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Abstract

This thesis describes the development and implementation of a low-cost, end-to-end

research platform for guidance, navigation, and control systems design of a quadcopter. A

combination of hardware and software is developed to provide a suite of options available

to researchers to design, simulate, and validate guidance, navigation, and control systems.

The primary application of this platform is to enable a “rapid prototyping” environment

to allow for drastic reductions in time and cost with the development of these systems.

We present a quadrotor aerial vehicle design using off the shelf components combined

with 3D-printable parts. A nonlinear and linearized model of the quadcopter dynamics

are derived using Newton’s and Euler’s laws. A modular Simulink-based simulator is

developed as an easily modified simulation environment which can accommodate various

guidance, navigation, and control systems, as well as a variety of simulation parameters.

A set of physical testing equipment was also designed and developed for constrained

flight testing. An open source, C++ flight control system was developed to be modular

and user-friendly in order to run the quadcopter. Multiple libraries were developed to

implement different state estimators, controllers, and guidance packages, along with

templates for the end-user to use to develop their own. Live logging software was also

included to allow for the study of results. The complete platform is used to apply an

implementation workflow taking the development of a new system from the theoretical

framework through to practical implementation in a short period of time. The methods

of validation and verification of the simulator environment are described, and results of

the complete implementation workflow are shown and discussed.
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List of Symbols and

Abbreviations

Abbreviations
ABS : acrylonitrile butadiene styrene

BLE : bluetooth low-energy

CG : center of gravity

ESC : electronic speed controller

FSF : full-state feedback

GNC : guidance, navigation, and control

HPF : high-pass filter

IMU : inertial measurement unit

LED : light emitting diode

LPF : low-pass filter

LQR : linear quadratic regulator

MIMO : multiple-input multiple-output

MEMS : microelectromechanical system

MMA : motor-mixing-algorithm

PID : proportional-integral-derivative

PWM : pulse-width modulator

SISO : single-input single-output

TWR : thrust-to-weight ratio

UAV : unamnned aerial vehicle
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Chapter 1

Introduction

In recent years, major advancements in electronics have led to a massive leap in

microcomputer performance which simultaneously can reduce the size, weight, and cost

of each unit. Likewise, advances in sensor miniaturization have created minute sensors

with minimal power requirements and marginal cost. One consequence of this has been

an explosion of growth in the unmanned aerial vehicle (UAV) industry.

Quadcopters have become the most prevalent UAV in the public sphere due to a

variety of factors including, but not limited to, their relatively lower cost when compared

with other UAVs, their ability to hover, and their capability to maneuver and navigate

in small and constricted spaces. Quadcopters have seen increasing usage in a wide

variety of fields ranging from agriculture [4, 5, 6] to military [7, 8] to delivery services

[9, 10, 11].

In part due to their rising popularity, and in part due to their inherently unstable

and highly nonlinear dynamics, quadcopters have become a popular platform upon

which controls research has been focused [12, 13]. Furthermore, the quadcopter has

six degrees of freedom which make it a useful platform for the investigation of various

guidance laws and implementation of guidance systems. Lastly, the nature of the

platform itself requires a relatively high degree of accuracy in state estimation to remain

stable. These factors, among others, make the quadcopter an excellent platform for

guidance, navigation, and controls (GNC) research. Additionally, the quadcopter serves

as an effective educational platform for control systems design. Demonstrative of this

fact, in recent years multiple leading technical universities, among them MIT and the

Technion, have introduced control labs using quadcopters [14, 15].

Motivation

Predominately, guidance, navigation and controls system design has been done via

theoretical work and simulation. This is in a large part due to the high costs of practical

implementation and experimentation. However, while powerful tools in understanding

and predicting how a system responds to various inputs, simulations are by no means an

equivalent replacement for hardware experimentation. No simulation perfectly models
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the real world or the various components of a system, and due to inaccuracies of

the model, expected performance can differ significantly from the real world results.

Additionally, flaws in model or bugs in the code can lead to results which bear no

relation to the actual real world system. Such errors can easily become compounded

and lead to disastrous results when the simulation provides a given scenario which the

researcher expects to find. While these examples are by no means exhaustive, they are

illustrative as to the potential downsides to simulation based research and as to obvious

advantages of practical implementation.

While the advantages in practical implementation become obvious, one must justify

the cost. The often high cost of a platform increases the reluctance to purchase physical

hardware. This reluctance is further increased when the knowledge that the new systems

being designed may have a relatively high likelihood of damaging, or destroying, the

hardware.

While there are a number of inexpensive off-the-shelf quadcopters, they usually

consist of proprietary modules even when advertised as open-source. This significantly

detracts from their utility as a research platform as it shifts the focus of the user from

research to hacking together workaround solutions. Additionally, open-source flight

control software is often restricted to specific platforms and hardware, and may be

incredibly user-unfriendly to modify beyond very specific presets. As such, this makes

working with existing products to implement entirely new systems often an arduous

process where the majority of the time is spent getting the vehicle to fly.

By reducing the costs and making a user-friendly flight control package, users of

the platform can spend their time implementing their own GNC systems, rather than

spending their time attempting to get the quadcopter to fly at all and going through a

long and time consuming debugging process with software.

The development of the quadcopter vehicle itself and the flight control package does

not however solve all issues. A complete conception-to-simulation-to-implementation

process should be developed to simplify the experimental process, while reducing

costs. As noted, while imperfect, simulators are still very powerful tools for the design

and testing of GNC systems. Consequently, the implementation of a highly modular

simulation environment with an easy to use interface can further boost efficiency, while

simultaneously reducing costs and safety risks by allowing for new systems to be tested

in a perfectly safe manner under a wide variety of conditions before ever being brought

to the hardware. Additionally, the development of physical testing equipment can

significantly improve the testing process of the hardware in a constrained manner,

reducing safety hazards, and increasing testing efficiency at a marginal cost penalty.

With the development of the aforementioned components, a platform can be devel-

oped which can enable a “rapid-prototyping” model of system design. Such a model

of system design should allow fro the rapid development of a new system by taking it

through a simple process. First a new sytem is designed, it is the tested in a simulation

environment to detemine whether or not it achieves desired results. Once desired
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Figure 1.1: A block diagram of the generalized workflow.

results are achieved, the system can then begin hardware testing, first in a constrained

environment which limits the degrees-of-freedom to only those necessary for testing,

and finally using free flight. The generalized workflow can be found in Figure I.1. Under

this model, researchers can have a durable, low-cost platform which can easily have a

variety of systems implemented on it for testing in a short window of time which can

then be used to verify theoretical results on real hardware.

Thesis Objectives

The goal of this thesis is the development of a low-cost aerial platform for guidance,

navigation, and control systems design. To this end, four primary objectives are in play.

i) The design and fabrication of an autonomous quadrotor aerial vehicle.

ii) The design and fabrication of physical testing equipment for the quadcopter.

iii) Development of a modular six degrees of freedom simulation environment.

iv) Development of a modular software package to control the quadcopter hardware.

Thesis Structure

The structure of this thesis is organized such that each section builds towards the

development of the complete platform itself. Chapter 2 deals with high level design phi-

losophy driving the thesis. Chapter 3 describes the design process of the platform. This

includes the design of the quadcopter itself, along with the physical testing equipment,

and software development. Chapter 4 delves into the underlying mathematical model

describing the dynamics and kinematics of the quadcopter leading to a nonlinear and

linearized model of the quadcopter. Chapter 5 deals with the design and implementation

of the estimators and controllers for both the simulation environment and the flight code

which runs the hardware. It additionally details the development and implementation

of guidance, navigation, and control systems in the simulator environment and flight

code. Chapter 6 details the model verification and validation process used to determine

that the simulator environment is properly designed to generate valid simulations which

properly match real world tests and expectations. Additionally, it discusses various re-

sults obtained using the proposed implementation workflow. Lastly, Chapter 7 provides

conclusions and some final remarks.
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Chapter 2

Design Philosophy

The purpose of this platform is to provide an end-to-end research platform through

which a user can implement guidance, navigation, and control systems starting from

the theoretical phase, through simulation, and finally finish with implementation of

the system on physical hardware. In concept, this platform should enable a “rapid-

prototyping” workflow for the development of these systems allowing for a significant

reduction in both development time and cost. The general idea is to provide a mechanism

in which a streamlined workflow can be developed to allow for rapid iteration and

adjustment.

The introduction of 3D printers heralded a revolution in the mechanical design

process by allowing for the rapid, on-site prototyping of new parts at low cost. The

development of a suitable analog of this process for the development of guidance,

navigation, and control systems design can be seen as the beginnings of another such

revolution.

To this end, the quadcopter itself and the surrounding systems must be properly

understood (Figure 2.1). The quadcopter itself is a dynamic system, which receives

input from the control system driving its actuators to determine its dynamics and

kinematics. Additionally, environmental affects and real world disturbances will impact

the dynamics and kinematics as well, predominately in a negative manner by perturbing

the quadcopter from the desired state. The navigation system is negatively impacted

by the environment as well as it produces noises which cause inaccurate measurements

by the sensors. Lastly, the guidance system is what determines the trajectory that the

quadcopter will take. Proper design of the guidance, navigation, and control systems in

conjunction with each other allow us to get desired performance from the vehicle.

2.1 Implementation Workflow

As mentioned above, an effective and streamlined workflow is imperative to allow for

this “rapid-prototyping” method of systems design. To this end, an implementation

workflow was developed. This workflow is a series of specific steps designed to allow for
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Figure 2.1: A block diagram of the quadcopter system.

rapid prototyping of new systems, while simultaneously keeping both the hardware and

the users safe.

The workflow (Figure 2.2) begins with the mathematical model and mission require-

ments of the system. Once these are defined, GNC systems can be designed. Once

designed, the systems should be implemented into a a simulator environment. The

simulator is a powerful tool which allows for rapid testing and iteration. When properly

designed the simulator also provides a method for iteratively testing the system in

a manner of increasing fidelity to the real world (Figure 2.3). Through this process,

simulation is done first on the linearized system while assuming access to full state

information. This allows us to ensure that our control and guidance systems work

correctly in ideal circumstance. After, the feedback path is changed from full state

information to the information coming from our navigation system in the absence of

any noises. This allows us to ensure that our estimators don’t have any blatant errors in

them, before enabling dynamic noises to the process and determine whether or not the

GNC systems together can compensate for them. Once verified, the system dynamics

are changed to the nonlinear system dynamics to produce a higher fidelity simulation of

the system. If this test is successful, and the workflow completed, then the user may

begin testing on the hardware itself. Once the system or systems have been sufficiently

tested in simulation under various conditions, if they meet the desired specifications

they can begin being tested on physical hardware. Both for the safety of the user, and

for the safety of the quadcopter itself, it is recommended to test the quadcopter while

it has physical testing equipment constraining its degrees of freedom. For example, as

the attitude control of the quadcopter is the critical aspect for flight stability, testing

the flight controller’s ability to regulate the attitude in a gimbal works to ensure that

the quadcopter will not fly wildly out of control during flight.This is to ensure that
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Figure 2.2: The research platform’s implementation workflow.
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Figure 2.3: The simulation workflow for the testing of new systems.

each aspect of the systems being tested are properly implemented on the hardware and

will not cause unexpected, and potentially damaging, behavior in free flight. Once the
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quadcopter has been properly tested in constrained flight, it can then begin free flight

testing. Assuming successful flight, the system can then be considered validated and

new research can begin.

The process from simulation to implementation on the physical hardware has the

potential to be exceedingly fast. Furthermore, if all the various components of the

platform are properly designed, the time required to pass through the workflow can be

further reduced allowing for a significant increase in research efficiency.
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Chapter 3

Platform Design

This chapter deals with the design of the complete research platform. This includes the

quadcopter, the physical testing equipment, and the software.

3.1 Quadcopter

The quadcopter forms the basis of the research platform. The development of the quad-

copter involved the mechanical design of the quadcopter frame, selection of electronics

and motors, and ensuring compatibility between all parts.

3.1.1 Design Requirements and Constraints

The expected flight environment for the quadcopter is in a flight laboratory. In general,

such an area has a limited space, which will constrain the flight envelope of the

quadcopter. Additionally, as the quadcopter is a rotorcraft, we require a thrust-to-

weight ratio (TWR) that exceeds 1 to achieve lift-off. A TWR range of 1.5 − 4 is

the desired region for the design of the quadcopter. In this range, the quadcopter has

sufficient power for flight and maneuvering within the lab environment. Lastly, the

expected flight duration is on the order of 0.5− 5 minutes. This flight duration provides

adequate time to test a large variety trajectories in the flight area.

In order to function properly as a flight platform, the quadcopter must also meet

the following criteria:

• The quadcopter must be a low-cost platform to ensure ease of accessibility and

reduction in research costs.

• To further reduce cost, and maintain simplicity of the design and fabrication, all

purchased parts must be off-the-shelf components.

• Any part that is not purchased off-the-shelf must be 3D printable in house by the

researcher.
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(a) Solidworks Model of the assembled quadcopter. (b) Fabricated quadcopter vehicle.

Figure 3.1: Assembled Quadcopter.

• The quadcopter weight must be minimized to guarantee a TWR in the desired

range.

• To survive inevitable crashes during testing, the quadcopter itself must be highly

durable.

• The quadcopter must have sufficient power to guarantee the requirements deter-

mined by the flight envelope.

In addition to the constraints placed upon the design by the flight envelope and

design requirements, the quadcopter design faces other constraints.

• The quadcopter must minimize the design complexity, both to ensure it can be

printed correctly, and so that assembly and construction is simple for the end-user.

• Material selection is limited by the 3D printer. For purposes of this platform, we

are limited to a plastic frame.

• The maximum quadcopter size is constrained by the printable volume of the 3D

printer. This limits both the size and number of components we may use.

3.1.2 Design

The quadcopter vehicle consists of a frame, four motors, four electronic speed controllers

(ESCs), a battery, and various electronic components described in Table 3.1. The design

of the quadcopter (Figure 3.1) was a multi-step iterative process involving the selection

of the electronic components and design of the frame itself, under the requirements and

constraints given in Section 3.1.1. The 3D printers used for this project were Ultimaker

S3 Extended and the Ultimaker S5 3D printers. The Ultimaker S3 Extended has a build

volume of 230 × 190 × 200[mm] however, the full print area of the build plate could

not be used due to limitations of the software controlling the 3D printer. The frame of
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Arduino Nano 33 BLE Sense

The Arduino Nano 33 BLE Sense [16] is the micro-controller chosen to run the
flight code of the quadcopter. The BLE Sense is a very small and lightweight
micro-controller with numerous sensors built into the chip itself, including but
not limited to; a 9-axis IMU, humidity and temperature sensor, and barometric
sensor. Additionally it has built in BLE capability. The board runs with a
clock speed of 64MHZ, contains 1MB of CPU flash memory, and 64KB of
RAM. The micro-controller also has 14 digital input/output pins and 8 analog
input pins. Six of the digital input/output pins may be used as pulse-width
modulators (PWMs).

Ultrasonic Transducer

The quadcopter uses a downward the HC-SR04 Ultrasonic Distance Sensor for
use in height estimation. The HC-SR04 is a high accuracy ultrasonic sensor
with a sensing range of 2[cm] to 4[m]. Within these bounds, the HC-SR04 has
an accuracy of ±0.1[mm].

Optical Flow Sensor

The quadcopter uses the CJMCU-3901 Optical Flow Sensor. The optical flow
sensor is designed to operate in ranges greater than 80[mm] above a given
surface. The CJMCU-3901 is treated as a black-box lateral velocity estimator
which runs at 100[Hz] and has a high degree of accuracy in its measurements.

Motors

The quadcopter is run using four 2212 920KV Brushless motors. For every
volt applied to the motor, the motor will generate 920 RPM under no-load
conditions. The motor is rated for a 2-3S LiPo Battery Cell, allowing for a
nominal voltage of 11.1[V ] and a no-load RPM of 10212 RPM.

Electronic Speed Controller

Each motor is powered and controlled by its own 10[A] ESC that provides
3-phase alternating current. The ESCs keeps each motor rotating at an rpm
determined by the pulse width they receive from the PWM command signal
from the Arduino flight controller.

Propellers

Each motor has a 6145 Triple Blade propeller made over polycarbonate. This
propeller-motor combination is used to generate 400[grf ] of thrust per motor,
for a total of 1600[grf ] thrust available to the quadcopter.

Battery

The quadcopter uses a 3S, 1500mAh, 40C LiPo battery. This combination of
battery, ESC, and motors allows for a flight time of 5− 10 minutes depending
on flight conditions, with an average current draw of approximately 9[A].

Table 3.1: Hardware components of the quadcopter.

the quadcopter was designed with a length of 190.25[mm] and a width of 196.26[mm]

due to constraints in 3D printing area, which allowed for less than 1[mm] of clearance
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around the edge of the available print area. Later, using the Ultimaker S5 3D printer

with its larger 330× 240× 300[mm] build area, the quadcopter frame was not increased

in size, rather it was printed with a raft support system to minimize any deformation of

the frame during printing. These print area constraints defined the maximize size in

which the quadcopter frame could be printed, and thus, the size of the quadcopter itself.

Motor mounts were added with a diameter of 34[mm] to accommodate standard sized

motors, and mounts were designed for electronic components. An engineering drawing

of the quadcopter frame can be found in Appendix A and the properties of the fully

assembled quadcopter are contained in Table 3.2.

The quadcopter frame was designed in SolidWorks and printed initially on an Ul-

timaker S3 Extended 3D printer using acrylonitrile butadiene styrene (ABS) plastic.

Additional frames were printed using an Ultimaker S5 3D printer. By utilizing Solid-

Works for the design of the quadcopter, the final design could be directly be exported

as a .stl file type for 3D printing. Additionally, Solidworks contains a large library

of available material types with all of their mechanical properties stored, using this

SolidWorks can also output the mechanical and mass properties of the design. This

could be done both for the quadcopter frame alone, and for the quadcopter with its

integrated components. When printed, ABS produces strong, stiff parts with a high

resistance to physical impacts. These properties combined with the low cost of ABS

and its ease of printing makes it an ideal candidate for the frame of the quadcopter.

Total Mass: 0.588[kg]

Moment of Inertia:

0.002390945 0 0

0 0.003543197 0

0 0 0.002317318

 [kg m2]

Arm Lengths:

Lx1 = 81[mm] Ly1 = 76[mm]

Lx2 = 81[mm] Ly2 = 76[mm]

Lx3 = 81[mm] Ly3 = 80[mm]

Lx4 = 81[mm] Ly4 = 80[mm]

Frame Material: ABS Plastic

Table 3.2: Physical properties of the quadcopter.

In order to develop a mathematical model of our quadcopter, the geometry of the

quadcopter must first be defined. The distance from the motors to the center of gravity

(cg) determine the torque generated by the motors. As well, numbering each motor is

necessary to define the output of each motor when the equations of motion are defined.

We label the front left motor as M1 with motors M2, M3, and M4 continuing around
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(a) Quadcopter motor locations. (b) Quadcopter arm lengths.

Figure 3.2: Quadcopter geometry.

the quadcopter in a clockwise fashion (Figure 3.2a). Motors 1 and 3 rotate clockwise,

whereas motors 2 and 4 rotate counterclockwise. Once labeled, we can easily define the

arm lengths necessary for determining the torques (Figure 3.2b). The reference frames,

axes of rotation, and thrust direction of the quadcopter are defined in Figure 3.3. In the

aforementioned figures, Lxi ∀ i ∈ {1, 2, 3, 4} refer to the distances of each motor from

the x-axis, Lyi ∀ i ∈ {1, 2, 3, 4} refer to the distances of each motor from the y-axis, p,

q, and r refer to the body frame angular rotation rates around the x, y, and z-axes

respectively, and T represents the total thrust of the quadcopter as determined by the

sum of the thrusts Ti ∀ i ∈ {1, 2, 3, 4} generated by each motor respectively.

Figure 3.3: Quadcopter frames of reference, forces and rotation axes.

3.1.3 Sensors

As per Table 3.1, the quadcopter was designed using the Arduino Nano 33 BLE Sense

as the base platform. The BLE Sense comes equipped with multiple of on-board sensors.
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Additional sensors were then added to the quadcopter to provide additional sensor input

for a variety of methods of state estimation.

Inertial Measurement Unit

The Inertial Measurement Unit (IMU) comprises of a 3-axis accelerometer, a 3-axis gy-

roscope, and a 3-axis magnetometer. The IMU used in this quadcopter is the LSM9DS1.

The LSM9DS1 [17] is a microelectromechical system (MEMS) developed by STMicro-

electronics as a small, low-power, high-resolution motion sensor. Microelectromechical

systems combine conventional semiconductor electronics with beams, gears, accelerome-

ters, gyroscopes, switches, sensors and other mechanical structures of microscopic size

to create tiny, integrated devices and systems.

The LSM9DS1 is an IMU which performs very well compared to other sensors in the

low-cost price range, up to and including sensors more than twice its purchase price [18].

The LSM9DS1 can run at a frequencies of 119[Hz], 238[Hz], 476[Hz], or 952[Hz]. Even

at the minimum frequency, the LSM9DS1 provides reading suitable for estimation and

control. As well, it has been successfully implemented as the IMU for multiple different

quadcopters in the past[19, 20], reinforcing validity of its use in this platform. Finally,

the LSM9DS1 has multiple pre-built libraries to access the IMU data and it comes

pre-installed on the Arduino board, which reduces the work required to implement it

into the system. These factors lead to it being the IMU of choice for this platform.

We now briefly describe the components inside the IMU.

• Accelerometer: The accelerometer is a sensor which measures the linear ac-

celeration of the quadcopter. An accelerometer functions by using a damped

mass on a spring and measuring its position to determine acceleration. When the

accelerometer experiences some acceleration, the mass is displaced from its initial

position to the point at which the spring can accelerate the mass at the same

rate as the casing. By having capacitive “fingers” on the proof mass interspersed

between capacitive “fingers” on the stationary casing, this displacement can be

measured by the changes in capacitance. Having many such fingers in parallel

increases the change in capacitance per unit of distance moved and allows for

greater precision. This design can be seen in Figure 3.4.

• Gyroscope: The gyroscope is a sensor which measures the angular velocity of

the quadcopter. A common form of a MEMS Gyroscope is a vibrating structure

gyroscope, which uses a vibrating structure to determine the rate of rotation. This

design can be seen in Figure 3.5. The underlying principle takes advantage of the

fact that a vibrating object tends to continue vibrating in the same plane, even if

its support rotates, and takes advantage of the Coriolis effect. The Coriolis effect

causes the object to exert a force on its support, and by measuring this force the

rate of rotation can be determined.
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Figure 3.4: A MEMS Accelerometer sensor unit[1].

Figure 3.5: A MEMS Gyroscope sensor unit[2].

• Magnetometer: The magnetometer is a sensor which measures the earth’s

magnetic field to determine the heading of the quadcopter. The most common

MEMS magnetometer works using the Hall Effect. A current is passed through a

conductive plate in the sensor, and as a magnetic field affects the plate, it deflects

the electrons causing one side of the plate to be slightly more positive than the

other which generates a voltage. Reading the voltage, we can determine the

magnetic field strength and direction. The magnetometer functions by suspending

a coil of conductive material in the casing by use of torsional beams, as seen in

Figure 3.6. A current is passed through the coil, and in the presence of an external

magnetic field orthogonal to the current, the generated Lorentz forces cause a

rotation of the coil around the torsional beams. By measuring the torsion, the

field strength can be determined analytically.

19

 

 

 



Figure 3.6: A MEMS Magnetometer sensor unit[3].

Barometric Pressure Sensor

The barometric pressure sensor measures the ambient pressure, which varies as a function

of altitude. As the altitude increases, the pressure decreases. The change in pressure

can be used to determine the absolute altitude. It must be noted however, that the

barometric pressure sensor gives exceedingly noisy results. The barometric pressure

sensor used in this quadcopter is the LPS22HB MEMS barometric pressure sensor

developed by STMicroelectronics [21]. The barometric pressure sensors contains a small,

thin, disk-shaped box or capsule with a diaphragm as the side in contact with the

atmosphere. The inside of the capsule is usually under a partial vacuum and sealed,

with the diaphragm held extended by a spring, and expands or contracts with regard to

changes in atmospheric or gas pressure, as seen in Figure 3.7.

Figure 3.7: Model of a barometric pressure sensor.

While the LPS22HB is a fairly noisy sensor, all MEMS barometric pressure sensors

suffer from this issue. Additionally, a properly calibrated low-pass filter can generate

usable altitude readings over time using this sensor. As a supplementing sensor for

height estimation, which comes pre-installed on the Arduino and has pre-built software
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packages to work with, this makes it a useful sensor to introduce to the platform.

Ultrasonic Transducer

The quadcopter was designed to use an HC-SR04 Ultrasonic Distance Sensor. The

HCR-SR04 [22] is an ultrasonic transducer, which is a sensor that measures the distance

from a surface. The ultrasonic transducer works by emitting a ultrasonic pulse which

then reflects off a surface and can be received the by the sensor. The time between

the pulse being sent and it returning can be used to accurately (±0.01cm) determine

the range from the surface. As this sensor is highly accurate in the region in which it

Figure 3.8: HC-SR04 Ultrasonic Distance Sensor.

can accurately receive echos of the pulse output (2[cm]− 4[m]), and the quadcopter is

designed to fly in a lab environment, flights exceeding 3[m] in height are unlikely. The

low cost ($1) and high accuracy of this sensor, along with the simplicity of connecting to

the Arduino make it an ideal sensor for height estimation. Software written to control

the ultrasonic sensor and measure distances is included in Appendix B

Optical Flow Sensor

This quadcopter is designed to use the CJMCU-3901 Optical Flow Sensor. The CJMCU-

3901 Optical Flow Sensor is a generic board built around the PMW-3901 Optical Motion

Tracking Chip [23]. An optical flow sensor estimates the linear velocity and yaw angle

by use of a camera and comparing successive frames [24, 25]. By identifying landmarks

in the image, the optical flow algorithm can determine the linear velocity and change

in yaw angle based on the translation and rotation of said landmarks. With a known

altitude, the velocity can be estimated by determining the size of each pixel, counting

the number of pixels the landmark has translated across, and then the velocity may

be determined by calculating the distance traveled between the known time between

frame. Figure (3.9) provides a simplified visual representation of how the optical flow

algorithm works.
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Figure 3.9: A brief explanation of the optical flow algorithm.

3.2 Test-Bench Platform

The test-bench platform was designed for simple testing of the quadcopter in a con-

strained environment prior to free flight testing. The test-bench platform was designed in

SolidWorks and built in part by hand and in part by 3D printing necessary components.

Constraining the quadcopter’s flight prior to free flight testing is advantageous as it

allows for the testing of control loops and estimation in a safe manner to both the

researcher and the quadcopter. Additionally, the thrust measurement of the quadcopter

is critical for developing the motor output model. As the equations to determine the

thrust are highly complex, this makes them prone to give incorrect values due to a wide

range of parameters which may not have sufficient precision. Therefore, the ability to

generate a thrust model for each motor based on empirical data is incredibly useful.

