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Abstract

This thesis investigates agreement and synchronization problems of continuous-time
multi-agent systems (MASs) operating under sampled-data communication constraints.
It challenges the prevailing reliance on diffusive consensus protocols, arguing that their
structural simplicity can conceal fundamental performance limitations—particularly in
the presence of external disturbances, measurement noise, and unstable dynamics.

The study begins with the consensus problem for integrator agents exchanging in-
formation intermittently at asynchronous sampling instants. A novel sampled-data
protocol is proposed, emulating suitable global analog dynamics at each agent and
transmitting sampled centroids of these emulators between neighbours. The closed-
loop dynamics naturally decompose into centroid and disagreement components. The
centroid subsystem evolves autonomously according to time-varying discrete consensus
dynamics, independent of the sampling intervals. Under mild assumptions on per-
sistency of connectivity and bounded sampling intervals, the system asymptotically
converges to agreement. A simplified, scalable implementation is given for a specific
choice of emulated topology.

The framework is then extended to general agreement of identical linear time-
invariant (LTI) agents under the same connectivity assumptions, with both state-
feedback and output-feedback designs accommodating practical sensing constraints.
Conditions for exponential convergence are derived, and augmentations such as predictor-
based updates for small delays and weighted update maps are proposed, preserving
convergence guarantees while potentially offering improved performance.

A central theoretical contribution is the identification of a fundamental internal
instability in diffusively coupled MASs when the agents satisfy certain constraints.
For finite-dimensional agents, these manifest as a common unstable pole and direction
canceled in the feedback loop, illustrating a unique multi-input multi-output (MIMO)
phenomenon: pole cancellations due to deficient normal rank of the controller. This
explains reported fragility to load disturbances and measurement noise, and proves that
no purely diffusive feedback can stabilize such systems.

Motivated by this limitation, a 2 degrees-of-freedom (2DOF) distributed archi-
tecture is proposed, separating local stabilization from network-based coordination.
This decouples plant dynamics from network filter design, enabling heterogeneous con-

trollers, targeted disturbance rejection, and explicit noise shaping—capabilities absent



in standard consensus-like designs. An input-output analysis highlights these advan-
tages and the architecture’s ability to retain feedback in the consensus mode.

The analysis combines spectral graph theory, sampled-data control, and classi-
cal control tools, producing novel theoretical characterizations and practical design
methods applicable for various LTI agents. The thesis concludes with open directions,
including extensions of the emulation scheme to heterogeneous agents and the 2DOF
architecture, systematic network filter design, and further studies of performance under

communication and sensing constraints.



Notation and Abbreviations

N The set of natural numbers.

N, Theset {ie Z|1<i<v}.

Z The set of integers.

Z, The set of positive integers.

R The field of real numbers.

jR The set of pure imaginary numbers.

C The field of complex numbers.

Cea The open complex right half-plane {s € C | Res > a}.
Cea The closed complex right half-plane {s € C | Res > a}.
R(s) The real part of complex number s.

J(s) The imaginary part of complex number s.

Ky The modulus of complex number s.

e; The ith standard basis vector in a field F".

L, The v X v identity matrix.

diag{A;} A block-diagonal matrix with diagonal elements A;.
A’ The complex-conjugate transpose of a matrix A.
ImA The image (range) space of A.

ker A The kernel (null) space of A.

spec(A) The set of all eigenvalues of the matrix A.

tr(A) The trace of a square matrix A.

a(A) The minimal singular value of A.

[|A]le The e norm of matrix (vector) A.

A®B The Kronecker product of matrices A and B.

1 The all-ones vector.

Pq The orthogonal projection on Im 1.

G A mathematical graph with node set V and edge set &.
Ag The adjacency matrix of graph G.

Dg The degree matrix of graph G.

E The incidence matrix of graph G.

Lg The Laplacian matrix of graph G.



The normalized adjacency matrix of graph G.

G

G(s) The transfer function of an LTI system G.

(A,B,C,D) A state-space realization of a finite-dimensional LTI system
G.

H, Hardy space of holomorphic and bounded functions.

Lo Lebesgue space of square integrable functions.

Il co The Ho norm of a system or Lo, norm of a signal.

pdir; (G, p) The input direction of a pole p of G(s).

pdir, (G, p) The output direction of a pole p of G(s).

zdiri(G, z) The input direction of a zero z of G(s).

zdiro (G, z) The output direction of a zero z of G(s).

2DOF 2 degrees-of-freedom

A/D analog to digital

BIBO bounded-input bounded-output

D/A digital to analog

LTI linear time-invariant (A system described by linear time-
invariant differential (difference) equations.)

MAS multi-agent system (A collection of independent dynamical
units, interacting to achieve a common goal.)

MIMO multi-input multi-output (A dynamical system with multiple
inputs and multiple outputs.)

SISO single-input single-output (A dynamical system with a single
input and a single output.)

ZOH zero-order hold (zero-order hold)



Chapter 1

Introduction

It’s a dangerous business, Frodo, going out
your door. You step onto the road, and if
you don’t keep your feet, there’s no knowing

where you might be swept off to.

JR.R Tolkien, The Fellowship of the Ring [1]

Many engineering problems can be understood through the lens of large collections
of simpler, interacting subsystems. When these subsystems are coupled—for example,
when spatially separated sensors and actuators must cooperate, or when otherwise
independent units share a common objective—the overall plant is typically called large-
scale. The analysis and control of such systems has been an active research area for
more than five decades [2], [3].

A large-scale plant can always be represented as a standard MIMO system and,
in principle, controlled with standard synthesis tools. However, the resulting con-
trollers are almost always centralized: each control input depends on measurements
from all outputs. Guaranteeing reliable, low-latency communication between every
sensor—actuator pair becomes technically challenging and prohibitively expensive as
the dimension grows [4]. This has driven sustained interest in decentralized designs
whose controller matrices are block-diagonal, so that every subsystem is driven solely
by its local measurements. Unfortunately, such severe sparsity constraints introduce
their own difficulties. For example, even for two interacting systems with a quadratic
cost optimal design is NP-complete [5], [6], and certain plants cannot be stabilized by
block-diagonal controllers [7].

A pragmatic compromise is distributed control, in which the controller matrix is
only sparse rather than block-diagonal, allowing each subsystem to exploit limited in-
formation from carefully chosen neighbors. This can be visualized by pixel diagrams,
where the ith row corresponds to the ith control signal, u;, and each column repre-
sents an agent’s measurement, y;. A diagonal structure (Figure 1.1(a)) demands no

communication since each control signal uses only local measurements, u; = k;(y;) for



some operator k;. A cyclic structure (Figure 1.1(b)) requires two links for each agent,

u; = ki(yi-1,yi, vi+1), and still more exotic patterns are also possible (Figure 1.1(c)).

(a) Diagonal (decentral- (b) Cycle structure. (¢) General sparse struc-
ized) structure. ture.

Figure 1.1: Illustration of distributed controller structures: a shaded ijth element
represent the jth measurement is available for the ith control.

How these “information structures’ influence synthesis has been studied for decades
[3]. For certain special cases—positive plants, for instance—optimal distributed con-
trollers can even be computed in closed form [8]. In the generic LTT setting, however,
convexity of the optimal synthesis problem is guaranteed only when plant and controller
share a quadratically invariant sparsity pattern [9], [10]. Tractability deteriorates fur-
ther when considering more realistic scenarios, for example when the information topol-
ogy is time- or parameter- varying, or when the communication itself is intermittently
sampled.

Among the many systems amenable to distributed control, MASs stand out as
both a rich source of theoretical challenges and a key application domain. Here, a
network of dynamical agents pursues a common, cooperative objective. Coordination
tasks such as velocity agreement in vehicle platoons [11], formation keeping for multi-
robot teams [12], [13], or distributed sensing and estimation [14], [15] all fit naturally
in this framework. A fully decentralized controller is rarely adequate—cooperation
demands some level of information sharing—yet a fully centralized architecture inherits
the communication and implementation pitfalls described. The goal, therefore, is to
devise distributed controllers that are as sparse as possible while still satisfying the

cooperative specification and any temporal constraints.

1.1 Agreement problems in multi-agent systems

A prime example of cooperative objectives is reaching agreement between autonomous
dynamical systems in the presence of communication constraints. It is a fundamental
problem in numerous scientific disciplines such as opinion dynamics [16], distributed
algorithms [17]-[19], physics [20], and control [21], [22].

P 1: Consider v possibly heterogeneous agents, each with dynamics P;, control inputs

u;, and outputs y;. Design bounded control signals u; such that the agents asymp-



totically reach output agreement in the sense that

tlim lyi(t) = y; ()] =0 Vi,jeN,, (1.1)

for all initial conditions.

If in addition lim;_, y;(f) = const, we say that the agents achieved consensus, and
if the consensus value is 0 we say that the agreement is trivial, since this is akin to
independent stabilization of the agents.

This would be an elementary problem if every agent had continuous access to the
output of all other agents. However, this scenario is not practical in networked ap-
plications, where information exchange is costly. Hence, additional constraints are
introduced. A natural assumption in large-scale networks is that each agent can inter-
act only with a subset of the group often called its neighbors. Formally, this can be
expressed as the constraint that the ith agent can communicate only with agents whose
indices belong to a neighborhood set N; C N,, \ {i}, which can be fixed or time-varying.
We refer to such constraints as spatial constraints. Controllers satisfying prescribed

spatial constraints are naturally distributed.

PHYSICAL SYSTEM

[GRAPH ABSTRACTIONJ

Figure 1.2: Modeling multi-agent systems via graphs: each agent is mapped to a node,
and each communication channel to an edge.

These neighborhood sets and communication channels form a mathematical object
called a graph. A simple graph G = (V, &) associates each agent with a node v; € V
and each communication channel with an edge e;; = {v;,v;} € & When information
exchange is bidirectional the graph is said to be undirected. The communication graph
has substantial influence over the properties of the resulting closed-loop system, re-
gardless of the particular controller used. This influence can be analyzed by exploiting
the established a correspondence between graphs and certain matrix representations,
in what is now called spectral graph theory [23], see a brief overview in Appendix A.
This allows us to relate graph-theoretic properties such as connectivity, spanning trees,

and cycles, to spectral properties of these matrices such as eigenvalues, positivity, and



invariant quantities. This is best illustrated in the following subsection, which considers

the classical solution to the integrator consensus problem.

1.1.1 The consensus protocol

In its arguably simplest form, ;1 can be formulated in continuous time for a group of

v first-order autonomous agents described by
xi(1) =ui (1),  x:(0) = xos, (1.2)

for all i € N,,, attempting to achieve consensus. One solution for the consensus problem
for agents (1.2) which harnesses graph theory is the celebrated consensus protocol [21],
[22], [24],

ui(t) =k Y (x50 = xi(1), (1.3)

JEN;

for some « > 0. Note that only information within the ith neighborhood is used to
generate this control, making it naturally distributed. The consensus protocol as shown
in (1.3) exhibits the relative sensing nature of the protocol. Relative sensing appears
naturally in MAS tasks, where absolute measurements are hard to obtain, such as space
and aerial exploration and sensor localization, see [25]-[27] and the references therein.

A different perspective of (1.3) is

ui(0) = =& (INgbi (1) = 3350, (1.4)

JEN;

which emphasizes that agents exchange state-information by communication. This
perspective is useful in problems where the agents are assumed to be communicating,
and hence may exchange more complex, and possibly private, information.

Regardless of viewpoint, the analysis of the resulting closed-loop system is partic-
ularly elegant in the aggregate form. Assume that the spatial constraints describe a
particular (undirected) graph. Then, using the notation from Appendix A, the aggre-

gate version of the consensus protocol then reads

| X1(t) 3 Ml(t)
u(t) = —kLgx(t), where [x(t)}u(t)] = P

B
'

Xy (1) 1ty (1)
and results in the collective closed-loop dynamics
x(t) = —kLgx(t), x(0) = xo, (1.5)

with Lg being the graph Laplacian. Equation (1.5) is one of the main reasons for the
renewed interest in graph theory within the control community. It clearly shows that,

at least for integrators, the global dynamics are almost completely determined by the



underlying graph via Lg. The benefit of this property is that we can tell quite a bit
about the spectral properties of Lg without knowing the graph explicitly. In particular,

we know that for any undirected graph, even disconnected, 1 € ker Lg. Since
xi(t) =x;(t), Vi,jeN, & x(t) elml,

this implies that agreement is always a possible equilibrium of the consensus dynamics
with undirected topologies. It turns out that for undirected graphs, dynamics (1.5)
reach agreement if and only if G is connected. Moreover the convergence to agreement
is exponential with rate determined by the second smallest eigenvalue of kLg and can
be made arbitrarily fast by increasing the gain «, see [22, Sec. 3.1]. Similar results, i.e.,
consensus iff connectivity, exist for both directed and time-varying graphs with suitable

notions of connectivity, e.g. [21, Ch. 2].

1.1.2 General consensus-like protocols

Despite appearing in other fields for over 40 years, variations of (1.3) began appearing
in the control literature only over the last two decades. In particular as part of several
papers, published almost concurrently, which considered vehicle formation or heading
problems [12], [28]-[31]. These papers which cite the simple discrete-time model from
[20] as their inspiration, all considered variations of (1.3) acting on a group of identi-
cal agents attempting to drive their states into consensus without a common reference
signal. In all cases, similar results, i.e., consensus iff connectivity, were derived. This
successful marriage between graph and control theory led to a rapid surge of publica-
tions exploring the new subfield. For example, the Laplacian-like structure was shown
to preserve passivity [32], and the graph and cycle structure were connected to the Ho
norm [33] of agreeing systems. In [34] a consensus model with an input was considered,
and controllability properties were related to symmetries of the graph.

As the field evolved, variations of $1 retained their significance. It turns out that
agreement is a necessary building block for more sophisticated objectives, ranging from
leaderless formation control [35] to coordinated wildfire monitoring [21]. Hence, we

may consider a more general consensus-like protocol of the form

ui=kiy (yj-vyi),  i€Ny, (1.6)
JEN;

for some measured signals y;(f) and possibly dynamic controllers k;. Commonly con-
trollers k; are chosen to be identical, since this facilitates the overall design. In partic-
ular, this reduces the affects of the network to a perturbation of the gain by the eigen-
values of the Laplacian, reducing agreement to a simultaneous stabilization problem
[12], [36]. This property was also exploited to analyze the robustness of consensus-like
protocols to uniform time-delays [37], [38] and sampling [29]. However, even when iden-

tical, the gains are not necessarily square, static, or time-invariant. For example in [39]



a group of second-order integrators was driven to consensus by using a variant of a PD
controller, or equivalently full state-feedback. Others solved the consensus problem
for general LTT agents with output measurements through a Riccati-based low-gain
approach [36]. Time-varying controllers were also considered, mostly in the context
of time-varying topologies [31] and noisy measurements [40], [41]. Over time, the as-
sumption that the agents can communicate controller states became more widespread.
This lead to several observer-based consensus-like controllers [42], [43], providing a

methodical design process for homogeneous LTI agents.

Simultaneously, attention was directed toward two other important variations: i)
agreement of heterogeneous agents, and ii) controlling the agreement trajectory. The
former arises naturally in practical applications, since agents are often uncertain and
thus not exactly homogeneous. The latter originated from the fact the aforementioned
controllers could only drive agents to agreement trajectories generated by the homoge-
neous uncontrolled model, cf. [43, Thm. 2]. It can be formulated as solving 1, while
ensuring that

lim [lyi(1) - r(Dll =0, Vi €N, (1.7)

where r(t) € R for some prescribed family of trajectories R. This cumulated in the semi-
nal result that a necessary condition for agreement is the existence of a common internal
model between all the agents [44]. Combined with the prevalence of the communication
viewpoint, this result paved the way to cooperative output regulation approaches. In
these methods, each agent embeds a generator into their controller which can generate
the required family of trajectories. For example, the set R is often generated by an LTI

generator with uncontrolled dynamics

f‘=A01’ r(0)=r0

n=Rr

such that spec(Ag) are all in the closed left half-plane. The agents then locally track
their generators, while cooperativly exchanging the generator’s output and agreeing on
them. This requires each agent to have a local controller based on the regulator equa-
tions [45, Ch. 1], which may result in the agents having different dynamic controllers,
k; [44, Thm. 5]. This result was later extended to non-linear agents, generators, and

controllers [46].

Yet despite increasing generality, at the heart of all of these variants sits consensus

protocol (1.6), or more generally controllers of the form

u; :Z kij(yj=yi), ieN,, (1.8)
JEN;

for possibly dynamic controllers k;;. Control laws which are based on a linear combi-

nation of some function of the relative outputs of all neighbors as in (1.8) are generally
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called diffusive, and the closed-loop systems are called diffusively coupled. It seems that
over the years this diffusive structure became almost an a priori assumption in control
design of MASs, regardless of the actual problem. Even when no actual sensing is in-
volved, for example [44], [47], the incoming information is processed via a consensus-like

protocol using relative measurements.

1.2 Structure and goals of this thesis

While such results highlight the elegance and utility of the consensus framework, prac-
tical deployments reveal important limitations under realistic conditions. Sampling or
communication delays, measurement noise, and exogenous disturbances all interact in-
tricately with the network structure. This interaction makes tuning rules opaque and
reduces robustness margins. Even worse, robustness can be hard to define and quantify
due to the coupling via the network structure. Consider, for example, a group of inte-
grator agents attempting to reach consensus with sampled-data interaction. Although
this is perhaps the simplest variant of #1, adhering to the structure of protocol (1.6)
requires much deeper analysis. Even synchronous periodic sampling requires the gains
to be tuned with respect to both the sampling period h and the eigenvalues of the
Laplacian [29]. If the sampling is intermittent, event-triggered, or asynchronous, more
conservative gains are needed [48]. Similarly, uniform transmission delays — where each
pair y; — y; are delayed by the same amount — also constrain the allowable controller
gains [29], [38], [49]. Because the graph, and thus Laplacian eigenvalues, is generally
unknown, satisfying even basic constraints necessitates adopting a conservative design
approach. This is a stark contrast to traditional control problems involving integra-
tors, where such constraints often have analytical solutions with guaranteed stability
margins.

Such limitation under non nominal conditions are not confined to information con-
straints like delays and sampling. It is well documented that diffusively-coupled systems
behave poorly when affected by external signals. Measurement noise significantly de-
grades performance [33, §III-A], while disturbance and uncertainties can hardly be
attenuated even by dynamic [43], [50] or non-linear [51] controllers. To cope with the
difficulties, various relaxed assumptions are adopted. Some allow the controllers to
be time-varying [40], [52] or non-linear [53], and in both cases some boundedness or
convergence assumptions must be made on the external signals. Moreover, if these
assumptions fail, the resulting trajectories exhibit certain common traits that can be
associated with instability. It is notable that despite being well documented, these
failings are rarely investigated for themselves. This alarming fragility and instability
were not properly explained, and different architectures are hardly explored.

These oddities served as the main motivation for the research detailed in this disser-
tation, which advocates we take a more control-oriented perspective on MASs control

problems as a whole, and the agreement problem in particular. Historically, the suc-
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(a) Only diffusive measurement. (b) Independent network (z;) and local (y;)
measurements.

Figure 1.3: Distributed control paradigms for agents P; and controller «: a singe uni-
form measurement, or separation to local and networked measurements.

cess of control theory lies in match-making the right controllers to the right problems.
This can be seen in matching 2DOF control to classical servo-regulation [54], [55], pre-
dictors to dead-time systems [56], [57], or generalized sample-and-hold functions for
sampled-data systems [58]. A common theme in all of these examples is that they ex-
ploit something in the structure of the problem to either simplify the design or improve
the performance. This is most evident in 2DOF controllers, where the design exploits
the fact that there are two distinct measurement channels, one for the output and one
for the reference, to expedite the design. In sampled-data control the key was to not
assume a priori an ideal sampler and a zero-order hold (ZOH), and instead to con-
sider both analog to digital (A/D) and digital to analog (D/A) devices as free design

components.

The main focus of this dissertation is to bring similar insights into the realm of
MASs and agreement problems. First, much like in 2DOF, we note that (1.6) can be

rewritten in communication form much like the vanilla (1.4),

Mi=—|Ni|kiyi+kiZ)’j =~ Nil kiyi + kizi, i€eN,.
JEN;

This results in at least two different signals, the local output y; and the network signal
z;. This is not a mere algebraic manipulation; often these signals are subject to different
constraints. For example, it is reasonable to expect that network-sourced information
will be sampled less frequently or will be more heavily affected by noise. This alone
makes problems such as “agreement of sampled-data MASs” much more nuanced. Sec-
ond, we may want to process these two measurements differently to try and exploit
the interplay between their differing constraints. We argue that adhering rigidly to the
diffusive consensus structure may inadvertently introduce conservatism and complex-
ity in the design. In fact, as we shall show, when additional constraints appear, even
modest departures from the conventional form can yield both performance gains and
dramatic simplification of the design process. Unlocking these gains, however, demands
a deeper look at the interplay between communication topology, sampling, delays, and

plant dynamics. The difference between the two approaches is illustrated in Figure 1.3.

The research in this thesis focuses on explicitly considering control structures such
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as Figure 1.3(b), rather than the diffusive structures in Figure 1.3(a), as well as high-
lighting the shortcomings of the latter. Chapter 2 begins with deeper inspection of
the classic consensus protocol, and how naively discretizing (1.3), i.e., using an ideal
sampler and a ZOH, requires conservative and small gains. The rest of this chapter
is dedicated to an alternative architecture, published in [59], which eliminates this
conservatism by incorporating generalized sampled-and-hold functions inspired by op-
timal sampled-data control. This is made possible by viewing the consensus protocol
through the lens of Figure 1.3(b), and separating the intermittent network measure-
ment z; from the fast and reliable y;. Notably, the proposed architecture guarantees
consensus under asynchronous and intermittent communication, even for possibly time-
varying directed graphs. The only requirement is that a weak connectivity assumption
holds. Specifically, it requires only a necessary assumption for discrete-time integrators
under switching graphs, and uniformly bounded sampling intervals.

Building on the sampled-data architecture from Chapter 2, Chapter 3 extends the
discussion to general LTI agents that must synchronise to a time-varying reference. Mo-
tivated by structural insights from the integrator case, we propose a new state-feedback
control law to emulate a different control law instead of the standard Laplacian-based
one. We then show that when combined with the update scheme from the integrator
case, synchronization is achieved under the same communication constraints. We then
extend the results to controllers using output measurements only in two different ways:
i) by directly emulating an observer-based control law, or ii) by including a simplified
observer into the original scheme. Both for state and output measurements we provide
a scalable and low-order implementation. The state-feedback case was presented (with-
out some of the proofs) in [60], while the second output-feedback version was published
in [61].

Chapter 4 concludes our investigation of sampled-data agreement problems, by
deriving several smaller results most of which are unpublished. Specifically, we investi-
gate the convergence rate of the emulation scheme, as well as provide graph-theoretical
conditions to ensure exponential convergence. We also consider two augmented up-
date maps. The first variation is a predictor capable of guaranteeing agreement under
heterogeneous and time-varying small delays, a work published in [62]. The second
demonstrates that adding weights to the original update scheme does not alter the
convergence result. Such weights are commonly used in the literature in various ways
to improve performance.

In Chapter 5 we deviate from the linear progression of increasingly complicated
sampled-data agreement problems, and explicitly consider Figure 1.3(a) under diffu-
sive controllers (1.8). This deviation is motivated by the odd, unstable looking, dis-
turbance response of the consensus protocol as detailed in Section 5.1. This prompts
a system-theoretic analysis of generic diffusive couplings, in an attempt to understand
this behavior, as well as others exhibited in the literature. We prove that the diffusive

structure fundamentally cannot internally stabilize certain classes of agents. This clari-
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fies the disturbance amplification and instability reported in the literature, and further
supports our focus on the architecture in Figure 1.3(b). For finite-dimensional agents
this result has an intuitive interpretation as cancellations of common agent poles by
the diffusive structure. This work was published in [63].

Motivated by the results of Chapter 5, Chapter 6 begins with revisiting the classi-
cal consensus protocol in an input-output framework. By deriving known results from
this perspective it is possible to better understand the underlying structure and limi-
tations of consensus-like protocols. By drawing parallels to servo-regulation problems,
we develop an alternative architecture to diffusive coupling. Namely, we propose a
2DOF architecture that fuses classical servo-regulation ideas with distributed control
requirements. It requires more careful tuning to ensure agreement, as opposed to classic
consensus, but has demonstrably improved robustness and disturbance rejection.

We conclude our work in Chapter 7, where we summarize our findings and insights,
and provide a few intriguing directions for future research. To keep the main text
readable, three appendices are provided. Appendix A provides and introduction to
graph theory, relevant notations, and some required standard results, while auxiliary
results on the Kronecker product and matrix theory are collected in Appendix B. It
is generally assumed that the reader is familiar with continuous-time LTI dynamical
systems, yet some background and relevant results appear in Appendix C. The reader

is referred to standard monographs for deeper coverage.
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Chapter 2

On Sampled-Data Consensus:

Divide and Concur

“Begin at the beginning,” the King said,
gravely, “and go on till you come to the

end; then stop.”

Lewis Carrol, Alice in Wonderland [64]

In this chapter, we take our first steps into the world of constrained agreement
problems. It begins with a quick recap of the consensus version of 7 for integrators
controlled by consensus protocol (1.3). We first formalize the results alluded to in
Subsection 1.1.1, and then show the differences when naively discretizing (1.3). This
motivates our alternative sampled-data architecture, which is the main topic of this

chapter.

