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Abstract
Multi-agent systems (MAS) have been an important area of study over the

past few years. In this work we consider a MAS where a team of agents must
coordinate to reach an agreement on their state in finite-time, while simultane-
ously attempting to minimize their own cost functions. Agents cooperate with
each other by means of communication, and thus an additional requirement is the
agents maintain their communication network during their trajectories - this leads
to a constraint on the distances between neighbouring agents. We propose a real
time sub-optimal solution for this agreement problem. The algorithm is based
on the well-known dual sub-gradient algorithm for solving distributed optimiza-
tion problems. To ensure the algorithm does not violate the distance connectiv-
ity constraints between neighbouring agents, we propose a modification to the
sub-gradient algorithm that projects the Lagrange multipliers associated with the
distance constraints onto a bounded set that ensures the distance between neigh-
bouring agents remains within the prescribed limits. The main contribution for
this work is an algorithm that solves the problem for the 2-agent case. We demon-
strate the result using numerical simulations.
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Abbreviations and Notations

Parameter Size ,usage, Function

n ∈ R The number of agents (constant)
T ∈ R , The OCP horizon constant
x0/x(t0) ∈ Rn×1 , Agents initial position
t0 ∈ R , Optimization start time
t ∈ R , Optimization current time step
x x = [xT1 , x

T
2 , . . . , x

T
n ]T ,∈ Rn(T−t0)×1 , All agents trajectory position

u u = [uT1 , u
T
2 , . . . , u

T
n ]T ,∈ Rn(T−t0)×1 All agents control

ri ∈ R , Control weights of each agent
qi ∈ R ,State weight of each agent
ξi ∈ R , Preference state of each agent
E(G) ∈ Rn×(n−1) , Incidence matrix of the graph
δ ∈ R(n−1)(T−t0)×1 , Edges Lagrange multiplier - distance constraints
ζ ∈ R(n−1)(T−t0)×1 , Edges Lagrange multiplier - distance constraints
µ ∈ R(n−1)×1 ,Edges Lagrange multiplier - terminal constraints
E E = [E(G) ⊗ I(T−t0)],∈ Rn(T−t0)×(n−1)(T−t0) , Agents Incidence matrix of

the graph at each time throughout the horizon
γ γ = E(G)µ,∈ Rn×1 Agents Lagrange multiplier - terminal constraints
λ λ = Wδ,∈ Rn(T−t0)×1, Agents Lagrange multiplier - distance constraints
β β = −Wζ,∈ Rn(T−t0)×1 , Agents Lagrange multiplier - distance constraints
1N ∈ RN×1 , All ones vector
0N ∈ RN×1 , All zeros vector
R≥ The non-negative numbers
R ∈ R , The distance constraints radius
αδ, αζ , αµ ∈ R , Edges Lagrange multiplier step size rule - distance/terminal constraints
QPi The agents quadratic problem

Table 1: Nomenclature

2
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Chapter 1

Introduction

A common goal of multi-agent systems is to reach an agreement on some global
objective through cooperation and coordination. One of the most studied prob-
lems in this venue is known as the consensus, or agreement protocol [1, 16–18].
While the agreement protocol has drawn much attention in the controls commu-
nity, its origins trace to problems in distributed computation and optimization
problems [21, 22]. Recently, the optimization community have also employed
consensus-based strategies for problems in distributed optimization [31–36]. A
major distinction between the consensus protocol used in the controls community
and the optimization community is that in the former the agents often refer to
physical entities (i.e., robots), while in the later agents are processing nodes.

Despite these differences, there have been recent works that blend both the
control of physical systems with the solution of related optimization problems.
In [37], each agent negotiates a consensus value based on some cost function using
a distributed optimization algorithm before controlling the physical system to that
value. Dual decomposition is used in [38] for an optimal distributed controller
design. In [39], a dual decomposition method is used to dynamically determine
an optimal velocity for a team of self-interested agents.

Recently, the works in [3, 40, 43] considered a distributed optimization prob-
lem coupled to a physical control system. A team of self-interested agents are
tasked with achieving consensus on their state at a specified finite time. The self-
interest of each agent is modelled by a quadratic cost function penalizing its dis-
tance to a desired state and its control energy. The authors proposed a distributed
algorithm based on a dual decomposition sub-gradient approach, that negotiates
the consensus value in real-time. Each iteration of the algorithm corresponds to
the real passing of time, and at each step the agents must physically propagate

3
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their state in a direction they believe to be optimal at that moment; this algorithm
was termed the shrinking horizon preference agreement (SHPA) algorithm. An
analysis of the resulting dynamic system, providing measures on the quality of
their generated trajectories as compared to a centralized computation of their so-
lution.

1.1 Thesis Contribution and Outline
An underlying assumption in these previous works was that the information ex-
change network was static. In real-world applications, however, it is more com-
mon to assume networks that are state-dependent. In particular, the ability to
communicate between agents is dependent on the transmission radius of the ra-
dios, and thus the distance between agents [7, 12, 41]. It is therefore of great
interest to impose connectivity constraints on the multi-agent system.

In this direction, we consider an extension to the works [3, 40, 43] where now
the communication network given at the initial time must be preserved through-
out the evolution of the system trajectory. We assume that connectivity between
neighbouring agents is a function of the distance between them. We propose a
modification to the SHPA algorithm proposed in [3] that will ensure neighbor-
ing agents do not lose connectivity with their initial neighbors. In this work, we
present the problem for a team of n agents, but provide an algorithmic solution for
the 2-agent case. As the algorithm is based on the dual-decomposition algorithm
in optimization, we propose a modification where the multiplier value updates
are projected onto a special set to ensure that the agents do not violate the con-
nectivity constraint. Throughout the work, numerical simulations are provided to
demonstrate the results.

The thesis is outlined as follows. In Chapter 2, we will briefly present the
mathematical tools used in this work. Chapter 3 will present the main problem we
aim to solve and demonstrate (by numerical simulations). Chapter 4 discuses dis-
tributed strategies for solving the problem at hand, including a real-time algorithm
for the 2-agent case. Chapter 5 provides a concluding remark on this work.

4
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Chapter 2

Mathematical Preliminaries

This section will provide background information regarding the mathematical
methods which have been used in this research.

2.1 Graph Theory
A graph is a mathematical structure used to describe the relationships between
objects. A graph, denoted G = (V , E), is a pair consisting of a finite set of ver-
tices V := {v1, . . . , vn} and a set of edges E = {e1, . . . , em} ⊆ V × V . An
undirected graph is a graph where the edges have no orientation, meaning the
edge from (vj, vk) = (vk, vj). A spanning tree is a minimally connected and
undirected graph; thus, a spanning tree is a connected graph with |E| = n − 1.
The neighbourhood of a node vi is defined as Ni := {vj ∈ V : (vi, vj) ∈ E}. The
complete undirected graph on n nodes, denotedKn, is the graph where every node
is connected to every other node. For undirected graphs, we omit the arrows in
the pictorial representation of the graph. Examples of a spanning tree, cycle, and
complete graph are shown in Figure 2.1.

A useful matrix associated with a graph G is the n × m incidence matrix,
denoted E(G) [2] - when the underlying graph G is understood, we simply write
E. It is determined by the edges ei of G. The ith column of E represents the edge
ei and has two non-zero entries: a +1 in row k and a −1 in row j, where ei is
the edge between vertex j and vertex k. This definition assumes that an arbitrary
orientation (assignment of direction) is given to the graph. Thus, by definition,
ET

1 = 0, where 1 is the vector with a 1 in each component. For the remainder
of this thesis, all graphs are assumed to be connected and thus Ker(ET ) is one

5
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(a) A spanning tree. (b) A cycle graph. (c) Complete graph K5.

Figure 2.1: Examples of undirected graphs.

dimensional [13]. In this work we consider only undirected graphs.

