moments are obtained by moments(*INPUT_FRAME*) function. Since the
image is rasterized and stored in rows and columns we get the relative
angular information by

δψij =
x̄j

|columns| ,

where |columns| refers to the number of columns of a frame. The relative
angle δψij ∈ [−γ̄/2,γ̄/2] represents the angle between agent i and j (e.g.
(i,j) ∈ E ) with respect to the facing ψi.

This angular information represents bearing information gij. Since we know
the heading of the camera (ψi) we can obtain αij = ψi + δψij as the bearing
angle of gij with respect to a global x-axis. The described values are shown
in Figure 3.4

3.2 Bearing-only formation control with limited FOV:
Unicycle Model

In contrast to the controller described in Chapter 2.2 the unicycle model is
controlled by the linear and angular velocity shown in Figure 3.1b. In this
Section we will transform the bearing-only controller (2.6), such that it suits
the dynamics of the unicycle. We follow the idea proposed in [22](Theorem
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

Figure 3.4: Camera frame that is taken from a visual sensor on agent i, the
red square indicates the color of neighbor j within the camera frame.
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3 Experiments in the CoNeCt Lab

Figure 3.5: The linear and angular velocity of the unicycle described in (3.2)
is the projection of u1 onto [cos(θ1) sin(θ1)] and [− sin(θ1) cos(θ1)] .

2). Therefor we divide the bearing controller (2.6) into a linear and an
angular part

vilin
=
[
cos(θi) sin(θi)

]
ui

viang =
[
− sin(θi) cos(θi)

]
ui. (3.2)

A geometric interpretation is shown in Figure 3.5, the input ui is projected
on the heading of agent i and its orthogonal vector. In the example setup of
Figure 3.5 v1lin and v1ang are smaller than zero. This refers to a linear as well
as angular movement in negative direction. The closed loop dynamics for
arbitrary number of agents and the unicycle model follow as

ẋi = −
[
cos(θi) sin(θi)

]
∑

j∈Ni

Pgij g
∗
ij cos(θi)

ẏi = −
[
cos(θi) sin(θi)

]
∑

j∈Ni

Pgij g
∗
ij sin(θi) (3.3)

θ̇i = −
[
− sin(θi) cos(θi)

]
∑

j∈Ni

Pgij g
∗
ij.

Here we assume that our sensor is able to sense γ̄ = 2π.
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

Figure 3.6: The camera does not align with the moving direction of the
unicycle but is turned around +π/2.

3.2.1 Turning the Camera

We now have to decide where to place the camera in order to run the ex-
periments. A natural approach would be to align the facing direction with
the moving direction ψi = θi. However we know that the agents evolve on
a circle [24](Lemma 7) and from the projection shown in Figure 3.5 we see
that another idea is to place the camera orthogonal to its natural heading
(e.g. rotated +π/2).

In order to run the experiments on unicycle robots we mounted the camera
such that it is turned around +π/2 to the moving direction. It can be seen
as a static offset between ψi and θi. If we take the initial conditions shown
in Figure 3.5 then the camera aligns with

[
− sin(θi) cos(θi)

]
, which is

illustrated in Figure 3.6.

Turning the camera is motivated by the trajectories of the integrator dynam-
ics for the two agent case.

In a first step we take a closer look at the two agent case to validate the
heading of the camera. For the two agent case and the limited FOV sensing
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3 Experiments in the CoNeCt Lab

(3.3) changes to

ẋ1 = −w1
[
cos(θ1) sin(θ1)

]
Pg12 g∗12 cos(θ1)

ẏ1 = −w1
[
cos(θ1) sin(θ1)

]
Pg12 g∗12 sin(θ1)

θ̇1 = −w1
[
− sin(θ1) cos(θ1)

]
Pg12 g∗12

ẋ2 = w2
[
cos(θ2) sin(θ2)

]
Pg12 g∗12 cos(θ2)

ẏ2 = w2
[
cos(θ2) sin(θ2)

]
Pg12 g∗12 sin(θ2)

θ̇2 = w2
[
− sin(θ2) cos(θ2)

]
Pg12 g∗12.

where we extended the indicator function (2.3) such that it is capable to deal
with more than one neighbor,

wi(t) =

{
1 if |δψij (t)| <

γ̄
2

0 else.
i,j = 1,2 (3.4)

The facing with respect to a bearing is then stated as δψij = αij − ψi. Note
that for the sensing model the heading of the camera ψi is taken and for the
dynamics of the agents the direction of motion is important θi.