2.1 Between discretization and sampled-data

Consider the integrator consensus problem as defined in Section 1.1, with controller

(1.3). That is, a group of v first-order autonomous agents described by
xi(1) =ui (1),  x:(0) = xo;,
with the aggregate closed-loop dynamics
x(t) = —kLgx(t), x(0)=xp

as defined in (1.5), where Lg is the graph Laplaican of the underlying communication
topology. The first property of these dynamics we wish to introduce is the invariance

of the centroid, as stated below.

Proposition 2.1.1 (Proposition 3.13 in [22]). Let Lig be the in-degree Laplacian of G,
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with left eigenvector q’Lig = 0. The quantity q’x(t) is an invariant of dynamics (1.5).
In particular, the centroid, x(t) = (1/v)1'x(¢), is an invariant of dynamics (1.5) for all

undirected graphs.

As mentioned in Chapter 1, for undirected graphs, dynamics (1.5) reach agreement
if and only if G is connected. This is a well known result even for directed graphs,
with various proofs available in standard textbooks, e.g. [22, Thm. 3.12] or [21, Thm.
2.8]. Despite being well known, it may be instructive to understand the mechanism
behind them. To this end, we state and prove below the simplest case in a slightly

non-orthodox way to provide some intuition required for the rest of this dissertation.

Proposition 2.1.2. Consider v identical integrator agents controlled by (1.3) for some

scalar k > 0 and an undirected graph G. The following statements are equivalent.
1. G is connected.
2. The agents reach average consensus for all initial conditions.

Proof Consider a representation of the aggregate system in the frequency domain, where

the closed-loop can be written as
P -1
X = (I,, + —Lg) X0
s

with xp is the aggregate initial condition response. Since G is undirected, Lg is positive
semi-definite and there exists a unitary transformation U such that ULgU’ = diag{4;},

which allows us to rewrite the closed-loop dynamics as
x = U’ diag{S;}Uxg

with
1

S,'S2= .
(<) 1+KT/1"

Moreover, since Lgl = 0, we can pick a unitary U such that U’e; = (1/4/v)1 and
e U = (1/4/v)1’. Note that we can rewrite the above dynamics as

4
1
x= Z Si(s)U’eje;Uxp + S1(s)=11"xg
i=2 v
and that S1(s) = 1.
= Since G is undirected and connected, by Proposition A.0.1 2; =0 and 4; > 0 for
all i > 1. This implies that for all i > 1

s
S+ KkA;

Si(s) =
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is stable, thus by the final value theorem
. L, _
lim x(z) = =11"x¢ = Xo1.
t—o0 v

<= Since the agents reach average consensus for all initial conditions and the centroid

is invariant, we have
tlim (x(r) = 1x(r)) = tlim (I, = Py)x(t) =0

where Py = (1/v)11’ is the orthogonal projection on Im 1 [65, Thm. 7.5]. From

the previous decomposition we have

4
(I, - Py)x= Z Si(s)U’eje Uxo,
i=2
therefore S;(s) must be stable for all i > 1 and any « > 0, which requires that
Ai > 0 for all i > 1. Thus Lg has a simple eigenvalue at 0 and the rest strictly
positive, implying that G is connected. [

Before moving on to the sampled-data case, there are two things that are important to
notice for the sequel. First, for undirected graphs the centroid is an invariant quantity.
It is unaffected by the dynamics and predetermines the final value regardless of the gain
k. Second, the convergence rate directly depends on « and the graph structure. This

is readily seen in the frequency domain, since the closed-loop poles are determined by

s
Si(s) =
i(5) S+ KA;
with poles p; = —kA;. Hence, the most dominant mode (excluding the agreement direc-

tion) is —kAg, which can be made arbitrarily fast without risking the overall stability
of the system. This may not be the case in discrete-time or considering more complex
dynamics.

To this point we only discussed the problem in continuous time, where the spatial
constraints limited the subset of neighbors each agent can communicate with. How-
ever, networked implementations may impose additional limitations on the information
exchange between agents, related to the time instances at which communication is pos-
sible. Specifically, we assume that agents can convey information to neighbors only
at time instances t = sy, k € Z,, for a strictly increasing monotone sequence of sam-
pling instances {sx}r. If all agents transmit their states simultaneously, at each sg,
sampling is said to be synchronous. If the ith agent at each s; receives information
from only a subset of its neighbors, sampling is referred to as asynchronous. These
concepts are illustrated in Figure 2.1, where each time axis denotes an agent, and each
impulse a sampling instance. Note that even in the asynchronous case of Figure 2.1(c),

there is only one sampling sequence that encompasses all agents. For example, even
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thought agent 3 does not transmit at r = s1, agent 1 does, hence t = 51 € {sg}x. This

formalism can naturally accommodate changing interconnection topologies. There is
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(a) Periodic and synchronous.  (b) Aperiodic and synchronous. (¢) Asynchronous.

Figure 2.1: Different sampling patterns for v = 3 agents: each time axis corresponds to
an agent, and an impulse on the ith axis indicates the corresponding agent transmits
information.

rich literature on sampled-data consensus, studying problems under synchronous and
asynchronous sampling, time- and event-triggered sampling mechanisms, see [48] and
the references therein. Still, the vast majority of available approaches assumes that the
control signal is piecewise constant, unchanged between updates from neighbors, i.e.,
uses the zero-order hold as the D/A converter. This assumption facilitates the reduc-
tion of the problem to a pure discrete agreement, at least under synchronous sampling.

Indeed, in the latter case the discretized aggregate system is
x[k+1] =x[k] + hlk]ulk],

where x[k] = x(sx) and hlk] = sg+1 — sk (sampling interval). Substituting in the

discrete version of the consensus protocol,
ulk] = —kLgx[k],
leads to the closed-loop dynamics
x[k+1] = (I — kh[k]Lg)x[k], (2.1)

which can be thought of as the Euler approximation of (1.5).

Like in the continuous-time case, system (2.1) still has its only equilibrium at an
agreement set. Yet the stability required by Proposition 2.1.2 is now guaranteed only
if kh[k] is sufficiently small for all possible sampling intervals h[k] [24]. This compro-
mises the convergence rate for networks with large variability in sampling intervals.

There are other agreement-reaching protocols for discrete systems [24], but they all
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require sufficiently small, and normally conservative, gains to guarantee stability. For
asynchronous sampling, the situation is even more dire, as illustrated in the following

example.

& W
@ ® @
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Figure 2.2: Top: original graph. Bottom: possible subgraphs induced by the asyn-
chronous sampling sequence.

FEzxample 2.1.3. Consider a simple case of v = 3 agents, interacting over a graph with
edges & = {(1,2),(2,1),(1,3),(3,1)}. Note that this graph is undirected, hence the in

and out Laplacians are equal and given by

2 -1 -1
Lg=|-11 0
-1 0 1

Now assume that the agents are sampled in an asynchronous way, such that agent 2
transmits Ay seconds after agent 1, and agent 3 transmits Aj seconds after agent 2.
Moreover, assume without loss of generality that As > Ao, and that agent 1 does not
transmit again before agent 3 does. Consequently, the first three sampling instances
are

s1=151, S2=51+Ag, s3=51+A3,

and each sampling instance induces a different directed subgraph of G based on the
transmitting agent. This is illustrated in Figure 2.2, and results with the following

in-degree Laplacians

0 00 1-10 10 -1
Lglsi]=|-110]|, Lgls2]=|(0 0 0|, and Lg[ss]=[00 0 [,
-101 0 00 00 O
all of which are directed. \Y
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As shown in Example 2.1.3, the asynchrony naturally turns Lg into a time-varying
matrix, which often requires even smaller gains and more complex technical machinery

[66].

Remark (discrete vs. sampled-data) 2.1. The simple case considered above exemplifies
well a key difference between pure discrete-time and sampled-data networked setups.
The latter typically has shift-varying discretized models, as realistic network sampling is
intermittent. Moreover, parameters of those models are uncertain, unless we somehow

know the next sampling instance. v

We argue for parting with the use of the zero-order hold, synchronized with measure-
ment updates, in sampled-data consensus protocols. This custom does not appear to be
justified by implementation requirements nowadays and might be an atavism, survived
from the early days of computer-controlled systems. We aim at exploiting opportuni-
ties offered by the use of more sophisticated hold mechanisms to reach agreement over
agents (1.2) under both spatial (distributed) and temporal (sampling) constraints.

The design of control waveforms, or D/A converters, is not new to sampled-data
control per se. In the centralized setting, optimal converters for periodic [58], [67],
[68] and intermittent [69] sampling rates can be designed. Similar control waveform
generators are also used in the networked control context in [70], [71], also without
spatial constraints. Their common property is that they in effect emulate the control
signal of the desired analog closed-loop control in an open-loop way. This property
was observed in [68, Sec. 6] and conjectured as a guiding principle for situations where
direct performance-justified design of the hold function is not available.

We follow that logic to put forward a sampled-data consensus protocol based on
emulating (1.4). The challenge is that such an emulation has to be carried out in a
distributed manner, locally at each agent. We work it out by implementing a model of
the whole world, viz. (1.5), at each agent in continuous time. Each local controller uses
then the states of these emulators to mimic the continuous-time consensus protocol
(1.4). Information about real states of neighboring agents is used to adjust local emu-
lators each time this information becomes available at sampling instances. We propose
sample and update protocols, based on the centroids of the corresponding emulators of
each agent. This idea is illustrated in Figure 2.3, where each agent transmits the local
centroid at ¢ = s; to its corresponding neighbors.

The choice of transmitting the centroids is not unique, but provides certain distinct
advantages. Namely, with such a choice, the resulting closed-loop dynamics can be
divided into those of the decoupled centroids, which behave as an autonomous system,
and those of local disagreements, which evolves according to the analog consensus
dynamics driven by the emulator centroids. Remarkably, the dynamics of the centroids
are also independent of the sampling intervals, i.e., are certain, unlike (2.1). As such,
the analysis is simplified and global asymptotic convergence to agreement is proved

under mild connectivity assumptions on the sampled-data topology and with no need
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Figure 2.3: An illustration of the emulation architecture: each agent locally emulates
all of the other continuously, and transmits their centroid when possible.

for a priori knowledge of sampling instances and specific bounds on sampling intervals.
Another noteworthy property of the proposed architecture is that the spatial topology
emulated locally need not match that of the actual network. This is demonstrated in
Figure 2.3, where the emulated topology is the complete graph, while G[k] is not. This
property can be further exploited to substantially reduce computational complexity,

rendering it independent of the number of agents.

2.2 An emulation approach

As discussed, we aim at reaching agreement for the group of v agents described by (1.2)
under given spatial and temporal communication constraints. These constraints are
determined by a strict monotonically increasing sequence of sampling instances {sg }x
and associated sets N;[k] € N, \{i} of neighbors of the ith agent that convey information
about their states at each s;. These information updates are intrinsically directional
and not necessarily symmetric, i.e., j € N;[k] might not imply that i € N;[k]. Each
set N;[k] can thus be associated with a directed graph, say G|k], having the Laplacian
Lglk] € R™.

To ensure persistent connectivity in the whole scheme, we assume hereafter that

Aq: there is a strictly increasing sub-sequence of sampling indices {k;,}, such that for
allne Z,
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(i) the intervals s, ., — sk, are uniformly bounded, and

n+1—1

s G| k] contains a directed rooted tree.

(ii) the union graph Ullz

Assumption A4 is commonly employed in works related to coordination protocols over
switching or time-varying graphs [21], [28], [31]. This assumption ensures that informa-
tion propagates throughout the entire network persistently across bounded sampling
intervals, leaving no nodes forever detached from the rest of the network. This is illus-
trated in Figure 2.4, where neither of the three graphs contain a directed rooted tree,

yet their union does.

Figure 2.4: A sequence of graphs satisfying A1: neither graph contains a directed
rooted tree, yet their union does.

Remark (variants of A1) 2.2. Some readers might be more familiar with variants of
A1 requiring a globally reachable node rather then a directed rooted tree. This is
because of the inherent ambiguity when defining directed graph Laplacians. This goes
beyond the obvious confusion regarding in or out degree Laplacians. For example,
in some popular books (e.g. [22], [72]) Ag is defined as the transpose of (A.1), which
changes the left and right kernels of the directed Laplacians. Unless otherwise specified,
when talking about the directed graph Laplacian in this thesis, we refer to the in-
degree Laplacian as defined in Appendix A. This choice allows us to naturally consider
an arrow “going in to” agent i as that agent receiving information. For example, in
Figure 2.4 in G[s1] agent 2 transmitted information to agent 1. This imposes no loss
of generality since the same results would hold, under slightly modified assumptions,

for both in and out Laplacians defined elsewhere in the literature. v

Following the discussion in Section 2.1, the proposed architecture is based on em-
ulating the “ideal” analog consensus behavior a la (1.5) at each agent. To this end,
associate with each agent an emulated spatial communication topology, which is repre-
sented by a graph G with Laplacian L ¢ € RY*Y and the corresponding set of neighbors
N; € N, \ {i} of the ith agent. We emphasize that this G need not match the actual
spatio-temporal topology represented by G[k]. All we require is that

Ao the graph G is undirected and connected,

which implies that L 6= L’g and its eigenvalue at the origin is single.
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Remark (undirected vs. directed emulated graphs) 2.3. In fact, the emulator topology
may also be directed. We require primarily the property that L é has a single eigenvalue
at the origin with corresponding left eigenvector 1. This can be also achieved, for

example, by weakly connected and balanced directed graphs. v

By the emulator at the ith agent we then understand the function y;(f) € R, whose

elements u;; == [p;]; satisfy

fig (1) = =k D (i (D) = (@), Vj € Ny \ i}
IeX; (2.2)

Hii (1) = xi (1),

for some given initial conditions y;;(0). It is readily seen that (2.2) at each j # i
matches the jth row of (1.5). The purpose of (2.2) is to emulate the analog consensus
protocol (1.4) at the ith agent by replacing the actual (remote) neighboring states x;

by their local clones y;j, i.e., as

ui(0) = —(IKG i () = " gy (). (2.3)

JeN;

Taking into account that f;; = u, by (1.2), we end up with
fi(1) = —kL g i (2.4)

as the collective dynamics of the ith agent.

It should be clear that the control law (2.2)—(2.3) is incomplete, for the resulted
dynamics (2.4) are autonomous, not synchronized with other agents. We thus need
to complement it by a synchronization mechanism satisfying given spatio-temporal
constraints.

To this end, two aspects are to be decided:
(i) what information agents should broadcast about their own states, and
(ii) how emulators should utilize the conveyed information.

One can think of a number of possible approaches here, even if each agent may broad-
cast only a scalar signal. For instance, agents may broadcast their own sampled states,
xj(sx), or a function of the state of their complete emulator, ¢(u;(sx)). The receiving-
side emulators may then update only components corresponding to the received up-
dates, e.g., as u;;(s}) = x;(sx), or all their states simultaneously.

Our choice is to broadcast the centroid of the corresponding emulator,
_ 1, 1<
a0 = V(0 = - 2; uij (1),
]:
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and is motivated by two insights. First, by Proposition 2.1.1 we know that the cen-
troid is an invariant quantity of Laplacian dynamics, meaning it is not affected by the

emulator “flow” dynamics (2.4). For the second insight, consider the following example.

Ezample 2.2.1. Consider dynamics (1.4), and assume that G is the complete graph. For

the complete graph each agent is connected to all of the others, hence
Lg=v(l,-Py) and N;=N,\{i} VieN,,

where Py = (1/v)11’ is the orthogonal projection on Im 1. For this scenario the consen-

sus protocol can be rewritten as

ui(1) = =«((v = D) = ;1)
J#

= —Kv(xl-(t) - % ij(t))

4

Thus, in the “best” scenario the consensus protocol is essentially a proportional gain
acting on the error between the local state and the global centroid. Moreover, since it
is an invariant quantity in this case the agents essentially solve v individual tracking

problems using a particular proportional controller. v

When combined, these two insights show that the global centroid is somewhat akin to a
reference that the agents attempt to track. Hence, it seems that the emulated centroid
somehow encompasses all the required information. We then update components of y;

at the receiver end as
pij(sy) = pij(sk) — @ij Z(ﬁi(sk) — i (sx)) (2.5)
1eN;[k]

for all j # i and some gains @;; € R. Summing up these updates and dividing them by

v, we have the following update algorithm for the centroid of the ith emulator:
aij _ _
fi(sy) = fui(si) = Z 7} (i (se) = i (si)).-
J#I Lle N;[k]

This algorithm bears a resemblance to a discrete consensus protocol.

Having determined the control architecture, we are now in the position to analyze
the closed-loop system and its capability to reach agreement. The first step in that

direction is, naturally, to characterize the closed-loop dynamics.

Lemma 2.2.2. Consider the set of agents described by (1.2) and controlled by (2.3),

where components of the emulators satisfy (2.2) and (2.5). The cumulative state of the
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resulted closed-loop system u(t) € RY’ satisfies the hybrid equations,

{ (1) = =&(ly ® Le)p(1),  u(0) = po 26)
,Ll(SZ) = Ajmp[k],u(sk)
for initial conditions po comprised those of all p;j, where
1 v
Ajmplk] =12 == 3" Y (eilei—e))) @ (arl), (2.7)
i=1 jeN;[k]
and a; = | a;1 -+ @ | satisfy eja; =0 for allieN,,.

Proof The “flow” part of (2.6) is the cumulative block-diagonal version of (2.4). The
“jump” part follows from (2.5) by the relations u = }; 2jei®ejuij, gi = (e; @1 )ulv,
and with a little help of the mixed-product property of the Kronecker product in Propo-
sition B.1.2. [

Equation (2.6) represents hybrid dynamics, with the continuous flow part, whose evo-
lution is shaped by the block-diagonal matrix —« (I, ® L Q)’ and the discontinuous jump
part, whose evolution is shaped by Ajmp[k]. The former matrix is actually the Lapla-

cian of the union of v disconnected clones of G.

2.3 Divide and concur

As mentioned, the flow dynamics are comprised of v disconnected copies of G. Impor-
tantly, these clones are then connected at jump stages which are dictated by Ajmp[k].
The result below plays a key role to understand properties of this connectivity mecha-

nism.
Lemma 2.3.1. Every Ajmplk] defined by (2.7) satisfies

Ajmpk](I, ® (I, = Py)) =1, ® (I, = P1), (2.8a)
where I, — Py is the orthogonal projection onto ker 1. Also,

(I, ® 1) Ajup [ k] = (I,, - %Lg[k]) o1, (2.8b)
whenever V'a; =1 for alli e N,,.

Proof By the mixed-product property of the Kronecker product, M [k] = (I,2 —
Ajmp[k]) (I ® (I = Py)) satisfies

M= Y (eiles—e)) @ id'(1-P) =0,

i=1 jENG[K]
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which proves (2.8a). Likewise,

’ 1 . ’ ’ ’
M) = (I @ 1)1z = Aplk]) =~ 37 D (eilei—e)') @ (Var?)
i=1 jeN; k]
1 - 7’ 4 1 ’
Z—Z Z (e,-(e,-—ej))®1] Z—Lg[k]®ﬂ,
Vi jeNIk] v
which yields (2.8b). |

It follows from (2.8b) that every Ajmp[k] has at least v(v — 1) eigenvalues at 1 and
their right eigenspace, Im[I® (I — Py)], is independent of k. Hence, jumps alone cannot
result in an agreement between agents either. But, as we show below, alternating flow
and jump propagation actions does lead to agreement in the system.

To show that, we need two signals,

A0 = (1, ® 1)) (2.92)

which is the v-dimensional vector comprised of the centroids f;(¢), and

6(1) = (I, ® (I, — Py))u(t) (2.9b)

which is the v?-dimensional vector of local disagreements. It is readily seen that

p(r) = I @ Du(r) +6(2),

and ||[u))? = vIIa@®)|? + 16(1)||*> owing to the orthogonality of the centroid and dis-
agreement. Hence, the boundedness of both & and 6 implies that of u itself. Moreover,

because

x(t) = ) eile] @ epult) = (1) + ) ei(e; ® e))5(1),
i=1

i=1
the states of agents x; agree whenever the centroids agree, i.e., u(¢) € Im 1, and local
disagreements vanish, i.e., 6(¢) — 0. In this direction, we now show that for an appro-
priate choice of the weight vector a;, the emulator centroid dynamics evolve according

to a discrete consensus protocol over a switching graph.

Lemma 2.3.2. If 'a; =1 for alli € N, then

_ 1 _
(i) = (1= ~LglK] (o) (2.10)
at sampling instances sy, and is constant between samples, i.e., at timest € (S, Sg+1]-

Proof From the jump equation in (2.6), we can analyze the emulator centroid dynamics

as
AT = (I ® V) Ay (Kl (50) = (1 =~ Lg K] Ja(s),
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where (2.8b) was used for the second equality. Similarly, it follows from the flow

equation in (2.6) that the centroid dynamics are invariant, i.e.,

() = (1, ® 1)) = =5 (1, @ (VLg)u() =0,

because ﬂ’LG =0. [ ]

The result of Lemma 2.3.2 says that the dynamics of the centroids are completely
decoupled from the rest of the state of (2.6), i.e., §, and are driven only by the interac-
tion topology at sampling instances. This shouldn’t come as a surprise in light of the
discussion preceding Example 2.2.1. Note that dynamics (2.10) are in fact standard
discrete consensus dynamics with gain x = % and switching over the induced graphs
Glk]. Despite similarities to (2.1), there is one important distinction: the parameters
of (2.10) do not depend on the sampling intervals. This implies that whether the em-
ulated centroids converge does not depend on the length of the individual sampling

intervals or on any upper bound on them.

Having established that the emulator centroid dynamics are decoupled from those
of the disagreement vector, we now focus our attention on analyzing the disagreement

dynamics.

Lemma 2.3.3. If I'a; =1 for alli e N, then

{ 6(r) = —k(I, ® Lg)8(1),  6(0) = do (2.11)

6(sy) = 6(sk) + BjmpLg [k]f1(sk)

where 89 == (I, ® (I, — Py)) g satisfies (I ® 1")6g =0 and
Bjmp = ) (eie)) ® (1/v - i)
i=1

satisfies (I ® 1") Bjmp = 0.

Proof By Az, 'Ly =0, so (I = P1)Lg = Ls(I = Py), whence the flow part of (2.11)
follows directly from that of (2.6). The jump part of (2.6) leads then to

6(s3) = (I ® (I = P1))Ajmp (5(sx) + (I ® 1) (1))
=6(si) + (I ® (I = Py)Ajmp (I ® 1) (),

which can be derived by the fact that (I® (I —P1))é = 6 and (2.8a). By (2.8b), we have
that
(I®(I=P1)Ajmp(I® 1) = (Ajmp — DU 1)+ Lg[k] ®1/v,
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and then by (2.7), that

<

(el-e;Lg [k]) ® a;

4

i=1

(I_Ajmp)(l®ﬂ):_z (el-(e,-—ej)')®ozi=—
: ]

i=1 jeN;[k
v

= - (D (eeh ®ai)Lglk].
i=1
Because Lg[k]®1 = (I®T1)Lg[k] = (X;(eie;)®T1)Lg[k], we have (I® (I — Py))Ajmp (I ®
1) = BimpLg|k] and end up with the jump part of (2.11). [ ]

Lemma 2.3.3 says that d, similarly to u, satisfies a hybrid dynamic equation. The
difference of the equation for 6, (2.11), from that for yu, (2.6), is that the former has
constant “A” matrices not only in its flow part, but also for jumps. The only varying
part is the discrete “B” matrix, through which the exogenous input g affects §. This
matrix does not affect the stability of the system, so the stability and convergence
analyses are greatly simplified. In fact, if Lg[k]u(sk) = 0, then (2.11) has no jumps
and comprises effectively v clones of the continuous-time consensus dynamics (1.5),
except that 6(¢) is kept orthogonal to Im 1 for all . The latter is one of the key

properties leading to the main result of this chapter.

Theorem 2.1. If Aq 2 hold, then agents (1.2) controlled by (2.3) with emulators (2.2),
(2.5) converge asymptotically to Im 1 for all initial conditions, all sampling sequences
with uniformly bounded sampling intervals siy1 — sk, and all emulator update gains «;;
such that ;. @i = 1, for alli € N,. Moreover, the emulators remain bounded and

agree asymptotically as well.

Proof We need to show that the vector of centroids, f, agrees and the vector of lo-
cal disagreements, ¢, vanishes asymptotically. So consider g first. By Aq, system
(2.10) satisfies the conditions of [21, Lem.2.29, Thm.2.37] and thus a(z) is bounded
and converges to Im 1,. This also implies that the sequence {Lg[k]u(sk)}r vanishes
asymptotically.

Now, move to 6. The first result that we need is the stability of the autonomous
version of (2.11), under Lg[k]i(sk) = O for all k € Z,. This is a standard result
for continuous-time disagreement dynamics. Namely, it is known [24, Sec.II-D] that
[[6(¢)|| is bounded and vanishes exponentially, with the rate determined by the smallest
nonzero eigenvalue of Lg, which is the algebraic connectivity of G. Thus, §(¢) is the
state of an exponentially stable linear system, whose exogenous input is bounded and

asymptotically vanishing. Hence, 6 — 0 and is bounded. |

2.3.1 The choice of the complete graph as G

An obvious problem with implementing emulators is that their dimension equals the

number of agents. Emulating all agents might not be feasible for large-scale networks.
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Yet this problem can be resolved by an appropriate choice of the emulated connectivity
graph é, which is in our power.