2.2 Convex Optimization
Optimization in general deals with finding the best solution to a problem subject
to a set of constraints. Convex optimization problems are defined such that the
objective function is convex and the constraint functions are convex. A convex
function, f : Rn → R, satisfies the inequality,

f(αx+ βu) ≤ αf(x) + βf(u),

for all x, u ∈ Rn and all α, β ∈ R , with α + β = 1 , α ≥ 0, β ≥ 0. A convex
optimization problem in standard form is expressed as,

p∗ = min
x∈Rn

f0(x)

s.t. fi(x) = 0, i = 1, . . . , `

hj(x) ≤ 0, j = 1, . . . ,m, (2.1)

where f0, fi, hj are all convex scalar-valued functions.
For optimization problems in the form (2.1), one can define Lagrange mul-

tipliers for each of the constraints, and the corresponding Lagrangian function
as,

L(x, λ, µ) = f0(x, u) +
∑̀
i=1

λifi(x) +
m∑
j=1

µjhj(x). (2.2)

6
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From the Lagrangian, the dual function and corresponding dual problem can be
defined. The dual function is a function of the Lagrange multipliers, λ and µ, and
is obtained by minimizing the Lagrangian over the variable x,

g(λ, µ) = min
x∈Rn
L(x, λ, µ). (2.3)

The dual problem is the maximization problem

d∗ = max
λ∈R`,µ∈Rm

≥

g(λ, µ), (2.4)

where R≥ denotes the non-negative orthant. Furthermore due to the fact that the
primal problem is convex, the dual function is concave and bounded from above,
satisfying the inequality

d∗ ≤ p∗,

where equality is obtained when the primal problem is strictly convex and Slater’s
conditions hold (i.e., existence of a strictly feasible point) [15].

For convex optimization problems in the form (2.1), characterizations of the
optimal solution are given by the first-order necessary conditions, known as the
Karush-Kuhn-Tucker conditions (KKT) [15]. For primal and dual optimal values
x, λ, µ, the KKT conditions can be stated as

fi(x) ≤ 0, i = 1, . . . , ` (Primal Feasibility)
hj(x) = 0, j = 1, . . . ,m (Primal Feasibility)

λ ≥ 0, i = 1, . . . , ` (Dual Feasibility)
λifi(x) = 0, i = 1, . . . , ` (Complementary Slackness)

∇xL(x, λ, µ) = 0.

2.2.1 Quadratic Programming
This work will make extensive use a special class of convex programs known as
the quadratic program (QP) [15]. The standard form of a quadratic program is
given as,

min
x

1
2
xTHx+ cTx

Aeqx = beq

Aleqx ≤ bleq (2.5)

7
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where x ∈ Rn is the optimization variable, H is a n × n positive-definite sym-
metric matrix, and c ∈ Rn is a vector. Quadratic programs have linear equality
constraints specified by the matrices Aeq and beq, and inequality constraints spec-
ified by the matrices Aleq and bleq.

An important feature of quadratic programs with only equality constraints is
that the QP admits an analytic solution. For equality constrained quadratic pro-
grams, the solution can be obtained from the following linear equation,[

H ATeq
Aeq 0

] [
x

λ

]
=

[
−c
beq

]
(2.6)

where x is the optimal vector of the quadratic program, and λ is the corresponding
optimal Lagrange multiplier that comes from the Lagrangian function,

L(x, λ) =
1

2
xTHx+ cTx+ λT (Aeqx− beq).

When the matrix in (2.6) is invertible, the solution can be expressed as{
x = −H−1c+H−1ATeq

(
AeqH

−1ATeq
)−1

(beq + AeqH
−1c)

λ = −
(
AeqH

−1ATeq
)−1

(beq + AeqH
−1c)

. (2.7)

8
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Chapter 3

The Connectivity-Constrained
Preference Agreement Problem

In this chapter, we formally introduce the preference agreement problem with
connectivity constraints. We will formulate the problem as an optimal control
problem, and present its solution from a centralized perspective. First, we will
review the preference agreement problem with only terminal constraints, and then
discuss how the connectivity constraints can be introduced. Numerical simula-
tions will be provided to show how the resulting trajectories behave.

3.1 Preference Agreement with Terminal Constraints
We consider a group of n agents that aim to minimize individual objective func-
tions while satisfying a terminal constraint where all agents must meet at an agreed
point in space in finite time - the “agreement” constraint. Each agent is modeled
as a simple discrete-time integrator,

xi(t+ 1) = xi(t) + ui(t), xi(0) = xi0, i = 1, . . . , n, (3.1)

where x(t) = [x1(t) · · · xn(t)]T is the concatenated state vector for all n agents,
and u(t) = [u1(t) · · · un(t)]T is the concatenated control. The self-interest of
every agent is modeled by a quadratic objective function,

Ji(t0, T, xi, ui) =
1

2

(
T−1∑
t=t0

qi(xi(t+ 1)− ξi)2 + riui(t)
2

)
, (3.2)

9
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where ξi is the preference state of agent i, qi > 0 represents a state weight, and
ri > 0 represent the control weights. The terminal time constraint requires that
all agents are in agreement at the final time T , meaning x1(T ) = x2(T ) = · · · =
xn(T ). In this problem we assume that this final time is known by all agents and
is given a priori. Note that the agreement constraint can be expressed compactly
using the incidence matrix for the complete graph, E(Kn), as

E(Kn)Tx(T ) = 0,

since this requires xi−xj = 0 for all possible agent pairs. Observe, however, that
the representation above includes redundant constraints - that is, the constraints
are linearly dependent. We can express the terminal time constraint equivalently
with a minimal number of equations asET (T )x(T ) = 0, where T is any spanning
tree. In fact, this equivalent representation will become important in the sequel
when we consider connectivity constraints on the agents.

The optimal control problem (OCP) can now be stated as,

OCP (t0, T, x0) : min
x,u

n∑
i=1

Ji(t0, T, xi, ui) (3.3)

s.t. x(t+ 1) = x(t) + u(t), x(t0) = x0

ET (T )x(T ) = 0.

The OCP with terminal constraints can be transformed into a static quadratic
program. The complete state trajectory of each agent is denoted as xi = [xi(t0 +
1) · · · xi(T )]T , and the control of each agent is denoted as ui = [ui(t0) · · · ui(T−
1)]T . The complete trajectory and control of all agents can thus be combined into
the single vector, x = [xT1 · · · xTn ]T and u = [uT1 · · · uTn ]T . We can state the
dynamic constraint as the linear equation,

xi = 1xi0 +BT−t0ui, (3.4)

where BT−t0 ∈ R(T−t0)×(T−t0) is defined as

[BT−t0 ]i,j =

{
1, i ≥ j
0, o.w.

.

Let z = [xT uT ]T be a new vector which holds the state and controls of all the
agents for the entire horizon. Let

Qx =

q1IT 0
. . .

0 qnIT

 , Ru =

r1IT 0
. . .

0 rnIT

 , H =

(
Qx 0
0 Ru

)
,

10
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and define f ∈ R2n(T−t0) as

f =



−q1ξ11T−t0
...

−qnξn1T−t0
0
...
0


.

The equality constraints can be defined as,

Aeq =

[
E(T )T ⊗ eTT,T 0(n−1)×(T−t0)

−I(T−t0)n In ⊗BT−t0

]
∈ R(n−1)+n(T−t0)×2n(T−t0)

beq =


0n−1

−x1(0)1(T−t0)n
...

−xn(0)1(T−t0)n

 ∈ R(n−1)+n(T−t0),

where ei,m ∈ Rm, [ei,m]j = 1, if j = i, otherwise [ei,m]j = 0. Note that the
first block-row of Aeq deals with the terminal constraints, and the 2nd block-row
deals with the dynamic constraints. The notation ⊗ denotes the matrix Kronecker
product [42].

Using the above definitions, we can now express (3.3) as the quadratic pro-
gram,

min
z

1

2
zTHz + fT z

s.t. Aeqz = beq.

Now we can solve the OCP with terminal constraints defined in equation
(3.3) using an analytic solution as in (2.7), or using a numerical solver (such as
a quadprog in MATLAB). Here, we emphasize that the solution methods for
solving (3.3) are computed using a centralized approach. In this setting, we are
assuming that there is a centralized coordinator that has access to the parameters
of the entire team (i.e., the cost functions and initial conditions). This coordinator
then solves the OCP and provides to each agent its optimal open-loop control. It
is important to note that in this setting there is no explicit coordination between
agents. This solution, however, represents the optimal trajectories and will serve
as a benchmark for the distributed algorithms we will provide in the sequel. In the
following, we denote by x and u the optimal trajectory and control generated by
OCP.