From the initial condition shown in Figure 3.6 it can be obtained that[
− sin(θ1) cos(θ1)

]
Pg12 g∗12 < 0

and w1 = 1, that means that agent 1 would turn in negative direction. In
this case it would increase the facing error δψ12 .

3.2.2 Turning Direction

In the limited FOV setup the turning direction plays an important role
especially when the motion of an agent is constrained. To see that drawback
of controller (3.2) we look at four different initial conditions shown in Figure
3.7. They refer to the different sign of δψij and the moving direction on a
circle described in Section 2.3.3. In Figure 3.7a and 3.7c δψ12 > 0 and therfor
agent 1 turns in positive direction (e.g. v1ang > 0). To obtain the sign of
v1ang we look at the projection of u1 onto the facing direction of the camera.
In Figure 3.7a we see that v1ang < 0 which results in a turning direction
that increases the facing error. The same properties follow when we look at
δψ12 < 0, in Figure 3.7b v1ang > 0, such that δψ12 increases.
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

We now take a look at the value αδg12
introduced in Section 2.3.3, which

refers to the moving direction on a the circle (e.g. (2.11)). In Figure 3.7c and
3.7d we obtain that the sign of v1ang will lead to a decreasing δψ12 . In both
cases the bearing-angle-error αδg12

is positive.

In order to correct the turning direction, such that the facing error de-
creases, we take the sign of αδg12

into the closed loop (3.3) such that follows

ẋ1 = −w1
[
cos(θ1) sin(θ1)

]
Pg12 g∗12 cos(θ1)

ẏ1 = −w1
[
cos(θ1) sin(θ1)

]
Pg12 g∗12 sin(θ1)

θ̇1 = −w1
[
− sin(θ1) cos(θ1)

]
Pg12 g∗12sgn(αδg12

)kang

ẋ2 = w2
[
cos(θ2) sin(θ2)

]
Pg12 g∗12 cos(θ2)

ẏ2 = w2
[
cos(θ2) sin(θ2)

]
Pg12 g∗12 sin(θ2)

θ̇2 = w2
[
− sin(θ2) cos(θ2)

]
Pg12 g∗12sgn(αδg21

)kang.

here we also introduce a gain kang that we use as design parameter. In the
next Section we will provide some simulation results for the two agent case
and then increase the number of agents in the framework. Note that the
subscript of αδg12

is now extended by the particular bearing that should be
reached.

Turing in the direction to minimize the facing error is here introduced
for the two agent case by the sign of value αδg12

. Such an turning indicator
can also be found for a network with more than two agents, which we
discuss in Section 3.2.4. In the two agent case the desired facing direction do
align naturally with the bearing, for more than two agents these assumptions
does not hold. Therefor we introduce another notation for the correction
term that is independent of bearings αδi i ∈ V , which refers to a specific
value for each agent that indicates which direction the agent should turn (to
decrease the facing error). Details on αδi will be discussed in Section 3.2.4,
where we introduce two different approaches.

3.2.3 Simulation for n = 2 agents
After adjusting the turning direction we can simulate the closed loop dynam-
ics for the two agent case. The results are shown in Figure 3.8. The limited
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3 Experiments in the CoNeCt Lab

(a) δψ12 > 0 and αδg12
< 0. (b) δψ12 < 0 and αδg12

< 0.

(c) δψ12 > 0 and αδg12
> 0. (d) δψ12 < 0 and αδg12

> 0.