To this end, note that each agent broadcasts only the centroid of its emulator,
which actually does not change between updates. The only obstacle preventing then to
emulate only the centroid is the need in individual components of u; in the control law
(2.3). But if the emulated graph is the complete graph, then following Example 2.2.1

control law (2.3) reads
ui(t) = —K(V,Uii(l) - Z,Uij(t)) = —kv(x; (1) — f1:(1)).
i=1

Hence, with this choice we do not need individual u;; to implement u; either. This, in

turn, allows to drop explicit emulators. The control law becomes then

wi(t) = —kv(x; (1) — f1;(sy)), Vvt € (sk, Sk+1l, (2.3")

and the emulator updates (2.5) reduce to the updates of their centroids according to

i) = (0= INIKID AL+ (5w, (2.5)
JEN;[K]
where the condition }}; @;; = 1, required in Theorem 2.1, is used. Note that the control
signal in (2.3") is still not piecewise constant, as the local feedback is analog.

The controller defined by (2.3") and (2.5") has an intuitive interpretation. Namely,
(2.3”) is the proportional analog servo system for agent (1.2) with the piecewise-constant
[; as its reference signal. This reference is then updated according to the discrete con-
sensus protocol (2.5") with reference signals of neighboring agents. This is a reasonable
strategy in the case when local agents are easy to control, but the information about
the outside world is hard to acquire. And this logic appears to extend seamlessly to

the cases when agents have higher-order dynamics and unmeasurable states.

Remark (impulsive hold) 2.4. If we were allowed to use the impulsive control signals,
we could cause the actual state of every agent to jump at each sampling time instance.
In this case the choice @; = 1/v would be possible. But with this choice, Bjn, = 0
for all k, rendering 6 in (2.11) completely decoupled from g. In that scenario, the
selection of agreeing initial conditions for each emulator, i.e., y;(0) € Im 1, would keep
each emulator in agreement for all r and allow us to implement only centroids of each

emulator again, now for every G satisfying As. v

2.3.2 What happens if connectivity fails?

A natural question is what happens if A7 fails. Since the graphs are induced by the
sampling, this could occur, for example, due to repeated packet losses. Once more, we

can simplify the analysis by leveraging the decoupled centroids-disagreements structure.
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The first step in this direction is given in the following Lemma.

Lemma 2.3.4. Consider discrete dynamics (2.10) for some initial conditions fig. For
any sequence of graphs

Ai(sk+1) € conv g Vi €N,

and for all k, where conv g is the convex hull of the initial conditions vector.

Proof Recall that Lg = Dg — Ag where Ag is a binary matrix with zero diagonal and
Dg is a non-negative diagonal matrix whose entries are bounded by v —1. This implies
that for any graph, the elements of %Lg[k] are strictly smaller than 1 in magnitude,
rendering

Mlk] =1- %Lg[k]
a non-negative matrix. Moreover, since Lg[k]T = 0, we must have M[k]1 = T thus
M k] is row-stochastic.

Consider k = 1, each element of i[2] is given by

where m;[1]” is the ith row of M[1]. Since M[1] is non-negative and row-stochastic,
;[2] is a convex combination of iy and therefore lies within conv iy. By induction

ik + 1] € conv a[k] for all i. From convexity we have
conv i[k] C conv u[k —1] € --- C conv jg
which concludes the proof. [ ]

Now exploiting once more our freedom in choosing G as the complete graph, we can

state the following result.

Theorem 2.2. If Aq holds and G is chosen as the complete graph, then agents (1.2)

X
_0 for all initial condi-
Ho

controlled by (2.3") and (2.5") remain bounded within conv

tions, gains k > 0, and sampling sequences.
Proof In the interval ¢ € [0, s1] the agents evolve continuously according to
x(t) = e xo+ (1 —e ) .
Since |e ®¥| < 1 for all + > 0 and « > 0, each x;(f) is a convex combination of the
corresponding xg; and [ ;, thus

x;(t) € conv , Vrel0,s].

Ho
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Now consider time interval ¢ € [s7, s2], and not that the state is given by
x(1) = K (sy) + (1= e ) (s,
and similar reasoning reveals that

x(s1)

x;(t) € conv a(s1)

, Vi e[s],s2].

However, from the previous analysis and Lemma 2.3.4 we know that

x;(s1) € conv , Hi(s1) econviyg =  x;(t) € conv , VYte]0,s2].

Ho Ho

The rest follows immediately by induction. [

2.4 Illustrative example

®© © ©® © ©® 6

Figure 2.5: The three possible graphs for the example in Section 2.4.

To illustrate the proposed sampled-data protocol, consider the simple system com-

prised of v = 3 agents under the fixed (spatial) interaction topology

G =1{1.2),(1,3).(2.1).3. D},

and asynchronous intermittent communication. The edge (i, j) indicates that the ith
agent conveys its centroid to the jth one. By the asynchronous communication we
mean that each agent transmits only at a subset of sampling instances. Consequently,
in this example each G[k] may be the union of any nonempty subset of the graphs
{(1,2),(1,3)}, {(2,1)}, and {(3,1)}, which are shown in Figure 2.5.

It should be clear that UpG[k] contains a directed rooted tree if and only if it
contains {(1,2), (1,3)}. In other words, the first agent serves as a fulcrum, facilitating
information exchange between the other agents. Hence, A7 holds if and only if the
first agent transmits persistently, with uniformly bounded intervals. The sequence
{kpn}n in A1 may then comprise all indices of sampling instances, at which the first

agent transmits.
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Figure 2.6: State trajectories of agents x; (thick lines) and centroids f; (thin lines) for
both examples. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from Aj.

Figure 2.6 presents simulation results in the interval ¢t € [0, 30], where the trajec-
tories of the agents, x;(f), are depicted by thick lines and those of the centroids, ; (),
are represented by thin lines. Sampling instances, shown by abscissa ticks, are a ran-
dom variable such that sgy1 — sk € 0.3N7. Major ticks indicate the sub-sequence of
sampling instances {k,}, defined in A;. The emulators use the complete graph with
Ls= 3(I — P1), as described in Subsection 2.3.1, with « = 3.

First, we simulate the system for which A4 holds true. Specifically, the transmitting
agent at each sampling instance s; is a random pick from the set {1,2,3}. We can see
from the plots in Figure 2.6(a) that the trajectories of the agents exhibit the behavior
discussed at the end of Subsection 2.3.1, namely those of simple first order systems
tracking piecewise-constant reference signals. Because agents are modeled as simple
integrators, there is no local steady-state error. An increase (decrease) of x would
accelerate (slow down) local tracking. In any case, the centroids expectably converge

to an agreement point, leading x; to satisfy (1.1) asymptotically.
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The situation is different when the first agent stops transmitting its information.
Assume that this happens for the previous simulation after r = si,, when the set of
transmitting agents reduces to {2,3}. The result shown in Figure 2.6(b) demonstrates
that even multi-consensus, in which agents converge to a finite number of clusters,
might not be reachable then. In our case the failure of the first agent to transmit
creates, in a sense, a tug of war between the second and the third agents. The first

agent gets stuck in the middle and keeps oscillating.

2.5 Concluding remarks

In this chapter we took our first steps into the realm of agreement problems. First
by considering the classic consensus problem, and then by its non-trivial sampled-data
counterpart. We were able to leverage ideas from optimal sampled-data control, namely
designing our own A/D and D/A devices, to put forward a novel approach to solving
the sampled-data consensus problem under intermittent and asynchronous sampling.
The proposed architecture yields global asymptotic agreement under very mild connec-
tivity assumptions. It was further shown that a particular choice of analog architecture
can greatly reduce the complexity of the overall controller, resulting in a simple servo
loop with a piecewise constant reference signal. Analysis of the controller’s perfor-
mance under (2.5) as well as other updating protocols is currently being investigated.
Furthermore, the relatively weak assumptions required to guarantee convergence hint
at potential synergy with event-triggering mechanisms.

In a broader perspective, the inherent separation between control and information
processing offered by the proposed approach is particularly appealing. The methods
introduced were derived for the consensus problem, but can potentially be extended to
more general dynamics and multi-agent control goals. This is precisely the subject of the
next chapter, which transitions from integrator consensus to more general agreement

problems.
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Chapter 3

From Sampled-Data Consensus

to General Agreement

Math is not thinking. Math is procedure.
Memory is not thinking. Memory is storage.

Thinking is thinking. Problem, solution.

Andy Weir, Project Hail Mary [73]

Up until now we have considered only the simplest variant of 4, that of identical
integrator agents attempting to reach consensus to a constant. From here on, we shall
consider a more general variant of agreement problem, involving general LTI agents
and possibly non-constant agreement trajectories. As will be shown, the same insights
used in Chapter 2 apply, after a fashion, to the general case. Moreover, the particular
choices of transmitting centroids and updating them via an integrator consensus update

map can be exploited significantly.

3.1 The general agreement problem

Consider v homogeneous agents, each with linear dynamics given by

5 {xi(z) = Ax; () + Bu; (t) 51)

yi(t) = Cx; (1)
for some A € R™" and B € R™ and C € RP*", where x;, u;, and y; are the ith state,

control signal, and measured output, respectively. The global version of the dynamics

can be written via Kronecker products as

(3.2)

{x(:) = (I, ® A)x(1) + (I, ® B)u(r)
y(1) = (I, ® C)x(1) '
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The ensemble is subject to some set of communication constraints, manifesting as re-
strictions on the information each agent may use to generate its local control signal u;.
To this end, we define z;(¢) as the local information the ith agent may transmit to its
neighbors.

The spatial constraints are once more represented by neighborhood sets, N;(t) C
N, \ {i}, where each N;(#) denotes the neighbors of agent i at time ¢. This implies that
u;(t) is some function of the local output, y;(f), and any z;(f) such that j € N;(z).
Mathematically this may be written as u;(¢) = «(x;, 2n;(r)) Where « is some function
and zu;(;,) represent the neighbors of agent i at time 7. The temporal constraints
are represented by a strict monotonically increasing sequence of sampling instances
{sk}, k € Z,, where agents may interact only on time instances t = sx. We also use the
convention that ¢t = s corresponds to the time at the receiving agent. When combined,

the two restrict the ith control signal to be of the form

ui(t) = k(¥i(t), 2n;(s1))» Sk <t < Sgy1. (3.3)

Consequently, at each si the collection of neighborhoods N;[ k] induces a directed graph,

G|k], determining the permitted information exchange, as discussed in Example 2.1.3.

Remark (Scope of communication constraints) 3.1. Note that we only assume the ex-
istence of the sampling sequence {s;} and not how it is generated. For example, it can
be time-triggered, event-triggered, stochastic, or periodic without loss of generality.
Second, note that {sx} is a sequence of sampling instances for the entire ensemble, thus
N;[k] can be empty for certain agents at some t = 5. This allows our framework to
encompass asynchronous communication since {sr} is a sequence of all instances on

which at least one of the agents received information. v

We consider the following objective in the spirit of [44] and (1.7).

Po: Given Ag € R™™" gsuch that spec(4g) N Cyp = @ and its pure imaginary eigenval-
ues are all semi-simple, design u; satisfying the spatio-temporal constraints and
ensuring

lim [lxi (1) = e®'rol| =0, Vi €Ny, (3.4)

for some constant ro € R" and all initial conditions x;(0) of agents (3.1).

It shall be emphasized that the matrix Ay does not represent a leader node, but rather
the shape of required agreement trajectories. Because setting Ag = 0 recovers the
consensus problem and setting Ag = A recovers the classical synchronization [42], P2
may be viewed as a generalization of both. Moreover, clearly solving P is equivalent
to solving 1 with an additonal constraint on the agreement trajectory. Despite the
possible misnomer, unless stated otherwise, we shall use both “synchronization” and
“agreement” interchangeably to refer to o, unless stated otherwise.

Agreement problems such as P o with a singular communication constraint are still

well understood. For homogeneous LTI agents the problem reduces to designing a local
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controller that is robust to certain perturbations, see [12] or [72, Ch. 8], in similar
fashion to Proposition 2.1.2. In general, solution methods are similar to integrator
consensus with some added technical complexity [36], [42]-[44]. Similarly, temporally
constrained control laws with a full spatial structure are also known, even for inter-
mittent and asynchronous sampling [74]. However, the same cannot be said when
attempting to address problems subject to both constraints simultaneously, even when
considering only LTT agents, see [48] and the references therein.

In such problems, the common practice is to use a sequential design. First, de-
sign a spatially constrained control law assuming continuous (analog) communication
and then modify it to conform with the actual sampled communication. Such modi-
fications usually introduce conservatism to the design. For example, zero-order hold
(ZOH) discretization enforces sufficiently small and conservative gains even for integra-
tor agents under synchronous and periodic sampling [24]. Other methods such as the
input-delay approach, e.g. [75], [76], treat the sampling as a perturbation, making them
inherently conservative. This creates a “design, discretize, robustify” approach which
might introduce even more unnecessary conservatism compared to what was discussed
in Chapter 2.

(a) Standard ZOH and (b) Emulation-based control.
ideal sampler.

Figure 3.1: Tlustrations of sampled-data multi-agent control architectures: standard
design vs emulation based design.

It is clear that the spatial and temporal constraints completely characterize the
permitted information exchange that any permissible controller must respect. When
compared with (3.3), it is clear that incorporating a ZOH synchronized with {s} is just
a particular option. Such controllers keep the control signal constant between updates,
an additional constraint imposed by the designer rather than by the communication
network. We opt for a different solution, one employing a generalized hold function
[58] designed for the objective at hand. This is a well-known principle in lumped
sampled-data control systems where, in the absence of an optimal solution, common
wisdom dictates that the hold should attempt to reconstruct a “good” LTI continuous-
time control law [68, §6.1]. In other words, it should locally emulate an analog closed

loop, in an open-loop fashion, between samples. The conceptual difference between
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the approaches is visualized in Figure 3.1. Figure 3.1(a) show the standard approach,
where everything is discrete and the agents transmit their sampled states at ¢ = sg.
In contrast, Figure 3.1(b) illustrates that the agents emulate an analog world between
samples, resulting in time-varying control signal between samples.

Motivated by the revelations in Subsection 2.3.1, we now assume a priori that there
are no spatial constraints on the emulated closed-loop. Solutions to this unconstrained
problem are not readily available in the literature, hence out first step is to derive some
“good” unconstrained control law to emulate. Before we begin, however, we assume
throughout this chapter that

Ag: the triple (C, A, B) is stabilizable and detectable, and that

Ay: there is F such that Ag = A + BF.

Assumption Ag is obviously needed for the existence of a stabilizing controller. The
matching condition of A4 is required for the existence of a local feedback law guaran-
teeing (3.4) for each agent, at least for all jR modes of Ag. Its necessity will be show
in the following sections.

The rest of this chapter is dedicated to solving P o with both full state and output
only measurements. These results, sans some of the proofs, were published in [60] and

[61], respectively.

3.2 Proposed architecture

3.2.1 The analog control law

The paradigm described hitherto served as the guiding principle in Chapter 2, where
each agent locally emulated the consensus protocol over some agreed-upon spatial topol-
ogy. Interestingly, the emulated topology could be chosen as the complete graph, i.e.,
centralized control law, and still result in a distributed controller respecting the com-
munication constraints. This may be attributed to the fact that the emulators are local
in nature and the particular structure of the update mechanism. Motivated by this, we
shall design an unconstrained control law to emulate via the generalized hold.

To this end, consider first the simplified case of state-feedback, where we assume
that C = I. To satisfy (3.4) the agents must track a common trajectory, implying
that asymptotically the aggregate state must lie in the agreement space, Im(1, ® I,,).

Introduce the signals
_ 1,
X = ;(ﬂv ®I,)x and xs:= (I, — Py)® I,)x,

which may be interpreted as the centroid and disagreement signals, respectively, and

satisfy x = xs + (1, ® I,)x. The control objective (3.4) may then be equivalently
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decomposed into two separate objectives, one for the disagreement,

llim xs(t) =0, (3.5a)
and one for the centroid,
lim [[%(r) = e%"ro]| = 0. (3.5b)

Because (Py ® I,)x = (1, ® I,)x, the centroid and disagreement are orthogonal and
the two objectives are independent, making it natural to propose some us(¢) and i(t)

to independently satisfy (3.5). A state-feedback control in this vein would be
u(t) = (I, ® Fa)xs(1) + (1, ® F)x(1) (3.6)

for some gains Fyq and F, under which straightforward algebra reveals the following

result.

Proposition 3.2.1. The closed-loop dynamics of agents (3.2) controlled by (3.6) is
given by
X5(1) = (I, ® (A+ BFg))xs(1)

¥(t) = (A + BF)x(1)

Moreover, (3.5a) holds if and only if Aq = A+BF, is Hurwitz and (3.5b) holds whenever
Ao =A+BF.

Proof Rewrite (3.6) as
u(t) = ((I, — P1) ® Fa + P1 ® F) x(1),
and note that
1., 1., = __

((L,=Py)®L)u = (I,,—P1)®Fqx(t) = (I,®F3)xs(t) and ;(ﬂv®ln)u = ;(HV®F)x(t) = Fx(1).
Hence, by the mixed-product property of Proposition B.1.2

.1, ; —

x=—(1,®1,)%x =(A+BF)x(t)

v

and
X5(t) = ((Iy = Py) ® In)x = (I, ® (A+ BFg))xs(1).

Note that the disagreement dynamics are in fact v identical and independent copies
of the same nth order system, while the centroid dynamics are simply one nth order
system. Therefore, (3.5a) holds iff Aq := A+ BFy is Hurwitz and (3.5b) holds whenever
Ao =A+ BF. n

Proposition 3.2.1 shows that assumptions A3 4 are indeed necessary for (3.6) to solve

the problem. We require that our emulators solve the unconstrained problem, hence
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these assumptions are necessary for the sampled-data case as well. It is possible to
consider a more general dynamic controller, such as the one in [44], which would result

in a different solvability assumption.

3.2.2 State-feedback sampled-data control law

Let u;(r) € R denote the ith agent’s emulation of the entire ensemble under control
law (3.6). Accordingly, by u;;(t) € R" we identify the ith agent’s emulation of the jth
agent’s state with the convention that u;;(¢) = x;(¢). As before, we can define the local

disagreement of emulator i as
Ai = (I, = P1) ® L) i
and the centroid of the ith emulator as
_ 1,
Mi = ;(ﬂv ® In)/.ll

Between sampling instances u; emulates system (3.2), as if controlled by (3.6), and

evolves continuously according to
f1i (1) = (I, ® Aq + Py ® (B(F = Fq))) i (1), (3.7)

for some initial conditions w;(0) = u; 0. Each agent is controlled by a local version of

(3.6) based upon A; and fi; instead of their analog counterparts, viz.
ui(t) = (e ® Fq)Ai(t) + Fia; (2). (3.8)

As previously discussed, (3.7) and (3.8) cannot solve P2 on their own since each version
of (3.7) evolves independently from the others. Hence, it must be accompanied by some
information exchange mechanism that updates the local emulators while satisfying the
spatio-temporal constraints.

We have seen that the cooperative aspect of P2 can be reduced to a requirement
on the centroid given by (3.5b). This mirrors the same logic and motivation we had
in Section 2.2 for integrator consensus. Motivated by this similarity, we propose the
same update mechanism based on the local emulated centroids given in (2.5). Namely,

at sampling instances, each local emulator is updated according to a discrete system

given by
wij(sy) = pij(sx) — aij Z (fi(sk) = f(se)) s (2.5)
IeN;[k]
for all i # j and some gains «;; € R. If gains a; = [cm aiv] are chosen such that

eja; = 0 for all i € N,, then the closed-loop system of agents (3.2) controlled by (3.8)
which is generated by (3.7) and (2.5) is given by
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{ a(t) = (I, ® (I, ® Ag + Py ® B(F — Fa)))u(t) 59)

1(sp) = (Ajmp k] ® L)u(si),  p(0) = po

where Ajmp[k] is defined as in (2.7). Note that the agents communicate only through
(2.5) which is spatially distributed, thus the controller respects the spatio-temporal
constraints. Note that the update scheme is identical to the one we had for simple
integrators, and indeed we must make exactly the same connectivity assumption A;.
Now, with a controller at hand, we are set to show that it solves P4 with full state

measurements.

3.3 Sampled-data solution to 5 with state measurements

In Subsection 3.2.1 we saw that the disagreement and centroid dynamics were decoupled
by (3.6), which in turn enabled P2 to be reduced into two independent problems.

Inspired by this, consider the following partition of the stacked emulators
u(t)= (I, ® 1, ® L,)ji(r) + A(1) € R"™.

Now, u(t) is an (nv) X 1 block vector, where the ith n x 1 block contains the centroid of
the ith emulator. Similarly, A(¢) is a block vector where blocks A;(#) contain the local
disagreement vector of emulator i. Recall that x;(#) = u;; (¢), hence the aggregate state

is given by

x(1) = (1) + Y ((eile} ® €)) ® In) A1).
i=1

The above allows us to pose equivalent conditions for the solution of £ in the same

vein as those presented in (3.5). Namely, if the emulator disagreements asymptotically

vanish,
tlim A(r) =0, (3.10a)
and the emulator centroids verify
lim [|#(r) = 1, ® e*"ro|| = 0, (3.10b)

then P o is satisfied.

3.3.1 Centroid-disagreement separation and synchronization

Unlike their analog counterparts, i(z) and A(¢) are coupled through (2.5). However,
for some choices of update gains «@; they take on a simple structure, allowing for a
more streamlined analysis. Below is the high-order counterpart of Lemma 2.3.2 and
Lemma 2.3.3.
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Lemma 3.3.1. If 1,a; =1 for alli € N,,, then the disagreements dynamics are given
by

{ A(t) = (1,2 ® ADA(),  A(0) = A (3.11a)

A(SZ) = A(sk) + ((BjmpLQ[k]) ® In)/j(sk),
with ,
Bimp = Y (eie}) ® (1,,/v — ),

i=1
and Lglk] is the Laplacian matriz associated with G k] [22, §2.3.5]. In addition, the

centroid dynamics are given by

fi(1) = (I, ® (A+BF)f(1), #(0) = mo

1 (3.11b)
alst) = (1 = S Lg kD) ® L)a(s:)

Proof The flow dynamics mirror the analog case. Note that Aj,,[k] is defined identi-
cally to the jump map in [59, Lemma 2], hence the result follows from applying it to
the jump map of (3.9). ]

There are two immediate consequences of Lemma 3.3.1: i) the dynamics of fi(¢) are
autonomous and do not depend on those of A(f) and ii) i(f) can be thought of as a
discrete input affecting A(r) at time instances ¢ = 5. Consequently, finding conditions
under which the centroids satisfy (3.10b) can be done independently of A(¢). This is

the purpose of the following result.

Lemma 3.3.2. Consider (3.11b) and denote Ag = A+ BF. If Ay holds true, then
there is ro such that
lim [|2() ~ 1@ (1) = 0.

where the n-dimensional lss is such that fiss(t) = ety Moreover,
v
ro = (Z ql',ui,o) = (q" ® In)flo
i=1
where q is some constant vector which depends on the sequence of graphs.
Proof Tt is readily verified that g from (3.11b) satisfies
k

1
flsk+7) = e’®“‘°”(l—[((1 ->Lglil)e 1)el®(A°h-"))ﬂo
j=1

for all k and 0 < 7 < hgyq, where hj = s5; —s;_1. Because el®(Aohj) = [ @ eAohi and

N ® I and I ® M commute for all compatibly dimensioned M and N, we have

k

a(sp+71) = ((l—[(l — %Lg[]])) ® eAO(Sk+T))M0.

J=1
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If the connectivity assumption A holds, then [21, Lem.2.29 and 2.30] there exists

some constant g € R” such that

k
lim (I—%Lg[j]) - 1¢'. (3.12)

k
—00 j=1

Therefore, if we choose rg = (¢’ ® I)j1g for jiss, then

k

1 ,
Hm (i(sk+7) =1 fiss (55 +7)) = ]}ggo((]_[(l - ;Lg[j]) - ﬂq’) ® er(“k”))uo =0
j=1

t

whenever €49 is bounded. The latter is guaranteed by the assumption that all pure

imaginary eigenvalues of Ay are semi-simple. [

Utilizing A4, the flow map ensures that each u;(¢) aligns precisely with the in-
tended trajectory shape. However, if the initial conditions differ the trajectories would
be different. This cannot be remedied by the non-interacting flows. On the other hand,
the jump map mirrors discrete consensus dynamics. Under A1, this map will asymp-
totically steer a constant vector to a fixed consensus point within the agreement space.
Thus, only the combined flow and jump dynamics under both assumptions guarantee
the solution of P2 for (). Hence, Lemma 3.3.2 proves that under A4,; and a proper
choice of F, j(t) asymptotically satisfy (3.10b). The final step would be to show the
stability of (3.11a), which can be thought of as an LTI system with i as an impulsive
input. Moreover, the “input matrix” for these impulses includes a, possibly different,
graph Laplacian matrix at each k. In particular, for any graph 1, € ker Lg[k], there-
fore if fi(sx) € Im 1, ® I,, then (3.11a) will contain no jumps. This is a key property in

proving the main result, which is stated below.

Theorem 3.1. Consider agents (3.1) with C = I, controlled by (3.8), generated by
emulators (3.9) and update law (2.5). If A4 holds, then control law (3.8) solves P2
for all gains Fq and F such that Ag = A + BFy is Hurwitz and A + BF = Ay and all
emulator update gains «;; such that 1,a; =1 for alli € N,.. Moreover, the emulators

Apt

asymptotically agree and remain bounded if e is bounded.