3.2.1 Variable Degree of Freedom Gimbal

The variable degree of freedom gimbal can be used to test the quadcopter in up to three

degrees of freedom (pitch, roll, and yaw). By adjusting the gimbal, various degrees of

freedom can be “locked” allowing for the testing along individual rotational axes, or

along any combination of rotational axes. The gimbal is composed of two 3D printed

(a) Solidworks Model. (b) Fabricated Unit.

Figure 3.10: A variable degree of freedom gimbal.
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(a) Side view. (b) Top view.

Figure 3.11: Quadcopter mounted in the variable degree of freedom gimbal.

frames joined by 2[mm] metal rods that are passed through bearings with a 6[mm]

outer diameter and a 2[mm] inner diameter. The outer frame is set in a mount attached

to the base platform which is clamped to the table and has a large bearing to allow

for yawing motion (Figure 6.24). A screw is used to prevent any yawing motion when

desired. The printed parts of the gimbal were all printed using ABS plastic. Once set

up, the quadcopter may be mounted into the gimbal by passing the metal rods into the

bearing at the sides of the quadcopter (Figure 3.11).

3.2.2 Thrust Measurement Test Bench

The thrust measuring test bench is two pieces of equipment. The individual motor

thrust test bench allows for the measurement of thrust of a single motor at a time. The

(a) Solidworks Model. (b) Fabricated Unit.

Figure 3.12: A motor thrust measurement test bench for a single motor.

second piece of equipment is the quadcopter motor thrust test bench, which slots on top

of the individual motor thrust test bench and can test the motor thrust output of the
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(a) Solidworks Model. (b) Fabricated Unit.

Figure 3.13: A motor thrust test bench for the assembled quadcopter.

quadcopter itself, either with an individual motor running, all four motors running, or

any combination of motors running. This allows for validation of the individual motor

thrust calculations when multiple motors are interacting. The thrust measurement test

bench was designed in Solidworks and 3D printed with ABS plastic. The test bench was

attached to a scale by use of 3 screws running underneath grooves on the underside of

the scale, and a 4[kg] weight was placed inside to ensure the motors and the quadcopter

would not lift off during thrust testing. The procedure for generating thrust profiles

using the thrust measurement test bench can be found in Appendix C. This procedure

(Figure. 3.14) provides a simple empirical method of determining the thrust generated

by each motor-propeller-ESC unit in response to any given command sent to the ESC.

Once determined, thrust profiles for each motor-propeller-ESC unit can be integrated

into the flight code via the process listed in Appendix D.

Figure 3.14: A workflow to determine thrust profiles for the quadcopter motors.
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3.3 Hardware Fabrication

Fabrication of the platform includes the quadcopter and the physical testing equipment.

The majority of all parts were either purchased off the shelf, or printed using an

Ultimaker S5 3D printer. The print time for the quadcopter frame was approximately

19 hours, with the print time of each of the thrust test bench components taking on

the order of 13 hours. The gimbal parts required approximately 6 hours to print. Once

printed, the platform was fabricated was by hand. Sensors, motors and ESCs were

mounted in the frame, and the wiring was hand-soldered according to the wiring diagram

(Appendix. E).

3.4 Software

The development of the software for the research platform is what allows the platform

as a whole to function. Key pieces of software were developed to this end. An Arduino

project was written to allow for thrust measurements and direct control of individual

and multiple motors simultaneously. A flight simulator was developed using MATLAB

and Simulink for initial testing of the GNC systems. Lastly, a C++ based flight code

package was built to run the quadcopter, along with a BLE based logger written for

MATLAB.

3.4.1 Thrust Measurement

A small piece of software was written as an Arduino project (.ino file) for thrust

measurement. The software allows for the calibration of the ESCs by sending PWM

signal of 2000 µs when the motors start up, and the sending a PWM signal of 1000 µs

to set the PWM signal range for the ESCs. An automatic thrust test function slowly

increases thrust from 0% to 100% over a set period of time. Additionally, there is a

manual thrust test function where the user can send a desired percentage value to ESC

of any enabled motor to see what thrust is generated. A fourth function enables and

disables the desired motors. The fifth and final function allows for running a manual test

on all four motors at once, and the ability to sequentially activate/deactivate motors,

or run all 4 simultaneously. The thrust measurement code can be found in Appendix F.

3.4.2 Flight Simulator

A modular flight simulator (Figure 3.15) was written using MATLAB and Simulink. The

flight simulator is a modular piece of software allowing for users to easily design and

implement new systems for simulation. The three primary modules are the guidance,
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navigation, and control modules. Additionally, there are modules for the plant dynamics

(linear and nonlinear dynamics), sensor modules (with or without noises), environmental

effects (constant or dynamic), and motor processes (saturation of the motors or not,

and process noise or not). Additionally, the simulator allows for easy modification of

the quadcopter and sensor properties to allow for rapid adaption to use with other flight

platforms. It is important to note that any module may be modified to any extent

desired by the end-user, and provided the given inputs and outputs do not change,

no impact should be felt by any other module in regards to the functionality of the

simulator as a whole. The flight simulator has a file structure that can be seen in

Figure 3.15: Simulink-based flight simulator.

Figure 3.16. This directory contains a library folder for each of the GNC systems, as

well as a folder with the dynamic models and sensor models used for the simulator. A

utilities folder includes various functions required to let the simulator run, along with

the setup.m and Visualization.m files included in the top level folder. Addition of

models or systems to the appropriate folders allows for simple addition of new options

to the flight simulator software.

Below, we will discuss each block of the flight simulator. For each block being

discussed, we will highlight the the block in question by placing a red box around it.

Quadcopter Properties Block

The quadcopter properties block (Figure 3.17) produces a pop-up menu which allows

the user to input the quadcopter’s physical properties (Figure 3.18). This menu comes

pre-loaded with the physical properties of the quadcopter designed with this platform,

however, it can easily be adjusted to account for other quadcopters as well.

Simulation Settings Block

The simulation settings block (Figure 3.19) produces a pop-up menu which allows the

user to select and modify the simulation’s parameters and the simulation’s output

(Figure 3.20). The user may choose the length of the simulation, as well as whether

or not to display plots when the simulation is done. If the user decides to display
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Figure 3.16: File directory of the flight simulator.

Figure 3.17: Quadcopter Properties Block of the flight simulator.

plots, they may then choose which plots they would like displayed as well. Lastly, the

simulation settings block allows the user to set the frequencies at which the sensors and

the flight controller run. The frequencies come pre-loaded with the correct values for

the given quadcopter but may be modified for use with other quadcopters as well.
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Figure 3.18: Quadcopter Properties Menu for the flight simulator.

Figure 3.19: Simulation Settings Block of the flight simulator.

State Information Switch

The flight simulator is built to easily allow for changes in various systems. To this end,

a feedback switch was added to the simulator. This switch allows the user to change

between the guidance and control systems receiving full-state information fed back to

them, or only information fed back from the state estimators in the navigation system

(Figure 3.21).

Guidance System Block

The guidance subsystem block (Figure 3.22) is a masked subsystem which contains all

of the components necessary to choose a guidance system desired by the user. This
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Figure 3.20: Simulation Settings Menu for the flight simulator.

Figure 3.21: State Information Switch for the flight simulator.

subsystem block, when clicked, generates a drop-down menu of guidance systems from all

of the guidance system .m-files stored in the guidance library folder, with the exception

of template files (Figure 3.23).

Motor-Mixing-Algorithm and Actuators Subsystem Block

The MMA and Actuators subsystem block (Figure 3.24) produces a pop-up menu

which allows the user to select the various parameters affecting the actuation of the

quadcopter (Figure 3.25). Motor saturation may be optionally enabled or disabled

to better reflect the physical system. The saturation of the motors is on a per-motor

basis, and takes an upper limit of the maximum thrust each motor can generate, and

a lower limit set as the idle percentage of the ESCs, below which the motors cease

to function. Additionally, process noises may be introduced into the system to better
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Figure 3.22: Guidance Subsystem Block of the flight simulator.

Figure 3.23: Built-in guidance systems for the flight simulator.

simulate inaccuracies in the motor thrust profiles and of inconsistencies in the thrust of

the various motor-propeller-ESC units. The process noises when enabled are considered

white noises, with each motor getting it’s own unique random seed to start the white

noise process.

Figure 3.24: Motor-Mixing-Algorithm and actuators subsystem block of the flight
simulator.

Dynamics Subsystem Block

The dynamics subsystem block (Figure 3.26) produces a pop-up menu which allows the

user to select between various dynamics for the quadcopter (Figure 3.27). Included in

the platform is a linear and a nonlinear model.
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Figure 3.25: Motor-Mixing-Algorithm and actuators subsystem Menu for the flight
simulator.

Figure 3.26: Quadcopter Dynamics Subsystem Block of the flight simulator.

Figure 3.27: Quadcopter Dynamics Subsystem Menu for the flight simulator.

Control System Block

The control subsystem block (Figure 3.28) is a masked subsystem which contains all

of the components necessary to choose a control system desired by the user. This

subsystem block, when clicked, generates a drop-down menu of control systems from all
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of the control system .m-files stored in the navigation library folder, with the exception

of template files (Figure 3.29).

Figure 3.28: Control Subsystem Block of the flight simulator.

Figure 3.29: Built-in control systems for the flight simulator.

Environment Subsystem Block

The environment subsystem block (Figure 3.30) produces a pop-up menu which allows

the user to select the simulations environmental effects, whether or not they are constant

or dynamic (Figure 3.31). Constant environment uses static values for various parameters

in the simulation (including but limited to, gravity, and air density), whereas the dynamic

environment subsystem modifies these values based on the current state and location of

the quadcopter. It is recommended in general to use the constant environment due to

compilation time required for the dynamic subsystem.

Sensors Subsystem Block

The sensors subsystem block (Figure 3.32) produces a pop-up menu which allows the

user to select whether there is sensor noise (dynamics sensors), or whether they function

as ideal sensors with no noise (Figure 3.33). Sensor parameters are set to correlate with

the sensors used on the physical hardware.
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Figure 3.30: Environment Subsystem Block of the flight simulator.

Figure 3.31: Environment Subsystem Menu for the flight simulator.

Figure 3.32: Sensors Subsystem Block of the flight simulator.

Navigation System Block

The navigation subsystem block (Figure 3.34) is a masked subsystem which contains all

of the components necessary to choose a navigation system desired by the user. This

subsystem block, when clicked, generates a drop-down menu of navigation systems from

all of the navigation systems .m-files stored in the navigation library folder, with the

exception of template files (Figure 3.35).
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Figure 3.33: Sensors Subsystem Menu for the flight simulator.

Figure 3.34: Navigation Subsystem Block of the flight simulator.

Figure 3.35: Built-in navigation systems for the flight simulator.

3.4.3 Flight Code

As the Arduino can natively compile C++ code, the flight code was written in C++.

C++is an object oriented language, which allowed for increased modularity, along with

simple to implement reuse of code. The software was designed as a package to allow

for autonomous flight of the quadcopter. It was built in a modular fashion in order to

allow for ease of use for GNC system design of any particular aspect while allowing the

other modules to continue to function. The software was designed to be as user-friendly

as possibly and require minimal modification of the base code to run the quadcopter.

To this end, a main function was designed which requires editing of only 5 lines of code

(Snippet 1) to modify and run the flight code to use the desired packages. The user
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1 //--------------------------------------------------------------------------------------------

2 // USER SETUP IS DONE HERE

3 //--------------------------------------------------------------------------------------------

4

5 // Restrict Quadcopter Dynamics to Fulfill Linearization Assumptions

6 bool Linear = true;

7

8 /* Define Navigation Packages List

9 Inside the curly brackets, input (in order) the navigation packages desired from the

10 EstPackages.hpp file. If a package you want to use is not in the EstPackages.hpp file, but

11 it is an available filter, you can include it by encapsulating the class name in curly

12 brackets.

13 */

14 std::list<Package> packages = {AttitudeComplementaryPackage, Altitude_Kalman,

15 Verbatim_pqr, LateralPosition_Kalman};

16 // Feed the desired navigation packages to the Navigation class for state estimation.

17 Navigation nav(packages);

18

19 // Guidance System goes on this line

20 queue<Waypoint> waypoints ({

21 Waypoint{0, 0, 1}, //

22 Waypoint{1, 0, 1}, //

23 Waypoint{-1, 0, 1} //

24 });

25 auto guidance = WaypointGuidance(waypoints, false);

26

27 /* Choose a Control System

28 The Control System can be changed by changed the Class of the Control System object csys.

29 Choose a control system from the library of control system (which is made up by one or

30 more controllers from the controller library). Leave the name of the object "csys"

31 unchanged. recovery_csys is the recovery mode control system that enables when the quadcopter

32 begins to leave the linear range, if the linear restriction is enabled.

33 */

34 CascadedPID csys; //Attitude_LQR csys

35 InnerLoopPID recovery_csys;

36

37 //--------------------------------------------------------------------------------------------

38 // END USER SETUP HERE. NO *REQUIRED* CHANGES TO CODE BEYOND THIS POINT

39 //--------------------------------------------------------------------------------------------

Snippet 1: User setup of the flight code.

merely needs to choose the following:

• Whether or not the quadcopter is restricted to flight in the region in which the

small angles approximation holds true (φ, θ ≤ 10◦).

• Which navigation packages to feed to the navigation system.

• Which guidance package to use.

• The desired control system.

• A recovery control system to be used if the quadcopter leaves the linear range (is

the linear flag is true.)

Once the user has followed the above steps, the flight code may then be flashed to the

Arduino board and flight testing can commence. When the quadcopter begins startup
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it begins by initializing all of the data structures and GNC systems required to run.

It then begins a five second calibration phase of the sensors. After calibration, the

quadcopter waits for a start command signal to be received over BLE. Once the signal

has been received, the main function loop begins to poll the sensors for measurement

updates and the BLE to determine if a stop signal was received. When received, the

measurements are fed into the navigation package, which provides a state estimate to

the guidance package. The guidance package then provides the reference signal to the

control package. The recovery subsystem determines whether or not the quadcopter

needs to enter flight recovery mode and/or shutdown, and if so, it initiates these changes

to the control, if not however, the control signal is sent to the motors. All recorded

and calculated information is then broadcasted via the logging subsystem, and the loop

repeats. A flowchart of this process can be found in Figure 3.36.

The recovery subsystem (Figure 3.37) is used to both ensure safe flight, and allow

for both emergency and remote shutdown of the quadcopter. When active, the recovery

subsystem ensures that the quadcopter does not leave the region in which the small

angle assumption holds valid (≤ 10◦). If the quadcopter begins to exeed this threshold,

then when the attitude reaches 15◦ the flight recovery subsystem overwrite the guidance

law to provide a new reference signal of maintaining an altitude of 0◦ and maintaining

altitude. Additionally, it uses the recovery controller, which is a preset controller known

to regulate the attitude well. In the event the quadcopter continues to exceed the

allowed attitude, and reaches an attitude angle of 20◦, the system assumes that the

quadcopter has lost control and initiates an emergency shutdown.

The flight code was written in the Visual Studio Code code editor with the PlatformIO

plugin to provide Arduino compatibility. Via PlatformIO the code could be flashed over

USB directly to the Arduino. While Visual Studio Code and PlatformIO were used to

develop the code, any code editor compatible with the Arduino Nano 33 BLE Sense

may of course be used to update the code of flash new firmware to the quadcopter.

Flight Code File Directory

A view of the flight code file directory can be found in Figure 3.38. It comprises of

numerous files which run the quadcopter. One of the trade-offs required to make the

flight code more user friendly to the user, was increasing the complexity of the back-end

of the code. Fortunately, the Arduino has the computational resources to handle this

with negligible impact. To this end, the majority of the files do not require any user

interactions. For general flight using existing GNC system in the flight code, only the

main.cpp file requires any interaction. In-depth explanations as to the files required for

the implementation of new systems can be found in Chapter 5.
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Figure 3.36: Flowchart of the flight code logic.

3.4.4 Bluetooth Live Data Logger

The final piece of software was the data logger. The data logger was written in MATLAB

and runs in real-time logging the data sent by the quadcopter over BLE. The logger

interface allows the user to choose which bluetooth characteristics to read from the

quadcopter, and which plots to display during the flight (Figure 3.39. The quadcopter is

started via the logger interface, and can have the emergency shutdown signal sent from

the logger as well. On completion of a flight the output plots can be manipulated by

the user to show only the desired data. It must be noted that in the logger output, the

z-axis is inverted with the positive direction showing “up” rather than “down”. This is
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Figure 3.37: Flowchart of the flight recovery subsystem.

for purposes of display only, and to help viewers better intuitively understand what is

happening in each plot.
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Figure 3.38: File directory of the flight code.

Figure 3.39: Startup Menu for the BLE Live Logging Tool.

39

 

 

 



Figure 3.40: GUI for the BLE Live Logging tool.

(a) Flight Analysis GUI.

(b) Plots Menu. (c) Time Window Menu. (d) Load Data Menu.

Figure 3.41: Flight analysis GUI for the BLE Live Logging Tool.
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Chapter 4

Quadcopter Dynamics

The chapter deals with the derivation of the requisite frames of reference and mathemat-

ical models necessary to form the underlying basis for the development of the dynamic

model of the quadcopter. This is required for the development of the simulator itself,

and for the development of controllers and estimators for the quadcopter.

4.1 Frames of Reference

A frame of reference, or reference frame, is the combination of a coordinate system

and a set of reference points that can uniquely fix the location and orientation of

the coordinate system and standardize measurements within said frame. Reference

frames are broadly classified into two main categories: inertial and non-inertial. An

inertial reference frame is a non-accelerating reference frame in which Newton’s first

law of motion holds. Over a small enough geographic region and low speeds, we can

approximate an inertial frame of reference using a three-dimensional coordinate system

using points on the Earth as our reference points. It should be noted however, that

while for the purposes of this thesis and the platform designed therein we can treat this

as an inertial reference frame, due to factors such as the rotation of the Earth, it is not

in actuality an inertial reference frame. In contrast, a non-inertial reference frame is

a frame of reference which is undergoing some acceleration with respect to an inertial

reference frame. As such, a body in a non-inertial reference frame with no forces acting

upon it may experience an acceleration with respect to the frame of reference due to

fictitious forces. A special case of a non-inertial reference frame is a rotating reference

frame which rotates relative to an inertial reference frame. A rotating reference frame

is characterized by three fictitious forces. These are the centrifugal force, the Coriolis

force, and if the rotation rate is not constant, the Euler force; see, for example [26].

4.1.1 Frame Transformations

To derive the mathematical and physical models which govern the quadcopter, we must

first understand in which frame of reference we will be working. A quadcopter is a
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vehicle with six degrees of freedom, allowing for movement along three perpendicular

axes, and rotation around each of those axis. As such, we may define the reference

frame as a three-dimensional coordinate system with its origin coinciding with center of

mass of the quadcopter. We call this non-inertial reference frame the body frame.

While the body frame is a convenient reference frame for describing the motions of

the quadcopter and the forces generated by it, it was a relatively inconvenient frame

of reference by which to guide the quadcopter or determine its position. A more

accessible frame of reference is the inertial reference frame. This frame is also based

on a three-dimensional coordinate system, but it uses reference points not related to

the quadcopter itself to set an origin. This allows for a simple set of coordinates to be

used to describe the position of the quadcopter in its environment irrespective of the

orientation of the quadcopter itself.

Both frames of reference (body and inertial) have their own advantages and disad-

vantages. As such, it is useful to work in each frame of reference where they are best

suited and to transition between the two as necessary to benefit from their advantages

without the disadvantages. To do so, we use frame transformations. Any point or rigid

body in a given reference frame can be described in another reference frame through the

use of a translation and rotation of the vector describing the position. As a reference

frame is a defined in a three-dimensional coordinate system, the simplest form of this a

is a Cartesian coordinate system in which three orthogonal planes intersect to form the

coordinate system. A point in this system can be defined as the vector p =
[
x y z

]T
where x, y, and z represent the distance from the origin of the frame along a given

axes defined where the planes intersect. Other coordinate systems exist, such as polar,

cylindrical and spherical coordinate systems, however they will not be used in the scope

of this thesis. To transition between two different reference frames (of the same type of

coordinate system), two different types of motion may be used: rotation and translation.

Rotation is the motion of the space around at least one fixed point while preserving the

distances between the points in the space. A translation on the other hand, moves every

point in a given space a fixed distance in a given direction. Taking these definitions, we

can then define the transformation between reference frames as

pB = RBApA + tA, (4.1)

where pB denotes a position vector expressed in frame B, RBA is a rotation matrix from

frame A to frame B, and tA is a vector expressed in frame A translating the origin of

frame A to B. A rotation matrix is an orthonormal matrix, such that R−1 = RT , which

leads to

pB = RBApA ⇐⇒ pA = (RBA)TpB = RABpB, (4.2)

For purposes of convention, we use the superscript ( )B to represent the body frame
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and the superscript ( )I to represent the inertial frame. The translation is rather simple

to calculate as it is just the displacement of the body from the origin of the inertial

frame.To simplify notation, for the remainder of this thesis, we define R , RIB and

RT , RBI .

In this thesis, we will define the body frame as centered on the quadcopter center of

mass, with the x-axis (xB) pointing the forward direction, the y-axis (yB) pointing to

the right, and the z-axis (zB) pointing down (Figure 3.3). We will additionally define the

inertial frame (xI , yI , zI) to be somewhere on the surface of the earth. For simplicity,

we assume that it is aligned with the quadcopter initial (grounded) position.

4.1.2 Euler Angles and Rotation Matrices

Any two independent orthonormal coordinate frames, in three-dimensional space, can

be related by a sequence of three or fewer rotations about coordinate axes, where no

two successive rotations may be about the same axis. Euler angles represent these

rotations with φ representing the rotation around the x-axis (roll), θ representing the

rotation around the y-axis (pitch), and ψ representing the rotation around the z-axis

(yaw) (Figure 4.1).

Figure 4.1: Euler angles.

Each rotation is around its own intermediate reference frame. Assuming a three-

dimensional coordinate system, we can then define the rotations around φ (4.3), θ (4.4),

and ψ (4.5) respectively [27],

Rx(φ) =

1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , (4.3)

Ry(θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , (4.4)
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Rz(ψ) =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 . (4.5)

Changing the order of rotation changes the solution, and as such, the order must

be consistent. A common rotation order in the aerospace industry used to rotate from

the body frame to the inertial frame is the yaw-pitch-roll (ypr) order of rotation. This

order of rotation produces a rotation matrix (4.6). For sake of convention, we define

cα = cos(α) and sα = sin(α). We can transform the inertial frame to the body frame as

follows

R = Rx(φ)Ry(θ)Rz(ψ) =

 cψ cθ cθ sψ −sθ
cψ sφ sθ − cφ sψ cφ cψ + sφ sψ sθ cθ sφ

sφ sψ + cφ cψ sθ cφ sψ sθ − cψ sφ cφ cθ

 , (4.6)

and we can transform the body frame to the inertial frame using the transpose

RT = Rx(φ)TRy(θ)
TRz(ψ)T =

cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ
−sθ sφ cθ cφ cθ

 . (4.7)

If our velocity in the body frame is defined as vB =
[
u v w

]T
, and our velocity in the

inertial frame is defined as vI =
[
ẋ ẏ ż

]T
, we can transform our body-frame velocity

to our inertial frame velocity via vI = RvB, which yields,
ẋ = w (sφsψ + cφcψsθ)− v (cφsψ − cψsφsθ) + u(cψcθ)

ẏ = v (cφcψ + sφsψsθ)− w (cψsφ − cφsψsθ) + u (cθsψ)

ż = w (cφcθ)− u (sθ) + v (cθsφ)

. (4.8)

While taking the time derivative of the Euler angles will generate corresponding

angular rates, the angular velocity vector is defined as the vector pointing along the

axis of rotation of the rotating quadcopter, where p, q, and r represent the rotations

around the body-frame x, y, and z axes respectively. Therefore, time derivatives of the

Euler angles must then be rotated in sequence to find the angular velocity,pq
r

 = R(φ)R(θ)

0

0

ψ̇

 +R(φ)

0

θ̇

0

 +

φ̇0
0



=

1 0 −sθ
0 cφ cθsφ

0 −sφ cθcφ


φ̇θ̇
ψ̇

 . (4.9)
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This can be reformulated to give the time derivative of the Euler angles in terms of the

body frame angular velocities,φ̇θ̇
ψ̇

 =

1 sφ tθ cφ tθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ


pq
r

 , (4.10)

where we define tα = tan(α) [28].

4.2 Quadcopter Dynamics and Kinematics

To begin preparing a controller for our quadcopter, we must first derive the mathematical

models which govern the dynamics of the quadcopter.

4.2.1 Assumptions

A quadcopter is a highly nonlinear system and subject to a multitude of forces during

flight. However, as the quadcopter will be of relatively small size, slow moving, and

relatively rigid, we may make the following assumptions:

1. The quadcopter is a rigid body.

2. The Center of Gravity and the Center of Mass coincide with the geometric center

of the quadcopter.

3. The Moment of Inertia of the propellers are negligible.

4. At low airspeed, the aerodynamic drag is negligible.

5. The freestream velocity is negligible.

6. There is no blade-flap.

Under the above assumptions, we can examine the forces, torques, and moments of

inertia to develop the equations of motion of the system.

4.2.2 Forces

The quadcopter generates forces using four propellers attached to motors. These forces

determine the quadcopter’s dynamics.

Thrust and Drag

Due to the motors and propellers of the quadcopter being fixed along the same plane in

the body-frame (Figure 3.3), the quadcopter can generate thrust only along the z-axis

of the body frame. However, as the relevant frame of reference for guidance, navigation

and control of the quadcopter is the inertial reference frame, we derive the total forces
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on the quadcopter in the inertial reference frame. Additionally, note that the thrust

along the z-axis is negative due to the z-axis pointing downward and the thrust pointing

up. ∑
F = mp̈ =

 0

0

mg

 +R

 0

0

−T

 (4.11)

Here,
∑
F is the total force acting on the quadcopter, m is the mass of the quadcopter,

g is acceleration due to gravity, and T is the total thrust generated by the propellers

of the quadcopter. To calculate the thrust generated by the propellers we employ the

blade element theory (BET)[29].BET is a mathematical process used to determine the

behavior of propellers. By sectioning the blade into multiple small parts and evaluating

the forces on each section, then integrating the forces along the blade and over one

revolution the forces and moments can be calculated. The thrust generated by the

propeller of the quadcopter is equal to the lift generated by the propeller, and can be

calculated using

L =
1

2
ρSV 2CL, (4.12)

where ρ is the atmospheric density, S is the surface area of blade segment, CL is the lift

coefficient (determined by the shape of the blade and angle of attack), and V is the

relative velocity between the blade and the air. Under the assumption of a negligible

freestream velocity, the air is standing still, and therefore the velocity between the blade

and the air can be defined at any point along the blade as

V = ωmirb (4.13)

where V is the velocity between the blade and the air, ωmi is the rotational velocity of

the given blade, and rb is the distance of the point in question from the axis of rotation.