Figure 3.7: Different initial conditions to obtain a correction term for the
facing direction in (3.3).
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

FOV is set to γ̄ = π/2 and therefor if |δψij | < π/4 ,(i,j) = {(1,2),(2,1)}
holds the neighbor can be sensed. This can be seen in Figure 3.8b where the
red dashed line indicates the bound of the FOV. Initially agent two can sense
agent one but not the other way round. The initial condition are shown in
Figure 3.8a with dashed lines and grey circles. The final position is shown
in bold lines and black circles for the agents, the green bold line represents
the center of the formation in general, denoted as p̄, in the two agent case it
refers to the middlepoint between them. It can be seen that in contrast to the
single integrator simulations the distance is not invariant, even if both agent
see each other. The desired bearing g∗12 =

[
1 0

]T is reached in the final
positions, which can be seen by the bearing error illustrated in Figure 3.8c.

This however is only a simulation results which has not yet been proven
analytically. In this simulation kang = 1 which does not take into account
the dynamics of the bearing α̇12. In contrast to the single integrator find-
ing a gain that describes the bearing dynamics, such that the facing error
constantly decreases, is not intuitive anymore. On the other hand we can
change the static gain kang and analyze the performance.

Since we turned the facing direction around +π/2 with respect to the
direction of motion we were able to meet the objective with the proposed
controller (3.2) by only adding a correction term for turning direction. We
did not design a new controller for the facing direction as we did in Section
2.2.

Here we simulated the case where agent two moves inside the FOV of
agent one, which was for the integrator dynamics the most interesting case.
Simulation for the other cases have the same behaviour as for the single
integrator dynamics. From simulation results we assume that if one agent
can sense its neighbor initially in the two agent case the desired bearing will
be reached. Here we assume that the initial distance is sufficiently large.

Since we were able to show that the single integrator model also works
for the n > 2 agent case we will provide simulations also for the unicycle
model.
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3 Experiments in the CoNeCt Lab

(a) Trajectories of agent 1 and 2, the green dashed line represents the bearing
in the final position and matches with the desired baring g∗12 = [1 0]T .

(b) Facing error during the simulation. (c) Bearing error δg12 = g12 − g∗12.

Figure 3.8: Simulation for two agents with unicycle dynamics.
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

3.2.4 Simulation for n > 2 agents

If there are more than two agents each agent can have more than one
neighbor. Moreover for the desired facing direction there is more than one
possible desired value. We first introduce a desired facing direction ψ̂i.
Figure 3.9 shows a simulation with unicycle dynamics (3.3) and n = 3 agents.
The initial condition is such that agent one can sense agent two, agent two
can sense agent three and agent three can sense both its neighbors. The
desired facing direction is set to the neighbor that is closest

ψ̂i = ψi + min
j∈Ni(t)

|δψij |.

Closest in this context refers to the agent that is inside the FOV and has
the smallest facing error. Here Ni(t) describes the set of neighbors that
can be sensed by agent i at time t. By introducing ψ̂i we also want to give
some remarks on the correction term αδi that we added to the closed loop
in Section 3.2.2 to ensure that each agent is turning such that the facing
error decreases. In the three agent case ψ̂i refers to one of the bearing
angles αij, the desired bearing angle then follows as α∗ij. The correction
term for agent i can then be stated as αδi = α∗ij − ψ̂i, and is added to the
closed loop dynamics (3.3) together with a design gain kang. Note that α∗ij
refers to the desired bearing of neighbor j for which minj∈Ni(t) |δψij | holds.
In Figure 3.9b the facing error is illustrated. Note that it only shows the
errors that are relevant for the given simulation. Particularly interesting is
δψ3j , j = 1,2 where initially both agents can be sensed, due to the policy of
facing the closes neighbor agent 3 looses track of agent 2 and only tracks
agent 1. An interesting behaviour can be obtained between 10 < t < 15
where |δψ31 | ≈ |δψ32 | and therefor the desired facing jumps between those
two values, which leads to a chattering behaviour in the trajectories. The
initial state from the simulation is set to

χ =
[
0 0 2.62 −1 −1 −1.92 2 −2 1.4

]T

and the limited FOV to γ̄ = π/2.