Proof By assumption, 17,a; = 1 for all i € v, therefore the condition for Lemma 3.3.1
holds. Define the centroid error €(¢) = ji(t) -1, ® e’ ry where rg is in Lemma 3.3.2. By
assumption A+BF = Ay, and Aq is Hurwitz and Ay, holds, thus from Lemma 3.3.2 we
know that j1(t) — 1, ®e?0’ry, or equivalently that €(t) — 0 from every initial condition.

Note that 1, € ker Lg[k] for all k, thus we can rewrite the jump part of (3.11a) as
A(SZ) = A(Sk) + (Bjmp[k] ® In) (Lg[k] ® In)g(sk).

Since €(t) — 0 and is bounded, the sequence {(Lg[k] ® I,,)€é(sk)} is bounded and van-
ishes asymptotically, reducing (3.11a) to an LTI system with a bounded and asymptot-
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ically vanishing input. The stability of LTI systems with bounded and vanishing inputs
is independent of the actual input, therefore since Aq is Hurwitz A(f) — 0. Combining
with (3.10) yields

Aot

tlim x(t) = tlim a) =1, @ e,

implying that the agents agree. Similarly, taking the limit for u(z) yields
lim p(t) = lim (I, ® 1, ® In)fa(t) = 1,2 ® 0l rg,

Apt

therefore the emulators also agree and remain bounded if e’ is bounded. [

3.3.2 Reduced order implementation

The obvious drawback of emulation-based control architectures is that each agent must
locally emulate the entire group, yielding local controllers whose dimension grows lin-
early with ny. This may not be feasible for large networks of high-order agents. In an

effort to circumvent that, consider a different representation of
ui (1) = Fapii (1) + (F = Fo) 1 (1), (3.87)

which is obtained by substituting A;(¢) = w;(t) — (1, ® I,)f;(¢). Control law (3.8")
requires two nth order states, the local emulated centroid and local emulated state,

hinting that it might be possible to obtain a reduced order implementation.

Corollary 3.2. If A4 holds and each agent can continuously measure its own state

then the following nth order local controllers

wi(t) = (A+BF)a (1), @:i(0) = fiio

FilsD = () =~ > (i) = fnls0) (3.13)

le Ni[k]
ui(t) = Fax;(t) + (F = Fg)j1;(t)

solves Po for all gains Fg, F such that A+ BF = Ay and Ag is Hurwitz.

Proof By definition u;;(#) = x;(¢) which is locally available continuously by assumption,
substituting p;;(z) with x;(¢) in (3.8’) gives the first equivalence. Since x;(f) is locally
available, to implement the control each agent needs to implement only f;(¢). By
Lemma 3.3.1 we know that a(z) is independent of A(¢) thus the rest of (3.13) follows

immediately from considering the local version of (3.11b). |

The above implementation is still distributed and adheres to the spatial and tem-
poral constraints, but now each local controller is only of dimension n regardless of the
number of agents. This agrees with the intuition behind the analog control law from

Subsection 3.2.1: the agents must track the centroid and drive the disagreements to
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zero. The logic is reminiscent of a classic servo-regulation problem, where the control
law has a stabilizing component acting on the state and a tracking component acting on
the reference signal. This raises the natural question of how will this structure behave
in the presence of disturbances, something synchronizing systems tend to do poorly
[63].

Note that (3.13) can also be presented in a slightly different form. Using the coor-

dinate transformation z; = vi; — x;, it can be rewritten locally as

2i(t) = (A+ BF)z;i(t) + B(Fx;(t) —u;(1)), z:(0) =z

zi(st) = zi(se) - % D" (ilse) = 2a(se) + xisi) = xi(s4)) ‘ (3.13)

leNi[k]

(1) = Faxi 1)+~ (F = Fa) (ai(0) + x:(0)

This form is reminiscent of the Youla parametrization-based redesign approach in [69,
Thm. 4.2], which also resulted in an emulation-based scheme. Implementation (3.13")

will be beneficial later on when we consider the effects of transmission delays.

3.4 What changes in the output-feedback case

If the state x; is not measurable, we can no longer realize the dynamics (3.9) in the
intersample, its u; component is not available. The use of a state observer is a conven-
tional solution in such situations. There is certain ambiguity in how exactly an observer
may be incorporated into the emulation and information exchange procedures. The ex-
tension proposed below is motivated mainly by the relative simplicity of analyzing the
closed-loop dynamics with it.

Because measurement channels of agents (3.1) are uncoupled, we construct the local,

i.e., uncoupled, analog observer
xi(t) = A% (1) + Bu; (1) = L(yi(1) = Cxi(1)) (3.14)

for some L such that A + LC is Hurwitz. The observer-based counterpart of (3.6) is
then straightforward, we just need to replace x; and x with X; and the centroid of the
observer states of all agents. It is then readily seen that the resulting disagreement x
and centroid x still satisfy (3.5), the only change in their evolution is the addition of
the aggregate observer error, which vanishes exponentially.
Moving to the spatially distributed sampled-data setting, we now substitute the
control law (3.8) with
ui(t) = Fax;i(t) + (F = F) i (1), (3.15)

where the observed state x; is local and can thus be implemented in continuous time
and the emulated centroid f; is still generated by the n-dimensional hybrid system
(3.13).
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Remark 3.2. It can be shown the centroid of the observer states of all agents, say

A

X = (1/v) XY, %, under the analog observer-based counterpart of (3.6) satisfies

X
€

where € := X — X is the centroid observation error. This relation may be used for

Ay -LC
0 A+LC

X

’

€

alternative forms of the emulator. Exploring these alternatives might involve some

involved technicalities and is thus left for future research. v

3.5 Synchronization analysis for output feedback

Combining plant (3.2) with the aggregate versions of (3.13),(3.14), and (3.15), the

closed-loop dynamics read as the analog flow

i=(I®A)x+(I®BF)x+(I®B(F—Fy)j
—~(IQLC)x+(I® (Aq+LC)x+ (I ® B(F — Fq)ju

;
fi=(I®A)i

between sampling instances with the jump

x(sy) = x(sx)

X(sy) = X(s)

f(sp) = (I = (1/v)LglkD)a(sk)
at each sx, where Lg[k] is the Laplacian matrix associated with the network connec-
tivity graph G[k] at six. Note that Lg[k]1 =0 for all k.

Introduce now the emulation and observation errors

Il
=
|
=

e=x—4 and €:

respectively, the closed-loop dynamics can be rewritten in the more transparent form

(1) I®Aq -I®(BFy) 0 &(t)
) |=| 0 I®A+LC) 0 e(t) (3.16a)
(1) 0 0 I®Ag || i)

(here Aq = A+ BFyq and Ag = A + BF), with the jump

e(sy 10 (1)v)Lglk]l®I, e(sy)
e(sp) | =101 0 e(sp) |- (3.16D)
A(sy) 00 (-1/v)Lglk]) ®In | | a(sk)
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The signal ¢ is affected by both €, via flow (3.16a), and g, via jump (3.16b). At the
same time, € and g are completely decoupled. As such, we start the analysis with the
last two signals.

It shall be clear that € is an exponentially decaying signal. Therefore, it does not
affect asymptotic properties of (3.16) and can be excluded from the analysis. Asymp-
totic behavior of & is generally more complex, but follows exactly the same dynamics
it did in the state-feedback case. In particular, by Lemma 3.3.2 we know that although
the vn-dimensional signal j is not decaying, all its n-dimensional block components are
asymptotically equivalent. This leads to the following result, which is the main result

of this section.

Theorem 3.3. If F; and L are such that A+ BFy and A + LC are Hurwitz and F is
such that Ag = A+ BF, then the control law defined by (3.15), (3.14), and (3.11b) solves
Po for any sampling sequence {sr} satisfying Ax.

Proof By Lemma 3.3.2 and the fact that Lg[k]T = 0 we have that
]}EI;OLQ[k]ﬁss(sk) =0,

The latter property implies that g asymptotically decouples from & in (3.16b). Because
the matrix Aq is Hurwitz and because € vanishes exponentially, we have lim;_,., £(¢f) = 0.
This, in turn, yields

lim [[x(1) — 1 ® fis (1) | = 0,

which leads to (3.4). |

3.6 Directly emulating the observers

It is worth emphasising that despite the simplicity of the control law defined by (3.15),
(3.14), and (3.11b) it is not merely a reapplication of the methodology from the state-
feedback case. In fact, repeating the emulation process described in Section 3.3 with
the simple change of u;; = X; would result in a significantly different system. It can be

shown that this process would result in the following counterpart of (3.16)

A -IeM 0 (1)

&(1) I®
ér)|=| 0 I®A+LC) 0 e(r) (3.16a")
(1) 0 -I®(ILC) I® Ao || i)

(here A = A+ BF,+ BF, Ag = A+ BF, and M = BFq + (1/v)LC), with the jumps

e(sy 10 (1/v)Lglk]l®I, e(sy)
e(sp) |=101 0 e(sp) |- (3.161")
alsy) 00 - (1/v)Lglk]) ® 1Ly | | a(sk)
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Since now we do not have access to the actual states, this emulation leads to coupling
between the flow of each f;(¢) and its observation error. Note that Ag will generally
have eigenvalues on the imaginary axis, hence not asymptotically stable, and that the
stability of A is not guaranteed. Thus while the estimation error, €(¢), is LTI and
decays exponentially to zero, the same cannot be said for ji(z) and £(¢). In fact both
are hybrid, non-autonomous, with an unstable flow and shift varying jumps.

By forgoing the straightforward derivation via emulation methodology we were able
to decouple i for the state and the observer, cumulating with the simpler (3.16) rather
than (3.16”). This significantly streamlined the proof and allowed us to avoid analyzing
the aforementioned complicated hybrid system. The “price” we pay for the simplified
analysis is that g is now completely decoupled, and in fact can be thought of as some
sort of exosystem without direct feedback from the agents. It is worth mentioning that
the results of Theorem 3.3 still hold for (3.16”), but the proof is significantly longer and
more involved. It will be presented in the rest of this section for completion, but is not

important for the rest of this thesis.

3.6.1 The analog control law

First, we must verify that the emulated control law can actually solve the prolbem in the
ideal case. To this end, consider the ideal scenario where each agent locally implements

(3.6) by replacing the state components with those of observer (3.14), yielding

{fi(l) = A#%;(t) + Bu;(t) + L(C%; (1) — y;(1)) (3.17)

ui(t) = Faks () + Fx(t)

where £5,;((f) and x are the disagreement and centroid of the observer’s states. Fol-
lowing the same logic of partitioning the states to centroid and disagreements, the
closed-loop dynamics are once more decoupled. Moreover, if A+ LC is Hurwitz then
the estimation error e(¢) := x(z) — X(z) converges exponentially to zero. Thus if £ syn-
chronize asymptotically, so would x(¢).

Defining observation errors €5 = x5 — %5 and € = X — x results in the following global

observer disagreement dynamics

5() | [he@+BF) -1,8(C) || () (3.188)
és(1) 0 I, ® (A+LC) || es(r) ‘
and observer centroid dynamics
Y(t A+BF -LC x(t
i I e X0 (3.18b)
€ 0 A+LC || ()

Recall that A + BF; is Hurwitz, hence (3.18a) is stable iff A+ LC is Hurwitz, as par

standard observer design, and satisfies condition (3.5a). However, A + BF = Aq is not
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assumed to be Hurwitz, thus the fact that € — 0 does not imply that condition (3.5b)
will be satisfied. The following proposition characterizes conditions under which the

observer based feedback solves P 5.

Proposition 3.6.1. If A+ BF; and A+ LC are Hurwitz, Ao = A + BF, and spec Ag N
spec (A + LC) = @; then observer-based controller (3.17) solves P2 for agents (3.1).
Moreover, ro = (I — Q)Xo + XXo where Q is the solution of the following Sylvester
equation

O(A+LC) - AgQ = LC.

Proof Since A+LC and A+BF,; are Hurwitz condition (3.5a) is satisfied, thus we need to

consider only the centroid dynamics. Consider a coordinate transformation of (3.18b)

given by
1 I —
r=|" €= el
01 0 1
applying it yields
Ay -LC Ag Q(A+LC)-ApQ -LC

77! =

0 A+LC 0 A+LC

It is well known [77, Thm 1.1.5] that if spec Ag N spec A + LC = @ then
O(A+LC)—AgQ - LC =0

always has a unique solution, thus the transformation decouples the centroid dynamics.

Thus the trajectory of the transformed coordinate )%Q = X + Q€ is given by

Xo(1) = e (0) = e (I - Q)Xo + 0X(0))
and in the original coordinates
x(t) = Xo (1) — Q&(r) = e'rg — Qe €(0)
where Ay = A+ LC. Since Ay is Hurwitz

lim [J(¢) — 40 rof| = 0

t—o00
and similarly for the real centroid x(z). [ |

Proposition 3.6.1 shows that the observer based variation of the “ideal” control law can
indeed solve P o without temporal constraints, making it suitable for emulation. Note
that this time we have an additional constraint on the spectra of Ag and A+ LC, which
is required to ensure the existence of a solution to a Sylvester equation. It is to be
expected, and is indeed true, that a similar constraint will appear in the sampled-data

variant as well.
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3.6.2 Sampled-data synchronization

Now that we have established that the analog control law can indeed drive the emulators
to agreement between sampling instances, we can consider the full hybrid dynamics of
(3.16a") and (3.16b"). The main difference is that the flow map of 4 in (3.16a) is
autonomous, while in (3.16a’) it is also driven by €(z). Even though €(t) is completely
continuous and exponentially stable, this coupling makes the hybrid trajectory of i
much more complicated. In particular, each sampling instance would introduce a new
term which is a product of the jump map at ¢ = s and an integral equation driven by

€. It is readily verified by combining (3.16a’) and (3.16b’) that g evolves according to

k
Alsi+1) = (Iy ® eAO“k”)) [(l_[ Ml & In) A(0)
=1
1 & [k sy
— Z l_[M[J] ® (/ e_AOcheALSdS) E(Sl—l)]’ (319)
V= j=I S1-1
= (1 ®eA°(5k+7))( [£] —19[k])
v
where
1 k
M[k] =1, - -Lglk], nlk] = (]_[M[l]®1 )ﬁ(O),
=1
and

k [ k s
0lk] =" ]—[M[j]®(/ e‘AOSLCeALSds) e(s1-1).

S1-1

Note that if n[k] and 6[k] converge to finite limits then g will asymptotically

converge to a solution of

H0) = (1, ® A)r(n,  r(0) = Jim ([K] - ~0[K]),

but won’t necessarily synchronize. In fact, i will synchronize to a solution of e4’r if
and only if

lim (n[k] - 6[k]) = 7o =T, ®r0

for some constant vector rg. Since n[k] is driven only by the initial conditions, we
know that if Ay holds it will converge to the agreement space. Thus we must prove
two things: i) that 6[k] converges to a finite limit, and ii) that it converges to the

agreement set. The following lemma provides conditions for the first requirement.

Lemma 3.6.2. Let A; denote the eigenvalues of Ag and u; the eigenvalues of A+ LC.
If L is chosen such that R(u; — ;) <0 for all i,j and Ay holds, then 6[k] converges

absolutely to a finite limit.
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Proof First, note e(t) is an exponentially stable continuous time LTI system, hence
tlim le()]|=0 and Fp >0 s.t |le@)| <pVt=>0.

Next, by definition the Laplacian matrix, Lg[k], has row sum 0, non-negative diagonal
entries bounded by v — 1, and either 0 or —1 on the off diagonal. Hence, M[k] is
non-negative and with row sum of 1, making it row-stochastic for all k. Since it is
row-stochastic, by Proposition B.2.2 “Hle M[j]”2 < /v for all I, k. When combined,
we obtain

161K]1I < Vvp =\vp

k s
Z —/ e A0S [ CeALSds
1=1 S1-1

Next, note that if L is chosen such that R(u; —A;) < 0 for all i, j, then

51
- / e A0S [ CeALS ds
0

0= / e A0S LCeALSds
0
exists and is the solution of the Sylvester equation
-AgQ+ QAL +LC =0,

since

“d
-AoQ + QAL = / 5 (e‘AOSLCeALS) ds=-LC.
0 S

In particular, this shows that in the limit ||0[k]]|| is bounded by

Jim {lOTk]]] < Ve liQll -

Moreover, since the series of integrals converge they are bounded and there exists some

constant 8 > 0 such that for any k

k
oLkl < VB > lle(si)ll
=1

Since ||e(s;-1)|| — 0 exponentially, the series defined by ||@[k]|| is positive and bounded,
hence converges to a finite limit. Since ||6[k]|| converges, this means that [ k] converges

absolutely. [

Note that the condition R (u; —A4;) < 0 is slightly stronger then the one required for the
analog case. This is because now we need to ensure that the integral converges, not just
that the algebraic Sylvester equation has a solution. This is likely just conservatism
due to the technical machinery of the proof.

Now that we have established that 6[k] converges, we can show that it, and the

states, converge to the agreement space.
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Theorem 3.4. If F; and L are such that A+ BFy and A + LC are Hurwitz and F is
such that Ag = A + BF, and the conditions of Lemma 3.6.2 are satisfied, then the local

hybrid controllers

%;(t) = A%;(t) + Bu; (1) + L(C%; (1) — y; (1))

Gi0) = Ao (1) + %L(Cxi(r) yi0)

_ _ 1 _ i , (3.20)
ai(sh) = fi(si) == > (ilse) = fu(si)
v
leNi[k]
ui(1) = Faki(1) + (F = Fa) (1)
solves P o for any sampling sequence {sy} satisfying A1.
Proof Note that
Sk+1
Olk +1] = (M[k +1] ® I,,) (e[k] + (zy ®/ e—AOTLCeALTdT)é(sk))
Sk
and that
n+p n+p k s
O[n+p] = ( ]—[ Ml[j] ®1n)9[n]+ Z l_[M[j] ® (/ e—AOTLCeALTdT) é(si_1).
j=n+l I=n+1\ j=I S1-1

Since 6[k] converges absolutely, by Cauchy’s convergence test for all € > 0 there exists
some N € N such that foralln > N and p > 1

ntp [ k st
Z l_lM[j] ® (/ e_AOTLCeALTdT) E(si—1)|| < e,
1=n+1 \ j=I 81-1

which in turn implies that for all € > 0 there exists some N € N such that

N+p

0[N + p] —( [] MU ®1n)9[N]

j=N+1

<€

for all p > 1.
Since A1 holds, we know that for any finite N [21, Lem. 2.29 and 2.30] there exists
some constant gy € R” such that

N+p
lim M[j] =14},

—00
P j=N+1

and since a limit is unique, this implies that 6[k] — Im 1®1. As we know n[k] converges

as well, we have from (3.19) that
lim [[(si +7) = 1 @ et 0 g | = 0
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where rg is defined by limy_,. n[k] — %G[k] =1®rp.
The final step is to show that () = x(¢) — 4 — 0. To this end, consider first the

auxiliary variable é = X — i, with hybrid dynamics
. 1
€(t)=(I, ® (A+BFg)é(t) — (1 - ;)(I,, ® LC)e(t)
. . 1 _ '
€(sy) = €(sk) + (S Lglk] ® In)a(si)

This is an LTI system with two inputs: a continuous €(¢) and impulsive f(sg). As we
have seen, €(¢#) — 0 and i(sx) — Im 1 ® I which implies that {(Lg[k] ® In)ft(sx)} — 0
as well. Since A+ BFy is Hurwitz, we have a stable LTI system with two asymptotically

vanishing inputs, thus é(r) — 0. No Note that & = € + €, hence we have
lim Jle(n)]] = lim [|é(7) +€(0)]| =0
and the agents track g asymptotically, implying that
tli_)rgo Hx(t) -1® eAO(Sk”)ro” =0,
hence P 5 is solved. ]

Curiously, (3.16) consistently outperformed (3.16”) in simulation despite the latter hav-
ing continuous feedback from the agents. This is subject to current research.
3.7 Illustrative examples

To illustrate the proposed sampled-data protocol, consider a simple system comprised
of v = 3 agents described by (3.1) with

where C = I in the state feedback example, and C = [ 10 ] in the output feedback one.
The goal is to synchronize to
A= [ 01
-10

which corresponds to harmonic oscillations with the frequency 1rad/sec, note that A4

B

is satisfied via
F=- [ 2 4 ] .

We assume that communication between agents is intermittent and asynchronous,

meaning that each agent transmits only at a subset of sampling instances. At each
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sampling instance the connectivity graph G[k] is a union of any nonempty combination

of the three graphs in Figure 3.2. The second condition of assumption A1 is equivalent

@ IS @

® © ® ©® ® @

Figure 3.2: The three possible graphs for the examples in Section 3.7.

in this case to the existence of a subsequence of sampling instances at which G[k]

contains Gj.

3.7.1 State feedback

For the state feedback case we only require a stabilizing gain to satisfy the requirements
of Theorem 3.1, for example
Fa=|-346 392 .

The system is simulated for time interval ¢t € [0, 30], the results of which are shown
in Figure 3.3 and Figure 3.4. The sampling instances, shown by abscissa ticks, are a
random variable such that sgy1 — sk € 0.3Ng. Major ticks indicate the sub-sequence
of sampling instances {k,} satisfying A;. The synchronous trajectory as defined in
Lemma 3.3.2 is plotted in

Figure 3.3 presents the time evolution of the agents states. It can be seen that each
component of the state converges to a common trajectory as stated in Theorem 3.1.
During the transients the state trajectories display spikes at time instances each agent
receives new information due to the discontinuous jump of the corresponding ;. These
spikes become progressively smaller the closer the emulated centroids are to one another,
which would be explained in Chapter 4.

A second notable thing is that there is no general counterpart to Lemma 2.3.4, thus
neither the emulated centroids not the actual states are uniformally bounded by the
convex hull of the initial conditions. This is illustrated in the second coordinate of
Figure 3.3, where both the yellow and red agents overshoot the initial conditions at the
beginning.

Figure 3.4(a) shows the decay of the emulator disagreement norm, namely ||A;(7)][,
on a logarithmic scale. We can see that ||A;(¢)]| is not monotonically decreasing, which
is due to the hybrid nature of the system. The signals ||A;(?)]| sharply decrease be-
tween samples, but might jump up at ¢ = sy, when new information is brought in. Still,
there are exponentially decreasing functions upperbounding the combined disagree-
ments norms. The phase portrait of f;(¢) is given in Figure 3.4(b) and displays similar
discontinuous behaviour, where each centroid sharply changes its trajectory when the

emulators are updated, until they all converge to a common trajectory.
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Figure 3.3: Evolution of agent states, x1 ;, x2,;, and the for the
example in Subsection 3.7.1. Minor ticks are sampling instances, major ticks indicate
the connected subsequence from Aj.

Sks  Sks Sk Sky Sk Skiz Skis
Time, t

3.7.2 Output feedback

For output measurements only, we must complement our state feedback with an ob-
server gain. A good rule of thumb is to have the observer poles not too aggressive
but still faster than the feedback poles. In the previous example we opted for very

aggressive feedback gain, here we opt for more conservative choices
19
Fd:—[m] and L=- ,
11

which satisfy the requirements of Theorem 3.3, assigning the spectrum of A4 to {-3, -4}
and that of A+LC to {—5,—6}. The simulation results, carried out over the time interval
t € [0, 35], are presented in Figure 3.6. The sampling instances, shown by abscissa ticks,
are a random variable such that sgy1 — s € 0.45N5. Major ticks indicate the sampling

instances at which A1 is satisfied.

Figure 3.5(a) presents the time evolution of the agents states. It can be seen
that each component of the state converges to a common trajectory solving Po. Fig-
ure 3.5(b) portrays the time evolution of the emulated centroid states, while the real
centroid, x(¢), is plotted in dashed line. This is to be expected, as the agents
approach synchronization the only non-zero component of their state is the centroids.
Coupled with the fact that Theorem 3.3 established that () — 0 as t — oo, this
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(a) Norm of emulator disagreements (logarithmic scale).

fio,i(t)

fini(t)
(b) Phase portrait of a;(z).

Figure 3.4: The emulator’s behavior for the example in Subsection 3.7.1: norm of
emulated disagreements, and phase portrait of the centroids and the

indicates that (z) — x(¢t) — 0 for all i € N3.

Figure 3.6(a) shows the norm of the components of &, i.e. the signals x; — f; for
i € N3, on a logarithmic scale. When no information arrives, these signals decay
exponentially fast because each agents tracks the local emulated centroid ;. When

new information about neighboring agents is received, each j; updates, as the centroids
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(a) Evolution of agent states.
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(b) Evolution of centroid states.

Figure 3.5: Evolution of agent states, centroids and
for the example in Subsection 3.7.2 w/ output measurements. Minor ticks are sampling
instances, major ticks indicate the connected subsequence from Aj.

are drawn together by the jump map. This normally increases ||x; — f;||, for the local
target jumps. Yet at the same time these targets at communicating agents approach

each other, which is required to satisfy (3.5b).
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(b) Norm of the aggregate state disagreement (logarithmic scale).

Figure 3.6: Norms of tracking error and state disagreement w/ output measurements.
Minor ticks are sampling instances, major ticks indicate the connected subsequence
from Aj.