(4.12) can now be rewritten, substituting L for Ti, defining the radius of the propeller

as Rprop, and simplified by consolidating the terms into

T i =
1

2
ρSR2

propω
2
miCT = kmω

2
mi . (4.14)

Summing the thrust generated by each propeller determines the total thrust of the

quadcopter,

T =
4∑
i=1

Ti =
4∑
i=1

kmω
2
mi
. (4.15)

In the same manner in which lift is generated by the propellers, drag is generated as

well. The lift is perpendicular to the plane of motion, drag is generated in the plane of

motion in the opposite direction of the motion. The drag equation can be calculated as

D =
1

2
ρSV 2CD. (4.16)
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As with the lift equation, we can rewrite (4.16) by substituting in (4.13) and consolidating

the terms to yield

D = kdω
2
mi . (4.17)

4.2.3 Torques

From classical mechanics and the geometry of the quadcopter (Chapter 3.1.2), we can

calculate torques around the x-axis and y-axis in the body frame simply as the sum of

the cross-products of the thrust generated by each motor and the distance of the motors

from the center of mass. The torque around xB is defined as τφ, around yB is defined as

τθ, and around zB is defined as τψ. Accounting for the quadcopter’s geometry (Figure

3.3) we can then determine the torques generated from each motor, and the total torque

acting upon the quadcopter. This geometry leads to a positive or negative torque being

generated based on the direction along the x and y-axes that the motor is located from

relative to the center of gravity. Motors “forward” of the center of gravity will generate

a positive torque around the x-axis, while motors “behind” the center of gravity will

generate negative torques around the x-axis. Likewise, motors to the “right” and “left”

of the center of gravity will generate positive and negative torques respectively around

the y-axis yieding,

τφ = Lx1T1 − Lx2T2 − Lx3T3 + Lx4T4 (4.18)

τθ = Ly1T1 + Ly2T2 − Ly3T3 − Ly4T4. (4.19)

From (4.16) we can define the torque that each propeller generates around the z-axis in

the body frame by multiplying by the radius of the propeller Rprop, yielding

τDi =
1

2
ρRpropSV

2CD=
1

2
ρRpropS(ωmiRprop)

2CD = bω2
mi , (4.20)

where b = 1
2ρR

3
propSCD. We can see that τD (4.20) resembles T (4.14) in form. If we

define a scaling factor c = b
km

then we can find the given torque for each motor,

τDi = cT i = ckmω
2
mi . (4.21)

If we sum the torques generated around the body frame z-axis by each of the motors, we

can calculate the total torque around that axis. From the geometry of the quadcopter

(Chapter 3.1.2) we know that motors 1 and 3 spin clockwise, while motors 2 and 4

spin counter-clockwise, which causes the torques generated by said motor pairs to be in

opposite direction. This, along with (4.21), this yields

τψ = c(T1 − T2 + T3 − T4). (4.22)
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We define the torque vector as τ =
[
τφ τθ τψ

]T
.

4.2.4 Equations of Motion

The Newton-Euler equations (4.23) characterize the translational and rotational dynam-

ics of a rigid body, and can be written as[
FB

τB

]
=

[
mI3 0

0 Icm

][
acm

B

ω̇

]
+

[
ω × mvB

ω × Icmω

]
, (4.23)

where I3 is the 3 × 3 identity matrix, acm
B represents the linear accelerations in the

body frame, Icm represents the inertia matrix (4.24), ω represents the vector of the

angular velocities
[
p q r

]T
and ω̇ represents the angular acceleration. Under the

assumption that the quadcopter is symmetric, the inertia matrix becomes

Icm =

Ixx 0 0

0 Iyy 0

0 0 Izz

 . (4.24)

When the reference frame is fixed to the center of mass of the rotating body, (4.23) can

then be simplified as[
FB

τB

]
=

[
mI3 0

0 Icm

][
acm

B

ω̇

]
+

[
0

ω × Icmω

]
. (4.25)

Using (4.25) and (4.11), accounting for our assumption that the aerodynamic drag at

the given speeds is negligible, and accounting for the gravitational force g as well, we

can derive the translational dynamics of the quadcopter in the body frame and rotate

them into the inertial frame,
ẍ = − T

m(sinφ sinψ + cosφ cosψ sin θ)

ÿ = − T
m(cosφ sinψ sin θ − cosψ sinφ)

z̈ = g − T
m(cosφ cos θ)

. (4.26)

We can develop the rotational dynamics of the quadcopter in the body frame from

(4.18)-(4.22) and (4.25), 
τφ = Ixxṗ− Iyyqr + Izzqr

τθ = Iyy q̇ + Ixxpr − Izzpr

τψ = Izz ṙ − Ixxpq + Iyypq

. (4.27)
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We can rearrange (4.27) to isolate the angular accelerations,
ṗ =

τφ
Ixx

+
Iyy−Izz
Ixx

qr

q̇ = τθ
Iyy

+ Izz−Ixx
Iyy

pr

ṙ =
τψ
Izz

+
Ixx−Iyy
Izz

pq

. (4.28)

By expanding (4.10), we receive:
φ̇ = p+ r (cφtθ) + q(sφtθ)

ψ̇ = q(cφ)− r(sφ)

θ̇ = r
cφ
cθ

+ q
sφ
cθ

. (4.29)

4.2.5 Actuator Dynamics

A quadcopter is a system with six degrees of freedom, however, it has only four actuators.

This means that our system is an under-actuated system, the outcome of this being

that some motions will be uncontrollable at any given time and certain motions will be

coupled to each other. Indeed, the quadcopter could not travel left or right without

rolling first. Any controller must therefore take this into account. From the equations

of motion (4.25) it is simple to see that the forces and the torques are the possible

was to control the position and the orientation of the quadcopter. As force is only

generated by the quadcopter in a single direction in the body frame and the torques can

be generated along three axis, we find that there are four possible methods of controlling

the quadcopter using our actuators. We begin by defining the four control inputs of the

quadcopter,

u =
[
u1 u2 u3 u4

]T
=

[
T τφ τθ τψ

]T
. (4.30)

Where u is the control input vector composed of a thrust input, as well as rolling,

pitching, and yawing moment inputs used to determine the rotational rates and linear

accelerations of the quadcopter as per (4.11) and (4.28). Using (4.15), (4.18), (4.19),

and (4.22), we can determine the motor speeds required to generate the required a given

control input, 
u1

u2

u3

u4

 =


km km km km

Lx1km −Lx2km −Lx3km Lx4km

Ly1km Ly2km −Ly3km −Ly4km

ckm −ckm ckm −ckm


︸ ︷︷ ︸

M


ω2
m1

ω2
m2

ω2
m3

ω2
m4

. (4.31)

where km is the constant defined in (4.14), c is taken from (4.16), and Lxi and Lyi are

taken from Chapter 3.1.2. Further, by taking the inverse of (4.31) we can convert our
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control input directly to the required motor outputs,
ω2
m1

ω2
m2

ω2
m3

ω2
m4

 = M−1


u1

u2

u3

u4

 , (4.32)

This is called the motor-mixing algorithm (MMA). The MMA recieves a control

input from the control system, the desired forces and moments, and outputs desired

motor speeds for each of the four motors. The motor speeds are then sent to the

electronic speed controllers which provide the appropriate voltage (Vi) to each of the

four motors. The applied voltage spins the motors up to the correct speed and in the

correct direction which, when combined with the propellers, generates the thrust (4.15)

and torques (4.18),(4.19),(4.22) which then control the quadcopters dynamics (Figure.

4.2).

M−1
Electronic

Speed
Controllers

Motors
and

Propellers

Quadcopter
Dynamics

Actuators Block

u1

u2

u3

u4

ω2
m1

ω2
m2

ω2
m3

ω2
m4

V1

V2

V3

V4

Figure 4.2: Block diagram of the actuators subsystem.

4.3 State Space Representation and Linearization

State-space representation is a mathematical model of a physics system by use of a

set of input, output, and state variables. State space representation allows for the

representation of a system in matrix form with the state of the system being represented

as a vector. This representation leads to a convenient and compact method of modeling

and analyzing systems with multiple inputs and outputs.

4.3.1 State-Space Representation

The state vector χ is the vector containing the states determining where an object is

located, how it is oriented and how it is moving. For the state space representation, we

will only use the inertial frame. As such, to simplify notation, the superscript I will

not be used. We define η =
[
φ θ ψ

]T
as the Euler angle vector. From these, we can

define the state vector,

χ =
[
pT ηT vT η̇T

]T
=

[
χT1−3 χT4−6 χT7−9 χT10−12

]T
, (4.33)
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where χi−j represents index i to j of the vector. Taking the derivative of the state space

vectors, we find

χ̇ =
[
vT η̇T acm

T η̈T
]T

=
[
χ̇1−3 χ̇4−6 χ̇7−9 χ̇10−12

]T
. (4.34)

From this, and (4.26), (4.28), (4.8), and (4.10), we derive the nonlinear model (4.35).

χ̇ =



ẋ

ẏ

ż

φ̇

θ̇

ψ̇
−T
m (sφsψ + cφcψsθ)
−T
m (cφsψsθ − cψsφ)

g − T
m(cφcθ)

φ̈

θ̈

ψ̈



=



χ7

χ8

χ9

χ10

χ11

χ12

−u1
m (sχ4sχ6 + cχ4cχ6sχ5)
−u1
m (cχ4sχ6sχ4 − cχ6sχ4)

g − u1
m (cχ4cχ5)

g1(χ, u)

g2(χ, u)

g3(χ, u)



= f(χ, u), (4.35)

where the functions g(χ, u) =
[
g1(χ, u) g2(χ, u) g3(χ, u)

]T
are equal to,

g1(χ, u)

g2(χ, u)

g3(χ, u)

 = I−1R

u2

u3

u4



= I−1

u2

 cχ6 cχ5

cχ5 sχ12

−sχ5

 + u3

cχ6 sχ4 sχ5 − cχ4 sχ6

cχ4 cχ6 + sχ4 sχ6 sχ5

cχ5 sχ4

 + u4

sχ4 sχ6 + cχ4 cχ6 sχ5

cχ4 sχ6 sχ5 − cχ6 sχ4

cχ4 cχ5


 .

(4.36)

4.3.2 Linearization of the State Space

Developing a linearized state space of the quadcopter will allow us to use classical

control methods to control the state of the quadcopter. The key to linearization is

finding the equilibrium point of the system, or where χ̇ = 0. From (4.35) and (4.36) we
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can determine that the equilibrium vector is where the following assumption hold true,

T = mg

ẋ = ẏ = ż = 0⇐⇒ u = v = w = 0

φ = θ = 0

φ̇ = θ̇ = ψ̇ = 0⇐⇒ p = q = r = 0

(4.37)

This yields the equilibrium state vector,

χeq =
[
x̄ ȳ z̄ 0 0 ψ̄ 0 0 0 0 0 0

]T
, (4.38)

where the (̄ ) operator denotes that the given parameter can have any real value. It is

worth noting that at this equilibrium point, the rotation matrix in (4.10) is equal to the

identity matrix, and therefore, η̇=ω. Linearizing the system around this point yields:

χ̇ = A(χ− χeq) +B(u− ueq), (4.39)

Where A and B are the Jacobian matrices,
A = ∂f

∂χ(χ, u)|(χ,u)=(χeq ,ueq)

B = ∂f
∂u(χ, u)|(χ,u)=(χeq ,ueq)

. (4.40)
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This yields

χ̇ =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 −gsψeq −gcψeq 0 0 0 0 0 0 0

0 0 0 gcψeq −gsψeq 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

A



x

y

z

φ

θ

ψ

ẋ

ẏ

ż

φ̇

θ̇

ψ̇



+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m 0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz


︸ ︷︷ ︸

B


T

τφ

τθ

τψ

 .

(4.41)

Since the equilibrium heading angle may be any arbitrary value, for sake of convenience,

we may set our equilibrium heading angle as our initial heading angle. As the initial state

of the quadcopter is used to define our inertial reference frame, this yields ψeq = ψ0 = 0◦.
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This allows us to further simplify our state space matrices to,

χ̇ =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −g 0 0 0 0 0 0 0

0 0 0 g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0





x

y

z

φ

θ

ψ

ẋ

ẏ

ż

φ̇

θ̇

ψ̇



+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m 0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz




T

τφ

τθ

τψ

.

(4.42)

The system output (y = Cx+ Du) is dependent on the sensors of the system. If

we were to assume perfect information, the matrix C would be the identity matrix

I12, however in the real world, this is rarely, if ever, the case. As such, we require

the quadcopter design to incorporate appropriate sensors (Chapter 3) and the proper

implementation of state estimators (Chapter 5).
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Chapter 5

Guidance, Navigation, and

Control System Implementation

This chapter deals with the implementation of GNC systems on the research platform.

This includes the implementation of GNC systems in the simulation environment, and

in the on-board flight code. This chapter deals with the implementation of the pre-

built controllers, estimators, and GNC systems. Additionally, it will present a general

overview as to the implementation of new controllers, estimators and GNC system

by the user. It is important to note that while each GNC system can be designed

in continuous time, the hardware itself is digital, and thus runs in discrete time. As

such, for any such GNC system designed in continuous time from the start, it must be

discretized before being implemented into either the simulator or the flight code.

5.1 Guidance

The guidance system provides the desired trajectory and states of the vehicle to the

control system. It does this by taking inputs from the navigation system, processing

them using a guidance law, and outputting the result to the control system (Figure 2.1).

5.1.1 Simulator Implementation

The simulator implements guidance systems via .m-files. Any guidance system files

stored in the guidance library folder (Figure 3.16) may be accessed by the system.

Implementation of any existing guidance system can be achieved via selecting the

guidance subsystem block (Figure 3.22) and selecting the desired system from the

drop-down menu (Figure. 3.23).

Implementation of a new guidance system may be performed simple by adding a

new .m-file to the guidance library. A template for the guidance system .m-file can be

found in Snippet 2. The guidance system inputs are the time since the start of the

simulation, and the state estimates and the calibrated sensor readings, received from
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the navigation system. A twelve state reference bus matching the quadcopter states

(4.33) is then declared to provide the output of the system. It is important to declare

this bus as it is the input that the controller is expecting to receive. Unused states may

be set to zero, or in cases where they do not affect the control, to NaN if desired.

Once the reference state vector is defined, the guidance law may be implemented

with each calculation or consideration setting the appropriate reference signal. The

output is then sent to the controller.

1 function Ref = GuidanceTemplate(time, state,y)

2

3 % State Estimates

4 StateEstim = state;

5

6 % Sensor Model

7 Sensors = y;

8

9 %% Guidance Law

10 % Reference State

11 Ref.x = 0; % [m]

12 Ref.y = 0; % [m]

13 Ref.z = 1; % [m]

14 Ref.phi = 0; % [rad]

15 Ref.theta = 0; % [rad]

16 Ref.psi = 0; % [rad]

17 Ref.dx = 0; % [m/s]

18 Ref.dy = 0; % [m/s]

19 Ref.dz = 0; % [m/s]

20 Ref.dphi = 0; % [deg/sec]

21 Ref.dtheta = 0; % [deg/sec]

22 Ref.dpsi = 0; % [deg/sec]

23

24 %% Set Guidance Law Here

25 % Reference States Output is sent to Control System

26

27 end

Snippet 2: Guidance system template for the flight simulator.

Two forms of guidance systems included in the platform, an open-loop guidance

system (Snippet 22) and waypoint guidance (Snippets 23, 24) can be found in Appendix

H. It is worth noting that in the waypoint based guidance laws, a persistent variable

type is used. This variable type preserves the value of the variable between function

calls, allowing for the simulator to repeatedly call the guidance law, without losing the

data from the previous time steps.

5.1.2 Flight Code Implementation

The flight code is all written in C++. This generally would make the flight code

less accessible to those without a strong programming background. To alleviate this,

measures were taken to ensure that implementation of guidance systems, both existing

and of new user created system should be as simple and straight forward as possible.

From Snippet 1, we can see in the flight code set-up a line of code that begins with:
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auto guidance =

This is where the guidance system is implemented in the main function. Succeeding

auto guidance = the user may simply input any of the existing guidance systems. The

guidance systems are found in the file Guidance.hpp. A template guidance system can

be found at the top of the file, and in Snippet 3. During each update step, the guidance

system will take the sensors readings and state estimates from the navigation system,

and output a desired state as the reference signal for the control system, as described in

Figure 3.36.

1 class GuidanceTemplate : public Guidance {

2 // Choose desired reference states and define them as floats

3 float z;

4

5 public:

6 GuidanceTemplate(float z) {

7 // Set pointers to desired states

8 this->z = z;

9 }

10

11 void update(SensorReadings &readings, StateVector &state, StateVector &desired_state) {

12 // Update desired states based off of guidance law

13 desired_state.z = z;

14 }

15 };

Snippet 3: Guidance system template for the flight code.

In any guidance system, undefined references are automatically set to zero. To

provide further examples of guidance systems, two guidance systems are provided, a

go-to-point guidance system in Snippet 25, and a waypoint guidance system in Snippet

26 can be found in Appendix H.

5.2 Navigation

The navigation system provides a state estimate of the vehicle. It does this by taking

inputs from the sensors, processing them using estimators and outputting the result to the

guidance system and the control system. An explanation of each of the included guidance

systems may be found in Appendix I. This section will focus on their implementation.

5.2.1 Simulator Implementation

The simulator implements navigation systems via .m-files. Any navigation system files

stored in the navigation library folder (Figure 3.16) may be accessed by the system.

Implementation of any existing navigation system can be achieved via selecting the

navigation subsystem block (Figure 3.34) and selecting the desired system from the

drop-down menu (Figure. 3.35).
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Implementation of a new navigation system may be performed simple by adding

a new .m-file to the navigation library. A template for the navigation system .m-file

can be found in Snippets 4, 5, and 6. The navigation system inputs are the time delta

(dt) between sensor readings, and the calibrated sensor readings. A twelve state state

estimate bus matching the quadcopter states (4.33) is then declared to provide the

output of the system. It is important to declare this bus as it is the input that the

guidance and control systems are expecting to receive. Additionally, a second twelve

state state vector is defined as a persistent variable. This vector is used to store

the previous state which is required for integration and derivation of the states in

discrete time. The navigation template file displays four different estimators (attitude,

angular rate, vertical position/velocity, and lateral position/velocity), each one using

a separate type of state estimator (complementary filter, low-pass filter, direct sensor

reading/calculation, and Kalman filter respectively). The standard navigation system

used in the simulator is a complementary filter for the attitude, direct sensor readings

for the angular rate, and Kalman filters for the height and lateral position estimators

respectively.

1 function StatesEstim = EstimatorTemplate(dt, Sensors_calib)

2

3 %% Define Sensor and State Inputs

4 Sensors = Sensors_calib;

5

6 %% Define State Estimate Structure

7 StatesEstim.x = 0;

8 StatesEstim.y = 0;

9 StatesEstim.z = 0;

10 StatesEstim.phi = 0;

11 StatesEstim.theta = 0;

12 StatesEstim.psi = 0;

13 StatesEstim.dx = 0;

14 StatesEstim.dy = 0;

15 StatesEstim.dz = 0;

16 StatesEstim.dphi = 0;

17 StatesEstim.dtheta = 0;

18 StatesEstim.dpsi = 0;

Snippet 4: Navigation system template for the flight simulator: Part 1.
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1 %% Define Previous State Estimate

2 persistent prev_state

3 if isempty(prev_state)

4 prev_state.x = 0;

5 prev_state.y = 0;

6 prev_state.z = 0;

7 prev_state.phi = 0;

8 prev_state.theta = 0;

9 prev_state.psi = 0;

10 prev_state.dx = 0;

11 prev_state.dy = 0;

12 prev_state.dz = 0;

13 prev_state.dphi = 0;

14 prev_state.dtheta = 0;

15 prev_state.dpsi = 0;

16 end

17 %% Attitude Estimation - Complementary Filter

18 % Required Constants

19 g = 9.81;

20 alpha = 0.99;

21 alpha_psi = 0.95;

22

23 % Roll

24 StatesEstim.phi = atan(Sensors.a_y/Sensors.a_z)*(1-alpha)+...

25 alpha*(prev_state.phi+Sensors.p*dt); % [rad]

26 % Pitch

27 StatesEstim.theta = atan((-Sensors.a_x/sqrt(Sensors.a_y^2+Sensors.a_z^2))*0.5)...

28 *(1-alpha)+alpha*(prev_state.theta+Sensors.q*dt); % [rad]

29 % Yaw

30 % Normalize the Magnetometer

31 mag_norm = sqrt(Sensors.m_x^2+Sensors.m_y^2+Sensors.m_z^2);

32 if mag_norm == 0

33 mag_norm = 1;

34 end

35 Sensors.m_x = Sensors.m_x/mag_norm;

36 Sensors.m_y = -Sensors.m_y/mag_norm;

37 Sensors.m_z = Sensors.m_z/mag_norm;

38 % Tilt Compensate the Magnetometer

39 Mx = Sensors.m_x*cos(StatesEstim.phi)+Sensors.m_z*sin(StatesEstim.phi);

40 My = Sensors.m_x*sin(StatesEstim.theta)*sin(StatesEstim.phi)+...

41 Sensors.m_y*cos(StatesEstim.theta)-...

42 Sensors.m_z*sin(StatesEstim.theta)*cos(StatesEstim.phi);

43 StatesEstim.psi = atan2(-My,Mx)*(1-alpha_psi)+...

44 alpha_psi*(prev_state.psi+Sensors.r*dt); % [rad]

45

46 %% Wrap Attitude Estimate to Pi and Eliminate NaNs

47

48 % Phi

49 if isnan(StatesEstim.phi)

50 StatesEstim.phi = (prev_state.phi+Sensors.p*dt);

51 end

52 StatesEstim.phi =(mod((StatesEstim.phi+pi),(2*pi))-pi);

53

54 % Theta

55 if isnan(StatesEstim.theta)

56 StatesEstim.theta = (prev_state.theta+Sensors.q*dt);

57 end

58 StatesEstim.theta = (mod((StatesEstim.theta+pi),(2*pi))-pi);

59

60 % Psi

61 if isnan(StatesEstim.psi)

62 StatesEstim.psi = (prev_state.psi+Sensors.r*dt);

63 end

64 StatesEstim.psi = (mod((StatesEstim.psi+pi),(2*pi))-pi);

Snippet 5: Navigation system template for the flight simulator: Part 2.
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1 %% Rotation Rates - Low-Pass Filter

2 alpha = 0.98; % alpha = tau / (tau + dt)

3 StatesEstim.dphi = (1-alpha)*Sensors.p + alpha*(prev_state.dphi); % [rad/sec]

4 StatesEstim.dtheta = (1-alpha)*Sensors.q + alpha*(prev_state.dtheta); % [rad/sec]

5 StatesEstim.dpsi = (1-alpha)*Sensors.r + alpha*(prev_state.dpsi); % [rad/sec]

6

7 %% Vertical Position Estimation - Direct Sensor Read and Direct Calculation

8 StatesEstim.z = Sensors.ultra; % [m]

9 StatesEstim.dz = (prev_state.z-Sensors.ultra)/dt; % [m/s]

10

11 %% Lateral Position Estimation - Kalman Filter

12 persistent P_lat xhat_lat F_lat B_lat H_lat Q_lat R_lat

13 meas_lat = [Sensors.dx;

14 Sensors.dy];

15 u_lat = [Sensors.a_x;

16 Sensors.a_y];

17

18 if isempty(P_lat)

19 % First time through the code so do some initialization

20 xhat_lat = zeros(4,1);

21 P_lat = zeros(4);

22 H_lat = [0 0 1 0;

23 0 0 0 1];

24 R_lat = 0.001^2*eye(2);

25 end

26

27 % Update dt for all matrices

28 F_lat = [1 0 dt 0;

29 0 1 0 dt;

30 0 0 1 0;

31 0 0 0 1];

32 B_lat = [dt*dt/2 0;

33 0 dt*dt/2;

34 dt 0;

35 0 dt];

36 Q_lat = [0.25*dt^4 0 0.5*dt^3 0;

37 0 0.25*dt^4 0 0.5*dt^3;

38 0.5*dt^3 0 dt^2 0;

39 0 0.5*dt^3 0 dt^2]*0.01^2;

40 % Propagate the state estimate and covariance matrix:

41 xhat_lat = F_lat*xhat_lat + B_lat*u_lat;

42 P_lat = F_lat*P_lat*F_lat' + Q_lat;

43

44 % Calculate the Kalman gain

45 K = P_lat*H_lat'/(H_lat*P_lat*H_lat' + R_lat);

46

47 % Calculate the measurement residual

48 resid = meas_lat - H_lat*xhat_lat;

49

50 % Update the state and error covariance estimate

51 xhat_lat = xhat_lat + K*resid;

52 P_lat = (eye(size(K,1))-K*H_lat)*P_lat;

53

54 % Assign Kalman Filter Outputs to Correct States

55 StatesEstim.x = xhat_lat(1); % [m]

56 StatesEstim.y = xhat_lat(2); % [m]

57 StatesEstim.dx = xhat_lat(3); % [m/s]

58 StatesEstim.dy = xhat_lat(4); % [m/s]

59

60 %% Define Persistent Variables for Next Iteration

61

62 prev_state = StatesEstim;

63

64 end

Snippet 6: Navigation system template for the flight simulator: Part 3.
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5.2.2 Flight Code Implementation

As with the guidance system implementation, the goal is to maximize accessibility to

the flight code to people wihtout a strong programming background. From Snippet 1,

we can see in the flight code set-up a line that begins with:

std::list<Package> packages =

This is where the navigation system is implemented in the main function. Succeeding

the std::list<Package> packages = the user may simply input a list of estimator

packages, which will be executed in the listed order. Estimator packages are merely a

number of state estimators packaged together into a single unit, with each estimator

providing an estimate for a given state/set of states and the package itself estimating

the group of states. For example, an attitude estimator package may include three

state estimators, each one working to estimate a given state such as pitch, roll, and yaw

angles.

These estimator packages are then fed into the Navigation class on the next

line to form the navigation system. The estimator packages are in turn made up of

estimators which are defined in the files ReadyFilters.hpp and ReadyFilters.cpp.

Each estimator has its functions named in the header file ReadyFilters.hpp, and then

defined in the ReadyFilters.cpp file. A template estimator, which also functions to

provide direct sensor readings, can be at the top of the respective files, and in Snippet 7.

Additional estimators including low-pass (Snippet 27), high-pass (Snippet 28), angular

complementary (Snippet 29) and Kalman filters (Snippets 30, 31, 32, and 33) can be

found in Appendix I.

1 // From ReadyFilters.hpp

2 class Verbatim : public Estimator {

3 private:

4 sensor_field_ptr field_from;

5 state_field_ptr field_to;

6

7 public:

8 Verbatim(sensor_field_ptr field_from, state_field_ptr field_to);

9 void update(SensorReadings &readings, StateVector &state) override;

10 };

11

12 // From ReadyFilters.cpp

13 Verbatim::Verbatim(sensor_field_ptr field_from, state_field_ptr field_to) {

14 this->field_from = field_from;

15 this->field_to = field_to;

16 }

17

18 void Verbatim::update(SensorReadings &readings, StateVector &state) {

19 state.*field_to = readings.*field_from;

20 }

Snippet 7: Estimator template for the flight code.