11
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3.1.1 Numerical Example
This section provides a simulation example for the OCP with the terminal con-
straints defined in (3.3). In this example, we consider n = 8 agents, and terminal
time of T = 30 seconds. While the choice of the spanning tree used to define the
terminal time constraint is arbitrary, we employ the graph in Figure 3.1. The agent
preferences, state and control weights, and initial conditions are given as,

r =



10
6
1
4
2
8
5
2


, q =



7
7
4
5
8
5
9
4


, ξ =



−26
42
48
−9
−36
−8
−45
16


, x0 =



0.4710
6.0231
−20.4554

7.8192
−20.7754
−25.1874
−13.9426
−0.2915


.

The optimal trajectories were found in MATLAB using the quadratic pro-
gramming formulation. Figure 3.2 shows the resulting trajectories. We can see
that each agent is pursuing its preference, while at the terminal time T , all of the
agents reach a common meeting point (x(T ) = −8.34071).

Figure 3.1: A spanning tree on 8 nodes.

In the next example, we used the same parameters as in the previous simula-
tion, but change the final agreement time to T = 3. Here we observe that in order
to satisfy the terminal agreement constraint the agents are not able to obtain the
minimum value of their individual objective functions (i.e., reach their preference
state).
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(a) Trajectories of x for OCP. (b) Control u for OCP.

Figure 3.2: Optimal trajectories for the optimal control problem (3.3).

(a) Trajectories of x for OCP with short T . (b) Control u for OCP with short T .

Figure 3.3: Optimal trajectories for the optimal control problem (3.3) with short
T .

At Figure 3.3a we can see that each agent is trying to reach its preference.
When comparing the Figures 3.2a and 3.3a, we can see that when the terminal
time is large enough the agents get to their preference value. While, in the case
of short terminal time the agents may not get to their preference. Hence, the
parameters we choose have a big influence on the trajectory.
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3.2 Preference Agreement with Terminal and Con-
nectivity Constraints

We now propose the main problem we aim to examine in this work. We recall here
the primary motivation for this work is for a team of agents to simultaneously at-
tempt to minimize their individual cost functions while satisfying a terminal time
agreement constraint, along with a connectivity constraint between each other.
Before we proceed, we elaborate on this last point.

The solution to the OCP in (3.3) was found in a centralized manner. As dis-
cussed in the previous works [3], we would actually like to solve this problem
distributedly and in real-time. This will in fact require communication between
each agent. Thus, we assume that we have in place a fixed communication graph
defined by a spanning tree. This graph represents the network that agents are per-
mitted to communicate with each other in order to cooperatively solve the control
problem at hand. As seen in the simulations examples from Chapter 3.1, the op-
timal solution might cause agents to be too far away from each other to maintain
communication (i.e., if their distance exceeds the communication radius between
them). Thus, we impose an additional constraint on the optimization problem that
ensures the agents do not violate a prescribed distance constraint - this is what we
call the connectivity constraint for the network. This constraint in fact becomes
crucial when we examine distributed and real-time algorithms in Chapter 4. We
also recall now that the agreement constraint can be expressed using any spanning
tree - we therefore chose the same spanning tree that describes the connectivity to
also describe the agreement constraint.

In this direction, we are now ready to present the preference agreement prob-
lem with terminal and connectivity constraints. The associated optimal control
problem can be stated as

OCP (t0, T, x0) : min
x,u

n∑
i=1

Ji(t0, T, xi, ui) (3.5)

s.t. x(t+ 1) = x(t) + u(t), x(t0) = x0

−R1 ≤ ETx(t) ≤ R1, t = t0, . . . , T

ETx(T ) = 0,

Where R > 0 is the communication radius of each agent, and E is the incidence
matrix of a given and fixed spanning tree. Note that the notation x ≤ y for vectors
x, y ∈ Rn means the inequality should be satisfied by each component of the
vector, i.e., xi ≤ yi for i = 1, . . . , n.
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As in Chapter 3.1, (3.5) can be expressed as a quadratic program with equal-
ity and inequality constraints. The QP representation has the same cost function
expression and equality constraints described in (3.3). The inequality constraints
can be expressed as:

Aieq =

[
ET ⊗ IT−t0 0(n−1)(T−t0)×n(T−t0)

−ET ⊗ IT−t0 0(n−1)(T−t0)×n(T−t0)

]
∈ R2(n−1)(T−t0)×2n(T−t0)

bieq = R12(n−1)(T−t0).

Using the above definitions, we can now express (3.5) as the quadratic pro-
gram,

min
z

1

2
zTHz + fT z

s.t. Aeqz = beq

Aieqz ≤ bieq.

Now we can solve the OCP with terminal and distance constraints defined in
(3.5) using a solver (such as a quadprog in Matlab). Unlike the OCP with termi-
nal constraints, we can not use an analytical solution since the OCP with terminal
and distance constraints holds inequality constraints. As before, this problem is
solved centrally and is meant to serve as a performance benchmark for when we
provide distributed algorithms to solve this problem. In the following, we denote
by x and u the optimal trajectory and control generated by OCP.

3.2.1 The Dual Problem
We now examine the dual problem associated with (3.5). The dual formulation
will be required when we consider distributed solutions for (3.5), discussed in
Chapter 4. We define the partial Lagrangian function associated with (3.5) as

L(x,u, δ, ζ, µ) =
n∑
i=1

Ji(t0, T, xi, ui) + µTET (In ⊗ eT,T )Tx +

δT
(
E
T
x−R1

)
+ ζT

(
−ET

x−R1
)
, (3.6)

Here, µ is the Lagrange multiplier associated with the terminal constraint, and δ
and ζ are the Lagrange multipliers associated with the edges distance constraints.
The vector eT,T ∈ RT has value 1 in the T position, and 0 elsewhere. The matrix
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E = E ⊗ IT−t0 ∈ Rn(T−t0)×(n−1)(T−t0) is an inflated version of the incidence ma-
trix. The dual function is obtained by minimizing the partial Lagrangian subject
to the dynamical constraints,

g(µ, ζ, δ) = min
x,u

L(x,u, δ, ζ, µ) (3.7)

s.t. x(t+ 1) = x(t) + u(t), x(t0) = x0. (3.8)

The dual problem is obtained by maximizing the dual function,

max
µ∈Rn−1

ζ∈R(n−1)(T−t0)
≥

δ∈R(n−1)(T−t0)
≥

g(µ, ζ, δ). (3.9)

Here, R≥, represents the non-negative orthant. The optimal solution of the primal
and dual problems are denoted by (x̄, ū, µ̄, δ̄, ζ̄). Since OCP(t0, T, x0) is a convex
problem with linear constraints, we have strong duality which implies

g(µ̄, ζ̄, δ̄) =
n∑
i=1

Ji(t0, T, xi, ui). (3.10)

This work will be based on the understanding of how the OCP behaves once
the initial conditions are changed, and how that will affect the rest of the trajectory.
For a given initial time t and initial condition x(t), we denote the optimal primal
and dual solutions associated with the OCP (t, T, x(t)) by

(x̄(t,x(t)), ū(t,x(t)), µ̄(t,x(t)), ζ̄(t,x(t)), δ̄(t,x(t))). (3.11)

Thus, for example, x̄(t,x(t)) denotes the optimal state trajectory beginning at time
t with initial condition x(t). Using this notation we will state a principle of opti-
mality result for dynamic programming in the context of OCP to study the relation
between the optimal trajectories of different instances of OCP.

Lemma 1. (Principle of optimality) . The optimal trajectories generated by the
OCP (t, T, z) and OCP (t+ 1, T, w) with w = z + ū(t,z)(t) satisfy
(x̄(t,z)(τ), ū(t,z)(τ), µ̄(t,z)(τ), ζ̄(t,z)(τ), δ̄(t,z)(τ)) =
(x̄(t+1,w)(τ), ū(t+1,w)(τ), µ̄(t+1,w)(τ), ζ̄(t+1,w)(τ), δ̄(t+1,w)(τ)) , τ = t+ 1 . . . T.

Proof. Concerning the primal solution, the initial condition for OCP (t+ 1, T, w)
corresponds to the point x̄(t,z)(t + 1). The remaining statement is a direct ap-
plication of the principle of optimality for dynamic programming [5], and its
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uniqueness is due to the strict convexity of the problem statement. The state-
ment concerning the dual solution is a direct consequence of the first statement, in
particular, we have x̄(t,z)(T ) = x̄(t+1,w)(T ) . A necessary condition for optimality
(the KKT conditions) is

0 =
∂

∂x̄(T )
L(x,u, δ, ζ, µ) = Q(x̄(T )− ξ) + Eµ+ Eδ − Eζ.