Finally, Figure 3.6(b) depicts the norm of xs on a logarithmic scale. In contrast to
the components of & from Figure 3.6(a), the quantity in Figure 3.6(b) decreases when
new information is received. This behaviour indicates that the agent disagreements con-

sistently decrease during information exchange, as required to satisfy condition (3.5a).

3.8 Concluding remarks

In this chapter, we addressed time-varying state synchronization of general LTI agents
under complex communication constraints. The synchronization is not limited to tra-
jectories generated by the open-loop dynamics, but rather to any dynamics reachable
by local state-feedback. We were able to guarantee global asymptotic agreement under

mild assumptions on the persistent connectivity of the graphs and sampling instances.
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Moreover, the control parameters are independent of both the sampling sequence and
spatial graphs. These properties are facilitated by a separation between the control
law and the information processing mechanism, hinting at possible extensions to more
general setups. In particular, extensions to output feedback, disturbance rejection, and

systems affected by delays are currently being considered.
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Chapter 4

Extensions to the Emulation

Scheme

More wittinies, less math

Lewis Carrol, Alice in Wonderland [64]

In this chapter, we shall show several extensions and properties regarding the emula-
tion scheme developed in Chapter 3. These include convergence analysis and conditions
for exponential convergence, addition of time-varying weights to the update map, and
augmentation of the update map with a predictor. The prediction scheme is designed
to counter time-varying and heterogeneous transmission delays assuming that they are

smaller then the sampling interval, and was published in [62].

4.1 Convergence rates and exponential convergence

Our first result concerns the convergence rate of the emulation scheme. Without tempo-
ral constraints, consensus-based synchronization algorithms converge exponentially, as
their disagreement dynamics are stable LTI systems. Similarly, under the assumption
of synchronous and periodic sampling, some discretizations method can also ensure
exponential convergence since the equivalent discrete system is linear shift-invariant
and stable. There are some results about exponential agreements of more general sys-
tems, but they still assume constant undirected graphs, synchronous sampling, and
require solutions of complicated LMIs [78]. When the graphs are directed and time-
varying, which is equivalent to asynchronous sampling, convergence is in general only
asymptotic.

In hybrid systems where the flow and jump and not both contracting, even analyzing
the convergence rate is non-trivial. One way to do so is by considering its set distance
from the agreement space. Clearly, this distance is not monotonically decreasing at
each sampling instance. However, it is indeed monotone along the subsequence {s,}

defined in A;. This is formulated in the following proposition.
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Proposition 4.1.1. If the conditions of Theorem 3.1 hold, then
d (/I(skp+1), Iml, ® erf) <d (/I(skp), Iml, ® eAOl)

where [i(sg) is the aggregation of (3.11b) and d(-,-) is the set (Hausdorff) distance.

Proof The proof follows directly from applying the set-valued Lyapunov function of
[31] to the aggregate solution of (3.11b) along the subsequence defined in Aj. |

Proposition 4.1.1 is the reason the “spikes” at update times in x; become progres-
sively smaller, as noted in Subsection 3.7.1. The centroid updates are driven by matrices

of the form I — %Lg[k], and by design for any vector x

(I - %Lg[k])()(é +(Iehx)=(U- %Lg[k])xa.

Hence the closer the centroids are to agreement, the less affected they are by the jumps.

Recently, a new result proposed a special time-varying quadratic Lyapunov function
that exploited the graph structure to ensure exponential convergence for time-varying
graphs [79]. This result required a slightly stronger assumption than Ay, which is

given below.

As: there is a strictly increasing sub-sequence of sampling indices {k,} such that for

all p € Z, (i) the intervals sg,,, — s, are uniformly bounded and (ii) k”}j L Glk]

p+l

is strongly connected.

Assumption Aj requires that the union graphs are not only connected, but strongly
connected. Below is a variation of [79, Thm. 1] using this assumption and a novel

time-varying Lyapunov function.

Proposition 4.1.2. Consider the discrete-time consensus protocol

x[k+1] = (I - cLg[k])x[k] = M[k]x[k]. (4.1)

If ¢ € (0, 1/sup mame,J ) and As holds, then (4.1) converges exponentially to

JjeN,

consensus along the sequence {skp}.

Remark 4.1. Please note that Proposition 4.1.2 was modified to fit with our definition

of the adjacency, and hence Laplacian, matrix. v

Proposition 4.1.2 guarantees that if Ay discrete-time integrators would converge ex-
ponentially to consensus, provided that the coupling gain is sufficiently small. This

result immediately applies to Theorem 2.1, which concerns integrator consensus.

Lemma 4.1.3. If the conditions of Theorem 2.1 hold and As replaces A1, then (2.10)

reaches consensus exponentially along the sequence {sk,}.
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Proof Recall that the centroid dynamics (2.10) are purely discrete and in-fact identical
to those in (4.1). By construction, the maximal possible column sum of Lg[k] occurs
when a node is an in-neighbor of all other nodes, and out-neighbor of none. For this case
the column sum if v — 1, which is exactly the diagonal entry of Lg[k] for that column.
The minimal column sum occurs in the dual case, and is then —(v — 1). Consequently,
for all k

v-1 1 < 1 2v—1
1- =—-Z 1—-—|Lglk]].. <
v v ; v[ g ]]‘J Ty
and
1 2v -1 1
y < " < =2--.
1- (1/V) Supk ma’XjGNV Zi:l I:Lg[k]]lj v v

Clearly ¢ = 1/v satisfies the assumption in Proposition 4.1.2 for all v > 1, hence a(sg)

reach consensus exponentially fast along the subsequence {sk,}. [

In general, agreement conditions couple the dynamics, controllers, sampling (or switch-
ing sequence), and the graph structure. For simple integrators and consensus the dy-
namics are determined by the control, which is often just a scaled version of the Lapla-
cian. Hence, convergence analysis can be reduced to some graph-theoretical conditions
with some simple condition on the gain. Beyond this simple scenario the analysis can
become exponentially more complex, cf. the double-integrator case in [80]. Hence,
the graph-theoretic Lyapunov function used in the proof of Proposition 4.1.2 does not
easily extend to general LTI agents.

However, the control structure described in Chapter 3 has two special properties:
(i) the centroids are decoupled from the rest of the dynamics, and (ii) the update map
(2.5") follows integrator consensus dynamics. This is reoccurring in all the variations
presented, along with the fact that the centroid dynamics upper bound the convergence
rate of the actual states. In addition, in the proof of Lemma 3.3.2 we have seen that
the flow dynamics of the centroids do not interfere with the jumps. Therefore, the
equations governing the convergence rate of the states are essentially those of discrete
integrators despite the general framework. This is the key feature which allows us to

state the following result.

Theorem 4.1. If the conditions of Theorem 3.1 hold and As replaces Ay, then

(3.11b) synchronizes exponentially along the sequence {si,}.

Proof Consider the coordinate transformation z(¢) = (I, ® e™4°")ji(¢) (the same one

from [42]). The dynamics of z(#) are then given by
2() =0
(57 = ((y = ~LgIK]) ® )z(si)
which are identical to those in considered in Lemma 4.1.3. This implies that there
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exists constants 61,2 > 0 and a constant vector r* € R" such that for every ¢ € {s¢,}
lz(t) = 1, @ r*[| < 61e7 %" [|2(0) = T, ® "] .
In the original coordinates this implies that

”/I(t) - (]]v ® eAOt)(In ® 7‘*)

< ||, ® e?o|| 6167 [|@(0) = 1, @ 7.

Since all the unstable eigenvalue of Ay are on the jw axis, this implies that its norm
can diverge only polynomially fast, and thus still dominated by the convergence to

agreement . Therefore there are constants ds,d4 > 0 such that

() ~ (1, ® ) (1, @ )| < 330~ 3(0) = 1, @ r°]..

for all 7 € {s¢,}. [

Note that in the proof we no longer assumed that the eigenvalues of Ag on the jw
axis are semi-simple as stated in P 2. This assumption was required in the proof of

Lemma 3.3.2 to ensure that e?of

is bounded, otherwise it can diverge at a polynomial
rate. However, if the jump map converges exponentially it will always dominate the
diverging flow. Indeed, if As replaces A1, this assumptions is no longer required in
Pa.

It should be clear that x(z) also synchronizes exponentially, albeit at a slightly

different rate, since the tracking error evolves according to
£(t) =1® (A + BFy)e(r)

(57 = (51 — - (LIl @ Dlse)

As before the flow is exponentially stable, but now impulsive input {(Lg[k] ® I)i(sk)}
also vanishes exponentially. Hence, x;(#) will synchronize at an exponential rate upper
bounded by occurrences of subsequence {sx,} and the convergence rate of A+ BFy. A
similar exercise can be done for the output feedback dynamics of (3.16), but now the

convergence rate will also be affected by the observer.

Remark 4.2. In both of the examples in Section 3.7 the sampling randomly switched
between the three graphs in Figure 3.2. It is easily verified that the union of all three
forms a strongly connected graph like the one required by As, hence all examples in-
fact showed exponential convergence. This is particularly evident in the norm of the
disagreements which represent the deviation of each agent from their emulated centroid.
For example in Figure 3.4(a) there is a clear linearly decreasing trendline bounding the
norms despite the non-monotonicity induced by the jumps. These are plotted on a

logarithmic scale, hence the linear trendline indicates exponential decay. v
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(a) Delay free communication: information is (b) Communication with transmission delays:
simultaneously sent and received at t = sg. information sent from agent i to j at t = s

is received at 1 = sg + 77 [k].

Figure 4.1: Sampled-data multi-agent communication with and without transmission
delays.

4.2 Transmission delays

Consider P under the same setup and assumptions as before, but with heterogeneous
time-varying delays on the communicated information between the agents. Denote by
7;;[k] the transmission delay from agent j to agent i at time instance t = s, this is

visualized in Figure 4.1. We assume that

Aeg: incoming information is time stamped and

sk + 7kl < ske1, Vi, jEN,, k € Z,.

The assumption above does not imply that the delays are known a priori, only that the
receiving agent knows 7;;[k] at t = sx + 7;;[k]. The second part guarantees that there
is no packet disorder, which is a reasonable assumption in MAS [49] and networked
systems in general [81]. Note that the delays are allowed to vary between sampling
instances as well as across communication channels. We seek to modify local controllers
(3.13") to solve P4 for all transmission delays satisfying Asg.

Since the agents interact only at discrete time instances and are decoupled otherwise,
the delays modify only the discrete component of (3.13"). Essentially, Ag splits the
delay-free update of agent i at s; into up to |N;[k]| different updates spread over the

interval [sg, sg+1) but still verifying

U Nilti;[k]]1 = NPE[k] VieN,, k € Z, (4.2)
JEN;[K]
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where #;;[k] = si + 7;;[ k] and MDF[k] denotes the delay-free neighborhood of agent i.

Packet loss 4.3. Note that (4.2) does not preclude the possibility of packet losses, but
rather relegates them to the graphs induced by {s.}. v

We now need to design an update rule

it (K17 = k| @it (KD + > ajfij(se)
JeN;i[ti;[k]]

for some function «(-).

The problem at hand is qualitatively different from the standard delay problems
considered in the literature. Continuous-time delays are infinite dimensional systems,
and therefore so are predictors used in delay compensation. In the proposed setup, the
delays affect continuous information that is sent intermittently and used to update f; in
a discrete fashion. In discrete time, delays are finite dimensional and occur at discrete
steps synchronized with the regular increments of the system. However, Ag implies
that the delayed information arrives and is processed before the next global sampling
instance. Hence, the delay at hand does not fit into either of the standard descriptions.
To understand how to construct a predictor for this hybrid type of delay, we shall first

consider the special case of consensus of integrator agents.

4.2.1 Consensus of integrator agents

Consider the special case of first order integrator agents trying to achieve consensus.
This corresponds to P2 with A = Apg =0, and (3.13’) simplifies to

FisD = (0 = Y (s ~ fls0)

lENG K] .
ui(t) = Fa(x;i(t) — i (s7))

The equation above is a generalization of the control law proposed in Subsection 2.3.1,
for which the dynamics of i; are purely discrete. This significantly simplifies the anal-
ysis and, in fact, makes any predictor redundant, as demonstrated in the following

proposition.

Proposition 4.2.1. Consider Po with A = Ay = 0 and transmission delays. The

control law

BT = kD =3 Galse) — rlse)
1eN; [t [k]] (4.3)

ui(t) = Fa(x; (1) — i (t;;[k]7))

will drive the agents asymptotically to consensus for all sampling sequences {si} satis-

fying Aq, all time delays 7;;[k] satisfying Ae, and all gains Fg < 0.
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Proof Consider an ordered sequence {q;[k]} where each element is defined by

q1lk] = Hllji,ntij[k]

(4.4)
qi[k] =H}Ji_n{tij[k]}\{qj[k] sj <y 1=23,... INi[K]I,

i.e., the ordered time instances for the interval [sg, sx+1] in which information arrives.
By Ase, {q[k]} has a finite (possibly different) number of elements for each k. An
illustration of the relationship between {f;;[k]} and {q;[k]} is given in Figure 4.2.

Assume without loss of generality that g,[k] is the last instance, since j; is discrete

Figure 4.2: An example of the mapping between delayed times #;;[k] and the ordered
sequence ¢q,[k] in (4.4).

this implies that f;(sk+1) = fti(¢p[k]*). Expanding the above we have

Filsin) = Ailap kD = Y (s — f(se)
leNilqplk]]

p
=D ()~ ils0)

r=11eN;lqr[k]]

By Ag and (4.2), we know that
p
U Nilar K11 = NPETKD = fisien) = 07 (si0).

This is true for all i € N,, and k € Z,. Therefore, if (3.13") will drive the delay-free
system to consensus, (4.3) will as well. Note that for A = Ay = 0, A4 trivially holds,
and that if A7 holds for {s;} then it will also hold for the shifted sequence {sx4+1}. Thus,
we can conclude that if the delay-free system will reach agreement for the sequence {sx}

and its induced graphs, then the delayed system will for {sy41}. [

Proposition 4.2.1 illustrates how the hybrid nature of the delay can render it redun-
dant in certain cases. Since the updates are event-drive, i.e., an update occurs when
new information arrives, and f; is constant between updates, the transmission delays

only amount to splitting one update into several smaller ones within the same time
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interval. When combined with A1, which considers the union of the induced graphs
over some subsequence, it is evident that the delays amount to a partition of the inter-
val [sk, sks1] for which J G[#;;[k]] = G[k]. Hence, from a consensus standpoint, there
is no difference between the original problem and the delayed one. As such, there’s
no need to predict anything, simply to guarantee that the original sampling intervals
remain disjoint, as required in Ag.

The above reasoning does not hold when f;(¢) is no longer constant between up-
dates, as in the general case of 5. However, this insight is the guiding principle in

designing an appropriate predictor as will be done in the following section.

4.2.2 Synchronization of LTI agents

The key property exploited in Subsection 4.2.1 was that the value of (sr+1) was the
same as it would have been in the delay-free case for all k. In the following lemma,
we propose an update rule that will guarantee this property for arbitrary A and Ag

satisfying Ay4.
Lemma 4.2.2. If Aye hold and A + BF = Ag, then under the update rule

it [k17) = @i (e [k]) - %GAOT”[H Z(ﬁi(sk) — i1 (sk)), (4.5)
JEN;[tij[K]]

we recover the same [1;(Sk+1) as in the delay-free system (3.13).

Proof Consider the ordered sequence {q;[k]} from (4.4) for an arbitrary agent with

index i, and assume that it receives p delayed updates in the interval [sg, sx+1). Define

0:lk, 1] = > (A1) = f1j(s)),
JeNi[aqi[k]]

to simplify the notation, we shall omit the argument k when it is clear from context or

unimportant. Now consider k = [ = 1, for which the update reads
T(at Aoqi 1 ApT1 Aot1 | 1
pi(qy) = e 0 - e 0[1,1] =e a(s1) - ;‘9[1, 1],
where we used the general fact that eA0(4+1-a1)¢A0T = gAoTis1 From here, by induction
A 1y
4i(q,) = e [ fi(s1) == ) O[L1]|,
i(qy) = M | i(s1) V,; [L.1]
and once more applying Ag and (4.2) we obtain that

(g [1]) = o™ @PF (s7) = @™ (g, [1]).
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For an arbitrary k and / = 1 the update reads
1
fir (1 [K]) = oM@ man 61 (g [k = 11%) = = oMom Mgk, 1]
14

1
= eAoT1[k] (ﬂ(sk) _ ;H[k, 1]) ,
where we used the identities

eAo(q1lkl=gp[k=11) _ Aokl Ao(sk—gplk=11) 4119 eAO(Sk_Qp[k_l])ﬁi(qp [k—1]+) = [1;(sp).

From here, by similar arguments, we can conclude that
fi(qp kD) = e " (s3) = 17" (g, [K]),

since there are no updates between q,[k] and si41 and the choice of i was arbitrary,

the system evolves like its delay-free counterpart (3.13’). |

One can view the Lemma 4.2.2 from a different angle. Consider the aggregation

a(t) = ()., @ (1) ] , then (4.5) in aggregate form is given by

13 K1) = oK) =~ (Lglagg k1] @ 1) sy

= ((Iv - %Lg[tij[k]]) ® In) a(tijlkl),

which is exactly the delay-free update rule for the sampling sequence {¢;;[k]} instead
of {sx}. The predictor can be thought of as inducing a new sequence of graphs and
sampling instances, whose union over the interval [sg, sx+1] results in the same induced
graph as the original sampling sequence and delay-free update mechanism. This is the

key step in the proof of the main result.

Theorem 4.2. If assumptions A1,3,4 hold and F,F,; are chosen such that Ag = A+BF
and A + BF; is Hurwitz, then the controller

ii(t) = (A+BF);(1), :(0) = fizo

fi (1 [K]) = fip (17 (K1) = %ef‘“iﬂ“ D (i(si) = fun(s)) (4.6)
leN;[t:j[k]]

wi(t) = Faxi(1) + (F = Fg) 1 (1)
solves P o for all heterogeneous and time-varying transmission delays satisfying Ase.

Proof Consider first the aggregate delay-free state on the sequence {sx}, denoted by
iPF (sp). If Aq holds, we know by Theorem 3.1 that g”¥(sy) — Im1, ® I,,, and by
Proposition 4.1.1 that it gets closer to that set along the sequence {k,} from Aj.
Applying Lemma 4.2.2 we know that i;(sgs1) = ﬂPF(skH) for all i and all k; hence,
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both of them approach Im 1, ® I, at the same rate. Since the agreement set is an

invariant set of both the continuous and discrete dynamics of (4.6), this implies that
lim |2PF (1) - i@ ()| =0, VieN,.
Applying Theorem 3.1 implies that
Il (1) = xi (01 =0,
hence the states synchronize. [ ]

4.2.3 Implementability

Local controllers (4.6) are independent of the size of the system; however, update rule
(4.5) makes use of g;(sx). Since the sequence {si} is not assumed to be known, an
immediate question arises as to whether the control law can be implemented. The
following proposition states that it can be using a small buffer, and details how to

update this buffer accordingly.
Proposition 4.2.3. The update law (4.5) can be implemented using a buffer of size 1.

’
Proof Each agent constructs its buffer as follows. Let [ b} t] ] denote the values of

the ith buffer and corresponding timestamp, and denote by f;[k] the instance at which

information is received and by s; the time when it was sent.

bi
ti

(a) If #; = sk, keep the current buffer.

-

From Ag we know that if #; = s; then we are still in the interval (s, sx+1); hence, we

1. If t;[k] = s, assign

;i (sk) ] .

Sk

2. If s < t;[k], check

(b) If #; < sk assign

Sk

A0 (kD [ (1 k]) ]

need to keep the start of the interval in the buffer. Similarly, if #; < si, this means that
our buffer corresponds to the previous interval. Thus, there were no jumps in [sg, #; [k]]

and we can reconstruct u;(sx) like we would for a regular LTT system. ]

4.2.4 Numerical examples

To illustrate the proposed sampled-data protocol, consider two cases, both comprised of
v = 3 identical agents. We assume that communication between agents is intermittent

and asynchronous, meaning that each agent transmits only at a subset of sampling
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Figure 4.3: The three possible graphs for the examples in Subsection 4.2.4.

instances. At each sampling instance G[k] is a union of any nonempty combination
of the three graphs in Figure 4.3. The sampling instances, shown by abscissa ticks on
the bottom, are a random variable such that sg+1 — sx € 0.3Ng, and the induced graphs
satisfy A;. Major ticks indicate instances where agent 1 transmits information, i.e.
corresponding to G in Figure 4.3. The simulations were carried out with a time step of
At = 1x1073 on the time interval ¢ € [0, 24]. For each sampling interval, hy = sg41 — S,
a random integer my was drawn uniformly from the interval [1, hg/At], generating the
delay 7;;[k] = myAt, thus satisfying Ag. The major ticks at the top and corresponding
dashed lines correspond to the delayed updates originating from agent 1 to agent 2.

Both examples are simulated for the same delays, sampling sequence, and time interval.

The first simulation involves integrator agents as described in Subsection 4.2.1
with Fg = =5. The agent’s states can be seen in Figure 4.4(a), while the difference
Ap,i(t) = f1; (1) —[LPF(t) is shown in Figure 4.4(b). It can be seen that indeed the agents
asymptotically agree, and that A, ;(t) repeatedly resets to zero after each agent fin-
ishes its “cycle” of delayed updates. Moreover, the trajectories are piecewise constant
for this case since f;(t) has no continuous-time dynamics as mentioned in the proof of

Proposition 4.2.1.

The second example is comprised of identical agents with

5 (1) = [‘11 Z]xi(m

i]ui(t)

trying to synchronize to Ag = | % (1]] In this case

F:—[z 4] and Fd:[—34.6 39.2]

satisfy the requirements of Theorem Theorem 4.2. The components of the agents’ state

are shown in Figure 4.5, and those of A, ; are shown in Figure 4.6.

Once more, we can see that the agents’ states synchronize to a common trajectory
as in P o with Ay corresponding to a sine wave with frequency 1. Furthermore, we again
see that the difference between the delayed and delay-free system resets repeatedly after
each “cycle” ends, and that the amplitude of the mismatch decays as the updates drive
the systems closer to the agreement space. Note that this time f;(z) is not piecewise

constant between updates, since the synchronous trajectory is not constant.
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(b) The difference between f and its delay-free counterpart for A = Ag = 0.

Figure 4.4: Simulations for the example with A = Ag = 0 from Subsection 4.2.4. Minor
ticks are sampling instances, major ticks indicate the connected subsequence from Aj.
Major ticks in correspond to the delayed counterparts of the regular major
ticks.

4.3 Weighted update map

A common variation of the consensus protocol is the inclusion of edge weights. Locally,

these weights modify protocol (1.6) to

ui:Z wij(yj = Yi), i €N,,
JEN;
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(a) Evolution of the agents’ first state component for Ag # 0.
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(b) [Evolution of the agents’ second state component for Ag # 0.

Figure 4.5: Evolution of the agents’ states for the second example in Subsection 4.2.4,
with Ag # 0. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from A;. Major ticks in correspond to the delayed counterparts
of the regular major ticks.

where w;; are some non-negative weights. These weights can arise naturally from the
modeling of the physical process [82], but can also be tuned to improve the convergence
rate [83], [84] or attenuate the effects of measurement noise [85].

Despite being widely used, when constructing the consensus-based update maps
in Chapter 2 and Chapter 3 we have opted to used the unweighted Laplacian. This
choice was motivated by simplicity and in attempt to streamline the derivations, and
is not an intrinsic requirement of the controllers. The following Proposition shows that
under certain constraints on the weights, the original results hold verbatim even for a

weighted update map.
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(b) Evolution of the second component of A, ;.

Figure 4.6: Evolution of the components of A, ; for the second example in Subsec-
tion 4.2.4. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from A;. Major ticks in correspond to the delayed counterparts
of the regular major ticks.

Proposition 4.3.1. Substituting update rule (2.5) with

i (1) = iy (sn) = iy ) (wir [k (i (si0) = fir(si0))

LeN;[k]

for positive weights such that Y; wi[k] =0 and w;[k] < v for all k does not affect the
convergence properties of Theorem 3.1.
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Proof Tt is straightforward to verify that the weighted counterpart of (2.7) is

" 1 X ’ ’
Ajmp[k] =1, —-- Z Z (e,-w,-j [k](e; — ej) ) ® (a;17).
VST jENTR
Reworking Lemma 2.3.1 for the new update map, (2.8a) obviously does not change
since it requires only that 1/(1 — Py) = 0, and the right hand side of (2.8b) is similarly
unaffected. Now we must evaluate the summation on the left hand side of the Kronecker

product, denote it by

<

Lglk] = (ejwij[k](e; —e;)).
i=1 jeN;[k]
Clearly both Lemma 2.3.2 and Lemma 3.3.1 still hold with this L‘é[k] replacing the
original Laplacian.

Under the assumptions on the weights the matrix I — %}L‘é [k] is still non-negative,
row-stochastic, and all of its entries are uniformly bounded. Thus, by [21, Thm. 2.39]
both (2.10) and (3.11b) will converge to the agreement space. In addition Lg[k]1=0
for any graph and any weights satisfying the assumptions, thus the centroids-induced
jumps asymptotically vanish and the proof for both Theorem 2.1 and Theorem 3.1

proceeds verbatim. [

At a glance Proposition 4.3.1 appears to be a small technical novelty. We considered a
very general setting in which neither the graphs nor the sampling sequence are known,
thus optimizing the weights seems unreasonable. However, the emulation controller
can still be used under less stringent conditions. For example, perhaps the underlying
graph is in fact known, but the unreliable sampling induces random subgraphs at
each instance. Other possible scenarios are when only some communication links,
i.e. edges, are unreliable; or when the sampling follows some pattern such as round-
robin scheduling. In such situations the flexibility provided by Proposition 4.3.1 can
be used to improve the performance. For example the approach in [86] can be used to
provide improved performance with asymmetric link failures. Other relaxations include
constant graphs and periodic sampling and dynamic induced graphs that are always
undirected (i.e., synchronous sampling). For the former the weights can be chosen to
minimize some quadratic cost [87], and for the latter there adaptive methods to counter

adversarial attacks [88].