Using the estimators, estimator packages can be defined in the file EstPackages.hpp.
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A sample of estimator packages can be found in Snippet 8. Implementation of new

1 AngularComplementaryFilter _pitch = AngularComplementaryFilter(

2 &SensorReadings::acc_pitch, &SensorReadings::gyro_q, &StateVector::pitch);

3 AngularComplementaryFilter _roll = AngularComplementaryFilter(

4 &SensorReadings::acc_roll, &SensorReadings::gyro_p, &StateVector::roll);

5 AngularComplementaryFilter _yaw = AngularComplementaryFilter(

6 &SensorReadings::magneto_yaw, &SensorReadings::gyro_r, &StateVector::yaw);

7 Package AttitudeComplementaryPackage = {_pitch, _roll, _yaw};

8

9 auto _kf = XY_KalmanFilter();

10 Package LateralPosition_Kalman = { _kf };

11

12 auto _kf_Alt = Altitude_KalmanFilter();

13 Package Altitude_Kalman = { _kf_Alt };

14

15 auto _p = Verbatim(&SensorReadings::gyro_p, &StateVector::p);

16 auto _q = Verbatim(&SensorReadings::gyro_q, &StateVector::q);

17 auto _r = Verbatim(&SensorReadings::gyro_r, &StateVector::r);

18 Package Verbatim_pqr = {_p, _q, _r};

19

20 auto _p = LowPass(&SensorReadings::gyro_p, &StateVector::p);

21 auto _q = LowPass(&SensorReadings::gyro_q, &StateVector::q);

22 auto _r = LowPass(&SensorReadings::gyro_r, &StateVector::r);

23 Package LowPass_pqr = {_p, _q, _r};

Snippet 8: Estimator packages examples for the flight code.

estimator packages is as simple as defining the estimator for each state, then grouping

them into the package list.

5.3 Control

The control system provides the input signal to the actuators which control the dynamics

of the vehicle. It does this by taking inputs from the navigation system, and comparing

them with the inputs from the guidance system to generate a state error. The state error

is then processed by the controllers which then output the results to the actuators(Figure

2.1). An explanation of each of the included controllers and control systems may be

found in Appendix K. This section will focus on their implementation.

5.3.1 Simulator Implementation

The simulator implements control systems via .m-files. Any control files stored in the

controller library folder (Figure 3.16) may be accessed by the system. Implementation

of any existing control system can be achieved via selecting the control subsystem block

(Figure 3.28) and selecting the desired system from the drop-down menu (Figure. 3.29).

Since the dynamics of the quadcopter are linearized around the hover point, they

intrinsically include the adjustment for the equilibrium trim to linearized control (mg)

in the thrust controller output while using the linear dynamics model in the simulator.

This is not the case in the nonlinear dynamics model. To compensate for this, and
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prevent the need to modify the controller when switching between dynamic model types,

the simulator automatically adds the equilibrium trim when the nonlinear dynamics

model is active. For nonlinear control strategies, this addition may be removed when

defining the thrust control signal output.

Implementation of a new control system may be performed simple by adding a new

.m-file to the navigation library. A template for the control system .m-file can be found

in Snippets 9, and 10. The control system inputs are the state estimates and the sensor

readings from the navigation system, and the reference signals from the guidance system.

Three separate twelve state vectors are defined as a persistent variables, one to retain

the previous state, the second to retain the previous reference signal, and the third

to retain the previous error. These vectors are required for integration and derivation

of the states, reference signals, and error signals in discrete time. The output of the

control system is a four state signal bus, representing the thrust command, along with

the commands for the desired rolling, pitching, and yawing motions. The controller

template file displays a generic cascaded PID controllers (attitude and height inner-loop,

and lateral position outer-loop). The standard control systems used in the simulator

used are either a cascaded PID control system, or an LQR control system.

Once the control signal bus is defined, and the control signals have been determined,

the control signals are sent to the actuator subsystem which converts the commands

from thrust and moments to desired motor speeds. These speeds are then used to

determine the generated thrusts and moments by the motors, which are then sent to

the quadcopter dynamics subsystem to determine the dynamics and kinematics that

the vehicle have in response.

Four control systems are included in the platform, two inner-loop only control

systems and two control systems which control the full state. The two inner-loop

control systems are a PID control system (Snippets 34, 35) and and LQR control system

(Snippets 36, 37) can be found in Appendix L. Additionally a cascaded PID control

system (Snippets 38, 39) and an full state LQR control system (Snippets 40, 41) can be

found in Appendix L.

5.3.2 Flight Code Implementation

As with the navigation and guidance systems implementation, the goal is to maximize

accessibility to the flight code to people without a programming background. From

Snippet 1, we can see in the flight code set-up towards the botoom of the user setup

section two lines which contain the variables csys and recovery csys. This is where

the control system is implemented in the main function. Proceeding the csys the user

may simply input the name of the control system class which will run the quadcopter.

The class proceeding the recovery csys should be a control system that is known to

work well for the quadcopter in order to enable recovery of the quadcopter if it begins

to have unstable behaviour. The control system is made up of or more controllers. The
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controllers are contained in the file LibraryControllers.hpp. Each controller is its

own class, which can then be called by the control system. Two controller types can be

found built into the platform, a PID controller (Snippet 42), and a full state feedback

controller (Snippet 43). Both controllers can be found in Appendix J.

Using the controllers, control systems can be defined in the file

LibraryControlSystems.hpp. An inner-loop PID control system is used as a template

and can be found can be found in Snippet 11. Additional control systems including a

cascading PID control system (Snippet 44), inner-loop LQR (Snippet 45), and full state

LQR (Snippet 46) can be found in Appendix J.
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1 function [u, comp_ref, comp_error] = NewController(dt, state, ref , Sensors)

2 %% Persistent Variables

3 persistent prev_state prev_ref prev_error %prev_comp_error

4

5 if isempty(prev_state)

6 prev_state.x = 0; % [m]

7 prev_state.y = 0; % [m]

8 prev_state.z = 0; % [m]

9 prev_state.phi = 0; % [deg]

10 prev_state.theta = 0; % [deg]

11 prev_state.psi = 0; % [deg]

12 prev_state.dx = 0; % [m/s]

13 prev_state.dy = 0; % [m/s]

14 prev_state.dz = 0; % [m/s]

15 prev_state.dphi = 0; % [rad/sec]

16 prev_state.dtheta = 0; % [rad/sec]

17 prev_state.dpsi = 0; % [rad/sec]

18 end

19 if isempty(prev_ref)

20 prev_ref.x = 0; % [m]

21 prev_ref.y = 0; % [m]

22 prev_ref.z = 0; % [m]

23 prev_ref.phi = 0; % [deg]

24 prev_ref.theta = 0; % [deg]

25 prev_ref.psi = 0; % [deg]

26 prev_ref.dx = 0; % [m/s]

27 prev_ref.dy = 0; % [m/s]

28 prev_ref.dz = 0; % [m/s]

29 prev_ref.dphi = 0; % [rad/sec]

30 prev_ref.dtheta = 0; % [rad/sec]

31 prev_ref.dpsi = 0; % [rad/sec]

32 end

33 if isempty(prev_error)

34 prev_error.x = 0; % [m]

35 prev_error.y = 0; % [m]

36 prev_error.z = 0; % [m]

37 prev_error.phi = 0; % [deg]

38 prev_error.theta = 0; % [deg]

39 prev_error.psi = 0; % [deg]

40 prev_error.dx = 0; % [m/s]

41 prev_error.dy = 0; % [m/s]

42 prev_error.dz = 0; % [m/s]

43 prev_error.dphi = 0; % [rad/sec]

44 prev_error.dtheta = 0; % [rad/sec]

45 prev_error.dpsi = 0; % [rad/sec]

46 end

47

48 %% Required Values

49 g = 9.81;

50 m = 0.0630;

51

52 %% Define Error Terms

53 error = structminus(ref,state);

54

55 %% Define Controllers

56

57 % Inner Loop Controllers

58 % Altitude Controller

59 C_alt.kp = 0.8;

60 C_alt.ki = 0;

61 C_alt.kd = 0.3;

62 % Roll Controller

63 C_r.kp = 0.01;

64 C_r.ki = 0.01;

65 C_r.kd = 0.0028;

Snippet 9: Control system template for the flight simulator: Part 1.
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1 % Pitch Controller

2 C_p.kp = 0.013;

3 C_p.ki = 0.01;

4 C_p.kd = 0.002;

5 % Yaw Controller

6 C_y.kp = 0.004;

7 C_y.ki = 0;

8 C_y.kd = 0.012;

9

10 % Outer Loop Controllers

11 % X Positional Controller

12 % C_X is positive here instead of C_Y. Unsure why.

13 C_X.kp = 0.24;

14 C_X.ki = 0;

15 C_X.kd = 0.1;

16

17 % Set Outer Loop Controller Output as Inner Loop Controller Reference

18 ref.theta = (C_X.kp*error.x + C_X.ki*(prev_error.x+error.x*dt) +...

19 C_X.kd*((error.x-prev_error.x)/dt));

20 % Ensure the reference angle is wrapped to pi

21 ref.theta = (mod((ref.theta+pi),(2*pi))-pi);

22 % Define Error Signal based off of new Reference Signal

23 error.theta = ref.theta-state.theta;

24 % Wrap error angle to pi

25 error.theta = (mod((error.theta+pi),(2*pi))-pi);

26

27 % Y Positional Controller

28 % NOTE: C_Y is negative here instead of C_X. Unsure why

29 C_Y.kp = -0.24;

30 C_Y.ki = 0;

31 C_Y.kd = -0.1;

32

33 % Set Outer Loop Controller Output as Inner Loop Controller Reference

34 ref.phi = (C_Y.kp*error.y + C_Y.ki*(prev_error.y+error.y*dt) +...

35 C_Y.kd*((error.y-prev_error.y)/dt));

36 % Ensure the reference angle is wrapped to pi

37 ref.phi = (mod((ref.phi+pi),(2*pi))-pi);

38

39 % Define Error Signal based off of new Reference Signal

40 error.phi = ref.phi-state.phi;

41 error.phi = (mod((error.phi+pi),(2*pi))-pi); % Wrap error angle to pi

42

43

44 %% Controller Output

45

46 % Control Output

47 u.u1 = ( C_alt.kp*error.z + C_alt.ki*(prev_error.z+error.z*dt) +...

48 C_alt.kd*(error.z-prev_error.z)/dt ) + m*g; % Thrust

49 u.u2 = ( C_r.kp*error.phi + C_r.ki*(prev_error.phi+error.phi*dt) +...

50 C_r.kd*(error.phi-prev_error.phi)/dt ); % Roll

51 u.u3 = ( C_p.kp*error.theta + C_p.ki*(prev_error.theta+error.theta*dt) +...

52 C_p.kd*(error.theta-prev_error.theta)/dt ); % Pitch

53 u.u4 = ( C_y.kp*error.psi + C_y.ki*(prev_error.psi+error.psi*dt) +...

54 C_y.kd*(error.psi-prev_error.psi)/dt ); % Yaw

55

56 % Computed Reference Signals

57 comp_ref = ref;

58

59 % Computed Error Signals

60 comp_error = error;

61

62 prev_state = state;

63 prev_ref = ref;

64 prev_error = error;

65 end

Snippet 10: Control system template for the flight simulator: Part 2.
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1 class InnerLoopPID : public ControlSystem {

2 private:

3 struct pids {

4 PID pitch, roll, yaw, thrust;

5 /* data */

6 } pids;

7

8 public:

9 InnerLoopPID();

10 void Control(StateVector &current_state, StateVector &desired_state,

11 MomentThrustCommand &output_command) override;

12 };

13

14 InnerLoopPID::InnerLoopPID() {

15 // float Kpz, Kiz, Kdz, Kpyaw, Kiyaw, Kdyaw;

16 pids.thrust = PID(0.845, 0, 0.796);

17 pids.roll = PID(0, 0, 0);

18 pids.roll = PID(0.05, 0, 0.01);

19 pids.pitch = PID(0.08, 0, 0);

20 pids.yaw = PID(0.001, 0, 0.0001);

21 }

22

23 void InnerLoopPID::Control(StateVector &current_state, StateVector &desired_state,

24 MomentThrustCommand &output_command) {

25

26 output_command.thrust = pids.thrust.update(desired_state.z - current_state.z) + mass;

27 output_command.roll = pids.roll.update(desired_state.roll -

28 current_state.roll, desired_state.p);

29 output_command.pitch = pids.pitch.update(desired_state.pitch -

30 current_state.pitch, desired_state.q);

31 output_command.yaw = pids.yaw.update(desired_state.yaw - current_state.yaw);

32 }

Snippet 11: Control systems template for the flight code.
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Chapter 6

Verification, Validation, and

Results

Verification and validation of the platform are critical aspects for ensuring that the

platform is suitable for research and design purposes. In this chapter, we will discuss the

verification of the simulator models, validation of the model via comparison to hardware

tests on a known vehicle, and the results of tests implemented on the platform via the

implementation workflow.

6.1 Simulator Model Verification

To determine whether or not our simulator platform is suitable for use, the quadcopter

dynamics model and the actuator models must first be validated. To this end, the

system dynamics were verified on the linear and nonlinear models of the quadcopter.

6.1.1 Linear Model Verification

We begin with the verification of the linear model. As per (4.38), the quadcopter may

be linearized around any x, y, and z coordinates and with any initial heading angle

ψ. For these tests, we choose to set all of those parameters to zero. Additionally, it

must be noted that while we are linearizing around an altitude of 0, that does not

imply there is any sort of ground there. For purposes of these tests, the quadcopter

exists in an endless void. This was done in two different manners. The first manner

of verification was the direct input of forces and moments directly into the open-loop

linearized quadcopter dynamics subsystem (Figure 6.1). It should be noted that for the

figures representing each of tests in this section, the direction of the z-axis was inverted

such that the positive direction show “up” rather than “down.” This is to allow for a

more intuitive understanding of the figures at a glance. In total, three classes of tests

were performed in this manner. The first was an equilibrium test, in which no forces or

moments where input into the system (Figure 6.2). Indeed, while it was not expected
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Figure 6.1: Simulated quadcopter linear dynamics validation using forces and moments
inputs.

to show any results of particular interest as the quadcopter should simply maintain

it’s equilibrium state, it is critical for the test to show this to be true, otherwise the

model would instantly be invalidated. The second class of test was one in which a

(a) Inputs. (b) States.

Figure 6.2: Model verification of the simulator’s linear quadcopter dynamics with no
inputs.

pure thrust input was input into the quadcopter’s linearized dynamics. In Figure 6.3 a

step input of 5.8[N ] of thrust was input into the system while the moment commands

remained as zero. It is worthwhile to note the significance of the value of the thrust

input (5.8[N ]). This value is just slightly higher than the required thrust for equilibrium

trim of the quadcopter, allowing the quadcopter to rise both in the linear and nonlinear

dynamic models. The third class of tests was one in which pure moment commands

were input into the linearized quadcopter dynamics. Tests were performed to input pure

rolling moment commands (Figure 6.4), pure pitching moment commands (Figure 6.5),

and pure yawing moment commands (Figure 6.6). Each of these tests used a single

moment step input of 0.001[Nm] around the given axis, with all other inputs set to

zero. Inspecting the results of the aforementioned tests, and comparing them with our

understanding of the quadcopter’s model of linear dynamics (4.42), we found that the

linear model reacted as anticipated to the given inputs.
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(a) Inputs. (b) States.

Figure 6.3: Model verification of the simulator’s linear quadcopter dynamics via thrust
step input.

(a) Inputs. (b) States.

Figure 6.4: Model verification of the simulator’s linear quadcopter dynamics via a rolling
moment step input.

(a) Inputs. (b) States.

Figure 6.5: Model verification of the simulator’s linear quadcopter dynamics via a
pitching moment step input.

71

 

 

 



(a) Inputs. (b) States.

Figure 6.6: Model verification of the simulator’s linear quadcopter dynamics via a
yawing moment step input.

6.1.2 Actuator Model Verification

Once we determined that the linear model of the quadcopter dynamics responds to given

thrust and moment inputs, it was important to determine that the actuator generates

said thrust and moments correctly to input to the dynamic model of the quadcopter.

To this end, two classes of tests were performed. The first class of tests was to generate

forces on a per-motor basis, and determine whether or not the appropriate thrust and

moment inputs were sent to the linear quadcopter dyanmics (Figure 6.7). When all
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Figure 6.7: Simulated quadcopter linear dynamics validation using motor speed inputs.

four motors produce equal thrust (Figure 6.8) generates pure thrust in the z direction,

as expected. To test the generation of a rolling moment, motors 2 and 3 were command

to generate thrust, whereas motors 1 and 4 received no command input. (Figure 6.9).

To generate a pitching moment, motors 1 and 2 were commanded to generate thrust,

whereas motors 3 and 4 received no command input (Figure 6.10). Lastly, to generate a

yawing moment, motors 1 and 3 were commanded to produce thrust while motors 2

and 4 were left idle (Figure 6.11). Numerous tests were run to verify these results and

ensure that our plant dynamics were simulated properly.

With the results of the first class of test displaying the expected result, a second

class of tests was performed. This class of tests implemented the full actuator block

(Figure 6.12). To this end, pure thrust and moment commands were sent to the actuator

block, and the output of the actuator block sent to the linear dynamic model of the
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(a) Motor inputs. (b) States.

Figure 6.8: Model verification of the simulator’s actuators on the linear quadcopter
dynamics. All four motors generate equal thrust.

(a) Motor inputs. (b) States.

Figure 6.9: Model verification of the simulator’s actuators on the linear quadcopter
dynamics. Motors 2 and 3 produce increased thrust to generate a rolling moment.

(a) Motor inputs. (b) States.

Figure 6.10: Model verification of the simulator’s actuators on the linear quadcopter
dynamics. Motors 2 and 3 produce increased thrust to generate a rolling moment.
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(a) Motor inputs. (b) States.

Figure 6.11: Model verification of the simulator’s actuators on the linear quadcopter
dynamics. Motors 1 and 3 produce increased thrust to generate a yawing moment.
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Figure 6.12: Simulated quadcopter linear dynamics validation using thrust and moments
commands sent to the actuator block.

quadcopter. As the results from this class of tests were identical to those of the results

where the thrust and moment commands were sent directly the linear model of the

quadcopter dynamics, they will not be shown here.

6.1.3 Nonlinear Model Verification

Having verified the open-loop linear dynamics of the quadcopter, and verifying actuator,

the open-loop nonlinear dynamics model were verified in the same manner. To this

end, the nonlinear system was verified by sending direct thrust and moment inputs

to the actuator block which were then sent to the nonlinear dynamics model (Figure

6.13). As before, a thrust of 5.8[N ] was sent to the actuator, while moments were set

M−1
Electronic

Speed
Controllers

Motors
and

Propellers

Nonlinear
Quadcopter
Dynamics

Actuators Block

u1

u2

u3

u4

ω2
m1

ω2
m2

ω2
m3

ω2
m4

V1

V2

V3

V4

χ

Figure 6.13: Simulated quadcopter nonlinear dynamics validation using thrust and
moments commands sent to the actuator block.
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to zero (Figure 6.14). Next, tests of pure moment inputs were tested. To this end,

(a) Inputs. (b) States.

Figure 6.14: Model verification of the simulator’s nonlinear quadcopter dynamics via a
thrust step input.

as with the linear model verification tests, a moment step input of 0.001[Nm] around

a given axis was sent to the actuator block, with all other inputs being zero. Tests

were performed for pure rolling moment inputs (Figure 6.15), pure pitching moment

inputs (Figure 6.16), and pure yawing moment inputs (Figure 6.15). It is worthwhile to

note that unlike in the linear dynamics tests, where the model intrinsically includes the

equilibrium trim, the nonlinear dynamics do not include this. Due to this, in all tests

other than the pure thrust test, the quadcopter “falls” due to the gravity component

of the model. Additionally, it is worth noting that as mentioned in the linear model

verification section, that while the quadcopter begins at an altitude of zero, it is not

on the ground, as there is no ground or environment implemented in the open-loop

dynamics simulation.

(a) Inputs. (b) States.

Figure 6.15: Model verification of the simulator’s nonlinear quadcopter dynamics via a
rolling moment step input.
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(a) Inputs. (b) States.

Figure 6.16: Model verification of the simulator’s nonlinear quadcopter dynamics via a
rolling moment step input.

(a) Inputs. (b) States.

Figure 6.17: Model verification of the simulator’s nonlinear quadcopter dynamics via a
yawing moment step input.

6.2 Simulator Model Validation

While model verification is critical to see that the simulated vehicle behaves the way we

expect it to, it is important to validate the model as well. Model validation was performed

using an existing quadcopter with known mass properties and precise controller gains in

a cascaded PID control system (Appendix K.3). In this instance, the existing quadcopter

used was a PARROT Rolling Spider (Figure 6.18). The physical and mass properties of

the Rolling Spider can be found in Table 6.1. Likewise, the controller gains used in the

cascaded control system can be found in Table 6.2.

Test flights were implemented on the physical hardware and compared with the

simulated results. In Figure 6.19, one such example is shown. In this example, an open-

loop guidance law was implemented, commanding the quadcopter to hover at 0.7[m] for

the duration of the flight, and then land after 35 seconds. Additionally, after 15 seconds,

the quadcopter received a command to move 1 meter in the positive direction along the y-
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Total Mass: 0.0630[kg]

Moment of Inertia:

0.00005829 0 0

0 0.00007169 0

0 0 0.0001

 [kg m2]

Arm Lengths:

Lx1 = 44.1[mm] Ly1 = 44.1[mm]

Lx2 = 44.1[mm] Ly2 = 44.1[mm]

Lx3 = 44.1[mm] Ly3 = 44.1[mm]

Lx4 = 44.1[mm] Ly4 = 44.1[mm]

Table 6.1: Physical properties of the Rolling Spider quadcopter.

Rolling Spider Cascaded PID Control System

X Controller:

Kp : 0.09

Ki : 0

Kd : 0.091

Y Controller:

Kp : 0.1

Ki : 0

Kd : 0.0818

Roll Controller:

Kp : 0.0034

Ki : 0

Kd : 0.00053414

Pitch Controller:

Kp : 0.0045

Ki : 0

Kd : 0.00070695

Yaw Controller:

Kp : 0.0004

Ki : 0

Kd : 0.00012

Height Controller:

Kp : 0.8862

Ki : 0

Kd : 0.25035

Table 6.2: Cascaded PID control system of the PARROT Rolling Spider quadcopter.

axis and remain there for 20 seconds. This test was then repeated in the simulator using

the same guidance law and controllers, and the results compared. Because the internal

sensors of the Rolling Spider are of unknown specifications, and the parameters of the

estimators are unknown as well, the simulation is run assuming full state information.

Needless to say, this introduces discrepancies into a comparison between the physical

test and the simulated result, however at the low-speeds, short timescale and small

displacements involved, we consider the error between the estimators and the true states

to be small. Likewise, while real world flight conditions and environmental factors

impact the flight, under those same assumptions, we consider their impact to be small
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Figure 6.18: A PARROT Rolling Spider Quadcopter.

as well. After accounting for these factors and comparing the results (Figure 6.19), the

simulation environment was considered to generate results within an acceptable range

of fidelity, and the therefore was considered validated.

Figure 6.19: Model validation of the flight simulator.
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Dynamics: Linear

State Information: Full State Information

Sensor Noise: None

Motor Saturation: Disabled

Environment: Constant

Estimator Package:

Attitude Estimator: Complementary Filters

Height Estimator: Kalman Filter

Lateral Position Estimator: None

Guidance Package: Open-loop Guidance

Controls Package: Inner-loop PID Controllers

Simulation Time: 60 [Seconds]

Table 6.3: Representative Simulation 1

6.3 Results

6.3.1 Flight Simulator

After validation of the simulation environment, testing of new GNC systems were

initiated using the simulator workflow (Figure 2.3). While by no means comprehensive,

the results of three representative examples are displayed below.

Simulation 1

The simulation parameters for the first representative example can be found in Table

6.3. Plots of the resulting simulation can be found in Figure 6.20. Each plot shows the

true state, the estimation of the state, the reference signal, and the error signal. Table

6.4 shows the parameters used in the flight controller. From the graphs, we can see that

the the quadcopter responds quickly to the reference signals generated by the guidance

law and pitches and rolls accordingly. Additionally, it maintains it’s altitude well for

the duration of the simulation. We can also see that, as expected, the changes to the

pitch and roll angles generated x and y lateral velocities, which were then negated by

pitching and rolling in the opposite directions for an equal amount of time.

Simulation 2

The simulation parameters for the second simulator example can be found in Table 6.5.

The results of the simulation can be found in Figure 6.21. Each plot shows the true state,

the estimation of the state, the reference signal, and the error signal. Table 6.6 shows

the parameters used to determine the flight controller, where the the matrices QLQ

and RLQ were used to compute the gain matrix K for the inner-loop LQR controller

using the matrices Ainner and Binner, describing the altitude and attitude dynamics, as
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(a) Position Plot

(b) Angle Plot

Figure 6.20: Results of simulation 1.
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(c) Velocity Plot

(d) Angular Rate Plot

Figure 6.20: Results of simulation 1.
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Inner-Loop Only PID Controller Parameters

Roll Controller:

Kp : 0.065

Ki : 0.005

Kd : 0.01

Pitch Controller:

Kp : 0.055

Ki : 0.003

Kd : 0.0085

Yaw Controller:

Kp : 0.005

Ki : 0

Kd : 0.0015

Height Controller:

Kp : 0.5

Ki : 0

Kd : 0.35

Table 6.4: Controller parameters used in representative simulation 1.

denoted below for the inner-loop only dynamics of the quadcopter,

χ̇inner =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

Ainner



z

φ

θ

ψ

ż

φ̇

θ̇

ψ̇


︸︷︷︸
χinner

+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m 0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz


︸ ︷︷ ︸

Binner


T

τφ

τθ

τψ

 . (6.1)

Table 6.7 shows the parameters of the estimators used in the example, where for the

Kalman filters, the matrices QKF and RKF were used to determine during simulation.

From the graphs, we can see that the the quadcopter responds quickly to the reference

signals generated by the guidance law and pitches and rolls accordingly, however not as

rapidly as in the previous simulation. Additionally, it maintains it’s altitude well for

the duration of the simulation, although it noticeably drops during pitching and rolling

motions before recovery. We can also see that, as expected, the changes to the pitch

and roll angles generated x and y lateral velocities, which were then negated by pitching

and rolling in the opposite directions for an equal amount of time. We can further see

from this simulation that the estimators that while not perfect, perform admirably.