This system of n equations admits a unique solution since the incidence matrix E
is full column-rank (the communication graph is a tree). Similarly,

0 =
∂

∂x̄(t)
L(x,u, δ, ζ, µ) = Q(x̄(t)− ξ) + (In ⊗ et,T )TEδ +

−(In ⊗ et,T )TEζ, t = t0, . . . , T − 1,

which also admits a unique solution.

3.2.2 Numerical Example
This section provides a simulation example for the OCP with the distance and
terminal constraints defined in (3.5). In this example, we consider n = 8 agents
and a terminal time of T = 30 seconds. The radius defined is R = 35 with
communication graph shown in Figure 3.1. For easy comparison we ran the OCP
with distance constraints with the same parameters and initial states as in the OCP
with terminal constraints numerical examples.

The optimal trajectories were found in MATLAB using the quadratic program-
ming formulation. Figures 3.4a and 3.5 shows the resulting trajectories. We can
see that each agent pursuing its preference, while at the terminal time T , all of the
agents go to a common meeting point (x(T ) = −8.34071). In Figure 3.5 we can
see that each agent is trying to pursue its preference value while they are satisfying
the distance constraint between adjacent agents for the entire trajectory.

As we can see in Figure 3.4b, there are 6 edges where the connectivity con-
straint is active. In this setting, each agent was not able to obtain the minimum of
its individual objective in order to ensure the feasibility of the constraints.

In Figure 3.5 we can see the different trajectories applied to the agents in the
case of terminal constraints alone (the solid lines) and compared to the optimal
trajectories of the agents in the case of terminal and connectivity constraints (the
dashed lines). We can see that in the case of terminal constraints, the agents are
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(a) Trajectories of u for OCP (3.5). (b) A plot of |ETx(t)| for OCP (3.5).

Figure 3.4: Optimal trajectories for the optimal control problem (3.5).

Figure 3.5: The OCP with terminal and distance constraints (3.5) vs the OCP with
terminal constraints (3.3); a plot of x̄.

moving towards their preference. In the case of the distance constraints, we see
that the agents trajectories are bounded according to the distance constraints.
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Chapter 4

Distributed and Finite-time
Algorithms

The previous chapter presented the preference agreement problem as an optimal
control problem. The optimal open-loop controls were then computed in a cen-
tralized manner by a centralized coordinator. The main goal of this work, how-
ever, is to develop a distributed and real-time solution to this problem. That is,
agents should communicate with each other to determine their optimal trajecto-
ries. Furthermore, we are assuming that the agreement time T is a hard deadline,
and therefore the agents are not able to wait for the optimal control to be com-
puted, but rather at each time step should already begin to move along a trajectory
it considers optimal at that time. Our solution approach is based on the shrinking
horizon preference agreement problem (SHPA) introduced in [3] which considers
a modification of the dual sub-gradient algorithm for distributedly solving prob-
lems of the form (3.3). In this section, we first review the dual decomposition
sub-gradient algorithm for distributedly solving (3.5), and then present the main
result of this work which is an extension to the SHPA algorithm in order to handle
the distance constraints imposed by the problem.

4.1 Dual Decomposition Sub-Gradient Algorithm
A decomposition method for solving (3.5) is an algorithm that attempts to divide
the main problem into smaller sub-problems that coordinate with each other to
solve the original problem. In this section, we review a dual decomposition sub-
gradient algorithm [5] for distributedly solving (3.5).
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As described in Chapter 3, the OCP (3.5) can be solved using centralized
methods. The challenge in finding a distributed solution that can be solved by each
agent is that the constraints couple neighboring agents together. Note however,
that the objective function is already in a separable form - that is,

J(t0, T, x, u) =
n∑
i=1

Ji(t0, T, xi, ui),

is the sum of each agent’s individual objective. The challenging part of OCP (3.5)
is the connectivity constraint and the terminal time agreement constraint which
couples agents together.

Observe that the Lagrangian function associated with (3.5) is also not separa-
ble,

L(x,u, δ, ζ, µ) =
n∑
i=1

Ji(t0, T, xi, ui) + µTET (In ⊗ eT,T )Tx +

δT
(
E
T
x−R1

)
+ ζT

(
−ET

x−R1
)
.

In particular, the multipliers µ, δ, ζ are associated with the edges in the graph.
However, exploiting the properties of the incidence matrix, we define a new vari-
able that can be associated with the nodes in the graph. In particular, let

γ := Eµ
λ := Eδ
β := Eζ

. (4.1)

This transformation is unique, since E (and also E) has full column-rank.
Consequently, it is also possible to transform the node variables back to edges
with the following expression,

µ = (ETE)−1ETγ. (4.2)

Similar transformations can be used for δ and ζ .
After this variable transformation, we can now write the partial Lagrangian in

a separable form,

L(x,u, δ, ζ, µ) =
n∑
i=1

L̃i(xi, ui, λi, βi, γi)−R(δ + ζ)T1, (4.3)

L̃i(xi, ui, λi, βi, γi) = Ji(t0, T, xi, ui) + γie
T
T,Txi + (λi − βi)Txi.
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The dual function is found by minimizing the Lagrangian subject to the dy-
namic constraints,

g(µ, ζ, δ) = min
x,u
L(x,u, δ, ζ, µ)

s.t. x(t+ 1) = x(t) + u(t), x(t0) = x0

=

(
min
xi,ui

n∑
i=1

L̃i(xi, ui, λi, βi, γi)

)
−R(δ + ζ)T1 (4.4)

s.t.
[
I −BT−t0

] [ xi
ui

]
= 1xi0, i = 1, . . . , n.

Observe that

arg min
x,u
L(x,u, δ, ζ, µ) = arg min

xi,ui

n∑
i=1

L̃i(xi, ui, λi, βi, γi). (4.5)

since the constant term −R(δ + ζ)T1 does not affect the minimization (it is con-
stant). Therefore, when deriving the sub-gradient algorithm, we may only con-
sider minimization over

∑n
i=1 L̃i(xi, ui, λi, βi, γi), which is separable across each

agent.
We are now prepared to describe the dual-decomposition sub-gradient algo-

rithm. At each iteration of the algorithm, each agent computes the dual function
for a fixed value of the multiplier. So for iteration k, agent i solves the problem[

x
[k+1]
i u

[k+1]
i

]
= arg min

xi,ui
L̃i(xi, ui, λ[k]

i , β
[k]
i , γ

[k]
i )

s.t.
[
I −BT−t0

] [ xi
ui

]
= 1xi0

= arg min
xi,ui

(
Ji(t0, T, xi, ui) + γ

[k]
i e

T
T,Txi + (λ

[k]
i − β

[k]
i )Txi

)
(4.6)

s.t.
[
I −BT−t0

] [ xi
ui

]
= 1xi0;

The minimization is only over the functions L̃i due to (4.5). Note that the min-
imization above is an equality constrained quadratic program. We refer to this
sub-problem solved by each agent as QP i. The notation x[k+1]

i indicates the opti-
mal solution computed in the kth iteration.

The next step in the algorithm is to propagate the multipliers in the direction
of the positive gradient of the Lagrangian function with respect to each multiplier.
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Thus,

µ[k+1] = µ[k] + α[k]
µ ∇µL(x,u, δ, ζ, µ)

= µ[k] + α[k]
µ E

T

 eTT,Tx
[k+1]
i

...
eTT,Tx

[k+1]
n

 = µ[k] + α[k]
µ E

Tx[k+1](T ), (4.7)

where we slightly abuse notation above. From the transformation in (4.1), the
multiplier update can be expressed equivalently for the nodes as

Eµ[k+1] = γ[k+1] = γ[k] + α[k]
µ EE

Tx[k+1](T ). (4.8)

Observe thatEET is the graph Laplacian matrix [1], and the multiplier update can
be achieved distributedly by exchanging the values eT,Tx

[k+1]
i to neighbours over

the network.
The multiplier update for δ and ζ are similar, but because of the non-negativity

constraint we use a projected update,

δ[k+1] = max
{
δ[k] + α

[k]
δ ∇δL(x,u, δ, ζ, µ), 0

}
= max

{
δ[k] + α

[k]
δ

(
E
T
x[k+1] −R1

)
, 0
}

(4.9)

ζ [k+1] = max
{
ζ [k] + α

[k]
ζ ∇δL(x,u, δ, ζ, µ), 0

}
= max

{
ζ [k] + α

[k]
ζ

(
−ET

x[k+1] −R1
)
, 0
}

(4.10)

For these updates, multiplication by E does not immediately lead to a distributed
computation because of the projection operator. However, the update is still only
based on relative quantities between each agent and their neighbours, so a dis-
tributed implementation can still be possible (by, for example, having each agent
keep track of the edge multipliers for all edges it is incident to). After the edge
multiplier update, it can be converted to nodes using E,

λ[k+1] = Eδ[k+1], β[k+1] = Eζ [k+1],

to be used in the next step of the algorithm. Observe that λ[k+1] and β[k+1] do not
need to be non-negative.