4.4 Concluding remarks

Up to this point, we have considered increasingly complex variations of the agreement
problem. Moving from integrators to general LTI agents, from constant to time-varying

trajectories, and from state to output feedback. We even touched upon heterogeneous
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and time-varying transmission delays. Yet there are two obvious extensions we have,
as of yet, not considered.

The first is transferring from homogeneous to heterogeneous agents. This involves
some technical work, but does not impose a new conceptual problem. In fact, when
considering heterogeneous agents it is well known that a necessary condition is the
existence of a common internal model amongst all of the agents [44], [46]. The imme-
diate solution is to identify f;(¢) with these models, and emulate some variation of the
aforementioned continuous-time controllers. This avenue is not pursued in this thesis.

The second omission, is the agreement problem with external inputs - either mea-
surement noise or load disturbances. Attenuating or even rejecting the effects of un-
controlled inputs are the bread and butter of classical control, hence this omission is
particularly glaring. Surprisingly, such omissions are common within the multi-agent
community, where it is common to assume the system is driven only by initial condi-
tions. Such input-output analysis is the focus of the next chapter, which attempts to

explain various odd behaviours of multi-agent systems with local disturbances.
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Chapter 5

On Internal Stability of
Diffusive-Coupling and the

Dangers of Cancel Culture

Something is rotten in the state of Denmark.

W. Shakespeare, Hamlet [89]

In the previous chapters, we tackled different variations of sampled-data agreement
problems. In all of them, we made a conscious assumption to explicitly treat each agent
as if it has two distinct measurements: one local and one communicated. We made this
choice since we wanted to explicitly impose different temporal constraints on the two
input signals, but this viewpoint is uncommon in the literature. The common approach
is to consider distributed control laws where only relative measurements are exchanged
between neighbors. In other words, each agent has access only to the difference between
its output and that of each of its neighbors. This restriction forces the agents to use

diffusive control laws as in (1.8).

Yet even with our different approach, our entire work was centered around using the
consensus protocol. The discrete updates were driven by a consensus-like protocol, and
the emulated dynamics while different were inspired by it. This allowed us to utilize
significant existing machinery to solve the resulting hybrid problems. This may be a
double edges sword, inheriting both the useful technical machinery as well as possible
underlying limitations of diffusive architectures. Hence, before continuing further on
the sampled-data path, it would be beneficial to better understand diffusively coupled
systems, their limitations, and how to circumvent them. This is the purpose of this
chapter, which begins with a motivating example to illustrate concretely what we mean
by “limitations”. We then follow this example with an in depth system theoretic analysis
of diffusive systems and fully characterize several issues that were previously reported

but never explained in the literature.
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5.1 Motivation

As discussed in Section 1.2, diffusively-coupled systems behave poorly when affected by
disturbances and noise. In particular, persistent measurement noises or disturbances
may result in trajectories exhibiting certain common traits associated with instability.
Notably, the only systems to not exhibit this behavior are systems which are not purely
diffusive, since they allow absolute measurements [90], [91] or an undisturbed leader [50].
This hints that there may be an intrinsic problem with the diffusive architecture. These
“instability traits” can be illustrated by the classical consensus protocol, considered

below for a set of integrator agents and with a static interaction network.

Example 5.1.1. Revisit the integrator consensus problem introduced in Section 1.1,
which studies a group of independent integrator agents x;(¢) = u;(z), where x; and
u; are their states and control inputs, respectively. The goal is to reach asymptotic

agreement between all agents, in the sense that
tlim (x; (1) —x;(1)) =0, Vi,j, (5.1)

under the constraint that the ith agent has access only to states of its neighbors, whose
indices belong to a set N;. This problem can be solved by the celebrated consensus
protocol [24]

ui () = —KZ(xi(t) —x;(1)), Vi, (5.2)

JEN;

which is diffusive state-feedback (1.3). From Proposition 2.1.2 we know that if the
underlying graph is undirected and connected, then the control law (5.2) drives the
agents to agreement exponentially fast. The state trajectories of four agents controlled
by (5.2) with x = 1 are shown in Figure 5.1 in the time interval [0,74]. Observe that
on this time interval the states converge exponentially to the average of their initial

conditions and the control signals all asymptotically vanish.

This might no longer be the case if the agents are affected by load disturbances d;,
viz.

xi(t) = u; () + di(1). (5.3)

An example of what happens in such situations is also shown in Figure 5.1. At the
time instance ¢ = t4 one agent is affected by a unit step disturbance. As a result, all
states cease to agree and start to diverge when r > t,4, whereas the control signals reach
non-zero steady-state values. The apparent instability of the whole system, manifested
in the unboundedness of the states, can be explained by the well-known fact that the

consensus protocol has a closed-loop eigenvalue at the origin. To see this, note that a
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(a) Evolution of the states. (b) Evolution of the control signals.

Figure 5.1: Simulation of protocol (5.2) with one agent perturbed by a step at t = 4.

state-space realization of the aggregate system is given by

X(t) = —kLgx(t) +d(t)
y)| _
u(t)

and since Lg1 =0 for all G, the system always has a pole at the origin. Nevertheless,

4
<) (5:4)

1
-kLg

the boundedness of the control signals under such conditions is intriguing. Situations
wherein some signals in the closed-loop system are bounded while some others are not
normally indicate unstable pole-zero cancellations in the feedback loop [92, Sec.5.3].

However, controller (5.2) is static and thus has no zeros. v

The example above suggests that a deeper inspection of the internal stability prop-
erty could offer insight into the behavior of diffusively-coupled systems. The inter-
nal stability of any feedback interconnection requires the stability of all possible in-
put / output relations in the system, see [92], [93]. However, to the best of our knowl-
edge, internal stability has not been explicitly studied in the context of diffusively-
coupled architectures of MASs yet.

In this chapter, which is based on published work [63], we show that diffusively-
coupled systems of LTI agents might not be internally stabilizable. Loosely speaking,
this happens if the agents share common unstable dynamics, directions counting. This,
for example, is always the case in a group of homogeneous unstable agents, like those
discussed in Example 5.1.1. When restricting the result to finite-dimensional agents,
we also explain the mechanism behind the shown internal instability. It is caused by
unstable cancellations in the cascade of the aggregate plant and a diffusive controller.
Important is that these cancellations are caused not by controller zeros, but rather
by an intrinsic spatial deficiency of the diffusively-coupled configuration. These can-

cellations are intrinsic to the diffusive structure and cannot be affected by controller
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Figure 5.2: Block diagram of a general aggregated diffusively-coupled feedback setup
(E is the incidence matrix of the connectivity graph G).

dynamics. Consequently, the internal stability of feedback systems utilizing only rela-
tive measurements depends solely on the agent dynamics.

In addition to providing a rigorous analysis of the internal stability of diffusively-
coupled systems, we show how the analysis is readily applied to common extensions
found in the literature. In particular, we discuss more general symmetrically coupled
MASs (i.e. not restricted to only diffusive coupling), asymmetric coupling (i.e. MASs
over directed graphs), unstable systems with no closed right-half plane poles, and MASs
over time-varying networks. This chapter relies heavily on several results from both
linear systems and graph theory, the relevant preliminaries can be found in Appendix C

and Appendix A respectively.

5.2 Problem formulation and general diffusive coupling

Consider v continuous-time LTI agents P;, each with m inputs and p outputs, who
interact over a graph G with v nodes and u edges. In this formalism, agents i and j
are neighbors if they are incident to the same edge.

A general diffusively-coupled MAS originated in [32], also known as the canonical
cooperative control structure [72, Ch. 9], is presented in Figure 5.2. It comprises the
block-diagonal aggregate plant P := diag{P;} with v blocks, a block-diagonal edge
controller K, := diag{K, ;} with u blocks, and pre- and post-processing based on the
incidence matrix E associated with G. To describe the logic of this setup we may
disregard the exogenous signals dy and d, for the time being. The overall controller

K : y — u is thus defined as
K :=(E®IL,K.(E'®1p). (5.5)

We now discuss how the controller K processes signals.

e The (vp)-dimensional aggregate output of the agents, y, is first processed by
the transpose of the incidence matrix to produce a (up)-dimensional vector j =

(E" ® I,)y representing the relative outputs of neighboring agents.
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o FEach component of y, which is the relative measured coordinate along one edge,
is then processed independently by an edge controller K, ;, to produce a (um)-

dimensional “edge correction” signal .

e The (vin)-dimensional aggregate control signal u is then produced by processing
all @; by the incidence matrix, which sums up edge corrections for all edges

connected to the corresponded node.

For example, if G is an undirected star graph on three nodes with node 3 as its center,

then we can choose

1 0
E=10 1|,
-1 -1
in which case
iy
~ y1—y3 _
y= and u= i
[ y2—)3 ] _
—U1 — Uy
The consensus protocol (5.2) corresponds to the choice Ke = —«I in this case, as well

as for any other choice of G and v.

Now consider the exogenous signals d,, and d,, which we refer to as disturbances.
On the physical level they represent inevitable effects of the outside world on the
controlled plant (agents). These signals are supposed to be bounded and independent
of the signals generated by the controlled system. We introduce disturbances to define
the notion of the internal stability for the system in Figure 5.2, which is the focus point

of this chapter.
Definition 5.2.1. We say that the system in Figure 5.2 is internally stable if the 2 x2

operator connecting exogenous signals d,, and d, with internal signals u and y, i.e.
Ty : (dy,dy) = (y,u) (5.6)

is well defined and stable, see [94, Sec. 4].

The general question of interest in this chapter is under what conditions on the
agents P; are there causal edge controllers K. ; internally stabilizing the diffusively-
coupled system in Figure 5.27 Note that the existence of edge controllers rendering the
closed-loop operator well defined is obvious, just take K, ; = 0 for all j. We shall thus
focus on the stability of Tj.

Addressing the stability question in the most general, nonlinear and time-varying,
case might be overly technical. We thus limit our attention to the class of LTI plants
and edge controllers, whose transfer functions belong to the quotient field of Hu, see
[95, §A.7.1], which is a sufficiently general class. We further assume that
Ar: there are right coprime M;, N; € Hs and left coprime M;, N; € He such that

P; = NiM,-_l = ]\;Ii_lﬁi for all i,
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Figure 5.3: Block diagram of a diffusively-coupled feedback setup as edge stabilization.
Here the incidence matrix is attached to the plant, generating the edge dynamics with
a diagonal controller.

where coprimeness is understood as the existence of Bézout coefficients in He, see
Appendix C. The representation of P; above is known as its coprime factorization.
We hereafter refer to the transfer functions M;(s) and M;(s) as the right and left
denominators of P;, respectively, and the transfer functions N;(s) and N;(s) as its right
and left numerator. Assumption A~ is practically nonrestrictive. It holds for all finite-
dimensional agents with proper transfer functions and is equivalent to the stabilizability
of P; by feedback for agents with transfer functions from the quotient field of Hy [96].
Thus, if an agent fails to satisfy Ay, we cannot expect any MAS that includes it to be
stabilizable by diffusive coupling.

Remark 5.1. We choose the application points of exogenous disturbances for the in-
ternal stability analysis to be at the points where the agents, P, are connected with
the controller K defined in (5.5). In this choice we follow the physical nature of the
interconnection in Figure 5.2 and think of separating the blocks E® I and E’ ® I in the
controller as merely a way to streamline the choice of the design parameters, which are
the edge controllers in K.. An alternative viewpoint is presented in Figure 5.3, where

all fixed parts are regarded as the controlled plant,
P.:=(E'®1,)P(E® ), (5.7)

much inline with the generalized plant philosophy [93, Sec.3.8], see e.g. [33, Fig. 6]
or [72, E9.6]. A natural definition of internal stability for it shall be based on the
exogenous inputs d~y and d,, entering before and after the edge controller K. This
would change the results, see Remark 5.3 at the end of Subsection 5.5.1. Still, we
believe that the configuration in Figure 5.2 is the right way to address the internal

stability of MASs. After all, it is the agents who interact with the environment. v
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5.3 The internal stability of diffusive coupling

The main technical result of this chapter, whose proof is postponed to Subsection 5.3.1,

is formulated as follows.

Theorem 5.1. No LTI K. ; can internally stabilize the diffusively-coupled system in
Figure 5.2 if there is A € Cy, common to all agents, such that

ﬂ ker [M;(2)]’ # {0} (5.8a)
or =
() ker M;(4) # {0}, (5.8b)
i=1

where M; and M; are denominators in the coprime factorizations of P; under Ax.

Theorem 5.1, formulated in terms of coprime factors of agents, might appear some-
what abstract and technical. This is a consequence of considering a fairly general class
of LTI agents under the mild assumption Ar. We show in the next section that if
the class of admissible agents is limited to finite-dimensional ones, then more insightful
statements can be provided. Nevertheless, the formulation in Theorem 5.1 becomes
substantially more intuitive in some frequently studied special cases.

The first of them is the case of homogeneous agents, which is perhaps the best

studied situation.

Corollary 5.2. If the agents are homogeneous, i.e. P; = Py for alli € N,,, and Py(s)
has at least one pole in Co, then no LTI K. can internally stabilize the system in
Figure 5.2.

Proof By Lemma C.1.6, if 1 € Cq is a pole of Py(s), then both My(1) and My(2) are

singular, whence the result follows. [ ]

This result readily applies to the homogeneous consensus problem studied in Exam-
ple 5.1.1 and more generally to the setups in Subsection 1.1.2. Note that closed-loop

dynamics (5.4) can be rewritten as

x(t) = E diag{—«} E'x(1) + d(t)

[y(r) I

E diag{-«}E’

x(1)

u(r)

which is in the form of Figure 5.2. The agents in (5.3) are homogeneous and Py(s) = 1/s,
has an unstable pole at the origin. Corollary 5.2 then agrees with the conclusion of
Example 5.1.1 that the closed-loop system is not internally stable.

Another particular case for which the formulation is simplified is a MAS with single-

input single-output (SISO) agents.
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Corollary 5.3. If the agents are SISO and all have a pole at the same A € Cy, regardless
of multiplicities, then no LTI K. ; can internally stabilize the diffusively-coupled system

in Figure 5.2.

Proof By Lemma C.1.6, in this case M;(1) = M;(1) = 0 for all i € N,,, whence the result

follows. u

A consequence of Corollary 5.3 is that the consensus protocol, as well as any other
diffusively-coupled control laws, cannot internally stabilize a group of SISO agents if
all of them contain an integral action. This result is reminiscent of that by [44] that
states that a common internal model is a necessary condition for a diffusively-coupled
system to synchronize their state trajectories. It highlights a contradiction or trade-off
of sorts, where on the one hand, a common pole at the origin among agents is required
for synchronization, and on the other hand, this common (unstable) pole is precisely

the cause for lack of internal stability.

5.3.1 Proof of Theorem 5.1

We are now prepared to prove Theorem 5.1. Only the statement about the right coprime
factor, i.e. (5.8a), is proved. The proof of (5.8b) follows by dual arguments.
The proof requires a technical result of [97], known as the matrix corona theorem,

see also the proof of [94, Prop. 11] for a closer formulation.

Lemma 5.3.1. If G € H)", then

G l'eH,  inf o(G(s)) > 0.
seCo
It is readily seen that Mp := diag{M;} and Np = diag{N;} are right coprime factors
of P = diag{P;}. Because any internally stabilizing K in (5.5) is in effect stabilized
by the plant, we only need to consider edge controllers for which K admits coprime
factorizations over Hy. So let K = NKMI}1 for right coprime Mk, Nk € Hs. By (5.5),

Nk (s) = (E ® In)Ke(s)(E” ® 1) Mk ().

Because 1’E = 0, we have that (1'®1,,) (E®I,,) = 0 as well and, hence, (1'®1,,,)Nk(s) =0
for all s at which K.(s) is finite. But K.(s) is in the quotient field of Hs, meaning that
the denominators of its entries are holomorphic in Cp and, by [98, Thm. 10.18], may
have at most countable number of isolated zeros. As such, we can always find a region
in Cp in which (1’ ® I,,) Nk (s) = 0. But the latter implies that

(1"® I,)Ng =0,
by the same [98, Thm. 10.18].
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Now, return to the system in Figure 5.2. It is readily verified that the closed-loop
system 7Ty in (5.6) reads

S Ty

Ty =
4 T. T

, (5.9)

;{](I—PK)_l[I P]::

where the blocks of Ty are the four fundamental closed-loop transfer functions. Straight-
forward algebra yields that
-1

T, = (5.10)

Mg O Mg —Np
Nk 0| -Nxk Mp

This is a right coprime factorization of Ty, as attested by the Bézout equality (cf. (C.4a))

Mg 0| /

Ng 0|
where Mp := diag{M;} and Np := diag{N;}. By Lemma C.1.5, T4 is stable if and only
if

XK—MP Yk +]\7P
Yp Xp

Mp Np
-Yp Xp

Mg —Np
-Nk Mp

-1

M =Ne '\ (5.11)
~Nk Mp
or
inf || MEE) NeGI ) (5.12)
seCo —Nk(s) Mp(s)

by Lemma 5.3.1. But (5.8a) implies that there is v # 0 such that v’M; (1) = 0 for all i or,
equivalently, (1®v)'Mp(1) = 0. Taking into account that (1®v)'Ng = v (1®1,,,)’ Nx =0,

we end up with

[o (1 ®u)'] 0, (5.13)

Mg (1) —Np(Q)
~Nk (1) Mp(Q)

which violates (5.12). We thus have that if (5.8a) holds, then there is no K. that

internally stabilizes the system in Figure 5.2.

5.4 Generalizations

Some possible generalizations of the result of Theorem 5.1 are outlined below.

5.4.1 Asymmetric coupling

Some MAS problems consider a directed interaction graph, making the notion of neigh-
boring agents asymmetric. Controllers under such constrains are no longer diffusive in
the sense discussed in Section 5.2. Still, a variant of Theorem 5.1 may apply.

For example, let an edge going from node i to node j indicate that the ith agent

has access to y; —y;. The existence of the edge (7, j) does not imply that there is also
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the edge (j,i). It is evident that the controller outlined in Figure 5.2 and (5.5) can no
longer provide an appropriate distributed controller since, as discussed in Section 5.2,
it sums up all the edge correction terms connected to each corresponding node. Nev-
ertheless, several notable MAS control architectures over directed graphs still admit a
decomposition similar that of (5.5).

Consider again the classic consensus protocol. It can be adapted to accommodate
directed graphs by replacing the symmetric Laplacian, Lg = EE’, with a directed
counterpart such as the in and out degree Laplacians. To this end, define the following

auxiliary matrices

1 if vertex i is the head of edge e
[Boutlie = (5.14a)
0 otherwise

and

1 if vertex i is the tail of edge e
[Bin]ie = . (514b)
0 otherwise

Note that by construction E = By, — Bin, hence both are binary matrices with both
column and row sums equal to 1. The following proposition allows us to represents

directed Laplacians using these two matrices and the regular incidence matrix.

Proposition 5.4.1. Given a directed graph G and the in and out incidence matrices
from (5.14), the following relationships hold:

1. The adjacency matrix is given by

Ag = By,B,

out*

2. The degree matrices satisfy

Dy = BB, and D% = BoubB,

out*

3. The directed Laplacians satisfy

Lig =BinE’" and LY = EBou.

Proof The proof can be found in [72, E9.13], the only difference is that their adjacency
is defined as the transpose of how we defined Ag in (A.1). Consequently, our Laplacians

are defined slightly differently. |

Using the above, we can represent the directed Laplacian by the product Lig = BinE’.

This suggests that a controller of the form
Kin = (Bin ® In)Ko(E' ® 1)), (5.15)
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can be used to represent various control laws over directed graphs. For example setting
K. = —I results in the aforementioned directed consensus protocol, while picking K, =
I, ® K for some gain K yields the synchronizing controllers discussed in [72, Sec. 8.4].
The controller structure in (5.15) mirrors that in (5.5). If (5.8b) holds, then the
proof of Theorem 5.1 applies verbatim to any MAS controlled by it. However, this
is not the case for (5.8a), implying that some systems may be stabilizable only if the

graph is directed, as illustrated in the following example.

Figure 5.4: The communication graph used in Example 5.4.2.

Ezxample 5.4.2. Consider a system of v = 3 first-order agents

0

Prls) = l s 1

} and Ps(s) = P3(s) = [ L/s 0 } .

1 1

Assume that their connectivity is represented by the directed cycle graph, which has
three directed edges (1, 3), (3,2), and (2,1) as shown in Figure 5.4. This system can
be described by (5.15) with

1 -1 0 010
E=]10 1 -1|, Bn=|001],
-1 0 1 100

and arbitrary block-diagonal edge controllers. It is then a matter of standard algebra

to verify that these plants admit denominators

- 1 0
M(s) = lo s/(s+1)
and
s/(s+1) 0

MQ(S) = Mg(s) = [ } = M;(s), VieNs.

0 1
Hence, condition (5.8a) holds for A = 0, whereas condition (5.8b) holds for no 4. Thus,
if the interconnection graph was undirected, then Theorem 5.1 would rule out the
existence of internally stabilizing edge controllers. But in the directed case in form
(5.15) with Bj, having full rank, what matters is only (5.8b). Hence, we cannot rule

out the existence of an internally stabilizing controller. And indeed, it can be verified
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that

Ke(s) = diag {12, [ 5;3 1 ] ,12}

results in an internally stable interconnection, with the closed-loop poles in {-1/2,-3/4, —1}.

\

Of course, following a similar procedure we may define the analogous Ky (corre-
sponding for example to the out-degree directed consensus protocol) and consider only

condition (5.8a), then again the proof holds unchanged.

Remark 5.2. The stabilizability of control architectures over directed graphs may nev-
ertheless still require checking both conditions of Theorem 5.1. This thesis is based
on an interpretation of the edge controller (5.15) as (dynamic) edge weights of the
directed graph. A directed graph is called weight balanced if the accumulated weights
of incoming and outgoing edges are equal for each node. It is known [22, Thm. 3.17]
that the consensus protocol for integrator agents can reach an average agreement, i.e.
x;(t) = (1/v)1’x(0) for all i, iff the underlying digraph is weight balanced and weakly
connected. A key property to prove this result is that the Laplacian of a weight-
balanced digraph, LY., satisfies ker L‘é = ker(Log)’ =Im 1. Viewed within the context of
Theorem 5.1, this implies that if edge controllers in (5.15) are chosen such that digraph
is weight balanced, then both conditions of (5.8) must be checked anyway. v

5.4.2 Arbitrary symmetric coupling

The result of Theorem 5.1 still holds if the incidence matrix is replaced with a different
coupling matrix, say F € R**Y as long as there is a vector 0 # v € R* such that v'F = 0.
Such generalizations of a MAS were recently discussed in [99], but are also included
in works considering, for example, distributed function calculation in MAS [100]. This

corollary is formulated below.

Corollary 5.4. Consider the setup in Figure 5.2, with some arbitrary coupling matriz
F € R¥*Y with some vector 0 # v € R¥ such that v'F =0. No LTI K, can internally

stabilize the systems if there is A € Co, common to all agents, such that

ﬁ ker [v;M;(1)]” # {0} (5.16a)
or =

() ker [0:M; ()] # {0}. (5.16b)

i=1

where M; and M; are denominators in the coprime factorizations of P; under Arx.
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Proof The proof follows that of Theorem 5.1, the only change is that (5.13) now reads

| M -Ne@ | ,
[0 won ][_NKM) o ]—[o (wen Mp( |-

The element above reads
(@0 Mp() =1 (' © L)Mp(D) =1 | 0iMy(2) -+ 0,My (D) |

and it is equal zero if and only if n € N}, ker [v;M;(2)]’". The rest follows using identical

arguments to the diffusive coupling case. [

5.4.3 Unstable systems with no poles in C,

It might happen that P; ¢ He not because of poles, or other singularities, in Co.
For example, P;(s) = s/(s + 1 + se™) has no singularities in Cy, but nonetheless does
not belong to He, see [101]. The proof still applies in this case, and all we need is
to replace (5.8) with the assumption that there is a sequence {4;} in Cy such that

infa;3 v'M;(4;) =0, or its dual version, holds for all i € N, and some v # 0.

5.4.4 Time-varying K

The main result also extends to the case of time-varying controllers. This is particularly
relevant for varying interconnection topologies, i.e. those where Eg() = E(t) is the
incidence matrix of the time-varying graph G(¢). Still, the condition 1’E(¢) holds for
any topology, rendering the denominator in (5.10) not stably invertible. We can then
use [102, Theorem (i)] to show that under no choice of K, the system is stabilizable,
at least in the finite-dimensional case, whenever either one of the conditions in (5.8)
holds.

5.5 Finite-dimensional agents

If the agents P; are finite dimensional, the result of the previous section can be re-
formulated in a more insightful way. This is due to the ultimate connection between
stability and pole locations, as well as clear definitions of cancellations in this case. So
we proceed with assuming that all transfer functions P;(s) are real rational and proper
(A always holds then).