Simulation 3

The simulation parameters for the final representative example can be found in Table

6.8. The results of the simulation can be found in Figure 6.22. Each plot shows the true

state, the estimation of the state, the reference signal, and the error signal. Table 6.9

shows the parameters used to determine the flight controller, where the the matrices
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(a) Position Plot

(b) Angle Plot

Figure 6.21: Results of simulation 2.
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(c) Velocity Plot

(d) Angular Rate Plot

Figure 6.21: Results of simulation 2.
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Dynamics: Nonlinear

State Information: Sensors and Estimators

Sensor Noise: Dynamic Noise

Motor Saturation: Disabled

Environment: Constant

Estimator Package:

Attitude Estimator: Complementary Filters

Height Estimator: Kalman Filter

Lateral Position Estimator: None

Guidance Package: Open-loop Guidance

Controls Package: Inner-loop LQR Controller

Simulation Time: 60 [Seconds]

Table 6.5: Representative Simulation 2

Inner-Loop Only LQR Controller Parameters

QLQ:



0.3226 0 0 0 0 0 0 0

0 0.3080 0 0 0 0 0 0

0 0 0.3080 0 0 0 0 0

0 0 0 0.3080 0 0 0 0

0 0 0 0 0.0161 0 0 0

0 0 0 0 0 0.1935 0 0

0 0 0 0 0 0 0.1935 0

0 0 0 0 0 0 0 0.1935



RLQ:


0.1000 0 0 0

0 10.0000 0 0

0 0 10.0000 0

0 0 0 10.0000


Table 6.6: Controller parameters used in representative simulation 2.

QLQ and RLQ were used to computer the gain matrix K for the LQR controller using

the matrices A and B as developed in (4.42). Table 6.10 shows the parameters of

the estimators used in the example, where for the Kalman filters, the matrices QKF

and RKF were used to determine the Kalman gain during simulation.To more easily

display the waypoint guidance, an additional image depicting the trajectory in the

XY -plane was added as well. From the graphs of this simulation, we can see that the

the quadcopter responds quickly to the reference signals generated by the guidance law

and accurately follows the desired waypoints. Additionally, it maintains it’s altitude

well for the duration of the simulation, although it noticeably drops during pitching

and rolling motions before recovery. We can further see from this simulation that the

estimators that while not perfect, the estimators perform admirably. One immediately

noticeable aspect of the trajectory plot is that the quadcopter is highly active around
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Estimator Parameters

Roll Complementary ωc = 2.43

Pitch Complementary ωc = 2.43

Yaw Complementary ωc = 1.2

Height Kalman

QKF :

1 0 0

0 0.5 0

0 0 0



RKF :

[
1 0

0 0.0025

]

Table 6.7: Estimator parameters used in representative simulation 2.

Dynamics: Nonlinear

State Information: Sensors and Estimators

Sensor Noise: Dynamic Noise

Motor Saturation: Enabled

Environment: Constant

Estimator Package:

Attitude Estimator: Complementary Filters

Height Estimator: Kalman Filter

Lateral Position Estimator: Kalman Filter

Guidance Package: Waypoint Guidance

Controls Package: Full State LQR Controller

Simulation Time: 60 [Seconds]

Table 6.8: Representative Simulation 3

the “corners” of the trajectory. This is behaviour to be expected by the guidance law,

as it requires the quadcopter to remain in the “neighborhood” of each waypoint for a

given time before it is allowed to advance to the next waypoint. Furthermore, this is

an aspect of how the controller and guidance law interact. As the controller is a linear

controller controlling a highly nonlinear system, in the sections where the guidance law

requires a trajectory which does not require any coupled motions, the system behaves

nicely, however in the sections of the trajectory which require coupled motion (such as

pitching and rolling simultaneously) the control is negatively impacted.
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(a) Position Plot

(b) Angle Plot

Figure 6.22: Results of simulation 3.
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(c) Velocity Plot

(d) Angular Rate Plot

Figure 6.22: Results of simulation 3.
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(e) XY -Plane Trajectory5 Plot

Figure 6.22: Results of simulation 3.
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Full State LQR Controller Parameters

QLQ:



0.0035 0 0 0 0 0 0 0 0 0 0 0

0 0.0035 0 0 0 0 0 0 0 0 0 0

0 0 1.7699 0 0 0 0 0 0 0 0 0

0 0 0 0.0507 0 0 0 0 0 0 0 0

0 0 0 0 0.0507 0 0 0 0 0 0 0

0 0 0 0 0 0.0507 0 0 0 0 0 0

0 0 0 0 0 0 0.0018 0 0 0 0 0

0 0 0 0 0 0 0 0.0018 0 0 0 0

0 0 0 0 0 0 0 0 0.0018 0 0 0

0 0 0 0 0 0 0 0 0 0.0177 0 0

0 0 0 0 0 0 0 0 0 0 0.0177 0

0 0 0 0 0 0 0 0 0 0 0 0.0177



RLQ:


2 0 0 0

0 200 0 0

0 0 200 0

0 0 0 200


Table 6.9: Controller parameters used in representative simulation 3.

Estimator Parameters

Roll Complementary ωc = 2.43

Pitch Complementary ωc = 2.43

Yaw Complementary ωc = 1.2

Height Kalman

QKF :

1 0 0

0 0.5 0

0 0 0



RKF :

[
1 0

0 0.0025

]

Lateral Kalman

QKF :


0.00025dt4 0 0.0005dt3 0

0 0.00025dt4 0 0.0005dt3

0.0005dt3 0 0.0001dt2 0

0 0.0005dt3 0 0.0001dt2



RKF :

[
0.00001 0

0 0.00001

]

Table 6.10: Estimator parameters used in representative simulation 3.

90

 

 

 



6.3.2 Hardware Results

After the GNC systems were tested in the simulation environment, and acceptable

parameters for the GNC systems were determined, hardware testing was able to be

initiated.

Constrained Flight

During constrained flight testing, the quadcopter was attached to the gimbal (Figure

3.11) to test the attitude estimators and controllers. A four step process was initiated

for constrained flight testing.

1. The quadcopter was powered on while on a flat surface.

2. After a 5 second wait, the LED blinked 3 times to indicate sensor calibration was

complete. This was to ensure that the sensors are properly calibrated without any

offsets due to the gimbal itself.

3. The quadcopter was placed into the gimbal, and adjusted to balance properly.

4. Using the BLE Live Logger, a start command was sent to the quadcopter to begin

the test.

To demonstrate the controllers and estimators working in tandem in constrained flight,

a gimbal test (Figure 6.23) was performed. As the GUI displays the controller output,

to clearly demonstrate how the they work in response to a given reference signal the

following steps were taken.

1. Open-loop guidance was chosen to require an attitude of 0◦.

2. The quadcopter was given a 5 seconds to maintain the set altitude.

3. Carefully, the quadcopter was manually moved away from a zero attitude and

held at an angle to generate nonzero control signals for a few seconds.

4. The quadcopter was released and allowed to return to the it’s zero attitude state.

5. Steps 3 and 4 were repeated multiple times and at larger angles and in various

configurations.

From the results shown in the GUI (Figure 6.23) the correlation between the controller

outputs and the attitude angle can be clearly seen.

Free Flight

After the completion of the constrained flight test, the quadcopter may be considered

safe to fly in a free flight test. The quadcopter is designed to be flown in a laboratory

environment. This entails flying the quadcopter inside a netted area free of obstacles for
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Figure 6.23: Results of the gimbal test.

safety reasons. During flight, the quadcopter should be the only thing inside the netted

area with any observers should remain safely outside of the netted area. Additionally,

during flight, the quadcopter operator should be ready to send the stop command

via the BLE Live Logger to perform an emergency stop in the event of unsafe flight

performance. Unfortunately, due to faulty electronic speed controllers, sustained free

flight could not be achieved. Momentary hover was achieved, however once real world

disturbances entered the system along the diagonal axis, the faulty ESC introduced a

diagonal oscillation into the quadcopters motions, causing a shift in attitude exceeding

15◦ to trigger the recovery control system, quickly followed by the attitude exceeding

20◦, triggering the emergency shutdown protocol. The recovery control system and

emergency shutdown protocols were initiated successfully, and the quadcopter remained

undamaged.
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(a) Start flight. (b) Hovering flight.

(c) First Disturbance and tilt. (d) Recovery subsystem enabled.

(e) Overshoot zero attitude. (f) Emergency shutdown initiated.

Figure 6.24: Test flight of the quadcopter.
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(g) Quadcopter falls to the ground. (h) Complete stop and end of test flight.

Figure 6.24: Test flight of the quadcopter.
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Chapter 7

Conclusions and Future Work

In this chapter, we will summarize the work done in this thesis, and discuss potential

future developments for the research platform.

7.1 Conclusion

The goal of this thesis was to develop a low-cost end-to-end platform for the development

of guidance, navigation, and control systems. To this end, four primary components

were developed.

Quadcopter

A 3D-printable quadcopter frame was designed and fabricated using an Ultimaker S3

Extended and Ultimaker S5 3D printer. The frame was designed to accommodate

inexpensive, off-the-shelf sensors, a battery pack, electronic speed controllers, motors,

and an Arduino microcomputer used as a a flight control system. The quadcopter

was designed to be easy to assemble, and resistant to physical impacts. Testing of the

quadcopter showed it to be highly durable and resistant to physical damage, and easy

to use.

Testing Equipment

Physical testing equipment was developed for the quadcopter to allow for thrust profile

determination of the motors, and to allow for constrained flight for attitude controller

testing. The testing equipment was built using a combination of 3D components and

inexpensive and commonly available parts.

Simulator Environment

A simulator environment was developed in Simulink to be highly modular and user-

friendly. Additionally, a workflow was developed for implementing new systems from the

conceptual stage through final simulations before applying said systems on hardware.
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The simulator environment was verified through a series of input tests before being

validated by simulating an existing quadcopter drone compared to its known real-world

flight data.

Software

A suite of software was developed for the aerial platform. This software included

software to determine the thrust profile of the motors, the actual flight code that ran

the quadcopter, and BLE logging software. The software is fully open source, highly

modular, simple to modify, and user-friendly. A minimal demo of the flight code running

live on the quadcopter can be implemented by modifying as few as 5 lines of code.

7.2 Future Development

While the platform developed is capable, there are numerous avenues for improvement.

Some examples of this are listed below.

The development of an open source simulation environment. One of the

major advantages to the flight code is that it is fully open sourced. However, the

simulator environment still relies on a proprietary program to run (MATLAB and

Simulink). Open sourcing the simulator itself increases the accessibility of the platform

as a whole.

The improvement the flight simulator fidelity. While the flight simulator is

quite useful and effective at gauging the efficacy of various system, it still has room for

improvement. Improving the fidelity of the model includes both improvements to the

dynamics model of the quadcopter itself, as well as the internal actuator dynamics. The

system model relies on numerous assumptions and simplifications, reducing the reliance

on such can allow for more accurate simulation and allow the simulator to even more

closely match the real world results.

The design of a testing equipment for height control and estimation. The

design of a height test bench would allow for constrained flight along all four degrees of

the inner-loop of the quadcopter. This would allow for an addition method of testing

prior to free flight, and further reduce the risk of damage to the quadcopter or anyone

in the lab when testing on hardware.

The refinement and redesign of the quadcopter frame. While the quadcopter

as designed fulfills the design criteria, it has room for improvements. Refining or even

redesigning the quadcopter frame can reduce the weight, improve structural integrity,

and/or reduce the print time required to produce the frame. Additionally, new designs

could allow for greater modularity of the sensors.
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The design of a custom “all-in-one” flight controller board. Design of a custom

”all-in-one” flight controller board which includes the microcomputer and associated

sensors would further reduce required assembly by the user, and allow better placement

of the sensors. Additionally, when combined with the refinement of the quadcopter

design, this could lead to a drastic reduction in the size and weight of the quadcopter,

and improve the performance of the platform.

A refinement of the communications protocol. Improving the communications

protocol would allow for a higher throughput of data for logging purposes. This would

allow the transfer of more data at a higher frequency providing additional insight into

the flight of the quadcopter. This could be achieved for example by using a secondary

microcomputer slaved to the flight controller board which can manage the communica-

tions without interrupting the flight code to transmit data.

While this list is not exhaustive, it provides an excellent starting points for poten-

tial improvements to the platform as a whole.
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Appendix A

Quadcopter Frame Engineering
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Appendix B

Ultrasonic Sensor Code

The code responsible for the ultrasonic sensor can be found in Ultra.hpp.

1 #include <Arduino.h>

2 #include "Definitions.hpp"

3

4 using namespace std;

5

6 // Define Pins used for Ultrasonic Sensor

7 #define TRIG_PIN 4

8 #define ECHO_PIN 2

9 #define ULTRA_TIMEOUT 25000 // 25ms timout on pulse, roughty 9 meters

10 #define MINDIST 2

11 #define MAXDIST 4000

12 #define ALTITUDE_OUT_OF_BOUNDS -1

13

14 int handle_end_counter = 0;

15 int handle_start_counter = 0;

16 int emit_counter = 0;

17 int trampoline_counter = 0;

18

19 float range_safe(float altitude) {

20 if (altitude < MINDIST || altitude > MAXDIST) return ALTITUDE_OUT_OF_BOUNDS;

21 return altitude;

22 }

23 float echo_to_distance_mm(unsigned long ultra_duration) {

24 return ((ultra_duration / 2) * 0.340); // TODO: add more precision for Mach

25 }

26

27 class Ultrasonic {

28 private:

29 volatile bool new_data;

30 volatile bool is_active, in_pre_emit_phase;

31 volatile unsigned long start_time;

32 volatile float distance;

33

34 public:

35 Ultrasonic();

36 void setup();

37 void emit();

38 void _handle_start();

39 void _handle_end();

40 void poll(SensorReadings &sensor_data, bool &logged);

41 };

Snippet 12: Ultrasonic sensors code: Part 1.
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1 Ultrasonic::Ultrasonic() {

2 new_data = false;

3 is_active = false;

4 in_pre_emit_phase = false;

5 }

6

7 Ultrasonic* _ultrasonic_object;

8

9 void _ultrasonic_handler_trampoline() {

10 trampoline_counter++;

11 if (digitalRead(ECHO_PIN) == HIGH)

12 _ultrasonic_object->_handle_start();

13 else

14 _ultrasonic_object->_handle_end();

15 }

16

17 void Ultrasonic::setup() {

18

19 pinMode(TRIG_PIN, OUTPUT);

20 pinMode(ECHO_PIN, INPUT);

21 _ultrasonic_object = this;

22 delayMicroseconds(20);

23 attachInterrupt(digitalPinToInterrupt(ECHO_PIN), _ultrasonic_handler_trampoline,

24 CHANGE);

25 }

26

27 void Ultrasonic::emit() {

28 emit_counter++;

29 if (in_pre_emit_phase && micros() - start_time < ULTRA_TIMEOUT){

30 return;

31 }

32 if (!is_active || micros() - start_time > ULTRA_TIMEOUT) {

33 in_pre_emit_phase = true;

34 is_active = true;

35 digitalWrite(TRIG_PIN, LOW);

36 delayMicroseconds(5);

37 digitalWrite(TRIG_PIN, HIGH);

38 delayMicroseconds(10);

39 digitalWrite(TRIG_PIN, LOW);

40 }

41 }

42

43 void Ultrasonic::_handle_start() {

44 start_time = micros();

45 in_pre_emit_phase = false;

46 }

47

48 void Ultrasonic::_handle_end() {

49 unsigned long end_time = micros();

50 unsigned long duration = end_time - start_time;

51 distance = range_safe(echo_to_distance_mm(duration));

52 new_data = (distance != ALTITUDE_OUT_OF_BOUNDS);

53 is_active = false;

54 }

55

56 void Ultrasonic::poll(SensorReadings &sensor_data, bool &logged) {

57 if (new_data) {

58 new_data = false;

59 sensor_data.ultrasonic_alt = distance / 1000;

60 // Serial.println(sensor_data.ultrasonic_alt);

61 logged = true;

62

63 }

64 }

Snippet 13: Ultrasonic sensors code: Part 2.
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Appendix C

Thrust Measurement Procedure

To use the thrust measurement test bench the following procedure should be followed:

1. Attach a chosen motor/propeller pair to the Individual Motor Thrust Test Bench.

2. Attach the motor to the ESC, and the ESC to the Arduino.

3. Connect the Arduino to a computer via USB.

4. Run the Thrust Measurement Software (Chapter 3.4.1).

5. Set motor output to maximum.

6. Connect the ESC to an appropriate power supply.

7. Wait for 2 beeps, then set motor output to minimum to calibrate the ESC.

8. Perform a manual test.

(a) Starting at 0% increase power by 5%.

(b) Record measurements in an spreadsheet.

(c) Repeat until measurements are recorded up to 100%.

9. Repeat the manual test process 4− 5 times for each motor-propeller-ESC unit.

10. Attach all four ESCs and motors to the quadcopter frame.

11. Attach the Quadcopter Thrust Test Bench securely atop the Individual Motor

Thrust Test Bench.

12. Attach the quadcopter securely to the Quadcopter Thrust Test Bench.

13. Perform a manual test on all 4 motors to confirm results taken from Step 6.

14. Determine thrust profiles for each motor-propeller-ESC unit.
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Appendix D

Motor Command Code

To integrate measured motor thrust profiles into the flight code, the motor thrust profiles

must be determined as per to process described in Appendix C. Once a thrust profile

has been developed the following steps should be taken:

1. Convert the thrust profile into a function which determines desired ESC percentage

as a function of the desired thrust. This is our Motor Thrust-ESC equation.

2. In the flight code directory, open the file Motors.hpp (Snippet 14).

3. For each motor, numbered as per Figure 3.3, add the Motor Thrust-ESC equation

to the appropriate function.

• grf to pulse1 to Motor 1

• grf to pulse2 to Motor 2

• grf to pulse3 to Motor 3

• grf to pulse4 to Motor 4

4. Take the maximum value of the weakest motor and set MINIMUM MAX MOTOR THRUST

to that value in kgf . This sets the maximum thrust producible by any motor

command to be no greater than the maximum thrust of the weakest motor.

5. Set IDLE PCT to the lowest ESC percentage at which all motors are in motion.
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1 #define IDLE_PCT 0.15 // [% of ESC ]

2 #define MINIMUM_MAX_MOTOR_THRUST .23 // [kgf]

3

4 int grf_to_pulse1(float x) {

5 float gf = x * 1000; // kgf to grf (accel is measured in g's)

6 if (gf > MINIMUM_MAX_MOTOR_THRUST*1000) gf = MINIMUM_MAX_MOTOR_THRUST*1000;

7 float pct;

8

9 pct = (gf+0.4455)/398.55; // 0% to 60% Range

10

11 // Saturate Motor Commands to the Range of 10% - 100%

12 if (pct > 1 || pct < IDLE_PCT){

13 pct = (pct > 1) + (pct < IDLE_PCT)*IDLE_PCT;

14 }

15

16 int pulse = round(((MAX_PULSE_LENGTH - MIN_PULSE_LENGTH) * pct) + MIN_PULSE_LENGTH);

17 return pulse;

18 }

19

20 int grf_to_pulse2(float x) {

21 float gf = x * 1000; // kgf to grf (accel is measured in g's)

22 if (gf > MINIMUM_MAX_MOTOR_THRUST*1000) gf = MINIMUM_MAX_MOTOR_THRUST*1000;

23 float pct;

24

25 pct = (gf-1.6841)/396.23; // 0% to 60% Range

26

27 // Saturate Motor Commands to the Range of 10% - 100%

28 if (pct > 1 || pct < IDLE_PCT){

29 pct = (pct > 1) + (pct < IDLE_PCT)*IDLE_PCT;

30 }

31

32 int pulse = round(((MAX_PULSE_LENGTH - MIN_PULSE_LENGTH) * pct) + MIN_PULSE_LENGTH);

33 return pulse;

34 }

35

36 int grf_to_pulse3(float x) {

37 float gf = x * 1000; // kgf to grf (accel is measured in g's)

38 if (gf > MINIMUM_MAX_MOTOR_THRUST*1000) gf = MINIMUM_MAX_MOTOR_THRUST*1000;

39 float pct;

40

41 pct = (gf-0.7114)/410.05; // 0% to 60% Range

42

43 // Saturate Motor Commands to the Range of 10% - 100%

44 if (pct > 1 || pct < IDLE_PCT){

45 pct = (pct > 1) + (pct < IDLE_PCT)*IDLE_PCT;

46 }

47

48 int pulse = round(((MAX_PULSE_LENGTH - MIN_PULSE_LENGTH) * pct) + MIN_PULSE_LENGTH);

49 return pulse;

50 }

51

52 int grf_to_pulse4(float x) {

53 float gf = x * 1000; // kgf to grf (accel is measured in g's)

54 if (gf > MINIMUM_MAX_MOTOR_THRUST*1000) gf = MINIMUM_MAX_MOTOR_THRUST*1000;

55 float pct;

56

57 pct = (gf+3.1727)/432.18; // 0% to 60% Range

58

59 // Saturate Motor Commands to the Range of 10% - 100%

60 if (pct > 1 || pct < IDLE_PCT){

61 pct = (pct > 1) + (pct < IDLE_PCT)*IDLE_PCT;

62 }

63

64 int pulse = round(((MAX_PULSE_LENGTH - MIN_PULSE_LENGTH) * pct) + MIN_PULSE_LENGTH);

65 return pulse;

66 }

Snippet 14: Motor thrust to ESC command functions for the flight code.
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Appendix E

Quadcopter Wiring Diagram

Figure E.1: Wiring diagram for the quadcopter.
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Pin Connections

HC-SR04 CJMCU

Sensor Board

GND GND

Echo D2

Trig D4

VCC ESC 2 Positive Wire

Sensor Board

3v3 3v3

MOS D11

MIS D12

CLK D13

CS D8

ESC 1 ESC 2

ESC Connectors

Vin Battery Positive Lead

GND Battery Ground Lead

1 Motor 1 Input 1

2 Motor 1 Input 2

3 Motor 1 Input 3

ESC Connectors

Vin Battery Positive Lead

GND Battery Ground Lead

1 Motor 2 Input 3

2 Motor 2 Input 2

3 Motor 2 Input 1

ESC 3 ESC 4

ESC Connectors

Vin Battery Positive Lead

GND Battery Ground Lead

1 Motor 1 Input 3

2 Motor 1 Input 2

3 Motor 1 Input 1

ESC Connectors

Vin Battery Positive Lead

GND Battery Ground Lead

1 Motor 2 Input 1

2 Motor 2 Input 2

3 Motor 2 Input 3

Table E.1: Wiring connections of the quadcopter.
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Appendix F

Thrust Measurement Code

The thrust measurement code (Snippets 16, 17, 18, 20, and 21) is an Arduino project

comprised of multiple functions used to allow the user to give precise commands to the

ESCs in order to measure the generated thrust for a given command.

1 // ---------------------------------------------------------------------------

2 #include <Servo.h>

3 // ---------------------------------------------------------------------------

4 // Customize here pulse lengths as needed

5 #define MIN_PULSE_LENGTH 1000 // Minimum pulse length in µs
6 #define MAX_PULSE_LENGTH 2000 // Maximum pulse length in µs
7 // ---------------------------------------------------------------------------

8 Servo motA, motB, motC, motD;

9 char data;

10 int perc;

11 int on_off = 10;

12 bool motorA = true; bool motorB = false; bool motorC = false; bool motorD = false;

13 // ---------------------------------------------------------------------------

14

15 /**

16 * Initialisation routine

17 */

18 void setup() {

19 Serial.begin(9600);

20 motA.attach(10, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);

21 motB.attach(9, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);

22 motC.attach(6, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);

23 motD.attach(5, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);

24

25 motA.writeMicroseconds(MIN_PULSE_LENGTH);

26 motB.writeMicroseconds(MIN_PULSE_LENGTH);

27 motC.writeMicroseconds(MIN_PULSE_LENGTH);

28 motD.writeMicroseconds(MIN_PULSE_LENGTH);

29

30 while(!Serial.available()){

31 Serial.println("Press any key to begin");

32 }

33 displayInstructions();

34 }

Snippet 15: Setup for the thrust measurement Arduino code.
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1 void loop() {

2 if (Serial.available()) {

3 data = Serial.read();

4

5 switch (data) {

6 // 0

7 case 48 : Serial.println("Sending minimum throttle");

8 motA.writeMicroseconds(MIN_PULSE_LENGTH);

9 motB.writeMicroseconds(MIN_PULSE_LENGTH);

10 motC.writeMicroseconds(MIN_PULSE_LENGTH);

11 motD.writeMicroseconds(MIN_PULSE_LENGTH);

12 break;

13

14 // 1

15 case 49 : Serial.println("Sending maximum throttle");

16 motA.writeMicroseconds(MAX_PULSE_LENGTH);

17 motB.writeMicroseconds(MAX_PULSE_LENGTH);

18 motC.writeMicroseconds(MAX_PULSE_LENGTH);

19 motD.writeMicroseconds(MAX_PULSE_LENGTH);

20 break;

21

22 // 2

23 case 50 : Serial.print("Running test in 3");

24 delay(1000);

25 Serial.print(" 2");

26 delay(1000);

27 Serial.println(" 1...");

28 delay(1000);

29 test();

30 break;

31

32 // 3

33 case 51 : Serial.print("Running manual test in 3");

34 delay(1000);

35 Serial.print(" 2");

36 delay(1000);

37 Serial.println(" 1...");

38 delay(1000);

39 manualtest();

40 break;

41

42 // 4

43 case 52 : Serial.println("Enable/Disable Motors");

44 motorEnable();

45 break;

46

47 // 45

48 case 53 : Serial.println("4 Motors Sequential Manual Test");

49 fourMotorsSequential();

50 break;

51 }

52 }

53 }

Snippet 16: Main function for the thrust measurement Arduino code.
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1 void test()

2 {

3 for (int i = MIN_PULSE_LENGTH; i <= MAX_PULSE_LENGTH; i += 5) {

4 Serial.print("Pulse length = ");

5 Serial.println(i);

6

7 motA.writeMicroseconds(i);

8 motB.writeMicroseconds(i);

9 motC.writeMicroseconds(i);

10 motD.writeMicroseconds(i);

11

12 delay(200);

13 }

14

15 Serial.println("STOP");

16 motA.writeMicroseconds(MIN_PULSE_LENGTH);

17 motB.writeMicroseconds(MIN_PULSE_LENGTH);

18 motC.writeMicroseconds(MIN_PULSE_LENGTH);

19 motD.writeMicroseconds(MIN_PULSE_LENGTH);

20 delay(2000);

21 displayInstructions();

22 }

23

24 void manualtest()

25 {

26 motA.writeMicroseconds(MIN_PULSE_LENGTH);

27 motB.writeMicroseconds(MIN_PULSE_LENGTH);

28 motC.writeMicroseconds(MIN_PULSE_LENGTH);

29 motD.writeMicroseconds(MIN_PULSE_LENGTH);

30 while(1) {

31 if (Serial.available() > 0) {

32 perc = Serial.parseInt();

33 data = Serial.read();

34 }

35 int i = MIN_PULSE_LENGTH + (MAX_PULSE_LENGTH-MIN_PULSE_LENGTH)*perc/100;

36 if (i < MIN_PULSE_LENGTH){

37 i = MIN_PULSE_LENGTH;

38 } else if (i > MAX_PULSE_LENGTH) {

39 i = MAX_PULSE_LENGTH;

40 }

41 Serial.print("Pulse length = ");

42 Serial.println(i);

43

44 if (perc == -1){

45 break;

46 }

47

48 motA.writeMicroseconds(i*motorA+!motorA*MIN_PULSE_LENGTH);

49 motB.writeMicroseconds(i*motorB+!motorB*MIN_PULSE_LENGTH);

50 motC.writeMicroseconds(i*motorC+!motorC*MIN_PULSE_LENGTH);

51 motD.writeMicroseconds(i*motorD+!motorD*MIN_PULSE_LENGTH);