Note the choice of the step-sizes for the updates, α[k]
µ , α

[k]
δ , α

[k]
ζ are also impor-

tant for the convergence of the algorithm. The choice of step-size is beyond the
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scope of this work, but can be chosen using standard rules [5]. For this work, we
assume constant step-sizes.

The entire dual-decomposition sub-gradient algorithm is summarized in Algo-
rithm 1. Note that this algorithm is an asymptotic algorithm, and with the correct
choice of step-size it converges to the optimal solution of (3.5),

lim
k→∞

(x[k],u[k], γ[k], β[k], λ[k]) = (x̄(t0,x0), ū(t0,x0), Eµ̄(t0,x0), Eζ̄(t0,x0), Eδ̄(t0,x0)).

Algorithm 1: Dual Sub-Gradient Method
Data: Initial conditions : xi(t0) = xi(0), µ[0] = µ0, ζ [0] = ζ0 and δ[0] = δ0,

Parameters αδ, αζ , αµ, R,given.
begin

for k := 0 to∞ do
γ[k] = Eµ[k] ∈ Rn

β[k] = Eζ [k] ∈ RnT

λ[k] = Eδ[k] ∈ RnT

for i := 1 to n do
Each agent solves its own QPi

[x
[k+1]
i u

[k+1]
i ] = arg min

xi,ui
(Ji(t0, T, xi, ui) + γ

[k]
i e

T
T,Txi + (λ

[k]
i − β

[k]
i )Txi)

s.t xi = 1Txi(0) +BT−t0ui

After solving the QPi(t) the multipliers will be updated :
µ[k+1] = µ[k] + αµE(G)T (In ⊗ eTT,T )x[k+1]

δ[k+1] = max
(
δ[k] + αδ

[
E
T
x[k+1] −R1(n−1)T

]
, 0
)

ζ [k+1] = max
(
ζ [k] + αζ

[
−ET

x[k+1] −R1(n−1)T

]
, 0
)

As seen above, the sub-gradient method has significant advantages due to the
fact that it can run distributedly among the agents. Its disadvantage is that it is an
asymptotic algorithm. If we wish to use the the dual sub-gradient algorithm, we
need to run the algorithm infinity iterations to get the optimal trajectory of each
agent.

Here we also reinforce the relationship between distrubuted solution meth-
ods for problem (3.5) and the connectivity graph that defines the constraints of
the problem. The Algorithm 1 requires that agents exchange information with
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eachother. The connectivity and terminal time constraint are described using an
incidence matrix that comes from the communication network between agents. As
seen in the derivation of the algorithm, it is precisely this network that the agents
need to exchange information on the multiplier updates with eachother.

4.1.1 Numerical Example
This section provides a numerical simulation example demonstrating Algorithm
1. In this example, we consider n = 8 agents, a terminal time of T = 30 seconds,
αµ, αζ , αδ = 1.2 and we run the algorithm for 60 iterations. The radius defined is
R = 35 with communication graph shown in Figure 3.1. The agent preferences,
state and control weights, and initial conditions are given as the previous simu-
lation of the OCPs (terminal and distance and terminal constraints) from Section
3.2.

In Figures 4.1a and 4.1c we can see the control and trajectories of the agents.
Notice that the agents tries to reach agreement at the surroundings of -8.3407 at the
terminal time T while maintaining the distance constraints throughout the entire
trajectory. Due to the fact that the sub-gradient algorithm is asymptotic, we didn’t
get the optimal result, (although the agents tried to reach an agreement) meaning
ETx(T ) 6= 0 as seen in Figure 4.1b. We can see that there is a distance between
the agents at the terminal time. In this simulation, the algorithm was running for
60 iterations to obtain a good solution. As shown in Figure 4.3, as the number of
iterations in the algorithm are increased, we approach the optimal solution.

4.2 A Finite-Time Distributed Algorithm
As we explored the dual decomposition sub-gradient algorithm, we saw that it can
achieve good results. However, the algorithm must be run “off-line” before the
agents are released to do their tasks. If we want good accuracy for the trajectories,
we need to run the algorithm for potentially many iterations.

The primary goal of this thesis is to find an on-line finite-time algorithm for
solving (3.5). We also want to have the iteration step of the algorithm correspond
to real-time. So after each step in the algorithm, the agents should already propa-
gate their physical state forward in a direction they think is optimal. After T steps
the algorithm will terminate.

The algorithm we develop here is based on the shrinking horizon preference
agreement (SHPA) algorithm originally developed in [3]. In this section we present
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(a) The Sub-gradient (Algorithm 1) agnets
trajectory ; a plot of x(t)[60].

(b) The Sub-gradient (Algorithm 1) agents
trajectory at terminal time; a plot of zoom-
ing on x(T )[60].

(c) The Sub-gradient (Algorithm 1) agents
control; a plot of u(t)[60].

Figure 4.1: The Sub-gradient (Algorithm 1); a plot of u(t)[60] and x(t)[60].
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Figure 4.2: The Sub-gradient (Algorithm 1) satisfies the distance constraints; a
plot of |ETx(t)[60]|.

Figure 4.3: The Sub-Gradient (Algorithm 1) absolute maximal distance as a func-
tion of the number of iterations; a plot of max(|ETx(t)[Klimit]|) at different Klimit

values.
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a modification of the SHPA algorithm to incorporate the distance constraints of
(3.5). We solve this problem for the 2-agent case.

4.2.1 The SHPA Algorithm
In this subsection we will introduce the SHPA algorithm as described in [3], with
the addition of the distance constraints. The algorithm is stated in Algorithm 2.
The main differences between this algorithm and Algorithm 1 is it is a finite time
algorithm, and at each step of the algorithm, agent i solves a quadratic program
corresponding to an optimal control problem where the initial time changes - thus
motivating the term shrinking horizon. In this way, each agent has its physical
state, xi(t), and the multiplier values µ(t), δ(t), and ζ(t) at time t. Thus, the QPi
is[
x

[t+1]
i u

[t+1]
i

]
= arg min

xi,ui
Ji(t, T, xi, ui) + γi(t)e

T
τ,τxi + (λi(t)− βi(t))Txi (4.11)

s.t.
[
I −Bτ

] [ xi
ui

]
= 1xi(t);

we refer to this problem as QPi(t) to emphasize that the problem parameters ex-
plicitly depend on the real-time t. The horizon is defined as τ , where τ = T − t.
Note that at each iteration, the horizon effectively “shrinks” (the length of the
trajectory) and the initial condition (the physical state xi(t)) corresponds to the
propagated state from the previous iteration. The solution of the QPi(t) is then
used to physically propagate that agent forward using the optimal control,

xi(t+ 1) = xi(t) + eT1,τu
[t+1]
i ,

and the multipliers are updated according to the sub-gradient as in the dual - de-
composition algorithm.

We now examine the performance of Algorithm 2 compared to the dual-decomposition
sub-gradient algorithm and the optimal solution of (3.5).

Theorem 2. Let µ, δ, ζ denote the optimal Lagrange multipliers associated with
(3.5). If Algorithm 2 is initialized with these multipliers, then the trajectories
generated by the algorithm are the optimal trajectories of (3.5).