Since we have seen that the center of the formation is not invariant un-
der the dynamics of the unicycle even in the two agent case we did not plot
p̄(t) in Figure 3.9a. The desired formation in the three agent case is set to
the equilateral triangle as described in Section 2.5. In Figure 3.9c the bearing
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3 Experiments in the CoNeCt Lab

error is illustrated and converges monotonically to zero. Without having
an analytically proof, the simulation motivates to find a general expression
for a set of initial conditions for which the bearing error decreases constantly.

Instead of facing the neighbor that is closest, another possibility is to
face the middle of all neighbors that are inside the FOV, such that the
desired bearing follows as

ψ̂i = ψi +
1

|Ni(t)| ∑
j∈Ni(t)

δψij .

A simulation with four agents is shown in Figure 3.10 where the desired
bearing is an infinitesimally rigid square, described by five bearings (see
Section 2.5 for the desired bearing). Note that for this policy ψ̂i does not
necessarily refer to a bearing angle. Since our aim is to align the facing
direction with the middle of all agents that are inside the FOV the desired
final facing value ψ∗i , does not necessarily refer to a desired bearing angle,

ψ∗i =
1

|Ni(t)| ∑
j∈Ni(t)

α∗ij.

Depending on the set of neighbors, the desired facing for the final bearing,
does also lie in the middle of the desired bearings. This behaviour can be
seen in Figure 3.10a where agent 1 faces the middle of agent 2 and 3, once
the desired baring is reached.

The correction term for the turning direction follows as αδi = ψ∗i − ψ̂i.
By including the correction term and a gain kang the closed loop (3.3) can be
simulated. The initial condition is set to

χ =
[
0 0 2.62 −1 −1 −1.92 2 −2 1.4 0 −3 −0.7

]T .

In contrast to the three agent case we increased the FOV of each agent, such
that γ̄ = 1.75 , 100◦. Initially agent 2 can sense only agent 3 since agent 4
is not one of its neighbors defined by the incidence matrix (see Section 2.5),
during the movement agent 2 does not see agent 1 and therefor keeps track
of agent 3.

The facing error illustrated in Figure 3.10b shows the relative bearing error
corresponding to the bearings δψij (i,j) ∈ E . From the given initial condition
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3.2 Bearing-only formation control with limited FOV: Unicycle Model

(a) Trajectories, the green dashed line represents the bearing in the final
position, which refers to an equilateral triangle.

(b) Facing error during the simulation.
Here agents three initially can sense agent
one and agent two, therefor δψ32 (0) and
δψ31 (0) is between the dashed red lines. (c) Bearing error δgij = gij − g∗ij (i,j) ∈ E .

Figure 3.9: Simulation for three agents with unicycle dynamics.
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the desired bearing of a square is reached. However as for the three agent
case there is no analytical proof that guarantees the result. There is also
not set of initial conditions for which we know that the desired baring is
reached. One major problem of finding sufficient analytical results is lacking
knowledge of the final position of the agents.

In the next section we implement the proposed controller with the correction
term for the turning direction TurtleBotII-Robots.

3.3 Experimental results on TurtleBots

Motivated by simulation results for the unicycle dynamics we implemented
the controller on TurtleBots. Each robot thereby runs its own controller,
knowing who its neighbors are and what the desired bearing should be
relative to them.

One major difference between working on simulations compared to experi-
ments is the dynamic of the system and agents itself. In simulations every
possible initial condition can be tested without any danger of destroying
equipment. Experiments on the other hand do suffer from space constraints
given by the lab, sensing constraints given by the library used, lighting
conditions that influence the color recognition and signal delays caused by
the network. Before running experiments the goal, initial conditions and
the expected behavior should be known in all detail. Another thing that
makes implementing algorithms on a real-world system time consuming is
debugging if the actual behavior differs from the simulations. In this work
we show an experimental result for the four agent case simulated in Section
3.2.4.