52

53 delay(200);

54 }

55

56 Serial.println("STOP\n");

57 motA.writeMicroseconds(MIN_PULSE_LENGTH);

58 motB.writeMicroseconds(MIN_PULSE_LENGTH);

59 motC.writeMicroseconds(MIN_PULSE_LENGTH);

60 motD.writeMicroseconds(MIN_PULSE_LENGTH);

61 displayInstructions();

62 }

Snippet 17: Associated functions for the thrust measurement Arduino code: Part 1.
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1 void motorEnable()

2 {

3 Serial.println("Motor Status:");

4 Serial.println("Press 1 to Start");

5 while(1){

6 if (Serial.available() > 0) {

7 on_off = Serial.parseInt();

8 data = Serial.read();

9 }

10 if (on_off == 1){

11 on_off = -1;

12 break;

13 }

14 }

15 // Motor 1

16 Serial.print("Motor 1: ");

17 if (motorA){

18 Serial.println("enabled");

19 } else{

20 Serial.println("disabled");

21 }

22 Serial.print("Set Motor 1 Status: ");

23 while(1){

24 if (Serial.available() > 0) {

25 on_off = Serial.parseInt();

26 data = Serial.read();

27 }

28 if (on_off == 1){

29 motorA = true;

30 Serial.println("enabled");

31 on_off = -1;

32 break;

33 } else if (on_off == 0){

34 motorA = false;

35 on_off = -1;

36 Serial.println("disabled");

37 break;

38 }

39 }

40

41 // Motor 2

42 Serial.print("Motor 2: ");

43 if (motorB){

44 Serial.println("enabled");

45 } else{

46 Serial.println("disabled");

47 }

48 Serial.print("Set Motor 2 Status: ");

49 while(1){

50 if (Serial.available() > 0) {

51 on_off = Serial.parseInt();

52 data = Serial.read();

53 }

54 if (on_off == 1){

55 motorB = true;

56 Serial.println("enabled");

57 on_off = -1;

58 break;

59 } else if (on_off == 0){

60 motorB = false;

61 on_off = -1;

62 Serial.println("disabled");

63 break;

64 }

65 }

Snippet 18: Associated functions for the thrust measurement Arduino code: Part 2.
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1 // Motor 3

2 Serial.print("Motor 3: ");

3 if (motorB){

4 Serial.println("enabled");

5 } else{

6 Serial.println("disabled");

7 }

8 Serial.print("Set Motor 3 Status: ");

9 while(1){

10 if (Serial.available() > 0) {

11 on_off = Serial.parseInt();

12 data = Serial.read();

13 }

14 if (on_off == 1){

15 motorC = true;

16 Serial.println("enabled");

17 on_off = -1;

18 break;

19 } else if (on_off == 0){

20 motorC = false;

21 on_off = -1;

22 Serial.println("disabled");

23 break;

24 }

25 }

26

27 // Motor 4

28 Serial.print("Motor 4: ");

29 if (motorD){

30 Serial.println("enabled");

31 } else{

32 Serial.println("disabled");

33 }

34 Serial.print("Set Motor 4 Status: ");

35 while(1){

36 if (Serial.available() > 0) {

37 on_off = Serial.parseInt();

38 data = Serial.read();

39 }

40 if (on_off == 1){

41 motorD = true;

42 on_off = -1;

43 Serial.println("enabled");

44 break;

45 } else if(on_off == 0){

46 motorD = false;

47 on_off = -1;

48 Serial.println("disabled");

49 break;

50 }

51 }

52 delay(1000);

53 on_off = -1;

54 displayInstructions();

55

56 }

Snippet 19: Associated functions for the thrust measurement Arduino code: Part 3.
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1 void fourMotorsSequential()

2 {

3 motA.writeMicroseconds(MIN_PULSE_LENGTH);

4 motB.writeMicroseconds(MIN_PULSE_LENGTH);

5 motC.writeMicroseconds(MIN_PULSE_LENGTH);

6 motD.writeMicroseconds(MIN_PULSE_LENGTH);

7 int j = 0;

8 int k = 0;

9 int last_perc = 0;

10 while(1) {

11

12 if (Serial.available() > 0) {

13 perc = Serial.parseInt();

14 if (perc != 1){

15 last_perc = perc;

16 }

17 data = Serial.read();

18 }

19 int i = MIN_PULSE_LENGTH + (MAX_PULSE_LENGTH-MIN_PULSE_LENGTH)*perc/100;

20 if (i < MIN_PULSE_LENGTH){

21 i = MIN_PULSE_LENGTH;

22 } else if (i > MAX_PULSE_LENGTH) {

23 i = MAX_PULSE_LENGTH;

24 }

25 Serial.print("Pulse length = ");

26 Serial.print(i);

27 Serial.print(" sent to Motor ");

28 Serial.println(j+1);

29

30 if (perc == -1){

31 break;

32 }

33 if (perc == 1){

34 k = 0;

35 if (j < 3){

36 j++;

37 perc = last_perc;

38 } else {

39 j = 0;

40 perc = last_perc;

41 }

42

43 }

44 if (perc == 4){

45 k = 4;

46 }

47

48 motA.writeMicroseconds(i*(j==0 || k == 4)+!(j==0 || k == 4)*MIN_PULSE_LENGTH);

49 motB.writeMicroseconds(i*(j==1 || k == 4)+!(j==1 || k == 4)*MIN_PULSE_LENGTH);

50 motC.writeMicroseconds(i*(j==2 || k == 4)+!(j==2 || k == 4)*MIN_PULSE_LENGTH);

51 motD.writeMicroseconds(i*(j==3 || k == 4)+!(j==3 || k == 4)*MIN_PULSE_LENGTH);

52 delay(200);

53 }

54

55 Serial.println("STOP\n");

56 motA.writeMicroseconds(MIN_PULSE_LENGTH);

57 motB.writeMicroseconds(MIN_PULSE_LENGTH);

58 motC.writeMicroseconds(MIN_PULSE_LENGTH);

59 motD.writeMicroseconds(MIN_PULSE_LENGTH);

60 displayInstructions();

61 }

Snippet 20: Associated functions for the thrust measurement Arduino code: Part 4.
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1 /**

2 * Displays instructions to user

3 */

4 void displayInstructions()

5 {

6 Serial.println("READY - PLEASE SEND INSTRUCTIONS AS FOLLOWING :");

7 Serial.println("\t0 : Send min throttle");

8 Serial.println("\t1 : Send max throttle");

9 Serial.println("\t2 : Run test function");

10 Serial.println("\t3 : Run manual test function");

11 Serial.println("\t4 : Enable/Disable Motors");

12 Serial.println("\t5 : 4 Motors Sequential Manual Test\n");

13

14 }

Snippet 21: Associated functions for the thrust measurement Arduino code: Part 5.
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Appendix G

Guidance Systems

A guidance system is a system used to determine the trajectory of a vehicle from its

current location to a designated target location. The guidance system is responsible for

determining the trajectory itself, as well as changes in the vehicle’s velocity, rotation,

and/or acceleration for following the trajectory [30, 31]. The guidance system does

this via processing the vehicle’s current state vector and comparing it with the desired

target state vector to generate a series of reference signals which it may then pass

to the control system. A guidance system uses the output of the navigation system

as its own input. The input from the navigation system is then processed through a

guidance law to determine the reference signals which are then output to the control

system. A guidance law is a mathematical or geometric construct used to determine

what trajectory the vehicle should take. Guidance laws may be as simple as go to a

set point or as complex as determining the optimal trajectory to intercept an evasive

target.

A guidance system may be designed by first developing the geometric rule which

defines it, and from there, the guidance law itself may be determined.

G.1 Open-Loop Guidance

Open-loop guidance, like open-loop control, is a system by which the reference signal

generated by the guidance system is not influenced by the state of the system as state

information is not fed back into the guidance system. At pre-determined times, preset

reference signals are generated and transmitted to the control system for a predetermined

amount of time.

G.1.1 Go-to-Point

One such open-loop guidance system is a “go-to-point” guidance system. This system

had a single set point in space which is the desired location for the vehicle. This is one

of the simplest forms of open-loop guidance as there is no calculation involved in the
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determination of the reference signal for the controller. The final position of the vehicle

is almost entirely reliant on the control system.

G.2 Closed-Loop Guidance

Closed-loop guidance, like closed-loop control, is a system by which the reference signal

generated by the guidance system is influenced by the state of the system as state

information. State information from the vehicle is fed back into the guidance system

influencing the generation of the new reference signal to be sent to the control system.

G.2.1 Waypoint Guidance

Waypoint guidance is similar to go-to-point guidance as it too outputs directly the

desired position of the quadcopter, however unlike the simple go-to-point guidance

system, waypoint guidance iterates through a series of waypoints. Waypoint guidance

is a closed-loop guidance system which relies on the current state of the vehicle to

determine the desired reference signal. As the vehicle approaches the guidance system

checks whether or not the waypoint has been reached. Determination of whether the

waypoint has been reached can be achieved in multiple ways. The simplest manner

is whether or not the vehicle passed either through the point itself, or within a small

enough region around the point. This method increases the likelihood of the vehicle

overshooting rather than stopping at the waypoint. An alternative method is to begin

calculating how long the vehicle remains in a set region around the waypoint, resetting

the clock if the vehicle leaves the region, and only register the waypoint as having been

reached after a set amount of time has passed with the vehicle inside the region. Once

reached, the current waypoint being used as a reference signal is replaced by the next

waypoint stored in the queue. When the vehicle has exhausted the queue, the system

will enact some sort of protocol to determine the continuation of the flight. These

protocols include, but are not limited to, maintaining position at the final waypoint,

shutting down, and enacting a cyclical protocol where it returns to the first waypoint

and repeats the process until otherwise interrupted.
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Appendix H

Guidance Systems Code

This appendix contains a number of code snippets required for the implementation

of various guidance systems into both the simulator environment and the flight code

running the quadcopter.

Snippet 22 provides the code required to implement an open-loop guidance system

into the simulator environment.

1 function Ref = Guidance(time, state,y)

2

3 % State Estimates

4 StateEstim = state;

5

6 % Sensor Model

7 Sensors = y;

8

9 %% Guidance Law

10 % Reference State

11 Ref.x = 0; % [m]

12 Ref.y = 0; % [m]

13 Ref.z = 1; % [m]

14 Ref.phi = 0; % [rad]

15 Ref.theta = 0; % [rad]

16 Ref.psi = 0; % [rad]

17 Ref.dx = 0; % [m/s]

18 Ref.dy = 0; % [m/s]

19 Ref.dz = 0; % [m/s]

20 Ref.dphi = 0; % [deg/sec]

21 Ref.dtheta = 0; % [deg/sec]

22 Ref.dpsi = 0; % [deg/sec]

23

24 if time > 20 && time < 22

25 Ref.theta = deg2rad(5);

26 end

27

28 if time > 27 && time < 29

29 Ref.theta = deg2rad(-5);

30 end

31

32 end

Snippet 22: Open loop guidance system for the flight simulator.
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Snippet 23 provides the code required to implement an waypoint guidance system

into the simulator environment. Under this guidance system, the vehicle will advance

from waypoint to waypoint, and upon arrival at the final waypoint, remain in place.

Snippet 24 provides the code required to implement an waypoint guidance system

into the simulator environment. Under this guidance system, the vehicle will advance

from waypoint to waypoint, and upon arrival at the final waypoint, the vehicle will

return to the first waypoint and repeat the cycle.

Snippet 25 provides the code required to implement a go-to-point guidance system

into the flight code.

The final snippet of code for the guidance systems is Snippet 26. This snippet

provides the code required to implement a waypoint guidance system into the simulator

environment. Setting the bool value for cycle to true or false determines whether or

not the vehicle will cycle through all of the waypoints repeatedly, or remain stationary

at the final waypoint.
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1 function Ref = WaypointGuidance(time, state,y)

2

3 % State Estimates

4 StateEstim = state;

5

6 % Sensor Model

7 Sensors = y;

8

9 %% Define Reference Signal Structure

10 % Reference State

11 Ref.x = 0; % [m]

12 Ref.y = 0; % [m]

13 Ref.z = 1; % [m]

14 Ref.phi = 0; % [rad]

15 Ref.theta = 0; % [rad]

16 Ref.psi = 0; % [rad]

17 Ref.dx = 0; % [m/s]

18 Ref.dy = 0; % [m/s]

19 Ref.dz = 0; % [m/s]

20 Ref.dphi = 0; % [deg/sec]

21 Ref.dtheta = 0; % [deg/sec]

22 Ref.dpsi = 0; % [deg/sec]

23

24

25 %% Guidance Law

26 % Define Waypoints

27 Waypoints = [0 0 1;

28 1 0 1;

29 1 1 1;

30 0 0 1];

31 neighborhood = 0.01; % Define Neighborhood of Waypoint

32 nTime = 2; % Time the drone must stay in neighborhood to advance

33

34 % Identify Current Waypoint Number

35 persistent WaypointID nTimer

36 if isempty(WaypointID)

37 WaypointID = 1;

38 nTimer = 0;

39 end

40

41 % Set Reference Signal

42 Ref.x = Waypoints(WaypointID,1);

43 Ref.y = Waypoints(WaypointID,2);

44 Ref.z = Waypoints(WaypointID,3);

45

46 % Check if in neighborhood of Waypoint

47 range = sum((Waypoints(WaypointID,:)-[StateEstim.x StateEstim.y StateEstim.z]).^2);

48

49 if range <= neighborhood

50 % If yes, check timer

51 if nTimer == 0

52 nTimer = time;

53 end

54 if (time - nTimer) >= nTime && WaypointID ~= length(Waypoints)

55 WaypointID = WaypointID + 1;

56 end

57 else

58 % if no, set timer to zero

59 if nTimer ~= 0

60 nTimer = 0;

61 end

62 end

63

64 end

Snippet 23: Waypoint guidance system for the flight simulator.
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1 function Ref = WaypointGuidance_Cyclic(time, state,y)

2

3 % State Estimates

4 StateEstim = state;

5

6 % Sensor Model

7 Sensors = y;

8

9 %% Define Reference Signal Structure

10 % Reference State

11 Ref.x = 0; % [m]

12 Ref.y = 0; % [m]

13 Ref.z = 1; % [m]

14 Ref.phi = 0; % [rad]

15 Ref.theta = 0; % [rad]

16 Ref.psi = 0; % [rad]

17 Ref.dx = 0; % [m/s]

18 Ref.dy = 0; % [m/s]

19 Ref.dz = 0; % [m/s]

20 Ref.dphi = 0; % [deg/sec]

21 Ref.dtheta = 0; % [deg/sec]

22 Ref.dpsi = 0; % [deg/sec]

23

24

25 %% Guidance Law

26 % Define Waypoints

27 Waypoints = [0 0 1;

28 1 0 1;

29 0 0 1];

30 neighborhood = 0.01; % Define Neighborhood of Waypoint

31 nTime = 1.5; % Time the drone must stay in neighborhood to advance

32

33 % Identify Current Waypoint Number

34 persistent WaypointID nTimer

35 if isempty(WaypointID)

36 WaypointID = 1;

37 nTimer = 0;

38 end

39

40 % Set Reference Signal

41 Ref.x = Waypoints(WaypointID,1);

42 Ref.y = Waypoints(WaypointID,2);

43 Ref.z = Waypoints(WaypointID,3);

44

45 % Check if in neighborhood of Waypoint

46 range = sum((Waypoints(WaypointID,:)-[StateEstim.x StateEstim.y StateEstim.z]).^2);

47

48 if range <= neighborhood

49 % If yes, check timer

50 if nTimer == 0

51 nTimer = time;

52 end

53 if (time - nTimer) >= nTime

54 WaypointID = WaypointID + 1;

55 if WaypointID > length(Waypoints)

56 WaypointID = 1;

57 end

58 end

59 else

60 % if no, set timer to zero

61 if nTimer ~= 0

62 nTimer = 0;

63 end

64 end

65

66 end

Snippet 24: Cyclic waypoint guidance system for the flight simulator.
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1 class FixedPointGuidance : public Guidance {

2 float x, y, z;

3

4 public:

5 FixedPointGuidance(float x, float y, float z) {

6 this->x = x;

7 this->y = y;

8 this->z = z;

9 }

10

11 void update(SensorReadings &readings, StateVector &state, StateVector &desired_state) {

12 desired_state.x = x;

13 desired_state.y = y;

14 desired_state.z = z;

15 }

16 };

Snippet 25: Go-to-Point guidance for the flight code.
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1 class WaypointGuidance : public Guidance {

2 queue<Waypoint> waypoints;

3

4 bool in_neighborhood;

5 bool cycle;

6 unsigned long start_ms;

7

8 public:

9 WaypointGuidance(queue<Waypoint> waypoints, bool cycle = false) {

10 this->waypoints = waypoints;

11 this->in_neighborhood = false;

12 this->cycle = cycle;

13 }

14

15 void update(SensorReadings &readings, StateVector &state, StateVector &desired_state) {

16 if (waypoints.size() == 1) {

17 desired_state.x = waypoints.front().x;

18 desired_state.y = waypoints.front().y;

19 desired_state.z = waypoints.front().z;

20 }

21

22 else {

23 // Neighborhood rule

24 bool curr_n = (distance(state, waypoints.front()) < 0.3);

25

26 if (!in_neighborhood && curr_n) {

27 in_neighborhood = true;

28 start_ms = millis();

29 }

30

31 else if (in_neighborhood && !curr_n) {

32 in_neighborhood = false;

33 }

34

35 else if (in_neighborhood && curr_n) {

36 if (millis() - start_ms > 100) {

37 if (cycle) waypoints.push(waypoints.front());

38 waypoints.pop();

39 }

40 }

41

42 desired_state.x = waypoints.front().x;

43 desired_state.y = waypoints.front().y;

44 desired_state.z = waypoints.front().z;

45 }

46 }

47 };

Snippet 26: Waypoint guidance for the flight code.
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Appendix I

State Estimators

A state estimator is a process by which we estimate the true state (χ) of the system,

often from partial and noisy measurement data. Typically, we cannot directly observe

the current state, as such, we may use a state estimator to convert sensor measurements

of the inputs and outputs of a system, together with a model of the system dynamics,

into an estimate of the true state (χ̂).

System Estimator
u y χ̂

Figure I.1: A high level block diagram of a state estimator.

I.0.1 Complementary Filter

The Complementary Filter is an estimator which takes different measurements of a

given signal and passes each measurement through a filter which is the complement of

the other. If we define one filter as H(s) then its complement would be [1−H(s)]. A

common form of complementary filter is a combination of a High-Pass Filter

Hhpf (s) =
s

s+ ωc
, (I.1)

with a Low-Pass Filter

Hlpf (s) =
ωc

s+ ωc
, (I.2)
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using the same cut-off frequency (ωc). If we take the standard form of the High-Pass

Filter (I.1), we would find that its complement is,

1−Hhpf (s) = 1− s

s+ ωc
=

(s+ ωc)− s
s+ ωc

=
ωc

s+ ωc
, (I.3)

which we can immediately recognize as that it is indeed the standard form of a Low-Pass

Filter (I.2). By choosing the correct sensors to use with each filter, and choosing

an appropriate cut-off frequency, we can greatly increase the accuracy of our state

estimate. Such an estimator can be used on-line in real-time applications using minimal

computational effort while simultaneously providing high estimation accuracy when

tuned properly and paired with adequate sensors.

High-pass Filter

Hhpf (s) = s
s+ωc

+

+

Low-pass Filter

Hlpf (s) = ωc
s+ωc

Sensor 1

Sensor 2

Sensor Estimate

Figure I.2: Complementary filter model.

I.0.2 Kalman Filter

The Kalman Filter is an optimal linear estimator, described in R.E. Kalman’s seminal

paper from 1960 [32], which works using a two-step prediction/update process to

recursively solve the discrete-data linear filtering problem. The Kalman Filter is Markov,

in that its current estimate is reliant only on measurements and predictions from the

current time-step and the previous state estimate. Two models are required for a

Kalman Filter, the process model and the observation model, defined as:

xk = Fxk−1 + Buk−1 + Γwk−1

zk = Hxk + vk

(I.4)

Where x is our state vector, F is our state-transition matrix, B is our control-input

matrix, u is our control vector, w is our process noise (assumed to be a zero-mean

Gaussian with covariance Q), z is our observation vector, H is our observation matrix, v

is the measurement noise vector (assumed to be a zero-mean Gaussian with covariance

R).
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The first step of the Kalman Filter estimation process is the prediction stage which

relies on the dynamical model of the system and the command inputs to predict the

state of the system.

x̂−k = Fkx̂+
k−1 + Bkuk−1

P−k = FkP+
k−1FT

k + ΓQkΓT

(I.5)

The second step is the update stage which updates our estimates based on sensor

measurements.
Kk = P−k HT

k (HkP−k HT
k + Rk)−1

x̂+
k = x̂−k + Kk(zk −Hkx̂−k )

P+
k = (I−KkHk)P−k

(I.6)

The hat operator (̂ ) refers to the estimate of a variable, and the superscripts (−) and

(+) refer to the prior and posterior estimates respectively. By iteratively repeating these

steps, and provided that system being estimated using the Kalman Filter is observable

(i.e.- the state may be determined by the outputs) and reachable (i.e.- there exists inputs

which can drive it to any state), then the Kalman Filter is asymptotically stable and

the estimate converges towards the true state.

I.1 Quadcopter Specific Estimators

Using the above estimators, we can determine estimators specific to our quadcopter

with its embedded sensors.

Pitch and Roll Estimators

The pitch and roll estimators are used to determine the pitch and roll angles, θ and φ

respectively, of the quadcopter. From (4.11) we can find that:

FB =

4∑
i=1

 0

0

−Ti

 +RT

 0

0

mg

 =

4∑
i=1

 0

0

Ti

 +

−sθcθsφ

cφcθ

mg. (I.7)

We can divide the forces felt (FB) by the mass of the quadcopter (m) to determine

the accelerations felt in the body-frame of the quadcopter,

a =

ax

ay

az

 =
1

m
FB. (I.8)

We can then use trigonometry to find the pitch and roll angles based on the accelerometer
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readings using (I.9), and assuming no accelerations besides gravity,ax = −g sin(θ)⇒ θ̂ = − arcsin(axg )

ay
az

= tan(φ)⇒ φ̂ = arctan(
ay
az

)
. (I.9)

Estimating the pitch and roll angles via the gyro is a simple integration of the angular

rate by the elapsed time, θ̂(t) =
∫ t

0 q(τ)dτ

φ̂(t) =
∫ t

0 p(τ)dτ
. (I.10)

The two sensor estimates are excellent candidates for a Complementary Filter

approach to the sensor fusion as they are improved by a high-pass and low-pass filter

respectively. Over the short term, the gyro sensor is highly accurate in determining the

attitude angle, over the long term, it is prone to drift. In contrast, the angle estimate

generated by the accelerometers over the short term is noisy, while over the long term, it

provides an accurate measurement of the angle. It is worth noting that the angle estimate

determined by the accelerometers provides inaccurate results during acceleration of the

quadcopter as the accelerometers read the acceleration of the quadcopter in addition

to the acceleration due to gravity. Further, for an angular complementary filter using

a gyro and acceleromter (Figure I.3) we can further simplify the filter structure to a

single filter on the combined signal from the two sensors (Figure I.4).

High-pass Filter

Hhpf (s) = s
s+ωc

1
s

+

+

Low-pass Filter

Hlpf (s) = ωc
s+ωc

Gyro

(θ̇, φ̇)

Accelerometer

Angle (θ̂acc,φ̂acc)

θ̂,φ̂

Figure I.3: Angular Complementary Filter.

In general, the cut-off frequency of the Complementary Filter is determined exper-

imentally. Typical values for the cutoff frequency for Complementary Filters using

MEMS gyros to determine pitch and roll angles are 6.28 ≤ ωc ≤ 8.84[rad/sec] [33].
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+

+

ωc

Filter

H(s) = 1
s+ωc

Gyro (θ̇, φ̇)

Accelerometer

Angle (θ̂acc,φ̂acc)

θ̂,φ̂

Figure I.4: Simplified Angular Complementary Filter.

Yaw Estimator

The yaw estimator works along similar principles to the pitch and roll estimators,

however one major difference between the two is that the accelerometers cannot provide

an estimate of the yaw angle. To this end, we can instead substitute the accelerometer

reading for one from either the magnetometer, or from the optical flow sensor. Fortu-

nately, as with the accelerometer, while both of the aforementioned sensors suffer from

noise over the short term, over the long term, they produce accurate measurements of

the yaw angle. If we assume no hard-iron interference with the magnetometer, from

[34] we can find

ψ̂ = arctan( mz sinφ−mz cosφ
mx cos θ+my sin θ+mz sin θ cosφ), (I.11)

which translates our magnetometer readings to a compass heading angle. After cali-

brating to our initial compass heading angle, we can find the estimate of the yaw angle.

Like the accelerometer, it is accurate over longer periods of time, but less accurate in

the short term, and as such a Low-Pass Filter can help compensate. As mentioned,

the optical flow sensor may be used to determine the yaw angle as well, however the

methodology is not in the scope of this thesis. This can also be simplified as with the

pitch and roll estimators to generate the simplified complementary filter found in Figure

I.5

I.1.1 Height Estimator

The height estimator estimates the height of our quadcopter in the world frame. Height

estimation is critical for maintaining an altitude hold of the quadcopter, about which

point we are linearizing our system. The height estimator receives sensor data from any

combination of the following sensors: IMU, barometric pressure sensor, and ultrasonic

sensor. In general, a Kalman Filter is the standard height estimator used for the sensor

fusion of height data. It is worth noting that while the IMU and ultrasonic sensors
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+

+

ωc

Filter

H(s) = 1
s+ωc

Gyro (ψ̇)

Magnetometer/Optical

Flow Yaw Angle (ψ̂m/of )

ψ̂

Figure I.5: Simplified Yaw Angle Complementary Filter.

may be used to directly estimate the height of the quadcopter, the barometric pressure

sensors is used to measure the altitude and thus must be compensated for during the

calculations. Here, we use a Kalman filter to fuse measurements from the ultrasonic

sensor and the barometric pressure sensor.

The Kalman filter is based on a discretization of the altitude dynamics of the

quadcopter. In this direction, let h(t) denote the height of the quadcopter above the

ground (this is equivalent to the inertial quadcopter state −z(t)). Then the alitude

dynamics can be expressed simply as ḧ(t) = 1
mu
I
T (t) + w(t), where uI1 (t) is the thrust

input expressed in the inertial frame (including for simplicity also the gravitational

term), and w(t) is process noise associated with the motors. To enable estimation of

the altitude from the barometric pressure sensor, we introduce a “phantom” state b(t)

with no dynamics, i.e. ḃ(t) = 0. Defining now ḣ(t) = vh(t), the complete state vector

can be expressed as x(t) =
[
h(t) vh(t) b(t)

]
. Considering a sample time of dt, we can

discretize this model to obtain the difference equation

x[k] =

1 dt 0

0 1 0

0 0 1


︸ ︷︷ ︸

F

 h[k − 1]

vh[k − 1]

b[k − 1]

 +


1

2mdt
2

1
mdt

0


︸ ︷︷ ︸

B

uIT [k − 1] +


1
2dt

2

dt

0


︸ ︷︷ ︸

Γ

w[k − 1]

(I.12)

z[k] =

[
1 0 1

1 0 0

]
︸ ︷︷ ︸

H

 h[k]

vh[k]

b[k]

 + v[k].