Proof. According to Lemma 1, once we use the optimal initial conditions we will
cause our trajectory to act like the optimal solution. In our case, we are using the
optimal multipliers, which will cause the L(x,u, δ, ζ, µ) to be optimal. Hence,
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Algorithm 2: SHPA Algorithm
Data: Initial conditions : xi(t0) = xi0, µ(t0) = µ0, ζ(t0) = ζ0 and

δ(t0) = δ0, Parameters αδ, αζ , αµ, R given.
begin

for t := t0 to T − 1 do
τ = T − t

γ(t) = E(G)µ(t) ∈ Rn

β(t) = Eζ(t) ∈ Rnτ

λ(t) = Eδ(t) ∈ Rnτ

for i := 1 to n do
Each agent solves its own QPi(t)

[xi ui] = arg min
xi,ui

(Ji(t, T, xi, ui) + γi(t)e
T
τ,τxi + (λi(t)− βi(t))Txi

s.t xi(k + 1) = xi(k) + ui(k), k = t, . . . , T − 1

After solving the QPi(t) the physical state of each agent is
propagated as

xi(t+ 1) = xi(t) + eT1,τui, i = 1, . . . , n

and the multipliers will be updated as

µ(t+ 1) = µ(t) + αµE(G)T (In ⊗ eτ,τ )Tx

δ(t+ 1) = max
(
δ(t) + αδ

[
E
T
x−R1(n−1)τ

]
, 0
)

ζ(t+ 1) = max
(
ζ(t) + αζ

[
−ET

x−R1(n−1)τ

]
, 0
)

the trajectory will be optimal as well. As mentioned in Lemma 1 : OCP (t, T, z)
and OCP (t+ 1, T, w) with w = z + ū(t,z)(t) satisfy
(x̄(t,z)(τ), ū(t,z)(τ), µ̄(t,z)(τ), ζ̄(t,z)(τ), δ̄(t,z)(τ)) =
(x̄(t+1,w)(τ), ū(t+1,w)(τ), µ̄(t+1,w)(τ), ζ̄(t+1,w)(τ), δ̄(t+1,w)(τ)) , τ = t+1 . . . T.

We now demonstrate this algorithm with a numerical example. In this exam-
ple, we consider n = 8 agents, and a terminal time of T = 30 seconds. The
connectivity graph used is given in Figure 3.1, and the agent preferences, weights,
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and initial conditions are the same as those from Section 3.1.1. We chose R = 35
for the connectivity radius, and the step sizes are αµ, αζ , αδ = 1.2. Figure

We first demonstrate the results of Theorem 2 by initializing the algorithm
with the optimal multiplier values associated with OCP (3.5). Figure 4.4 shows
the trajectory generated by the algorithm (solid line) against the optimal trajectory
computed using a centralized algorithm (dashed line) as in Section 3.2. Figure 4.5
shows that the distance constraints are not violated during the algorithm.

Figure 4.4: The SHPA (Algorithm 2) agents trajectory; a plot of x(t) when δ(0) =
δ̄ ,ζ(0) = ζ̄ , µ(0) = µ̄.

We now compare this against the algorithm when initialized with 0 values
for the multipliers. Figure 4.6 shows the trajectory of each agent generated by
the algorithm (solid). The optimal trajectories of OCP (3.5) are shown in dashed
lines. Clearly we can see the generated trajectories are not the same. Furthermore,
Figure 4.7 shows that the distance constraints are violated by the algorithm.

We emphasize here that the simulation verifying the results of Theorem 2 re-
quire the optimal multiplier values from OCP (3.5). This, however, effectively
requires the optimal solution to the problem, and it is not assumed that this is
available. At the same time, when the algorithm is initialized with non-optimal
multiplier values, we can not expect that the constraints of the problem are sat-
isfied. This then motivates the study of initializing the multipliers to ensure that
the constraints are not violated. The next result shows that indeed, it is possible
to initialize the multipliers to ensure that the first step of the algorithm does not
violate the distance constraints.
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Figure 4.5: The SHPA method (Algorithm 2) satisfies the distance constraints. A
plot of max(|E(G)Tx(t)|) when the multipliers initialized by the optimal value
from the centralized method.

Figure 4.6: Agent trajectories x(t) generated by Algorithm 2 (solid line) when
the multipliers are initialized with 0. The dashed line are the optimal trajectories
of OCP (3.5).

Before presenting the result, we first express QPi(t) shown in (4.11) in stan-
dard form,

min
zi

1

2
zTi Hizi + fTi zi

s.t. Aeqzi = bieq.

30

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 4.7: The distance constraint for Algorithm 2 when the multipliers are ini-
tiated with zeroes.

As before, zi represents the concatenated state and control variable for the horizon
from t to T for agent i, and τ = T−t. The equality constraints represent the agent
dynamics, and can be expressed as

[I −BT−t0 ]zi = 1xi0.

The cost function parameters are

Hi =

[
Qi 0
0 Ri

]
=

[
qiIτ 0

0 riIτ

]
fi =

[
−qiξi1τ + eτ,τγi

0

]
︸ ︷︷ ︸

f1,i

+

[
λi − βi

0

]
︸ ︷︷ ︸

f2,i

.

Theorem 3. Consider Algorithm 2 for n = 2 agents and assume that the initial
conditions xi(0) of each agent (i = 1, 2) satisfies |ETx(0)| ≤ R1. Then there
exists initial values for the multipliers λ(0), β(0) and γ(0) that guarantees that
Algorithm 2 generates trajectories that satisfy |ETx(1)| ≤ R1.

Proof. In the first iteration of the SHPA algorithm, corresponding to t = t0 = 0,
each agent solves the quadratic program as mentioned in (4.11).

After transferring the QP into standard form, we can solve the QPi(0) analyt-
ically, due to the fact that it has equality constraints,

z̄i = −H−1
i fi +H−1

i ATeq(AeqH
−1
i ATeq)

−1(AeqH
−1
i fi + bieq).
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The optimal control used to propagate the physical state at t = 0 is eT1,τui =
eTT+1,2T z̄i, or in expanded form as

eT1,τui = −eTT+1,2TH
−1
i fi︸ ︷︷ ︸

=0

+eTT+1,2TH
−1
i ATeq(AeqH

−1
i ATeq)

−1(AeqH
−1
i fi + bieq).

To simplify the expression, define

Ci = eTT+1,2TH
−1
i ATeq(AeqH

−1
i ATeq)

−1(AeqH
−1
i f1,i + bieq)

vTi = eTT+1,2TH
−1
i ATeq(AeqH

−1
i ATeq)

−1AeqH
−1
i ,

leading to the expression
eT1,τui = vTi f2,i + Ci.

Note that by fixing γi(0), the term Ci is a known constant that can be computed
locally by agent i. It remains to then chose initial conditions for λi(0) and βi(0)
(the terms inside f2,i).

The constraint that we wish to satisfy between the agents at t = 0 can be
expressed as

−R ≤
(
x1(0) + eT1,τu1

)
−
(
x2(0) + eT1,τu2

)
≤ R

−R ≤ x1(0) + C1 + vT1 f2,1 − x2(0)− vT2 f2,2 − C2 ≤ R. (4.12)

By defining C̃i = xi(0) + Ci, we obtain the following inequality,

−R + C̃2 − C̃1 ≤ vT1 f2,1 − vT2 f2,2 ≤ R + C̃2 − C̃1 (4.13)

Observe also that the multipliers, due to (4.1), must satisfy 1
Tλ = 1

Tβ = 0,
leading to

1
T (f2,1 + f2,2) = 0. (4.14)

The multipliers λi and βi are vectors with values associated to each time in the
trajectory horizon. However, as we are concerned with ensuring that the first time
step does not violate the distance constraint, we will assume the form λi = λi1
and βi = βi1 for the multipliers. This then allows us to determine a single scalar
value Si = λi − βi to satisfy the desired condition rather then τ values. The
required inequality then simplifies to

−R + C̃2 − C̃1 ≤ vT1

[
1

0

]
︸ ︷︷ ︸

M1

S1 − vT2
[
1

0

]
︸ ︷︷ ︸

M2

S2 ≤ R + C̃2 − C̃1.
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Now we can define a set Ω containing all pairs (S1, S2) that satisfy the inequal-
ities above,

Ω =

{
(S1, S2) ∈ R2| S1 + S2 = 0,

−R + C̃2 − C̃1 ≤M1S1 −M2S2 ≤ R + C̃2 − C̃1

}
(4.15)

Therefore, for any initial condition γi(0) with f2,i of the form[
Si1
0

]
with (S1, S2) ∈ Ω ensures that the distance constraint at t = 1 is not violated.
Any λi and βi satisfying λi − βi = Si1 can be used as the initial condition.