Let pdir;(G, 1) and pdir, (G, 1) denote input and output direction of a pole A in G (s),
see Appendix C for details and other related definitions. The result below reformulates

the conditions of Theorem 5.1 via pole directions of agents.
Proposition 5.5.1. If P;(s) are real rational and proper, then (5.8a) and (5.8b) are

89



equivalent to the existence of A € Cqy such that

ﬁ pdir;(P;, 4) # {0} (5.17a)
and -
ﬁ pdir, (Pi, 1) # {0}, (5.17b)
i=1
respectively.

Proof Because A € Cq is not a pole of M;(s), Lemma C.1.10 applies and (5.8a) reads
NY_, zdiro(M;, 2) # {0}. Then (5.17a) follows by Lemma C.1.11. The proof for (5.17b)

is similar. -

In other words, for the system in Figure 5.2 to not be stabilizable, the agents should
not only have a common unstable pole, but also a common nontrivial direction of such a
pole. Directions are obviously matched in the homogeneous and SISO cases addressed
in Corollary 5.2 and Corollary 5.3, respectively. But the MIMO heterogeneous case

may be less trivial.

Ezxample 5.5.2. Consider a system with v = 2 first-order agents

1/s O 111
/Sll and Pa(s) = aﬂ;[lﬁ].

Pi(s) = [ 0

Directions of their pole at the origin are

1
pdir;(P1,0) = pdire(P1,0) = Im l 0

1
, pdirj(Ps2,0) = Im s
B
and

1
pdiry(P2,0) = Im l ] .
a

There are nontrivial intersections between input and output directions of the agents if
and only if 8 = 0 and @ = 0, respectively. The incidence matrix is £ = [_11] in this

case. Choose the edge controller (there is only one edge in this example) as

(a—B)B —«a

Ke(s) = Pp .
B 0

The closed-loop characteristic polynomial, understood as the lowest common denomi-

nator of elements of Ty(s) in (5.9), is then (s+a?)(s+5%). Thus, the closed-loop system

is stable unless @ = 0 or 8 =0, which agrees with (5.17). v

Also worth emphasizing is that conditions (5.17a) and (5.17b) might not be equiv-
alent for MIMO agents, as illustrated by the example below.
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Ezample 5.5.3. Return to the system studied in Example 5.4.2. Directions associated
with the (unstable) pole at the origin are

1
pdir;(P;,0) = Im l ol Vi € Ng

but

pdiry(P1,0) = Im # Im = pdiry (P2, 0) .

Thus, in this case (5.17a) holds, whereas (5.17b) does not. This agrees with what we

saw in Example 5.4.2 with respect to conditions (5.8). v

Another outcome of the finite dimensionality is that the formulation of Corollary 5.2

can be strengthened to an “if and only if” statement.

Corollary 5.5. If the agents are homogeneous, i.e. P; = Py for alli € N,,, and Po(s) is
real rational and proper, then an LTI K, ; can internally stabilize the diffusively-coupled

system in Figure 5.2 if and only if Py is stable.

Proof If Py is unstable, then it has a pole in Cy and Corollary 5.2 applies. If Py is
stable, K, = 0 does the job. [

One should be careful not to conclude from the proof of Corollary 5.5 that only
K. = 0 can be used to guarantee internal stability. The case of K, = 0 effectively
decouples all the agents leading only to a “trivial” coordination (i.e. all agents converge
to the origin). One can design edge controllers with additional external inputs to drive
the relative states ¥ to non-trivial solutions using the methods, for example, described
in [103]. For non-trivial agreement among the agents, the use of an unstable edge
controller is possible provided that an appropriately defined external input is fed into

the system at the point dy in Figure 5.2.

5.5.1 Diffusive control laws and unstable cancellations

dq

do

Figure 5.5: A generic feedback interconnection for internal stability.

The formulation of Proposition 5.5.1 is more intuitive than that of Theorem 5.1.
Still, neither of them explains why no edge controller can stabilize the system in Fig-

ure 5.2 if agents share common unstable dynamics, directions counted. In this part
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we aim at offering explanations. We argue that a key property to this end is intrinsic

unstable cancellations between the plant and the controller.

Definition 5.5.4. We say that the cascade (series) interconnection G2G; has cancel-
lations if
deg(G2G1) < deg(G1) + deg(G2)

where deg(G) is the McMillan Degree (cf. [104, Thm. 3.5]). We say that a pole of
G1(s) and/or Go(s) is canceled if its multiplicity in G2(s)G1(s) is smaller than the sum
of its multiplicities in G1(s) and Ga(s).

In other words, cancellations mean that some parts of the dynamics (modes) of either
factor disappear in the cascade. Cancellations in the SISO case are always caused by
the presence of zeros of G1(s) at the locations of poles of Ga(s), or vice versa. As such,
they are termed pole-zero cancellations. The situation is more complex in the MIMO

case. For example, let

1 -1
-1 1

B

Gl(s):%lé (1)] and Gg(s):[

with deg(G1) = 2 (two poles at the origin) and deg(G32) = 0 (no poles). The system G,

is static and thus has no zeros either. Nevertheless, the transfer function

11 -1
Ga(s)G1(s) = =
2(5)G1 (5) S[_l 1]
is first order, meaning that one of the poles of G1(s) is canceled. Such cancellations,
brought on by the normal rank deficiency of Ga(s), are a lesser-known phenomenon.
This, it seems, is exactly what happens in classic consensus, as shown in the follow-

ing example.

Figure 5.6: The communication graph used in Example 5.5.5

Ezxample 5.5.5. Consider once more Example 5.1.1 of integrator agents attempting to

achieve consensus, this time with v = 4 agents, and the corresponding undirected graph
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as shown in Figure 5.6. We have P(s) = %14, and with K, = —I5 we obtain the following

consensus protocol

-1-11 0 0 -3 1 1 1
1 0 0 -1 0 1 -2 1 0
g— et K:
0O 1 0 1 -1 1 1 -3 1
0O 0 -1 0 1 1 0 1 =2

Clearly deg(P) = 4 and deg(K) = 0, yet it is readily verified that

-3 1 1 1 -3 1 01fltoo0o0||l101-2
, 1|11 -21 0 1 -2 10f|l0fo0oo0f{014-5
P(S)EgKeE = - = s g
s 1 1 -3 1 1 1 -10]]00350f([001-1
1 0 1 -2 1 0 00[J]OO0OO0O0Of|O0O0 1
since the two static matrices are unimodular
deg (P(s)EgK.Eg) = 3,
hence a pole at the origin was canceled. v

The result below states that such cancellations are present between the plant and

the controller in Figure 5.2 whenever the conditions of Proposition 5.5.1 hold.

Proposition 5.5.6. Let P(s) and K.(s) be real rational and proper and let A € Cy be
a pole of P(s).

i) If (5.17a) holds, then A is canceled in P(s)K(s).
it) If (5.17b) holds, then A is canceled in K(s)P(s).

Proof Bring in minimal realizations

A;| B; Ak | B
Pi(s) = and K(s) = K| oK
i | Di Ck | Dk
so the realization
Pes) Ap| Bp diag{A;} | diag{B:}
s) = =
Cp|Dp diag{C;} | diag{D;}

is also minimal. To prove the first item of the Proposition it is then sufficient [104,

Prop. 5.2] to show that A is an uncontrollable mode of

Ax 0| Bg
P(S)K(S): BPCK Ap BPDK
DpCx Cp|DpDk
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To this end, note that (5.5) implies (1 ® )’ [ Cx Dx ] = 0 and condition (5.17a) is
equivalent to the existence of 0 # v € C™ such that v = Bjz; for some n; such that
n:(Al — A;) = 0. The latter is equivalent to the existence of n # 0 such that

n'(Al-—Ap)=0 and n'Bp=(1®0v)

for some v # 0. Therefore,

o]

and the PBH test for the realization of PK fails for the mode at A, proving the first

item. The second item follows by similar arguments. [

Ag - AU 0 Bk

:v’ﬂ®1’[C 0D ]:0
BpCx Ap—Al BpDg (Te D] Cx K

Unstable pole-zero cancellations between a plant and a controller are a consensual
taboo in feedback control. Textbooks treat them as a kind of a cardinal sin, which shall
be avoided at all costs. The reason is that canceled dynamics do not really disappear.
For example, poles of a SISO plant P(s) canceled by zeros of a controller K(s) always
show up in the closed-loop disturbance sensitivity T4(s), see (5.9). This is the very
reason to require internal stability. Unstable cancellations due to deficient normal
rank are less common and less studied. Nevertheless, they cause same repercussions.
Namely, canceled dynamics shows up in at least one closed-loop relation, rendering the
system prone to the effect of exogenous signals.

Assume, for example, that condition (5.17a), or (5.8a), holds for some A € Cq. It
follows from the proof of Theorem 5.1 that there is then v # 0 such that (5.13) holds.
Therefore,

Mg —-Np

€ zdiro(

,/1) = pdir;(7y, 1)

T -Nx Mp

where the equality follows by Lemma C.1.11 and the fact that the factors in (5.10) are
right coprime. By Lemma C.1.9 and (5.9)

Ta(s)
T(s)

Ty(s) (1®v)

T®v

has an unstable pole at s = A. In other words, there is a load disturbance d, in
Figure 5.2 such that either y or u or both is unbounded. Likewise, it can be shown
that if (5.17b) holds, then [ S Ty ] ¢ Hw, i.e. dy, or/and dy might cause an unbounded
y. This explains why the consensus protocol in Example 5.1.1 has an unstable load
disturbance response.

It can be shown that if the consensus discussed in Example 5.1.1 can be attained,
then all components of Ty but Ty are stable, whereas Tq(s) has a pole at the origin. This
agrees with the situation in SISO pole-zero cancellations discussed above. However, Ty

is not necessarily unstable in a general MIMO case if either of the conditions in (5.17)
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holds. The example below illustrates a different scenario.

Ezxample 5.5.7. Consider a system with v = 2 agents

s/(s+1) 0

| 1Ys 0
s 1] and Pg(s)—l

Pris) = [ 1 s/(s+1)

(both are second order). In this case there is only one edge. Select

10
02/s|

It is then a matter of routine calculations to see that S, Ty, and T, are stable, each having

Ke(s) = Ken(s) = =

(s+2)(25+1)%(3s+1) as the lowest common denominator of its entries. However, T(s)

has a pole at the origin in addition, rendering the whole T, unstable. v

Moreover, it may even happen that canceled dynamics of P are not excited by the

(load) disturbance d,, but rather only by d,.

Ezxample 5.5.8. Consider a system with v = 2 agents, yet again, now with the second

order

Pl(s):[s/(s+1) 1{s], P2(s):[1/s 1

0 0 s/(s+1)

and the edge controller from Example 5.5.7. It can be calculated that in this case T, Ty,
and T, are stable, each having (s+2)(2s+1)%(3s+1) as the lowest common denominator
of its entries. The sensitivity S(s) has an additional pole at the origin. This implies

that the responses to d, are all stable, whereas the response of y to d, is unstable. v

Remark 5.3. Stabilizability conditions for the setup in Figure 5.3 would be substantially
different from those in Theorem 5.1 or Proposition 5.5.1. If we consider the class of
LTT edge controllers K., then the stabilizability problem boils down to the question of
existing decentralized fixed modes (DFMs) in P, defined by (5.7), see [3, Sec.2.2]. If
controllers are allowed to be periodically time-varying, then even this condition is not
restrictive [105]. However, this analysis has a snag in that the very construction of P,
might have unstable cancellations. For example, return to the case of v = 3 integrator
agents with an undirected star interconnection graph discussed in Section 5.2. In this

case P(s) = (1/s)I3 has three poles at the origin, whereas

is a second-order transfer function. This P, is easily stabilizable by decentralized edge
controllers, e.g. by K, = —I5. But this controller cannot see the canceled unstable mode,

which remains a part of the closed-loop system. v
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5.6 Concluding remarks

In this chapter we have studied the internal stability of MASs controlled by diffusively
coupled laws. We have argued that internal stability, with entry points of exogenous
signals at the connections between the agents and the controller, is a vital property
in MASs and have proved that it can never be attained if the agents share common
unstable dynamics, directions counted. In particular, this class always includes the case
of homogeneous unstable agents or heterogeneous SISO agents with a common unstable
pole, like an integral action. We have shown that the underlying reason for the lack of
stabilizability is intrinsic cancellations of aligned unstable dynamics of agents by the
diffusive coupling mechanism.

An immediate outcome of this analysis is that the consensus protocol described
in Subsection 1.1.1 as well as its dynamic extensions cannot attenuate disturbance
affecting the agreement mode, assuming all the agents share an unstable pole and
direction. Since sharing such a pole is a necessary condition for reaching agreement
[44], this implies that diffusive coupling is extremely fragile in non-ideal scenarios.
Somehow, this uniformity must be carefully broken in order to avoid perturbations
to the agreement mode. This is the underlying reason behind several of the different
assumptions mentioned in Section 1.2 and Section 5.1. For example, in our notation

the condition in [53, Prop. 7] reads

|du@)|| <y V=0, dut) = 1/t(u; ® I,)dy(s)ds.
v.Jo

Since in that case the agents are integrators, the conditions requires that applying the
projection of d,(t) on the agreement space as an input to an uncontrolled agent would
result in a bounded trajectory. This agrees with our cancellations analysis, as the pole
at the origin is always a source of instability.

Agreement, by definition, is an unstable phenomenon, as it requires the agents to
converge to a non-zero trajectory from any initial conditions. Yet, there is more to gain
from Theorem 5.1 beyond internal instability. The generic zero direction implies that
in the all-ones direction there is no feedback. The diffusive controller cannot shape the
trajectory or attenuate disturbances or noise inputs at all. This begs the question, is
there an alternative architecture that can guarantee agreement, but still retain some
measure of feedback in the all-ones direction. This is precisely the motivation and

proposed solutions in the next chapter.
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Chapter 6

Beyond Consensus: The Next
Step?

The most important step a man can take. It’s
not the first one, is it? It’s the next one. Always

the next step, Dalinar.

Brandon Sanderson, Oathbringer [106]

Chapter 5 has exposed a crucial and intrinsic problem with diffusive controllers
whenever external inputs are introduced. Similar observations have been noted in the
literature, although without explanations and often brushed aside. Despite the focus
on internal stability, there are other, less obvious, issues stemming from the afore-
mentioned cancellations. Some have, to the best of our knowledge, never been clearly
stated or explored in the literature. The most common class of diffusive controllers
is by far variations of the consensus protocol, whose popularity exploded over the last
twenty years. Hence, it would be instructive to conduct an input-output analysis of the
consensus structure to illustrate some of the potential issues. Through such analysis,

we can gain insight and propose modifications to improve performance.
6.1 The consensus protocol revisited
Consider a system comprised v homogeneous SISO agents
Zi Yi = P(Ml' + d,) + Y0,i> for all i € NV (61)

where P is a given LTI model, u; is a control input, d; is a disturbance input, y; is a
measured regulated output, and yo; is an initial condition response of the agent. The
studied control problem for this system is to attain consensus among the agents, in the
sense

tlim Vi(t) = yagt, forallieN, (6.2)
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for an agreement variable y,gt € R, which is not prespecified. The consensus problem
is not-trivial if y,et # 0 and if the information about the neighbors is available to each
¥;. A more general form of consensus protocol (1.3) at the ith agent may be expressed

as the following diffusively-coupled law

u; = k;F Z()’j - yi)
JEN;
for some k; > 0 and filter F, which are design parameters. Furthermore, it is not unrea-
sonable to assume that measurements coming from neighboring agents are imperfect,

e.g. corrupted by additive noise. In this case the control input
u; = kl'F Z(yj + njj — yi) (63)
JEN;

for some noise signals n;;.

Assume that G is undirected and connected. It is then convenient to aggregate (6.1)
and (6.3) for all indices i, which facilitates the use of the rich algebraic graph theory.
So introduce the aggregate variables u, y, and yo (e.g. u’ = [ul S Uy, ]), as well as

the aggregate noise n, whose ith entry,

n; = Zﬂij, (6.4)

JeN;

sums up noises of all measurement channels of ¥;. In this case the controlled system
defines the relation
y=(U, ®P)(u+d)+yo (6.5)

and the consensus protocol reads
u=-KLgFy+KFn=—-(KLg®F)y+(K®F)n (6.6)

for K := diag{k;} > 0, where Lg is the graph Laplacian of G. A key technical result

required to understand properties of the controlled systems is given in the lemma below.

Lemma 6.1.1. The consensus protocol (6.6) results in
y = Ug' diag{S;}Uk yo + Ug" diag{S;P}Uxd + Ug" diag{S; PF}UkKn), (6.7)

where S; are systems with the transfer functions

1
Sils) =1 + Ak P(5)F(5) (6.8)

(with S = 1) and Ug € R¥” is such that UgK'/? is unitary and
UxKLgUg' = diag{Ak ;} (6.9)
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forO0=Ag1 <Aga2 < <Ak

Proof Tt is known from Proposition A.0.1 that for undirected and connected graphs
Lg =L, >0, with only a simple eigenvalue at the origin. This implies the existence of
a sought Uk and the validity of properties of Ak ;.

The rest of the proof essentially goes along developments in Proposition 2.1.2. Sub-
stituting (6.6) to (6.5) and using the mixed-product property from Proposition B.1.2,

we end up with the controlled system
y=(,+KLg®PF) '(yo+ (I, ® P)d + (I ® PF)Kn).

Note that (6.9) implies
KLg = Ug' diag{ax ;}Uk.

and since Ux = Ug ® 1 applying the mixed-product property once more results in

I, +KLs® PF)"' = Ul di Uk,
(I +KLg ® PF)™=Ux lag{luK,iP(s)F(s)} K

which yields (6.7). |
By (6.7), the controlled dynamics decouples into v independent subsystems
n.y = Simiyo+ SiPn;d + S;PFn.Kn, i€N,

for every n; € Im Uj.e;. Choose

ni = kUyge; for kx =1/y/tr(K1).

The signals n}y reflect then important properties of the controlled system. Because
Lg1 =0, Ug from (6.9) can be chosen such that Ulzlel = k1. Hence, 1 = kU (kUg1) =
k2K~11 and

4
’ 24/ -1 Vi —
=k“T'K = E — = .
Tlly K y - tr(K_l)ki YK

This is a weighted average of the outputs y; of all agents. It becomes the standard
average if all gains k; are equal.

Each n}y for i > 2 is not as transparent as n}y. Yet the sum of their squares

2
s

4
A= (mjy)? = IkUkyI* = |0}y
=2

is meaningful. Indeed, by the unitary property of Ux K'/2, we have |[kUg y||* = ||KK‘1/2y||2.
Hence,
A — K2y/K_1/2(I _ K2K—1/2-]]-“/K—1/2)K—1/2y

Because I — k?K~1/211"K~1/2 is an orthogonal projection matrix [65, Thm. 7.5], we end
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up with

= kK20~ 131 = Zt L (6.10)

Thus, A can quantify the deviation of y; from their weighted average, i.e. the disagree-
ment between ;.

The previous discussion implies that if 7y vanish asymptotically for all i > 2, then
the agents agree on the trajectory yx. This prompts the requirement to render all S;
for those indices decaying. At the same time, §1 = 1 regardless of the choice of F.
Thus,

Yk = Yok + K*PUVK'd + k> PF1'n (6.11)

where yox = k*1’K~1yg is the weighted average of the responses of the agents to
their initial conditions, k21’K~'d is the weighted average disturbance, and 1’n is the
cumulated noise. In the conventionally assumed disturbance and noise free setting,
consensus (6.2) is attained iff all initial condition responses yg ; converge, in which case
Yagt = lim; e Yo,k (#). Moreover, the disagreement A typically vanishes faster under

larger gains k;. However, the external signals change this situation dramatically.

6.1.1 Performance limitations of the consensus protocol

The best studied version of the consensus problem is that for P(s) = 1/s. The initial
condition responses yp ; are then constant for all i. It is common to have K = kI, and
F = 1. With these choices, Ak ; = kA;, where A; are the eigenvalues of the Laplacian

Lg sorted increasingly, the rows of Ux comprise an orthonormal eigenbasis of Lg,

Si(s) =

N
d Si(s)P(s) =
+ k/ll an S (S) (S) s+ k/ll

are stable for all k > 0, yx = (1/v) X\ i, and K2 =k/v.
Ifd =n =0, then yg () = (1/v) X7_; yo,i forallr > 0 and nly () = (1/+/v)e” kait e;Ukyo.
Consequently,

) 5 ” 1 Jleityoll”
/0 ’|y(t)_1]y0,K||2dl:V'/0 A(t)dr = EZT

i=2

meaning that the energy of disagreement is inversely proportional to the gain k. In
other words, increasing k reduces the disagreement between the agents.

This analysis is different from the standard ones in the literature, yet arrives to the
same conclusion: increasing k improves the convergence rate of the system. If n or d

are non-zero, however, the analysis changes in two major ways.

1. Internal stability is compromised. In this case yx satisfies

dyK(t)

Z (di (1) + kni(1))

IGN
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which is directly proportional to the average disturbance and the cumulative
noise. Hence, if either of the averages is persistently non-zero the agreement
variable will diverge. This is a special case of the results of Chapter 5, where
the canceled integrator pole reappears. Similar results extend to general agent

dynamics with unstable/marginally stable poles.

2. There is a trade-off between noise sensitivity and nominal performance.
Assume that n;; are independent zero-mean white processes with unit intensity
and d;(t) = 0. From the above equation, it is clear that yx (¢) is a Wiener process,
whose mean is yg g and steady-state variance grows unbounded, proportionally
to k?t. Likewise, consider the steady-state variance of disagreement, understood
as the mean value of lim, . vA(#). In this case n; are also white, with the inten-
sity |N;| and the covariance of n is Dgd(t — s5). Because the effect of the initial
conditions on 7}y vanishes, the steady-state variance of disagreement equals [107,

Thm. 1.53] the square Ha-norm of

SoP 0 ][e

T, =k . |UkkDJ?, (6.12)

where Dg is the degree matrix of G. It is readily verified that

Y €/-UKDQU/ e;
ITall3 = ki " =T
2",

Therefore, noise sensitivity, both of the agreed variable and disagreement, dete-

riorates as k increases.

As established, the first issue is unavoidable when using consensus-like (and more gen-
erally, diffusive) controllers as it depends solely on the agent dynamics. Moreover, if
we wish to reach non-trivial agreement this way the agents must have unstable poles.

To illustrate this, consider now general P and F. In the Laplace domain yg (s) satisfies
— 1 7 7 7
yk(s) = " (Vyg+ P(s)1'd(s) + kP(s)F(s)1'n(s)).

This represents uncontrolled initial conditions and disturbance responses, while the
noise acts on a series interconnection of the uncontrolled dynamics P(s) and controller
kF(s). Hence, to reach non-trivial agreement through controller (6.3) the uncontrolled
response to initial conditions cannot converge to 0, ergo P must be unstable.

Even if we ignore stability concerns, the second issue also poses a problem. Say we
assume that external signals cannot excite the unstable modes, hence we do not need
to worry about unboundedness of the agreement trajectory. In this case we may want
to choose k and F to somehow attenuate the noise. Revisiting the integrator consensus

example, it is clear that unless F(0) = 0, yg is still a Wiener process. This, however, is
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not legitimate as it would result in non-decaying S;n}yo. In general, choosing F' is not
quite trivial since it affects yx in an open-loop fashion and the other n}y via feedback.
For example, a naive choice of first-order low-pass F with F(s) = 1/(7rs+ 1), which still
results in stable S;, would increase each term in the expression of ||Tn||§ above by a

factor of 1 + k74; > 1.

6.1.2 A different perspective

Perhaps the fundamental difficulty of understanding the consensus protocol, is that it
attempts to solve a problem that is fundamentally different from those usually studied
in control theory. First and foremost, reaching agreement from initial conditions is
inherently an unstable phenomenon - a taboo in classical control problems. Second,
the problem is often analyzed without external inputs. Even when there are external
inputs, they are by large harmful signals to be attenuated. Consequently, many classical
tools such as loop-shaping are absent from the realm of multi-agent systems.

Yet throughout this work we have alluded to the similarities between agreement
and tracking, and between the consensus protocol to error feedback. In fact, we have
seen in Example 2.2.1 that this is exactly the case for complete undirected graphs.
Motivated by this, consider a slightly different outlook on this structure can be obtained

by rewriting (6.3) as

1 1
i = —kiF|N; i — Vi + ——n;), h Vi = —— E iy 6.3’
Ui iF l|(yl Yi |M|nl) where y; |/Vi|ieNiy] ( )

and n; is as in (6.4). This form is reminiscent of a servo problem in unity feedback
where only the error is supplied to the controller [108, Sec.1.3]. In this perspective,
ki |N;| is the local feedback gain and y;, which is the average of measured neighbors,
is the “reference” signal. A similar viewpoint was first proposed in [12, § III.A], and
indeed agreement is achieved if and only if the underlying graph is connected and all
the agents simultaneously solve this tracking problem.

Balancing the inherent tradeoffs between performance and robustness are the bread
and butter of classical control. In servo-regulation, for example, tracking performance
and robustness are difficult to simultaneously balance. This is, in part, a product of
the error-based unity feedback control architecture. To see why, note that the output

equation of the unity-feedback configuration in Figure 6.1(a) reads
y=(I+PR) Y (PRr—PRn+Pd) =Tr-Tn+T,d.