The measurement h[k] + b[k] represents the correction of the barometric pressure height

measurement which is calibrated with an initial condition corresponding to the ground

height. The process noise is modeled as a zero-mean Gaussian signal with covariance
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σa, w ∼ N (0, Q)

Q = σ2
a

. (I.13)

We assume for simplicity that the measurement noises are not correlated. The pressure

sensor noise is zero-mean Gaussian with covariance σb. The ultrasonic sensor is highly

accurate only within a certain range, while outside that range the sensor readings are

relatively arbitrary and nonsensical. As such, we model this with a switching value

for the noise covariance of the sensor that depends on the current height reading. For

the ultrasonic sensor used with the quadcopter developed for this thesis, we define the

switching function as

σu =

σu,1, if 0.02[m] < h < 4[m]

σu,2, else
,

thus 
v ∼ N (0, R)

R =

σ2
b 0

0 σ2
u

 .

With this model we are able to implement the Kalman filter outline in I.0.2.

For the practical implementation of the height Kalman filter, we make use of the

accelerometers to input the value uIT based on the sensor readings rather than relying

on a transformation of the controller output.

I.1.2 Lateral Position Estimator

A combination of the IMU and the optical flow sensor may be used to accurately estimate

the lateral position of the quadcopter. The estimation of the lateral position is critical

for trajectory tracking, a key feature of many guidance systems. The use of a Kalman

Filter is the most common method of estimating lateral position. The Kalman Filter is

based on the discretization of the planar dynamics of the quadcopter. To this end, we

denote the lateral positions x(t) and y(t) as the displacement from the initial position,

which for simplicity we denote as (0, 0). The planar dynamics can be expressed asẍ(t) = ax
I(t) + wx(t)

ÿ(t) = ay
I(t) + wy(t),

(I.14)

where ax
I and ay

I are the inertial frame lateral accelerations in the x and y directions
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respectively. Notably, the inertial frame accelerations are a function of the Euler angles

and thrust. To simplify we will retain the ax
I and ay

I notation. Further, we may define

ẋ = vh(t) and ẏ = vy(t), which will allow us to define the complete state vector as

x =
[
x y vx vy

]
. Considering a sample time of dt, we can discretize the model to

obtain the difference equation

x[k] =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

F


x[k − 1]

y[k − 1]

vx[k − 1]

vy[k − 1]

 +


1
2dt

2 0

0 1
2dt

2

dt 0

0 dt


︸ ︷︷ ︸

B

[
ax
I

ay
I

]
+


1
2dt

2 0

0 1
2dt

2

dt 0

0 dt


︸ ︷︷ ︸

Γ

w[k]

(I.15)

z[k] =

[
0 0 1 0

0 0 0 1

]
︸ ︷︷ ︸

H


x[k]

y[k]

vx[k]

vy[k]

 + v[k].

The process and measurement noises are modeled as a zero-mean Gaussian noises with

covaraince matrices Q and R respectively,
w ∼ N (0, Q)

Q =

σ2
ax 0

0 σ2
ay

 (I.16)


v ∼ N (0, R)

R =

σ2
vx 0

0 σ2
vy

 , (I.17)

where σ2
ax is the process noise variance for acceleration in the x direction, σ2

ay is the

process noise variance for the acceleration in the y, and σ2
vx and σ2

vy are the measurement

noise variances for our optical flow sensor. For practical implementation purposes, rather

than rely on transforming the controller output to acceleration output, and relying on

the linearized assumptions involved, we choose to rely instead on the accelerometer

readings to determine the acceleration. With this model we are able to implement the

Kalman filter outline in I.0.2.
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Appendix J

Flight Code Estimators

This appendix contains a number of code snippets required for the implementation of

various filters and state estimators into the flight code.

Snippet 27 provides the code required to implement a simple low-pass filter into the

flight code.

1 // From ReadyFilters.hpp

2 /* Low-pass Filter

3 * y(n) = (1-alpha) * x(n) + alpha * y(n-1)

4 * alpha = tau / (tau + dt)

5 * */

6 class LowPass : public Estimator {

7 private:

8 float alpha;

9 sensor_field_ptr lpf_sensor_field;

10 state_field_ptr output_field;

11

12 public:

13 LowPass(sensor_field_ptr lpf_sensor_field,

14 state_field_ptr output_field, float alpha = DEFAULT_ALPHA);

15 void update(SensorReadings &readings, StateVector &state) override;

16 // ~LowPass();

17 };

18

19 // From ReadyFilters.cpp

20 LowPass::LowPass(sensor_field_ptr lpf_sensor_field,

21 state_field_ptr output_field, float alpha) {

22 this->alpha = alpha; // alpha = tau / (tau + dt)

23 // this->dt = dt;

24 this->lpf_sensor_field = lpf_sensor_field;

25 this->output_field = output_field;

26 }

27

28 void LowPass::update(SensorReadings &readings, StateVector &state) {

29 float low_pass = readings.*lpf_sensor_field;

30 float filtered_state = state.*output_field;

31 filtered_state = (1-alpha) * low_pass + alpha*filtered_state;

32 state.*output_field = filtered_state;

33 }

Snippet 27: Low-Pass Filter for the flight code.

Snippet 28 provides the code required to implement a simple high-pass filter into
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the flight code.

1 // From ReadyFilters.hpp

2 /* High-pass Filter

3 * y(n) = alpha * y(n-1) + alpha * (x(n) - x(n-1))

4 * alpha = tau / (tau + dt)

5 * */

6 class HighPass : public Estimator {

7 private:

8 float alpha;

9 float prev_high_pass;

10 sensor_field_ptr hpf_sensor_field;

11 state_field_ptr output_field;

12

13 public:

14 HighPass(sensor_field_ptr hpf_sensor_field,

15 state_field_ptr output_field, float alpha = DEFAULT_ALPHA);

16 void update(SensorReadings &readings, StateVector &state) override;

17 // ~HighPass();

18 };

19

20 // From ReadyFilters.cpp

21 HighPass::HighPass(sensor_field_ptr hpf_sensor_field,

22 state_field_ptr output_field, float alpha) {

23 this->alpha = alpha; // alpha = tau / (tau + dt)

24 // this->dt = dt;

25 this->prev_high_pass = 0;

26 this->hpf_sensor_field = hpf_sensor_field;

27 this->output_field = output_field;

28 }

29

30 void HighPass::update(SensorReadings &readings, StateVector &state) {

31 float high_pass = readings.*hpf_sensor_field;

32 float filtered_state = state.*output_field;

33 filtered_state = alpha * filtered_state + alpha*(high_pass-prev_high_pass);

34 prev_high_pass = high_pass;

35 state.*output_field = filtered_state;

36 }

Snippet 28: High-Pass Filter for the flight code.

Snippet 29 provides the code required to implement an angular complementary filter

into the flight code. This complementary filter is designed to use the gyro sensor along

with either the accelerometer or the magnetometer to determine the attitude angle.

Snippets 30 and 31 provide the code required to implement a Kalman Filter for

lateral position and velocity estimation into the flight code. This Kalman Filter relies

on the accelerometers and the optical flow sensor measurements to generate the state

estimates.

Snippets 32 and 33 provide the code required to implement a Kalman Filter for

vertical position and velocity estimation into the flight code. This Kalman Filter relies

on the accelerometers, the barometer, and the ultrasonic distance sensor measurements

to generate the state estimates.
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1 // From ReadyFilters.hpp

2 /* Angular Complementary Filter

3 * angle = (alpha)*(angle + gyro * dt) + (1-alpha)*(acc)

4 * */

5 class AngularComplementaryFilter : public Estimator {

6 private:

7 float alpha;

8 sensor_field_ptr low_pass_field, high_pass_field;

9 state_field_ptr output_field;

10

11 public:

12 AngularComplementaryFilter(sensor_field_ptr low_pass_field,

13 sensor_field_ptr high_pass_field,

14 state_field_ptr output_field, float alpha = DEFAULT_ALPHA);

15 void update(SensorReadings &readings, StateVector &state) override;

16 // ~AngularComplementaryFilter();

17 };

18

19 // From ReadyFilters.cpp

20 AngularComplementaryFilter::AngularComplementaryFilter(sensor_field_ptr low_pass_field,

21 sensor_field_ptr high_pass_field,

22 state_field_ptr output_field,

23 float alpha) {

24 this->alpha = alpha;

25 // this->dt = dt;

26 this->low_pass_field = low_pass_field;

27 this->high_pass_field = high_pass_field;

28 this->output_field = output_field;

29 }

30

31 void AngularComplementaryFilter::update(SensorReadings &readings, StateVector &state) {

32 float low_pass = readings.*low_pass_field;

33 float high_pass = readings.*high_pass_field;

34 float angle = state.*output_field;

35 angle = alpha * (angle + high_pass * dt) + (1 - alpha) * (low_pass);

36 state.*output_field = angle;

37 }

Snippet 29: Angular complementary filter for the flight code.
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1 // From ReadyFilters.hpp

2 // Kalman Filter used to estimate the lateral position and velocity

3 class XY_KalmanFilter : public Estimator {

4 private:

5 BLA::Matrix<2> com;

6 BLA::Matrix<2> obs;

7 KalmanFilter<4, 2, 2> KF;

8 float n_v = 100.0; // Velocity Sensor Noise Variance

9 float n_a = 0.01; // Accelerometer Noise Variance

10

11 float m_p = 0.001; // Process Position Noise Variance

12 float m_v = 0.001; // Process Velocity Noise Variance

13

14 public:

15 XY_KalmanFilter();

16 void update(SensorReadings &readings, StateVector &state) override;

17 // ~XY_KalmanFilter();

18 };

19

20 // From ReadyFilters.cpp

21 XY_KalmanFilter::XY_KalmanFilter() {

22 // Posterior Covariance Initialization

23 // Knowing we start being static at the origin

24 KF.P = {

25 0.0, 0.0, 0.0, 0.0, //

26 0.0, 0.0, 0.0, 0.0, //

27 0.0, 0.0, 0.0, 0.0, //

28 0.0, 0.0, 0.0, 0.0 //

29 };

30 // time evolution matrix

31 KF.F = {

32 1.0, 0.0, 0.0, 0.0, // x

33 0.0, 0.0, 1.0, 0.0, // y

34 0.0, 1.0, 0.0, 0.0, // dx

35 0.0, 0.0, 0.0, 1.0 // dy

36 };

37 // command matrix

38 KF.B = {

39 1.0, 0.0, //

40 0.0, 1.0, //

41 1.0, 0.0, //

42 0.0, 1.0 //

43 };

44 // measurement matrix

45 KF.H = {

46 0.0, 0.0, 1.0, 0.0, // dx measurement

47 0.0, 0.0, 0.0, 1.0 // dy measurement

48 };

49 // measurement covariance matrix

50 KF.R = {

51 n_v * n_v, 0.0, // dx measrement noise

52 0.0, n_v * n_v // dy measurement noise

53 };

54 // model covariance matrix

55 KF.Q = {

56 m_p * m_p, 0.0, 0.0, 0.0, // x model position noise

57 0.0, 0.0, m_p * m_p, 0.0, // y model position noise

58 0.0, m_v * m_v, 0.0, 0.0, // dx model velocity noise

59 0.0, 0.0, 0.0, m_v * m_v // dy model velocity noise

60 };

61 }

Snippet 30: Lateral Kalman Filter for the flight code: Part 1.
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1 void XY_KalmanFilter::update(SensorReadings &readings, StateVector &state) {

2 KF.F = {

3 1.0, 0.0, dt, 0.0, // x

4 0.0, 1.0, 0.0, dt, // y

5 0.0, 0.0, 1.0, 0.0, // dx

6 0.0, 0.0, 0.0, 1.0 // dy

7 };

8

9 KF.Q = {

10 0.00025*pow(dt,4), 0.0, 0.0005*pow(dt,3), 0.0,

11 0.0, 0.00025*pow(dt,4), 0.0, 0.0005*pow(dt,3),

12 0.0005*pow(dt,3), 0.0, 0.0001*dt * dt, 0.0,

13 0.0, 0.0005*pow(0.04,3), 0.0, 0.0001* dt * dt

14 };

15

16 KF.B = {

17 dt * dt / 2, 0, // x

18 0, dt * dt / 2, // y

19 dt, 0, // dx

20 0, dt // dy

21 };

22

23 com(0) = readings.acc_x;

24 com(1) = readings.acc_y;

25

26 obs(0) = readings.camera_dx;

27 obs(1) = readings.camera_dy;

28

29 // APPLY KALMAN FILTER

30 KF.update(obs, com);

31

32 state.x = KF.x(0);

33 state.y = KF.x(1);

34 state.dx = KF.x(2);

35 state.dy = KF.x(3);

36 }

Snippet 31: Lateral Kalman Filter for the flight code: Part 2.
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1 // From ReadyFilters.hpp

2 // Kalman Filter used to estimate altitude

3 class Altitude_KalmanFilter : public Estimator {

4 private:

5 BLA::Matrix<1> com;

6 BLA::Matrix<2> obs;

7 KalmanFilter<3, 2, 1> KF;

8

9 float n_b = 1.0; // Barometer Noise Variance

10 float n_u = 0.05; // Ultrasonic Noise Variance

11

12 float m_p = 0.05*dt*dt; // Process Position Noise Variance

13 float m_v = 0.05*dt; // Process Velocity Noise Variance

14

15 public:

16 Altitude_KalmanFilter();

17 void update(SensorReadings &readings, StateVector &state) override;

18 // ~Altitude_KalmanFilter();

19 };

20

21 // From ReadyFilters.cpp

22 Altitude_KalmanFilter::Altitude_KalmanFilter() {

23 /* Posterior Covariance Initialization

24 Knowing we start being static at the origin

25 Slight unknown as to barometer ground height

26 */

27 KF.P = {

28 0.0, 0.0, 0.0, //

29 0.0, 0.0, 0.0, //

30 0.0, 0.0, 10.0 //

31 };

32

33 // time evolution matrix

34 KF.F = {

35 1.0, 0.0, 0.0, // z (height above the ground)

36 0.0, 1.0, 0.0, // dz (vertical velocity)

37 0.0, 0.0, 1.0, // barometer ground height

38 };

39

40 // command matrix

41 KF.B = {

42 1.0, //

43 1.0, //

44 0.0 //

45 };

46

47 // measurement matrix

48 KF.H = {

49 1.0, 0.0, 1.0, // barometer measurement

50 1.0, 0.0, 0.0 // ultrasonic measurement

51 };

52

53 // measurement covariance matrix

54 KF.R = {

55 n_b * n_b, 0.0, // barometer measrement noise

56 0.0, n_u * n_u // ultrasonic measurement noise

57 };

58

59 // model covariance matrix

60 KF.Q = {

61 0.25*m_p * m_p, 0.5*m_v*m_v*dt, 0.0, // z model position noise

62 0.5*m_v*m_v*dt, m_v * m_v, 0.0, // dz model position noise

63 0.0 0.0 0.0 // barometer model noise

64 };

65 }

Snippet 32: Vertical Kalman Filter for the flight code: Part 1.
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1 void Altitude_KalmanFilter::update(SensorReadings &readings, StateVector &state) {

2 KF.F = {

3 1.0, dt, 0.0, // z (height above the ground)

4 0.0, 1.0, 0.0, // dz (vertical velocity)

5 0.0, 0.0, 1.0, // barometer ground height

6 };

7

8 KF.B = {

9 dt * dt / 2, // z

10 dt, // dz

11 0 // barometer ground height

12 };

13

14 // ENABLE THIS SECTION WHEN ULTRASONIC IS ENABLED

15 com(0) = readings.acc_z; // Later change this to account for acceleration in the z

16 // axis of the word frame

17

18 obs(0) = readings.barometer_alt;

19 obs(1) = readings.ultrasonic_alt;

20

21 // if (state.z <= 2/100 || state.z >= 3.5) {

22 if (readings.ultrasonic_alt == -1) {

23 KF.R = {

24 n_b * n_b, 0.0, // barometer measrement noise

25 0.0, 10000.0 // Use this when Ultrasonic isn't enabled

26 };

27 obs(1) = 0;

28 } else {

29 KF.R = {

30 n_b * n_b, 0.0, // barometer measrement noise

31 0.0, n_u * n_u // ultrasonic measurement noise

32 };

33 };

34

35 // APPLY KALMAN FILTER

36 KF.update(obs, com);

37

38 state.z = KF.x(0);

39 state.dz = KF.x(1);

40 }

Snippet 33: Vertical Kalman Filter for the flight code: Part 2.
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Appendix K

Controllers

A control system is mechanism by which the future state of a system can be altered in

a desired manner. In general, the control system generates a desired output to the state

of the system by the application of tuned inputs via actuators [35, 36, 37]. Control

systems may be broadly classified as open-loop control systems, and closed-loop control

systems. In an open-loop control system (Figure K.1), the input signal is not compared

with the output signal of the system. As the output of the system is not compared to

the input, open-loop control systems are, by and large, considered inaccurate, and not

reliable enough for many applications. As such, for purposes of this thesis, we will rely

Controller
System

Dynamics
r u y

Figure K.1: A block diagram of a generalized open-loop controller.

on closed-loop control systems. A close-loop control system, unlike the open-loop, the

output signal of the system is fed back into the system and compared to a reference

signal. The difference between the two signals, the error signal, is then fed into the

controller (Figure K.2). In a closed-loop control system, the purpose of the controller is

to control the system in such a manner that the error signal is driven to zero, thereby

bringing the system to the desired output state. This appendix will describe different

types of controllers and control systems.

K.1 Proportional-Integral-Derivative (PID) Controller

A Proportional-Integral-Derivative Controller (PID) is a classic closed loop feedback

controller. The PID controller is the most common controller used in industry, in part

due to their functional simplicity, and in part due to their robust performance in a wide
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+
− Controller

System
Dynamics

errorr u y

Figure K.2: A block diagram of a generalized closed-loop controller.

range of conditions. The PID controller consists of three terms whose sum constitutes

the output of the controller, the proportional term, the integral term, and the derivative

term. The equation which governs a PID controller is,

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
, (K.1)

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain,

u(t) is the control signal, and e(t) is the error signal. The block diagram form of this is

shown in Figure K.3. A Laplace transformation of the aforementioned equation (K.1) is

generally used to describe the standard form of the PID Controller,

C(s) = Kp +
Ki

s
+Kds. (K.2)

Figure K.3: Generalized architecture of a PID controller.

K.1.1 P - Proportional Term

The proportional term of the PID Controller multiplies the error signal by a set gain

to generate a control signal. In general, the larger the proportional gain, the faster

the control system response. However, too large of a proportional gain may cause the

system to become unstable. Additionally, too small of a proportional gain will cause

the control system response to be too slow to allow the system to react to disturbances,

and in an unstable system, it will cause the system to diverge away from the reference

signal. As the proportional term requires some error signal to drive the controller, a
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proportional term alone will usually cause some steady-state error.

K.1.2 I - Integral Term

The integral term of the PID controller multiplies the integral of the error signal by

a set gain to generate a control signal. Whereas the proportional term can is used to

generate a rapid response in the system, the integral term is used to reduce or eliminate

the steady-state error. This capability is due to the fact that the integral term is reliant

on both the magnitude and duration of the error. However, because the integral term

responds to the accumulation of the error in time, it can cause the system to overshoot

the set-point, increase the transient response. As well, in reaction to large enough

changes in the set-point, the integral term may cause integral windup.

Integral Windup

Integral windup is a phenomenon which occurs in physical systems due to the ideal

output undergoing saturation. This causes the integral of the error signal to accumulate

a larger error during the rise and will lead to an overshooting of the set-point. There

are numerous methods [38, 39] to mitigate the integral windup such as choosing to give

the set-point an appropriate ramp up to the desired value, conditionally integrating the

error, or zeroing the integral value when the error is equal to zero.

K.1.3 D - Derivative Term

The derivative term of the PID controller multiplies the derivative of the error signal by a

set gain to generate a control signal. The derivative term is used to “predict” the system

behavior, and improves the settling time and stability of the system. It must be noted

however, that an ideal derivative is non-causal, and as such cannot be implemented in

reality. Approaches to compensate for this and allow for a derivative term to be used in

the controller are varied, but include adding a pole 10 to 100 times further from the

origin than then zero, and taking the derivative from the feedback path.In the laplace

domain, rather than the derivative taking the form of s, a pseudo-derivative takes the

form of
s

τs+ 1
. (K.3)

K.2 Full State Feedback

A full state feedback (FSF) controller [40] is a linear controller, which uses the state

vector to compute the control signal for the system. This method of control relies on the

placement of closed-loop poles of the system in predetermined locations in the s−plane.

Direct placement of the poles is advantageous because the location of the poles directly

correspond to the stability and performance of the closed-loop system. The system

must, of course, be considered controllable in order to implement this method. The full
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state feedback controller is a proportional controller which works over the state vector

χ,

u = r−Kχ, (K.4)

where u is the control signal, K is an appropriately sized gain matrix, and r is the

reference signal. Substituting (K.4) into (4.42) we can derive the closed-loop system

with full state feedback as

χ̇ = (A−BK)χ+ Br. (K.5)

The goal is to choose the values of K such that (A−BK) has the desired properties.

This may be accomplished by taking the characteristic equation of the closed loop

system

det(sI − (A−BK)), (K.6)

and setting the values of K such that the value of (K.6) is equal to the desired

characteristic equation. This method is called pole placement.

+
− K

System
Dynamics

errorr u y

χ

Figure K.4: Block diagram of a state feedback controller.

K.2.1 Linear Quadratic Regulator

A Linear Quadratic Regulator (LQR) is an optimal controller [41]. The LQR controller is

a special case of a full state feedback controller, where the gain matrix K is optimized to

give the desired performance at a desired control effort. The LQR works by minimizing

the function

J =

∫ ∞
0

(χTQx + uTRu)dt, (K.7)

where Q is a positive semi-definite matrix and R is positive definite. This cost function

represents that trade-off between the error and the cost of the control input. By choosing

the matrices Q and R we can balance the rate of convergence of the solutions with the

cost of the control effort. The solution to the LQR problem is given by,

u = −R−1BTPχ, (K.8)
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where P ∈ Rn×n is a positive-definite, symmetric matrix that satisfies the algebraic

Riccati equation,

PA + ATP− PBR−1BTP + Q = 0. (K.9)

It must be noted that in order to guarantee that a solution exists, we require that Q ≥ 0

and R > 0. Choosing the specific values for Q and R is dependent on the system we

are trying to control. The values of the two matrices determined how much the value

of each state or input (squared) affects the overall cost. States and/or inputs that we

require to be very small may have large weights attached to them, harshly penalizing

them, whereas states or inputs that we don’t have such a requirement on may have

lower weights penalizing them less. Of note, the LQR problem may be modified to

handle the reference tracking problem as well [42, 43]

K.3 Cascaded Control System

Cascaded control involves a mutli-loop control structure where the outer-loops provide

the set-points for the inner-loops in a cascading manner from outer-most loop to the

inner-most loop. The feedback for each controller is nested inside each controller above

it in the cascade (Fig. K.5). Such a control system provides an improved response to

Figure K.5: Generalized block diagram of a cascaded control system.

disturbances when compared to a singular control loop. A cascaded controller is useful

in situations where the inner-loop process has significantly faster dynamics than the

outer-loop process. If the inner-loop is not sufficiently faster in response compared to

the outer-loop, there is a risk of interaction between the loops which can lead to the

instability of the system. Additionally, it is worth noting that the cascaded controller

requires additional measurements to allow each level of the cascaded controller to

function, and the control architecture is more complex than a singe controller. For

quadcopters, as a general rule, the attitude and height controllers are viewed as the inner-

loop controller, with the lateral position controller being the outer-loop controller (Figure

K.6). Additionally, in some cases, there may be another layer to the cascaded controller

with the attitude controllers feeding the set point to the angular rate controllers. It

is worth noting that a cascading PID controller is the most popular control system
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design for quadcopters in the industry, primarily due to its simplicity and relative ease

of tuning.

Figure K.6: Cascased control system for a quadcopter.
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Appendix L

Control Systems Code

This appendix contains a number of code snippets required for the implementation of

various controllers and control systems into both the simulator environment and the

flight code running the quadcopter.

Snippets 34 and 35 provide the code required to implement a PID based control

system which controls the inner-loop dynamics of the quadcopter in the simulator

environment.

1 function [u, comp_ref, comp_error] = InnerLoop_PID(dt, state, ref , Sensors)

2 %% Persistent Variables

3 persistent prev_state prev_ref prev_error

4

5 if isempty(prev_state)

6 prev_state.x = 0; % [m]

7 prev_state.y = 0; % [m]

8 prev_state.z = 0; % [m]

9 prev_state.phi = 0; % [deg]

10 prev_state.theta = 0; % [deg]

11 prev_state.psi = 0; % [deg]

12 prev_state.dx = 0; % [m/s]

13 prev_state.dy = 0; % [m/s]

14 prev_state.dz = 0; % [m/s]

15 prev_state.dphi = 0; % [rad/sec]

16 prev_state.dtheta = 0; % [rad/sec]

17 prev_state.dpsi = 0; % [rad/sec]

18 end

19 if isempty(prev_ref)

20 prev_ref.x = 0; % [m]

21 prev_ref.y = 0; % [m]

22 prev_ref.z = 0; % [m]

23 prev_ref.phi = 0; % [deg]

24 prev_ref.theta = 0; % [deg]

25 prev_ref.psi = 0; % [deg]

26 prev_ref.dx = 0; % [m/s]

27 prev_ref.dy = 0; % [m/s]

28 prev_ref.dz = 0; % [m/s]

29 prev_ref.dphi = 0; % [rad/sec]

30 prev_ref.dtheta = 0; % [rad/sec]

31 prev_ref.dpsi = 0; % [rad/sec]

32 end

Snippet 34: Inner-Loop PID control system for the flight simulator: Part 1.
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Snippets 36 and 37 provide the code required to implement an LQR based control

system which controls the inner-loop dynamics of the quadcopter in the simulator

environment.

Snippets 38 and 39 provide the code required to implement an PID based cas-

caded control system which controls the dynamics of the quadcopter in the simulator

environment.

Snippets 40 and 41 provide the code required to implement a full state LQR control

system which controls the dynamics of the quadcopter in the simulator environment.

Snippet 42 provides the code required to implement a general PID class in the flight

code. When inputting an error signal, a single error signal can be input, or an error

signal and its associated derivative taken from the state estimator may be input as well.

This allows the controller to either determine the derivative of the error signal internally,

or use a potentially more accurate sensor estimate to do so.

Snippet 43 provides the code required to implement a general full state feedback

class in the flight code. This class can be used to develop other controllers and control

systems.

Snippet 44 provides the code required to implement an PID based cascaded control

system which controls the dynamics of the quadcopter in the flight code.

Snippet 45 provides the code required to implement an LQR based control system

which controls the inner-loop dynamics of the quadcopter in the flight code.