Theorem 3 characterizes the set of multipliers that ensure the constraint is sat-
isfied. For purposes of the algorithm, we must also propose a method for choosing
a particular value to use. Note that the set Ω defines a line segment in R2, visu-
alized in Figure 4.8. It is possible, therefore, to simply calculate the endpoints of
the line segment to use as the initial condition for the multipliers. We denote these
points as (SHigh1 , SLow2 ) and (SLow1 , SHigh2 ) (also labeled in Figure 4.8). These
points can be found by solving the linear equations

[
M1 −M2

1 1

] [
S1

S2

]
=

[
R + C̃1 − C̃2

0

]
[
M1 −M2

1 1

] [
S1

S2

]
=

[
−R + C̃1 − C̃2

0

]
,

and we are free to chose either pair of points.
It now remains to chose λi and βi. We also chose a heuristic as follows,

β1 =


−S1, S1 > 0

S2, S1 < 0

0, o.w
(4.16)

β2 = −β1. (4.17)
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Figure 4.8: The S1 and S2 domain, the diagonal green and red lines are the in-
equalities, the dashed black line represent the set Ω.

λ
[0]
1 =


S1, S1 < 0

−S2, S1 > 0

0, o.w
(4.18)

λ2 = −λ1. (4.19)

Equations (4.16) , (4.17), (4.18) and (4.19) ensure that the edges multipliers
will be non-negative (due to the inequality constraints). Once we found the mul-
tipliers value, we can use the left-inverse of the incidence matrix to transfer the
multipliers from nodes to edges.

δ = (ĒT Ē)−1ĒT (λ⊗ 1) (4.20)
ζ = (ĒT Ē)−1ĒT (β)⊗ 1). (4.21)

To demonstrate the results of Theorem 3, we run a numerical example with
two agents. The parameters of the agents are given as

r =

[
9
10

]
, q =

[
5
5

]
, ξ =

[
25
−59

]
, x0 =

[
−5.5628
−14.5777

]
.

The radius is given as R = 35, T = 50, and the multipliers step values as
αµ, αζ , αδ = 1. The optimal trajectories of OCP (3.5) were found in MATLAB
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using the quadratic programming formulation. Figures 4.9a and 4.9b shows the re-
sulting trajectories generated by Algorithm 2 using the result of Theorem 3 (solid
line) compared with the optimal trajectories of OCP (3.5) (dashed lines). Observe
that the output generated by the SHPA algorithm does not satisfy the terminal time
constraint,

x(T ) =

[
−16.74
−17.72

]
,

which is not optimal since the agents are not in agreement.
Based on Theorem 3, we chose the values S1(0) = 59.1904, S2(0) = −59.1904,

which translate to δ(0) = 59.19041 and ζ(0) = 0.The set Ω is shown in Figure
4.10.

Figure 4.11 shows the distance between the two agents during the trajectory
generated by the algorithm. Notice that in the first time step, the distance con-
straint is indeed preserved, validating the results of Theorem 3. However, we
also observe that in the next step, this constraint still becomes violated. This then
motivates the modification to the algorithm. At each time-step we can perform a
similar projection of the multipliers to ensure the distance constraint is not vio-
lated - we term this new algorithm the projected SHPA algorithm. This result is
presented in the next section.

4.2.2 The Projected SHPA Algorithm
The SHPA algorithm in Algorithm 2 is based on the dual-decomposition sub-
gradient algorithm. The update of the multipliers corresponding to the distance
constraints had to be projected onto the non-negative orthant. In Theorem 3, we
saw that in the first step, we could determine a good set of multipliers by picking
values from a special set. The main idea of the Projected SHPA algorithm (P-
SHPA) is in the multiplier update phase, we project the multipliers difference onto
this special set at each iteration. The P-SHPA algorithm is given in Algorithm 3.

The algorithm works as follows. At each step of the algorithm, the set Ω, as
described in Theorem 3, should be calculated. Note that now we explicitly express
this set as a function of time, since the parameters will change at each step of the
algorithm. We then project the current value of the multipliers λ(t) and β(t)
onto this set and use this value to solve each agent’s QPi(t) - the solution can be
obtained analytically using (2.7). The algorithm then transforms these multipliers
back to the edges, and performs the normal sub-gradient propagation procedure.

We now present a result showing that this algorithm indeed ensures that the
distance constraints are not violated.
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(a) Plot of x(t).

(b) Plot of u(t).

Figure 4.9: Demonstration of Theorem 3.
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Figure 4.10: A plot of the set Ω from Theorem 3. The dashed line is the set
S1 + S2 = 0 and the red circles are the endpoints of the line segment in Ω.

Figure 4.11: The distance constraint is satisfied in the first time step, but violated
afterwards.

Theorem 4. Assume that the initial conditions of the agents satisfy |ETx(t0)| ≤
R. Then |ETx(t)| ≤ R, ∀t = t0 . . . T − 1 when x(t) are the trajectories generated
by the P-SHPA algorithm for any initiated values of the multipliers.

Proof. After running and demonstrating Theorem 3, we saw that it is possible to
use the multipliers value to influence and control the distance between the agents
distance. At Theorem 3 we proved it for t = t0, but we can run the same procedure
each time step to calculate the control ui(t) so the distance at t = t + 1 will not
diverge from the given radius.
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Algorithm 3: Projected SHPA Algorithm
Data: Initial conditions : xi(t0) = xi(0), µ(t0) = µ0, t0 = 0, ζ(t0) = ζ0 and

δ(t0) = δ0, Parameters αδ, αζ , αµ, R, T given.
begin

for t := t0 to T do
τ = T − t
γ(t) = E(G)µ(t) ∈ Rn, β(t) = Eζ(t) ∈ Rnτ , λ(t) = Eδ(t) ∈ Rnτ

for i = 1, 2
C̃i(t) = eTτ+1,2τH

−1
i ATeq(AeqH

−1
i ATeq)

−1(AeqH
−1
i f1,i + bieq) + xi(t)

vTi (t) = eTτ+1,2τH
−1
i ATeq(AeqH

−1
i ATeq)

−1AeqH
−1
i

Mi(t) = vTi (t)

[
1τ

0

]
Ω(t) = {(S11τ , S21τ ) ∈ R2τ |S1, S2 ∈ R, S1 + S2 = 0,

−R + C̃2 − C̃1 ≤M1(t)S1 −M2(t)S2 ≤ R + C̃2 − C̃1}
Project λ(t)− β(t) onto Ω : PΩ(λ(t)− β(t)) = (S11τ , S21τ )
Each agent solves its own QPi(t),
[xi ui] = arg min

xi,ui
(Ji(t, T, xi, ui) + γi(t)e

T
τ,τxi + Si1

T
τ xi

s.t xi(t+ 1) = xi(t) + eT1,τui
If λ(t)− β(t) 6= PΩ(λ(t)− β(t)), determine λi(t), βi(t) using
heuristic in (4.17), (4.19) and calculate the edge multipliers
ζ(t) = (E

T
E)−1E

T
β(t).

δ(t) = (E
T
E)−1E

T
λ(t)

Propagate the multipliers:

µ(t+ 1) = µ(t) + αµE(G)Tx(T )

δ(t+ 1) = max
(
δ(t) + αδ

[
E
T
x−R1(n−1)τ

]
, 0
)

ζ(t+ 1) = max
(
ζ(t) + αζ

[
−ET

x−R1(n−1)τ

]
, 0
)

This means that the P-SHPA algorithm will ensure that the distance constraints
are not violated. We now examine the performance of Algorithm 3 compared to
centralized solution, which is the optimal solution of (3.5). In this example we
consider the following parameters,
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r =

[
9
10

]
, q =

[
5
5

]
, ξ =

[
25
−59

]
, x0 =

[
−5.5628
−14.5777

]
.

The radius is given as R = 35 , the final time T = 50, and the multipliers step
values , αµ, αζ , αδ = 1. As shown in Figures 4.12a , 4.12b and 4.13, the trajecto-
ries generated by Algorithm 3 do not violate the distance constraint. Furthermore,
for these parameters, the trajectories do a good job approximating the optimal so-
lution. Figure 4.14 plots the distance constraint multipliers and the terminal time
multiplier.

We now show a simulation example for two agents with preferences that are
less than the distance radius apart, that is |ξ1− ξ2| < R. The parameters are given
as

r =

[
1
4

]
, q =

[
2
8

]
, ξ =

[
29
−4

]
, x0 =

[
12.126
18.2983

]
.

The radius is defined asR = 35 , terminal time as T = 50, and the multipliers step
values as αµ, αζ , αδ = 1. We can see in Figures 4.15a , 4.15b and 4.16, that for this
case the algorithm performs very well and does not lead to undesirable trajectories
that, for example, might cause the agents to deviate from their preference. As
expected, this algorithm is still sub-optimal and we can not expect that the terminal
time constraint will be satisfied.
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(a) Plot of x(t).