One experimental run is shown in Figure 3.11, where we compare the
simulations with the data obtained by the OptiTrack cameras. For the sim-
ulations the controller gain is set to kang = 5. The blue, thin solid line
refers to the simulation trajectories leading to a final position indicated by a
grey circle with the corresponding first character of the robots name. The
dashed black and blue line refer to the facing direction and the limited FOV
respectively. Data obtained by OptiTrack, during the experiment, is shown
in bold, red lines, that result in a final position illustrated by a black circle.
Here the facing and limited FOV are marked by solid lines. Even though the
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3.3 Experimental results on TurtleBots

(a) Trajectories, the green dashed line represents the bearing in the final
position which refers to the rigid square.

(b) Facing error during the simulation. (c) Bearing error δgij = gij − g∗ij (i,j) ∈ E .

Figure 3.10: Simulation for four agents with unicycle dynamics.
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simulation does not perfectly overlay with the experiment we can see that
the shape of the trajectories is similar 1. One issue during the experiment
was that the agents did not start moving at the same time, even though they
where connected by the range sensor. Another problem was the robustness
of the color tracking during the movement, sometimes things in the lab
where detected as neighboring agents since they had similar colors. Since
the proposed controller relies only on that visual measurement wrongly
detected objects lead to jumps in the control signals.

In this Chapter we have shown the process from transforming the bearing-
only controller for single integrator dynamics to a unicycle model. Since
the simulations for the n = 2 agents case looked promising we added more
agents to the simulations. Finally we were able to adopt the controller on
real-world robots and succeeded in forming a square. Therefor we used a
turning correction term such that the facing error decreases and mounted
the camera such that the facing does not align with the moving direction but
is turned around π/2. The results of this chapter can be used to implement
the bearing controller using only visual sensing. In order to identify if a
desired bearing is reached by a set of initial conditions and the limited FOV
constraint the analysis has to be studied in more detail.

In the next Chapter we will conclude this thesis and give some remarks on
future research problems related to this work.

1A video of the agents can be found on YouTube (https://youtu.be/Ph4sqeh5CiQ), we filmed
the agents by a GoPro camera, such that we can get top view perspective.
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3.3 Experimental results on TurtleBots

Figure 3.11: Comparing the experimental result with the simulation.
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4 Conclusion

In this thesis we solved the bearing-only formation control problem with
limited field-of-view sensing for the two agent case. To achieve this, we
implemented a bearing-only control for the heading of the agent that ensures
agents remain inside the FOV once they enter. We provided a complete anal-
ysis of the resulting system showing the approach can stabilize the desired
formation from almost all initial conditions of the positions. In numerical
simulations we were able to support our analysis, thereby we saw that it
also works for networks with n > 2 agents.

The formal analysis is the subject of future work. Apart from the stability
analysis itself, an interesting problem is to characterize the initial conditions
together with the limited FOV. The characterization can give necessary condi-
tions on the minimum FOV, that is required in order to stabilize a formation,
or, given a limited FOV, it can be used to see if a desired formation will be
reached. One major problem of the presented control strategy for the n > 2
agents case, is to obtain the final position of the agents when the desired
formation is reached.

Compared to bearing-only formation control algorithms without limited
visual sensing, the presented problem deals with directed interaction graphs.
For networks with directed edges symmetry properties can not be used.
Finding a general formulation for directed graphs that are able to stabilize
infinitesimally bearing rigid formations might also be a good lead for solving
the problem for an arbitrary number of agents. For the heading controller
there is not yet an optimal policy available which neighbor to sense, if there
is more than one agent inside the neighboring set. Since the goal is to
achieve a controller that does not require communication, tracking not only
the relative bearing of a neighbor but also its orientation might be a useful
information.

Applying the bearing-only controller on a network with limited FOV is
here mainly done on single integrators. However vehicles often do not be-
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4 Conclusion

have like integrators, since they can not move in arbitrary directions without
motion constraints. We looked at simulations for the unicycle model, in
future work more complex dynamics should be analyzed.
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