Snippet 46 provides the code required to implement an LQR based control system

which controls the dynamics of the quadcopter in the flight code.
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1 if isempty(prev_error)

2 prev_error.x = 0; % [m]

3 prev_error.y = 0; % [m]

4 prev_error.z = 0; % [m]

5 prev_error.phi = 0; % [deg]

6 prev_error.theta = 0; % [deg]

7 prev_error.psi = 0; % [deg]

8 prev_error.dx = 0; % [m/s]

9 prev_error.dy = 0; % [m/s]

10 prev_error.dz = 0; % [m/s]

11 prev_error.dphi = 0; % [rad/sec]

12 prev_error.dtheta = 0; % [rad/sec]

13 prev_error.dpsi = 0; % [rad/sec]

14 end

15

16 %% Required Values

17 g = 9.81;

18 m = 0.53857;

19

20 %% Define Error Terms

21 error = structminus(ref,state);

22

23 %% Define Controllers

24 %% Inner Loop Controllers

25 % Altitude Controller

26 C_alt.kp = 0.5;

27 C_alt.ki = 0;

28 C_alt.kd = 0.35;

29

30 % Roll Controller

31 C_r.kp = 0.065;

32 C_r.ki = 0.0005;

33 C_r.kd = 0.01;

34

35 % Pitch Controller

36 C_p.kp = 0.055;

37 C_p.ki = 0.0003;

38 C_p.kd = 0.0085;

39

40 % Yaw Controller

41 C_y.kp = 0.005;

42 C_y.ki = 0;

43 C_y.kd = 0.015;

44 %% Controller Output

45

46 % Control Output

47 u.u1 = ( C_alt.kp*error.z + C_alt.ki*(prev_error.z+error.z*dt) +...

48 C_alt.kd*(error.z-prev_error.z)/dt ); % Thrust

49 u.u2 = ( C_r.kp*error.phi + C_r.ki*(prev_error.phi+error.phi*dt) +...

50 C_r.kd*(error.phi-prev_error.phi)/dt ); % Roll

51 u.u3 = ( C_p.kp*error.theta + C_p.ki*(prev_error.theta+error.theta*dt) +...

52 C_p.kd*(error.theta-prev_error.theta)/dt ); % Pitch

53 u.u4 = ( C_y.kp*error.psi + C_y.ki*(prev_error.psi+error.psi*dt) +...

54 C_y.kd*(error.psi-prev_error.psi)/dt ); % Yaw

55

56 % Computed Reference Signals

57 comp_ref = ref;

58

59 % Computed Error Signals

60 comp_error = error;

61

62 prev_state = state;

63 prev_ref = ref;

64 prev_error = error;

65 end

Snippet 35: Inner-Loop PID control system for the flight simulator: Part 2.
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1 function [u, comp_ref, comp_error] = LQR_Controller_InnerOnly(dt, state, ref , Sensors)

2 %% Persistent Variables

3 persistent prev_state prev_ref prev_error

4

5 if isempty(prev_state)

6 prev_state.x = 0; % [m]

7 prev_state.y = 0; % [m]

8 prev_state.z = 0; % [m]

9 prev_state.phi = 0; % [deg]

10 prev_state.theta = 0; % [deg]

11 prev_state.psi = 0; % [deg]

12 prev_state.dx = 0; % [m/s]

13 prev_state.dy = 0; % [m/s]

14 prev_state.dz = 0; % [m/s]

15 prev_state.dphi = 0; % [rad/sec]

16 prev_state.dtheta = 0; % [rad/sec]

17 prev_state.dpsi = 0; % [rad/sec]

18 end

19 if isempty(prev_ref)

20 prev_ref.x = 0; % [m]

21 prev_ref.y = 0; % [m]

22 prev_ref.z = 0; % [m]

23 prev_ref.phi = 0; % [deg]

24 prev_ref.theta = 0; % [deg]

25 prev_ref.psi = 0; % [deg]

26 prev_ref.dx = 0; % [m/s]

27 prev_ref.dy = 0; % [m/s]

28 prev_ref.dz = 0; % [m/s]

29 prev_ref.dphi = 0; % [rad/sec]

30 prev_ref.dtheta = 0; % [rad/sec]

31 prev_ref.dpsi = 0; % [rad/sec]

32 end

33 if isempty(prev_error)

34 prev_error.x = 0; % [m]

35 prev_error.y = 0; % [m]

36 prev_error.z = 0; % [m]

37 prev_error.phi = 0; % [deg]

38 prev_error.theta = 0; % [deg]

39 prev_error.psi = 0; % [deg]

40 prev_error.dx = 0; % [m/s]

41 prev_error.dy = 0; % [m/s]

42 prev_error.dz = 0; % [m/s]

43 prev_error.dphi = 0; % [rad/sec]

44 prev_error.dtheta = 0; % [rad/sec]

45 prev_error.dpsi = 0; % [rad/sec]

46 end

47

48 %% Required Values

49

50 %% Define Error Terms

51 error = structminus(ref,state);

52

53 error_innerOnly.z = error.z;

54 error_innerOnly.phi = error.phi;

55 error_innerOnly.theta = error.theta;

56 error_innerOnly.psi = error.psi;

57 error_innerOnly.dz = error.dz;

58 error_innerOnly.dphi = error.dphi;

59 error_innerOnly.dtheta = error.dtheta;

60 error_innerOnly.dpsi = error.dpsi;

Snippet 36: Inner-Loop LQR control system for the flight simulator: Part 1.
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1 %% Define Controllers

2 K = [1.7768 0 0 0 1.4991 0 0 0

3 0 0.1392 0 0 0 0.1133 0 0

4 0 0 0.1493 0 0 0 0.1227 0

5 0 0 0 0.1383 0 0 0 0.1125

6 ];

7 C = K*structarray(error_innerOnly);

8

9 %% Controller Output

10

11 % Control Output

12 u.u1 = C(1); % Thrust

13 u.u2 = C(2); % Roll

14 u.u3 = C(3); % Pitch

15 u.u4 = C(4); % Yaw

16

17 % Computed Reference Signals

18 comp_ref = ref;

19

20 % Computed Error Signals

21 comp_error = error;

22

23 prev_state = state;

24 prev_ref = ref;

25 prev_error = error;

26 end

Snippet 37: Inner-Loop LQR control system for the flight simulator: Part 2.
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1 function [u, comp_ref, comp_error] = CascadedPID(dt, state, ref , Sensors)

2 %% Persistent Variables

3 persistent prev_state prev_ref prev_error

4

5 if isempty(prev_state)

6 prev_state.x = 0; % [m]

7 prev_state.y = 0; % [m]

8 prev_state.z = 0; % [m]

9 prev_state.phi = 0; % [deg]

10 prev_state.theta = 0; % [deg]

11 prev_state.psi = 0; % [deg]

12 prev_state.dx = 0; % [m/s]

13 prev_state.dy = 0; % [m/s]

14 prev_state.dz = 0; % [m/s]

15 prev_state.dphi = 0; % [rad/sec]

16 prev_state.dtheta = 0; % [rad/sec]

17 prev_state.dpsi = 0; % [rad/sec]

18 end

19 if isempty(prev_ref)

20 prev_ref.x = 0; % [m]

21 prev_ref.y = 0; % [m]

22 prev_ref.z = 0; % [m]

23 prev_ref.phi = 0; % [deg]

24 prev_ref.theta = 0; % [deg]

25 prev_ref.psi = 0; % [deg]

26 prev_ref.dx = 0; % [m/s]

27 prev_ref.dy = 0; % [m/s]

28 prev_ref.dz = 0; % [m/s]

29 prev_ref.dphi = 0; % [rad/sec]

30 prev_ref.dtheta = 0; % [rad/sec]

31 prev_ref.dpsi = 0; % [rad/sec]

32 end

33 if isempty(prev_error)

34 prev_error.x = 0; % [m]

35 prev_error.y = 0; % [m]

36 prev_error.z = 0; % [m]

37 prev_error.phi = 0; % [deg]

38 prev_error.theta = 0; % [deg]

39 prev_error.psi = 0; % [deg]

40 prev_error.dx = 0; % [m/s]

41 prev_error.dy = 0; % [m/s]

42 prev_error.dz = 0; % [m/s]

43 prev_error.dphi = 0; % [rad/sec]

44 prev_error.dtheta = 0; % [rad/sec]

45 prev_error.dpsi = 0; % [rad/sec]

46 end

47

48 %% Required Values

49 g = 9.81;

50 m = 0.53857;

51

52 %% Define Error Terms

53 error = structminus(ref,state);

54

55 %% Define Controllers

56 %% Inner Loop Controllers

57 % Altitude Controller

58 C_alt.kp = 1;

59 C_alt.ki = 0;

60 C_alt.kd = 1;

61

62 % Roll Controller

63 C_r.kp = 0.1023;

64 C_r.ki = 0;

65 C_r.kd = 0.02047;

Snippet 38: Cascaded PID control system for the flight simulator: Part 1.
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1 % Pitch Controller

2 C_p.kp = 0.1423;

3 C_p.ki = 0;

4 C_p.kd = 0.02846;

5 % Yaw Controller

6 C_y.kp = 0.004;

7 C_y.ki = 0;

8 C_y.kd = 0.012;

9

10 %% Outer Loop Controllers

11 % X Positional Controller

12 % C_X is positive here instead of C_Y. Unsure why.

13 C_X.kp = 0.24;

14 C_X.ki = 0;

15 C_X.kd = 0.1;

16

17 % Set Outer Loop Controller Output as Inner Loop Controller Reference

18 ref.theta = (C_X.kp*error.x + C_X.ki*(prev_error.x+error.x*dt) +...

19 C_X.kd*((error.x-prev_error.x)/dt));

20 % Ensure the reference angle is wrapped to pi

21 ref.theta = (mod((ref.theta+pi),(2*pi))-pi);

22 % Define Error Signal based off of new Reference Signal

23 error.theta = ref.theta-state.theta;

24 % Wrap error angle to pi

25 error.theta = (mod((error.theta+pi),(2*pi))-pi);

26

27 % Y Positional Controller

28 % NOTE: C_Y is negative here instead of C_X. Unsure why

29 C_Y.kp = -0.24;

30 C_Y.ki = 0;

31 C_Y.kd = -0.1;

32

33 % Set Outer Loop Controller Output as Inner Loop Controller Reference

34 ref.phi = (C_Y.kp*error.y + C_Y.ki*(prev_error.y+error.y*dt) +...

35 C_Y.kd*((error.y-prev_error.y)/dt));

36 % Ensure the reference angle is wrapped to pi

37 ref.phi = (mod((ref.phi+pi),(2*pi))-pi);

38

39 % Define Error Signal based off of new Reference Signal

40 error.phi = ref.phi-state.phi;

41 % Wrap error angle to pi

42 error.phi = (mod((error.phi+pi),(2*pi))-pi);

43

44

45 %% Controller Output

46 % Control Output

47 u.u1 = ( C_alt.kp*error.z + C_alt.ki*(prev_error.z+error.z*dt) +...

48 C_alt.kd*(error.z-prev_error.z)/dt ); % Thrust

49 u.u2 = ( C_r.kp*error.phi + C_r.ki*(prev_error.phi+error.phi*dt) +...

50 C_r.kd*(error.phi-prev_error.phi)/dt ); % Roll

51 u.u3 = ( C_p.kp*error.theta + C_p.ki*(prev_error.theta+error.theta*dt) +...

52 C_p.kd*(error.theta-prev_error.theta)/dt ); % Pitch

53 u.u4 = ( C_y.kp*error.psi + C_y.ki*(prev_error.psi+error.psi*dt) +...

54 C_y.kd*(error.psi-prev_error.psi)/dt ); % Yaw

55

56 % Computed Reference Signals

57 comp_ref = ref;

58 % Computed Error Signals

59 comp_error = error;

60

61 prev_state = state;

62 prev_ref = ref;

63 prev_error = error;

64 end

Snippet 39: Cascaded PID control system for the flight simulator: Part 2.
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1 function [u, comp_ref, comp_error] = LQR_Controller(dt, state, ref , Sensors)

2 %% Persistent Variables

3 persistent prev_state prev_ref prev_error %prev_comp_error

4

5 if isempty(prev_state)

6 prev_state.x = 0; % [m]

7 prev_state.y = 0; % [m]

8 prev_state.z = 0; % [m]

9 prev_state.phi = 0; % [deg]

10 prev_state.theta = 0; % [deg]

11 prev_state.psi = 0; % [deg]

12 prev_state.dx = 0; % [m/s]

13 prev_state.dy = 0; % [m/s]

14 prev_state.dz = 0; % [m/s]

15 prev_state.dphi = 0; % [rad/sec]

16 prev_state.dtheta = 0; % [rad/sec]

17 prev_state.dpsi = 0; % [rad/sec]

18 end

19 if isempty(prev_ref)

20 prev_ref.x = 0; % [m]

21 prev_ref.y = 0; % [m]

22 prev_ref.z = 0; % [m]

23 prev_ref.phi = 0; % [deg]

24 prev_ref.theta = 0; % [deg]

25 prev_ref.psi = 0; % [deg]

26 prev_ref.dx = 0; % [m/s]

27 prev_ref.dy = 0; % [m/s]

28 prev_ref.dz = 0; % [m/s]

29 prev_ref.dphi = 0; % [rad/sec]

30 prev_ref.dtheta = 0; % [rad/sec]

31 prev_ref.dpsi = 0; % [rad/sec]

32 end

33 if isempty(prev_error)

34 prev_error.x = 0; % [m]

35 prev_error.y = 0; % [m]

36 prev_error.z = 0; % [m]

37 prev_error.phi = 0; % [deg]

38 prev_error.theta = 0; % [deg]

39 prev_error.psi = 0; % [deg]

40 prev_error.dx = 0; % [m/s]

41 prev_error.dy = 0; % [m/s]

42 prev_error.dz = 0; % [m/s]

43 prev_error.dphi = 0; % [rad/sec]

44 prev_error.dtheta = 0; % [rad/sec]

45 prev_error.dpsi = 0; % [rad/sec]

46 end

47

48 %% Required Values

Snippet 40: Full state LQR control system for the flight simulator: Part 1.
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1 %% Define Error Terms

2 error = structminus(ref,state);

3

4 %% Define Controllers

5 % Thesis Drone

6 K = [ 0 0 0.9370 0 0 0 0 0 1.0051 0 0 0

7 0 -0.0041 0 0.0511 0 0 0 -0.0072 0 0.0181 0 0

8 0.0042 0 0 0 0.0567 0 0.0075 0 0 0 0.0221 0

9 0 0 0 0 0 0.0157 0 0 0 0 0 0.0126

10 ];

11 C = K*structarray(error);

12

13 %% Controller Output

14

15 % Control Output

16 u.u1 = C(1); % Thrust

17 u.u2 = C(2); % Roll

18 u.u3 = C(3); % Pitch

19 u.u4 = C(4); % Yaw

20

21 % Computed Reference Signals

22 comp_ref = ref;

23

24 % Computed Error Signals

25 comp_error = error;

26

27 prev_state = state;

28 prev_ref = ref;

29 prev_error = error;

30 end

Snippet 41: Full state LQR control system for the flight simulator: Part 2.
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1 // PID Controller

2 class PID {

3 private:

4 float Kp, Ki, Kd;

5 float integral, prev_error;

6

7 public:

8 PID(){};

9 PID(float Kp, float Ki, float Kd);

10 float update(float error);

11 float update(float error, float derivative);

12 };

13

14 PID::PID(float Kp, float Ki, float Kd) {

15 this->Kp = Kp;

16 this->Kd = Kd;

17 this->Ki = Ki;

18 integral = 0;

19 prev_error = 0;

20 }

21

22 float PID::update(float error) {

23 integral += error * dt;

24 float derivative = (error - prev_error) / dt;

25 prev_error = error;

26 float command = error * Kp + integral * Ki + derivative * Kd;

27 return command;

28 }

29

30 float PID::update(float error, float derivative) {

31 integral += error * dt;

32 prev_error = error;

33 float command = error * Kp + integral * Ki - derivative * Kd;

34 // negative state derivative = erorr derivative for a constant reference signal

35 return command;

36 }

Snippet 42: PID controller for the flight code.
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1 // Full State Feedback Controller

2 template <int num_states, int num_commands>

3 class FSF {

4 private:

5 public:

6 FSF<num_states, num_commands>();

7 BLA::Matrix<num_commands, num_states> K; // Gain Matrix

8 BLA::Matrix<num_states, 1> x; // State Vector

9 BLA::Matrix<num_states, 1> r; // Reference Signal Vector

10 BLA::Matrix<num_commands, 1> u; // Command Vector

11 void update(BLA::Matrix<num_states, 1> r, BLA::Matrix<num_states, 1> x);

12 };

13

14 template <int num_states, int num_commands>

15 FSF<num_states, num_commands>::FSF() {

16 this->K.Fill(0.0);

17 this->r.Fill(0.0);

18 this->x.Fill(0.0);

19 this->u.Fill(0.0);

20 };

21

22 template <int num_states, int num_commands>

23 void FSF<num_states, num_commands>::update(BLA::Matrix<num_states, 1> r,

24 BLA::Matrix<num_states, 1> x) {

25 // this->K = K;

26 this->x = x;

27 this->r = r;

28

29 this->u = K * (r - x);

30 };

Snippet 43: Full State Feedback Controller for the flight code.
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1 class CascadingController : public ControlSystem {

2 private:

3 struct pids {

4 PID x, y, pitch, roll, yaw, thrust;

5 } pids;

6

7 public:

8 CascadingController();

9 void Control(StateVector &current_state, StateVector &desired_state,

10 MomentThrustCommand &output_command) override;

11 };

12

13 CascadingController::CascadingController() {

14 pids.x = PID(1, 0, 1);

15 pids.y = PID(1, 0, 1);

16 pids.thrust = PID(0.845, 0, 0.796);

17 pids.roll = PID(0.05, 0, 0.01);

18 pids.pitch = PID(0.08, 0, 0.01);

19 pids.yaw = PID(0.001, 0, 0.0001);

20 }

21

22 void CascadingController::Control(StateVector &current_state, StateVector &desired_state,

23 MomentThrustCommand &output_command) {

24

25 float pitch = pids.x.update(desired_state.x - current_state.x);

26 float roll = pids.y.update(desired_state.y - current_state.y);

27

28 float new_pitch = pids.pitch.update(pitch - current_state.pitch);

29 float new_roll = pids.roll.update(roll - current_state.roll);

30 float new_yaw = pids.yaw.update(desired_state.yaw - current_state.yaw);

31 float new_thrust = pids.thrust.update(desired_state.z - current_state.z) + mass;

32 output_command.pitch = new_pitch;

33 output_command.roll = new_roll;

34 output_command.yaw = new_yaw;

35 output_command.thrust = new_thrust;

36 }

Snippet 44: Cascaded PID control system for the flight code.
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1 class LQR_Controller : public ControlSystem {

2 private:

3 BLA::Matrix<12, 1> x;

4 BLA::Matrix<12, 1> r;

5 BLA::Matrix<2> obs;

6 FSF<12, 4> LQR;

7

8 public:

9 LQR_Controller();

10 void Control(StateVector &current_state, StateVector &desired_state,

11 MomentThrustCommand &output_command) override;

12 // ~LQR_Controller();

13 };

14

15 LQR_Controller::LQR_Controller() {

16 LQR.K = {

17 0.0, 0.0, 4.4721, 0.0, 0.0, 0.0,

18 0.0, 4.4721, 0.0, 102.7903, 0.0, 0.0,

19 -4.4721, 0.0, 0.0, 0.0, 105.8913, 0.0,

20 0.0, 0.0, 0.0, 0.0, 0.0, 14.1421,

21 };

22 LQR.x.Fill(0);

23 LQR.r.Fill(0);

24 LQR.u.Fill(0);

25 }

26

27 void LQR_Controller::Control(StateVector &current_state, StateVector &desired_state,

28 MomentThrustCommand &output_command) {

29 pack_column_vector<12>(x, current_state);

30 pack_column_vector<12>(r, desired_state);

31 LQR.update(r, x);

32

33 output_command.thrust = LQR.u(0) + mass;

34 output_command.roll = LQR.u(1);

35 output_command.pitch = LQR.u(2);

36 output_command.yaw = LQR.u(3);

37 }

Snippet 45: Inner-Loop LQR control system for the flight code.
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1 class LQR_Controller : public ControlSystem {

2 private:

3 BLA::Matrix<12, 1> x;

4 BLA::Matrix<12, 1> r;

5 BLA::Matrix<2> obs;

6 FSF<12, 4> LQR;

7

8 public:

9 LQR_Controller();

10 void Control(StateVector &current_state, StateVector &desired_state,

11 MomentThrustCommand &output_command) override;

12 // ~LQR_Controller();

13 };

14

15 LQR_Controller::LQR_Controller() {

16 LQR.K = {

17 0.0, 0.0, 4.4721, 0.0, 0.0, 0.0,

18 0.0, 4.4721, 0.0, 102.7903, 0.0, 0.0,

19 -4.4721, 0.0, 0.0, 0.0, 105.8913, 0.0,

20 0.0, 0.0, 0.0, 0.0, 0.0, 14.1421,

21 };

22 LQR.x.Fill(0);

23 LQR.r.Fill(0);

24 LQR.u.Fill(0);

25 }

26

27 void LQR_Controller::Control(StateVector &current_state, StateVector &desired_state,

28 MomentThrustCommand &output_command) {

29 pack_column_vector<12>(x, current_state);

30 pack_column_vector<12>(r, desired_state);

31 LQR.update(r, x);

32

33 output_command.thrust = LQR.u(0) + mass;

34 output_command.roll = LQR.u(1);

35 output_command.pitch = LQR.u(2);

36 output_command.yaw = LQR.u(3);

37 }

Snippet 46: LQR control system for the flight code.
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התכן. עבודת את ליעל מנת על נכללו גם למשתמש תבניות בנוסף, ועוד. קיצון מצבי עם

תוכנה הרחפן. עם בלוטות׳ דרך קשר ליצירת נכתבה חיי בשידור נתונים רישום תוכנת

יציאות למנועים, הבקרים של הפקודות הרחפן, נתוני על אמת בזמן מבט מאפשרת זה

של קריאות כל את ושומרת רושמת התוכנה בנוסף ועוד. ובקרה ,ניווט ההנחיה חוגי

של שידור מאפשר כן גם הרישום תוכנת מראש. מוכתב בקצב מהסנסורים המדידות

הטיסה. בזמן חירום למקרי לרחפן, מיידית עצירה פקודת

התכנון משלב לעבור שניתן כך לקצה קצה לתכן כבסיס משרתת השלמה הפלטפורמה

מענה מספקת התשתית קצרים. זמן בפרקי מעשי ליישום ועד חדשה מערכת של והפיתוח

ליישמו ניתן המודל, פיתוח לאחר החדשה. הרצויה המערכת של מתמטי מודל לפיתוח

מגוונים בתנאים מקיפות בדיקות לאחר בהרחבה. ולבדוקו הסימולטור בסביבת בקלות

במצבים פיזית בדיקה מערכת על להיבדק יכולה המערכת הרצויה, הטיסה בקרת ומימוש

התבוננות כדי תוך זאת מימד, בתלת מודפס בדיקה ציוד באמצעות כאחד וניידים נייחים

טיסה בדיקות לבצע ניתן המערכת, אימות לאחר מהרחפן. שודרו אשר אמת זמן בנתונים

מספקות. והתוצאות במידה התכן תהליך את לסיים ובכך הרחפן עם בחינם
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תקציר

הנחייה, מערכות של ותכן מחקר פלטפורמת ליצירת שנעשתה העבודה את מתארת זו תזה

מודולרית בשיטה ותוכנה חומרה המשלבת תשתית פותחה זו בפלטפורמה ובקרה. ניווט,

ניווט הנחייה, למערכות החוקרים תכנון בפני העומדות אפשרויות מגוון לספק בכדי

מנת על מהיר אב־טיפוס הרמת לאפשר הינו זו פלטפורמה של העיקרי היישום ובקרה.

אלו. המערכות של בפיתוח ובעלות בזמן משמעותית להפחית

תוכנן הרחפן השלמה. לפלטפורמה בסיס בתור תוכנן קוודרוטור מסוג רחפן כך, לצורך

סופקו בנוסף, נוחים. ובמחירים קיימים, מספקים מיידית לרכישה ניתנים רכיביו שכל כך

הרחפן. הרכיבי רוב של מימדית תלת במדפסת הדפסה לאפשר מנת על מכני תכן קבצי

סביבת ליצור מנת על סימולינק, מבוססת מודולרית, סימולציה סביבת של פיתוח בוצע

נוצר זו, סימולציה מסביבת כחלק המתכנן. עבור תכליתית ורב יעילה פשוטה, פיתוח

חוקי באמצעות פותח אשר הרחפן של מתמטי מודל בתוכו הכולל מודלורי סימולטור

בקרה חוגי לתכן נוח מפושט לינארי מודל קיים מהמודולריות כחלק ואויילר. ניוטון

כדי תוך בקלות, ולשנותו שירצה, חוג איזה ליישם יכול מתכנן זה, בסימולטור וניווט.

, המראה) (ריחוף, טיסה מצב הרחפן, דינמיקת כולל עצמה, בסימולציה פרמטרים שינוי

הוטמעו ובדוקים ארוזים ובקרה ניווט, הנחייה, חוגי ועוד. רעשים, ואפיון הסנסורים מודל

וניווט בקרה חוגי עם ולעבוד למשל הנחיה חוג רק לממש יוכל שמתכנן כך בסימולטור,

מראש. ומוכנים בדוקים

פרופילי בניית , מנועים של בדיקות לאפשר בכדי פיזיקליות בדיקה ומערכות ציוד פותח

מערכת כולל זה ציוד הרחפן. של חופשית טיסה ובדיקת בקרה חוגי בדיקות דחף,

לחבר שניתן מודפסים חלקים על המבוססת ביחד, או בנפרד המנועים, של דחף למדידת

טיס שולחן יוצר בנוסף המנועים. ארבעת עם כולו הרחפן את או אחד, מנוע אליהם

בדיקות לאפשר מנת על וזאת רחפן של חופש דרגות נעילת המאפשר חופש דרגות 3

שמתכנן כן זו לעבודה צורפו אלו מערכות של מכני תכן קבצי וניווט, ,הנחיה בקרה חוגי

מינימלית. ומשאבים זמן בהשקעת זה ציוד להדפיס יוכל מערכות

נבנתה זו טיסה בקרת כן. גם מודולרית בצורה ++C בשפת קודדה הטיסה בקרת מערכת

גלוי״ לקוד הקוד את להפוך ניתן זה. מסוג למערכות פיתוחי בסיס להיות שתוכל כך

קיימות כאן גם לסימולטור, בדומה אותו. ליישם שירצה מי לכל לקוד הגישה את ולפתוח

ספריות המתכנן. של לשימושו הטיסה בקרת במערכת ונארזו נכתבו אשר רבות הספריות

והתמודדות טיסה לוגיקת הנחייה, חוגי מצב, משערכי בקרים, של ספריות כוללות אלו
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וחלל. אווירונאוטיקה להנדסת בפקולטה זלזו, דניאל פרופסור של בהנחייתו בוצע המחקר

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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