(b) Plot of u(t).

Figure 4.12: Trajectories generated by the P-SHPA algorithm (solid) and the op-
timal trajectories of OCP (3.5).
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Figure 4.13: The distance constraint is satisfied for the entire horizon using the
P-SHPA algorithm.

(a) The multiplier ξ. (b) The multiplier δ. (c) The multiplier µ.

Figure 4.14: A plot of the multipliers generated by the P-SHPA algorithm.
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(a) Plot of x(t).

(b) Plot of u(t).

Figure 4.15: Trajectories generated by the P-SHPA algorithm (solid) and the op-
timal trajectories of OCP (3.5) when |ET ξ| ≤ R1.
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Figure 4.16: The distance constraint is satisfied for the entire horizon using the
P-SHPA algorithm when |ET ξ| ≤ R1.
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Chapter 5

Conclusions

There is no doubt that the field of multi-agent system will be studied in more
depth in the coming years. This research can provide a steadier environment for
the study; due to the radius keeping constraint we can know with certainty that
no agent will disappear from the connectivity graph. Additionally, we know that
no agent will lose its communication with the adjacent agents. This important
property means that the connectivity graph staying the same throughout the tra-
jectory is primarily an assumption, but this research can cause it to happen. From
the manager of the multi-agent system point of view, it has significance. No lost
agents, no graph damage, means a stable multi-agents network. For example, if
we use a multi-agent system, with the connection topology of a star, every agent
is connected to the central agent. There may be a possibility that the central agent
will lose its connectivity to the rest of the group. This will have an immediate
impact on the rest of the agents. Most of the agents will probably not know what
to do once they become lost. In this specific case, if there is no reconnecting al-
gorithm to join the lost agents, they are lost. The primary achievement of this
research is that it will not harm the connectivity graph of the multi-agent system.
The secondary achievement is that it is all done on-line, distributed, at finite time,
meaning that every agent can work as an individual and still be connected to the
rest of the group.

Future work
This research was done and demonstrated by simulation on a two agents case;
it can be further investigated into a full swarm of n agents. When dealing with
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an agent’s trajectory, there are many parameters to test. One thing we can test is
the function of obstacle avoidance, meaning that each agent in its own trajectory
needs to have the ability to overcome obstacles it may encounter when pursuing
its objective while maintaining the defined distance and terminal constraints. This
is only one example, there are many more. When dealing with the agent’s dynam-
ics, we can try various types of dynamics. This work addresses linear dynamics:
simple integrator which can be expanded into non-linear dynamics or perhaps
mixed dynamics. The field of the multi-agent systems can be widely explored
with respect to every field. This specific work can be explored through the field of
dealing with n agents, meaning calculating all the multipliers boundaries (as done
for two agent case) and projecting the multipliers to the correct set so that there
will be no diversion in the distance between the connected agents.
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 תקציר

של מחקר בשנים האחרונות. ישנם  אטרקטיבירעיון  נהיוסוכנים -נחילים ומערכות ריבוי
: שליטה על כל סוכן בנפרד ,שליטה על קבוצת סוכנית  אתגרים שונים כשעובדים עם נחילים

בעת ובעונה אחת , הימנעות ממכשולים ופגיעות בתוך הנחילים וכו. קיימות מספר טופולוגיות 
כאשר הנחיל עובד לעודה עם נחילים. אחת הטופולוגיות היא בעזרת יחידת שליטה מרכזית. 

אין לסוכנים יכולת  על ידי אותה יחידה, עם יחידת בקרה מרכזית, כלומר כל הסוכנים נשלטים
השפעה על הנעשה, הם פשוט מקבלים את הפקודות לביצוע מיחידת הבקרה המרכזית. לשיטה 
זו ייתרנות רבים אך יש לה לא מעט חסרונות. המצב היום שמנסים להעניק לסוכנים יכולת 

ר ליחידת בקרה אוטונומית. כאשר מעניקים לסוכן יכולת כזו, יש בעיה להסתמך ולהתחב
מרכזית. לכן הנטייה היא לתת יותר כח לסוכן בשטח כך שכל סוכן יוכל לפעול באופן עצמאי 
אך עדיין בשיטוף מסוים עם מספר סוכנים אחרים באותו הנחיל. לדוגמא : נחיל של סוכנים 
י אשר אמור לטפל באזור מוכה אסון , כמו רעידת אדמה. יהיו מספר סוכנים אשר יפוזרו על פנ

שטח , חלקם יהיו אויריים, יבשתיים ואולי גם תת קרקעיים. לאחר שיסרקו את השטח 
לניצולים או הערכת נזק ראשוני. לאחר הסריקה יאלצו להיפגש לבצע הורדה של המידע לצורך 

 הערכת מצב הנפגעים בשטח. 
 

יעיל, נשתמש  שידורמכיוון שאנו יודעים כי כל ערוץ תקשורת בעל רדיוס בהמשך לדוגמא זו, 
אלגוריתם שלנו. מחקר זה יציע  הסוכניםזה להגדיר את המרחק המקסימאלי בין  באפיון

 מתאורת ע"י  סוכןתנועת ה. הסכם במערכות מרובות סוכניםית יבזמן אמת עבור בעלפתרון 
מזער. למבקש  אותה הוא שלו פונקציית מטרה  ולכל סוכן יש את  של סוכם פשוטדינמיקה 
על  תוך כדי כךו ומטלה שעליו לבצע הוא חפץ להגיע יהאל כל סוכן יש העדפה אשרלכלומר, 

. כל הסוכנים להגיע להסכם לגבי נקודת המפגש מבלי להתייחס למצב הסוכנים האחרים
ן סופי. כל סוכן מסוגל לתקשר בזמ נקודת המפגשלהגיע להסכם על והסוכנים חייבים לתאם 

במחקר זה אילוץ הטיפול בבהתאם למבנה הקישוריות. )שכנים בלבד( אחרים הכנים סוהעם 
ו. יעם שכנהתקשורת המוגדר טווח בתוך תקשורת יכולת הוא להבטיח כי כל סוכן ישמור על 

מרחק גדול בין האלגוריתם בא למנוע . וזאת כי זק למבנה הקישוריותכלומר, לא יהיה נ
ובכך לצמצם את מקרי "איבוד" קשר עם סוכן או אפילו  הסוכנים מרדיוס התקשורת המוגדר

בניגוד למחקרים נוספים  .געיות שיכולות לסכן קבוצת סוכנים גדולהרתקשורת  תנפילו
, האלגוריתם פגש ממוצעות או ממוצע גיאומטרישבון נקודות מ, אשר לקחו בחשבוצעו בעבר

מוצג במחקר זה מבצע תהליך החלטה דינאמי בהתאם לנתוני הסוכנים בשטח תוך אילוצי ה
)עדיפות, יעד , גודל בקר, וכו ( אשר ממודלים זמן סופי. כלומר, כל סוכן בעל נתונים אישיים 

כך שכל סוכן דואג למטרה האישית שלו אך  לתוך פונקציית ה"עלות" של כל אחד מהסוכנים.
בו בזמן עליו לדאוג גם למטרה המשותפת שהיא הסכמה על נקודת מפגש באופן דינאמי, תוך 

למזער את פונקציית  המטרה של כל אחד מהסוכנים היא כדי שמירה על אילוצי המרחק.
במחקר זה נעשו מספר  ה"עלות" האישית שלו ובכך למזער את פונקציית ה"עלות" הכוללת.

, והוא קבוע מתחילת הפעילות   Spanning Treeהנחות : גרף הקישוריות הינו מסוג 
המשותפת של הסוכנים ועד סופה. הנחה נוספת היא שהמרחק ההתחלתי בין הסוכנים יהיה 

 התקשורת שהוגדר.  קטן מרדיוס
 

ההחלטה תוך כדי עמידה ת לבעי מבוזר  אלגוריתם הצגתהתרומה העיקרית של עבודה זו 
תוך כדי מתן  מבוזרציע אלגוריתם ת. עבודה זו באלוצי המרחק ונקודת המפגש הסופית

 סוכנים. 2דוגמאות , פיתוח החלקים המתמטיים והצגת סימולציות למצב של 
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  .בהנחייתו של פרופסור דניאל זלזו מהפקולטה לאווירודינמיקה וחללהמחקר בוצע 
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