Loop-shaping arguments would require that in the frequency domain |T(jw)| = 1 where
the spectrum of r is concentrated, |T(jw)| < 1 where the spectrum of n is concentrated,
and |Ty(jw)| < 1 where the spectrum of d is concentrated. Yet all of these functions

are coupled with only one tuning parameter, R. Hence, if the spectra of the external
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(a) Error-based unity feedback.
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(b) Two Degrees of Freedom control.

Figure 6.1: Classical servo-regulation control architectures: 1 degree-of-freedom and 2
degrees-of-freedom.

signal are not well separated there are strict limitations on achievable performance.

One classical solution to this is employing a two degrees-of-freedom (2DOF) archi-
tecture, using separate controllers for outputs and reference signals. Indeed, variations
of 2DOF architectures, first introduced over 70 years ago [54], have been extensively
studied [108, Sec.2.9]. The term “two-degrees-of-freedom control” is used to refer to
several slightly different control architectures. Here we consider the architecture shown
in Figure 6.1(b), which can completely decouple the disturbance and tracking design.
This is accomplished by designing the control law in the following fashion. First, define
a signal y to represent the required output behavior. This is often modeled as the
response of some system T, to the reference signal r. Then, the signal & is designed to

achieve this behavior in an open-loop fashion, i.e. satisfying
y = Pii = Tyr.
If designed correctly, the control law reads
u=1id+R(y—-Pi)=Ry+(I-RP)i,
and using the identities § = Pii and (I — RP)"'P = P(I — PR)~! we obtain
y=3+(I—PR)"'Pd.

Therefore, the disturbance response depends only on R, and the tracking response on
i=PT,r.
It is reasonable to assume that, as in servo regulation, there might be an alternative

architecture to consensus that will simplify the design. The next section outlines some
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preliminary work in this vein, motivated by the analogy to the servo problem.

6.2 A two-degrees-of-freedom approach

J | —
R

!

Figure 6.2: A Two-Degrees-of-Freedom consensus protocol inspired by Figure 6.1(b)
with a network-generated reference signal.

Motivated by the parallels to tracking problems, we wish to derive a 2DOF variant
of the consensus protocol, as illustrated in Figure 6.2. To this end, consider a system

comprised v possibly heterogeneous p X m agents
PO Yi = P,-(ui + dl) + Y0,i» for alli e N, (613)

where P; is a given LTT model, u; is a control input, d; is a disturbance input, y; is a
measured regulated output, and yg; is an initial condition response of the ith agent.
The main difference between servo-regulation and agreement problems is that the
latter lacks a well-defined reference signal. Consequently, there are various ways to
select both r and y. It can be done in an open-loop way, with the agents exchanging
controller variables and agreeing on their common rendezvous point or trajectory. This
would lead to a control structure akin to that of [44], where the agents exchange the
state of some common internal model. Alternatively, it can be done in a closed-loop
way, where y is generated using only the measured neighbors outputs. Consider the
latter approach, which can be motivated by the classic consensus protocol. To this end,

assume that F =1 and n; = 0, then the aggregate form of (6.3") reads
u=—(KDg®I)(y~-y), wherey:=(A;®1I,)y

and K = diag{k;}. The above indicates that for consensus r = y, which is already
distributed according to the graph structure. A standing assumption is that the noise,
n, is generated at the network level. Hence, we assume it is additive to y. This implies

that a good model for the required behavior is a filtered version of y, i.e.
F=(U®T)((AL® Ny +n) (6.14)
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where T; is the additional degree of freedom and n represents additive noise induced
by the network (a la (6.4)). Note that we assume a uniform filter 7, for all the agents,
even heterogeneous ones.

Let P = diag{P;} and R = diag{R;} denote the aggregate plant and local controller
respectively. Substituting (6.14) into the 2DOF architecture yields the 2DOF consensus
protocol

u=Ry+(Iym—RP)ii, =Py (6.15a)

and resulting closed-loop dynamics
y = Up! diag{S;}Uk (Tad + (I ® Ty)n + Sy) (6.15b)

with

Si=(,-aT)”", Ta=,,-PR)'P, and S:=(I,,-PR).

and Up € R¥*” is such that UDD;/2 is unitary
UpAGUp,' = diag{a;}.

Note that the control signal has a decentralized, i.e. block-diagonal, component
while the other component is distributed with respect to the communication graph G
since

Up' diag{S:}Up = (I, — AL ® Ty) .
Recall that in agreement problems the objective is to reach agreement driven only by
initial conditions, thus the nominal performance of (6.15) depends on U51 diag{S;}UpS.
Like in the control law, the nominal dynamics have a decentralized component in S,
and a distributed component in UBI diag{S;}Up. Similarly, the disturbance dynamics
depend on the distributed UL_)1 diag{S;}Up and on the decentralized T}.

Unlike 1IDOF consensus protocols, the closed-loop dynamics in (6.15b) explicitly
separate the network and local dynamics. The network component depends only on
T;, which is uniform across agents, while local dynamics captured by S and Ty are de-
centralized by construction. This inherent separation naturally accommodates agent
heterogeneity provided that their network component, T;, is homogeneous. The follow-

ing theorem formalizes these observations.

Theorem 6.1. Consider heterogeneous agents driven only by initial conditions, inter-
acting over an undirected and connected graph G, and controlled by (6.15b). If each
local controller R; stabilizes its corresponding plant P;, then the agents reach asymptotic

agreement if and only if
S = (I, - aiTT)_l € Hw, Va; € specAf \ {1}
and Sy = (I, - TT)_1 has all poles in the closed left half-plane.
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Proof By assumption G is undirected and connected, therefore from Proposition A.0.1

there is a nonsingular Up such that

UDAgUL_)1 = diag{a;},

/2

and since Ag is symmetric there exists one such that UDDé1 is unitary. Defining

¥y = (Up ® I)y and pre-multiplying (6.15b) by Up ® I yields
y= (va —diag{a;} ® Tr)_lﬁo, with y¢ = (Up ® I)Syq.

By assumption R; internally stabilizes P;, therefore y((¢) is bounded and asymptotically
decays to zero. Now the system from input y¢(f) to ¥ is a block-diagonal system,

therefore each y; depends only on yo; as
$i = Sivo.i.

For the first direction, assume that S; is stable for all @; # 1 and that for @y = 1 all
of its poles are in the closed left half-plane. Then, for every € > 0 there exists a time
te > 0 such that for all ¢ > 7,

19(r) —er @ 1 (1)l <€,

where y1(¢) is the time response of the first block of . Since no coordinate of y
diverges exponentially, the transformations are well defined and invertible. Returning

to the original coordinates, we obtain

ly(@) =T, @31 (nll < €

because we can choose Up such that UBlel =1,.
For the other direction, suppose the agents reach asymptotic agreement. Then there

exists a trajectory yaet(f) such that, for all € > 0, there is a t, > 0 with

[y(6) = Ty ® yage(1)|| < € Vi > te.

The remainder of the proof follows by reversing the above steps. ]

Theorem 6.1 provides clear conditions for agreement but does not explicitly specify the
resulting agreement trajectory. Since S is stable, the trajectory is determined solely
by the unstable poles of S1. Hence, T, must be designed to both solve a simultaneous
stabilization problem against the eigenvalues of Ag and satisfy certain interpolation
constraints.

Still, pole cancellations can occur in the series interconnection UBl diag{S:}UpS,
altering the agreement trajectory. Such cancellations, however, are outside the feedback

loop and thus do not jeopardize stability. The following proposition provides a simple
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necessary condition for these cancellations.

Proposition 6.2.1. Let R, P, and T, be finite-dimensional systems, and denote by p;
the imaginary-axis poles of Sh. If p; is not a pole of Ul_)1 diag{S;}UpS, then it must be

a zero of S; for alli.

Proof Tt is known [104, Prop. 5.2] that given a cascade interconnection UBI diag{§ 1UDpS,
a pole p; of UBl diag{S;}Up is cancelled if and only if

pdiri(U51 diag{si}UD,pl-) N zdire (S, p;) # {0}.
Bring in a minimal realization (A, B, C, D) of diag{gi}, By definition
diag{S;} = D+ C(sI = A)"'B & Up' diag{S;}Up =D +C(sI - A)"'B
where
D=Wy'e)D(WUp®I), C= Uy ®I)C, and B=B(Up ®1).
Now let p; be an unstable pole of Ul‘)1 diag{S;}Up, then it must be a pole only of

S; since the other components are stable. Thus

vi € pdiri(sbl?i) = (e1®uv;) € Pdifi(diag{ﬁi},l?i) ,
and this is true for all unstable p;. By definition

pdiI‘i(U51 diag{ﬁi}UD,pi) = é/ ker(pil - A),
= (Up ® I)B' ker(p;I — A)’

=(Up ® I)pdiri(diag{ﬁi},pi) ,
and consequently
(e1 ® 07) € pdiry(diag{Si}, pi) = ((Uper) @v) € pdins(Up" diag{Si}Unp, pi) .

We know that Upe1 = y, where y is the normalized left eigenvector associated with

a1 = 1. Moreover, we know that

’ 1 ’
Y = —==1,Dg,

Vir(Dg)
and Dg is a diagonal matrix with only positive entries, therefore all the components of y
are nonzero. This implies that for p; to be canceled we must have (y®u;) € zdir, (S, p;),

since all the coordinates of y are non-zero, this implies that p; must be zero of all S;.m

Proposition 6.2.1 has an important implication for robustness. In consensus-like pro-
tocols, the resulting agreement trajectory is generally vulnerable to persistent dis-

turbances in the agreement direction, as these disturbances excite common unstable
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poles. Intentionally introducing heterogeneity in local controllers, however, can ex-
ploit the cancellation properties described above to improve robustness against such
disturbances. This insight follows a conjuncture made in the concluding remarks of

Chapter 5, and is demonstrated in the following example.

Ezample 6.2.2. Consider a group of v identical SISO agents, each with a pole at the
origin, aiming to achieve consensus. Standard consensus protocols with disturbance-
rejection mechanisms (for example [50]) typically cannot reject step disturbances, re-
sulting in linear divergence of outputs. Suppose one agent, say agent 1, is not affected
by DC disturbances. By intentionally designing local controllers such that R; is a
PI controller for all i > 1, all Ty; (except the first) have a zero at the origin, thus
effectively rejecting DC disturbances. Despite this heterogeneity, agents still reach
consensus since, according to Proposition 6.2.1, no cancellations between the network

and local dynamics occur. v

In the absence of cancellations in U[_)1 diag{S;}UpS, the agreement trajectory is
entirely determined by T;, as is the response to network noise n. Consequently, the
design of the network filter T, depends only on the graph G, the desired agreement
trajectory, and the spectrum of network-induced noise. Crucially, it does not depend
on the agents’ dynamics, P. This significantly simplifies the design of T, for prescribed

agreement trajectories, as illustrated in the following example.

Ezample 6.2.53. Assume for simplicity that the agents are SISO, and that their goal is
to reach consensus, i.e. agreement to a constant. Assuming that the are no unstable
cancellations in the local loops, by Theorem 6.1 reaching consensus depends only on T;
and the eigenvalues of A’é. Since we know that spec A’é € [-1,1] (c.f Proposition A.0.1),
we can easily derive some simple prototype network filters to guarantee consensus for

any connected graph. Some examples are provided below.

1. First order low-pass: we have

T.(s) k Ts+1
s) = .
' s+ 1—a;k

= S: = (1 —a;T,(s)"! =
a1 5 (1 - a;T:(s))

Clearly for k = 1 §; always has a simple pole at the origin, and §; for i > 1 will

be stable for any 7 > 0 and any undirected graph.

2. Second order low-pass: similarly, for arbitrary 2nd order filter we have

k A (r15+ 1) (105 + 1)

Tr = Sl = 9
(s) (t1s+ 1) (125 +1) = 5i(9) 717952 + (11 + 10)s + (1 — ajk)

which again requires k = 1 to ensure an integrator and is otherwise stable for any

graph and 7; > 0. Note that the same holds for a second order underdamped
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system since

kw? A 242 + w2
T.(s) = O 5 = Si(s) = ° {wn52 ©n )
§2+20wps + w2 52+ 20wy s + wi(1 — a;k)

3. Third order system: here we have

k 2
Tr(s) = O

(s + 1) (52 + 2L wys + w2)

(15 + 1) (5% + 2L wps + w2)

Si(s) =

783 + (20 wnT + 1)52 + (T2 + 2L wy)s + w2 (1 — ajk)’

Applying the Routh-Hurwitz criterion results in
wn (2L (Twn)? + (4% + 1w, +20) > 7(1 - a;)

under the assumption that k = 1 and that all parameters are positive. This case

is slightly more challenging, but can still be addressed with some conservatism.

Define
frwy) = 28 (twp)? + (482 + D twy, + 2C.

The polynomial f(tw,) has roots at —2¢ and —1/(2¢); hence for tw, > 0 it is
strictly positive. Since (1 — @;) < 2 and f(0) = 2, the original inequality is
satisfied if

2w, > 27,

which is easily achieved. v

Similar procedures can be carried out for more complex filters, such as ones with zeros,

as well as for other agreement trajectories.

Ezxample 6.2.4. Assume that the goal is to reach agreement on some harmonic signal
at frequency wo. All T;(s) ensuring that S1(s) has poles at +jwy can be parametrized

via
2,

(s + 1)2

for any stable and proper Q(s). Ensuring stability, however, is more difficult. Rewriting

T (s) =1+

Q()

.§[~ s) we have
(s) ) .

Loy o vl ()

T=a; (s+1)2

Si(s) =

which is equivalent to the following robust control problem:

2 2
N +w0

Find Q € Ho, to stabilize P(s) = G
h)

k € [-0.5, ).
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Optimizing on Q may not be trivial, but it follows that any static Q satisfying

1
2
—0.5a)0

0 <

solves the equivalent problem. v

Finally, to see the potential of the method in combating noise, consider the counter-
part of signals i}y as in Section 6.1. Note that Ag is symmetric just like Lg, hence we
can construct vectors n; that decouple i}y into v independent subsystem by repeating

the procedure we did for KLg but for Ag = D;Ag. Namely, we may choose

ni = kUpei, ko =1/+/tr(Dg)

resulting in
ny = Si (ejUpTad + Ty + e, UpSyo), #;=eUpn i€N,. (6.16)

In general e;Up is not known, hence each 7}y depends on some linear combination
of the local loops. There are two notable exception to this, one being the agreement
direction and the other the noise response. For the agreement direction we can choose
Up such that

UBlel =k21 and e Up =«21'Dg,

resulting in
)y = k3811 Dg (Tad + (I ® Ty)n + Syp) .

Assuming that Dg is globally known, this implies that we can calculate precisely the
dynamics generating n7y. As for the noise response, since T; is uniform among all agents
things simplify in similar fashion to classical consensus. Namely, we can construct
an explicit expression for the steady-state variance of the disagreements as in (6.12)

through the squared Hy norm of

SQTI- 0 8’2

Ty = ks : |upD . (6.17)

Similar standard consensus, each S; depend on the corresponding @;, and to minimize
(6.17) we must a-priori know the graph just like in (6.12). However, the noise response
in the agreement direction always depends on $17; which is independent of the graph.
This is a stark contrast with 1DOF agreement protocols, where there was no feedback
at all in the agreement direction. Using the 2DOF architecture we can directly design
T; to attenuate the effects of the noise in the agreement direction, and still implicitly

attenuate the disagreement variance.
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6.3 Numerical examples

AN

Figure 6.3: The underlying communication graph for the examples in Section 6.3.

The following two examples illustrate the flexibility and potential of the 2DOF
protocol. In all examples, a group of v = 5 integrator agents, Py = 1/s, attempts
to reach static consensus. The agents interact over the undirected graph shown in

Figure 6.3, whose spectral properties are given by

1
1 2 V33-3
_ -1, _ -
y = ' z , specDg Ag = {T,—0.5,O, 1} .
_2_

In both examples we compare two architectures: (i) classic IDOF consensus using (6.6),
and (ii) the 2DOF protocol (6.15). The controllers are tuned to achieve similar nominal
performance as measured by settling time. Then, we show how we can improve the

behavior of the agreement mode under non-nominal conditions.

6.3.1 Attenuating agreement mode drift

One of the main issues with the consensus protocol is the lack of feedback in the
agreement direction as illustrated in (6.11). When afflicted with white-noise as in
Subsection 6.1.1, this imposes a direct trade-off between the nominal performance and
the variance of the output. In particular, when considering the agreement variable
under white-noise we see that the variance diverges at a rate proportional to the gain
k. In this example, assume that the agents are controlled via (6.6) with K = kI,.
For the given graph, numerical simulations indicate that a choice of k = 2.65 yields
a settling time of 7y ~ 1.433[s]. Using (6.11), when driven by additive white noise
this design results in Wiener process with a linearly increasing drift with a slope of
k/v = 0.53. Moreover, by (6.12) the steady-state variance of the disagreements equals
17,112 = 0.9858.

To illustrate the potential of the 2DOF scheme, we shall design controllers T, and R

to ensure consensus with the same nominal performance and improved noise sensitivity.
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To this end, consider a third order network filter

2

Wy

Ii(s) = (Ts+1)(s2 + 2L wps + w2)’

resulting in noise response

2
n

783 + (20 wnT + 1)52 + (T2 + 2L wy)s + W2(1 — ;)

$i()Te(s) = “’

Minimizing the slope of the Wiener process’ drift amounts to minimizing the squared

Hs norm of
2

Why

s81(s)T:(s) = 752 + (20 wnT + 1)s + (Tw?2 + 2L wy)

which is a simple second order system with a canonical companion realization

T

0 1 0
s§1(s)Tr(s)= _Tw,2L+T2{a)n _2{0)7,—17+1

2

@ 0 o

For this simple structure we can analytically calculate the squared Hs norm by solving
a Lyapunov equation, resulting in
w3

H“§ ! (S)Tf(s)Hz " Qo + 24)?2%74 1) (6.18)

From Example 6.2.3 we know that this third order filter will ensure consensus for any

undirected and connected graph if
gwn > T,

and when combined with (6.18) we have a non-linear minimization problem. Note
that a heuristic minimization strategy would be to keep w, small and 7 large, while
selecting ¢ to enforce the stability constraint. This, however, could lead to slow poles
and a dominant zero at 1/7 in S;(s) which would impact the nominal convergence rate.

After some trial and error with different bounds on the parameters, we obtained

w, =3

9
v =5 = L= (5s+1)(s2+125+9)° (6.19)
¢ =2

For this T; we can calculate the disagreement norm via (6.17) as well as estimate the

slope of the variance via (6.18), resulting in

27
34-61

7|2 = 0.1605 and [|sS1(s)Ti(s)[12 = ~ 0.0116.
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After some trial and error, a uniform local controller

7.586s + 16

Ro(s) = —
08) =~ 04183

achieves a nominal settling time of fy ~ 1.432[s] which is comparable to the standard

protocol.

wO 2

|
|
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(a) Evolution of the outputs under nominal condi- (b) Evolution of the outputs w/ additive white

tions. measurement noise.
0.05 -
——— 2DOF design
0.045 - — — Standard consensus protocol

(¢) The squared disagreement norm, A(z), at steady-state for both designs.

Figure 6.4: Simulations of the control designs for the example in Subsection 6.3.1 (solid:
2DOF design, dashed: standard consensus protocol).

Figure 6.4(a) shows the nominal behavior of both designs, which indeed have com-
parable settling time. Note that the designs converge to different consensus points,
classical consensus to the average of initial conditions and the 2DOF to some weighted
average which also depends on T; and S. Figure 6.4(b) shows the same setups, now
with white noise with intensity |N;| applied at ¢ = 5[s]. Since both designs have a pole
at the origin for 7]y, both behave as a Wiener process with linearly diverging variance.
However, the 2DOF design has noticeably smaller drift compared to the system con-

trolled by classic consensus. In fact, denoting the nominal consensus values by Vogof
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and Ycon, after 60 seconds we have errors of
I|Y2dof(60) = Y2dof] ||2 =0.64 and ”ycon(60) — Yeon| ”2 =9.1698,

respectively. The improved performance also extends to the disagreements as predicted
by comparing the Hy norm of T, and T,,. This is illustrated in Figure 6.4(c), where
A(r) = }’:Q(r];y)2 is shown in steady state for both designs.

6.3.2 Consensus with disturbance rejection

Consider now again Example 5.1.1, which served as a motivating example for the insta-
bility discussed in Chapter 5. Namely, assume that one agent in the group is perturbed
by a step disturbance at t; = 5[s]. Since this common instability is necessary for the
agents to reach agreement, the 2DOF framework is not internally stable either. Despite
this, as in the previous example, we can attenuate the divergence rate of the output
by shaping T;. For example, Figure 6.5 compares the designs discussed in the previous
example with a delayed step applied to the first agent. Indeed the output trajectories of
both designs diverge linearly in response to the step disturbance, but the 2DOF design
does so significantly slower.

Still, we can obtain even better results. Contrary to the response to noise, the
disturbance response does not depend strictly on T, but also on Ty. Following Exam-
ple 6.2.2, we know by Proposition 6.2.1 that if there is at least a single “safe” agent,
the 2DOF architecture can reject disturbances. This requires the agents to simply de-
sign local controller to reject the particular disturbance using the celebrated internal
model principle [109]. For the particular case of a step disturbance, any PI controller
would ensure perfect rejection of the step disturbance. Hence, a 2DOF protocol with
an appropriate network filter T;, local PI controllers R; for i = 1,...,v — 1, and any
stabilizing controller R,,, would still achieve asymptotic consensus.

To illustrate this, consider once more classic consensus with k = 2.65 and the 2DOF
protocol with network filter (6.19), and assume that the fifth agent is not affected by
DC disturbances. Following the logic outlined in Example 6.2.2 we design the following

local controllers

4745 +8.7T7 7.5865s + 16
Ri(s) = ——23F 0000 o Ny, and  Ry(s) = ——228 70
(s) P PeNy, and Rs(s) = ————ms

Since the first four agents have local PI controllers, they will asymptotically reject step
disturbances. Despite this, we know from Proposition 6.2.1 that ST, would still have a
pole at the origin in the agreement direction, as required for consensus. Consequently,
the agents would converge to consensus, but as long as agent 5 is safe, the outputs
would not diverge. This is illustrated in Figure 6.6 where agent 1 suffers from a step
disturbances at t; = 5[s]. This simple way to ensure disturbance rejection is in stark

contrast to the unavoidable fragility of diffusive coupling discussed in Chapter 5.
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Figure 6.5: The output trajectories of controllers from the example in Subsection 6.3.1
for a step disturbance applied to agent 1 at ¢t = 5.

6.4 Concluding remarks

The 2DOF architecture developed here is an intriguing and novel alternative to consensus-
like protocols. The separation between the local loop and network filter is a power-
ful tool, which allowed us to treat heterogeneous agents using similar tools to those

employed in homogeneous 1DOF consensus protocols. Combined with the clean sepa-
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Figure 6.6: The output trajectories of the 2DOF design with PI controller from the
example in Subsection 6.3.2 for a step disturbance applied to agent 1 at ¢ = 5.

ration between local dynamics and the network noise, the architecture allows for “off
the shelf” design of network filters. Such filters can be designed a-priori to achieve
some prescribed noise attenuation: explicitly in the agreement direction and implicitly
for the disagreements. In addition, controller heterogeneity can be exploited to reject
local disturbances - even those exciting unstable agreement poles. As shown in Chap-
ter 5, this is strictly impossible under standard diffusive coupling. Combined with the
parallels to classical servo problems, 2DOF consensus protocols seem like a promising

alternative to their classical counterpart.
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Chapter 7

Conclusions and Future

Directions

Learning does not make one learned: there are those
who have knowledge and those who have understanding.

The first requires memory and the second philosophy.

Alexandre Dumas, The Count of Monte Cristo [110]

In this chapter we conclude the research of this thesis. We begin with a brief
summary and concluding remarks, and follow with suggestions for future research di-

rections.

7.1 Summary and conclusions.

The research in this thesis was motivated by the lack of distributed sampled-data
controllers incorporating tools from modern optimal sampled-data control such as gen-
eralized D/A (hold) and A/D (sampler) devices. The obvious reason is that such tools
tend to naturally incorporate local emulation of the entire system [69], [74], [111], thus
scale with the dimension of the system. In multi-agent systems scalability is paramount
since the dimension of the overall system increases with the number of agents, reducing
the attractivity of such tools. Hence, we asked the simple yet practical question: is
there an interplay between spatial (distributed) and temporal (sampling) constraints
in multi-agent systems that can be exploited.

In an attempt to answer this question, we considered the simplest of multi-agent
system control problems, consensus of integrator agents, with the constraint that the
communication is sampled. This resulted in the first insight to be exploited, hidden
in the word communication. Unlike lumped systems, multi-agent systems can natu-
rally have at least two time-scales (or sampling rates) — one for communicated and
one for locally measured information. A second insight into how the spatial and tem-

poral constraints interplay is that asynchronous sampling is equivalent to a switching
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spatial topology, as discussed in Example 2.1.3. We then combined these two insight
with an additional assumption, motivated by practical considerations through Moore’s
law [112]: computing power tend to becomes exponentially smaller, cheaper, and more
powerful over time. Hence, assuming that each agent has significant computing power
locally available can be reasonable. Combined, these three principles led us to down the
road of the emulation architecture in Chapter 2, which employs fast local measurements
and complex local emulators. While deriving the main results, we inadvertently dis-
covered another fundamental insight, as detailed in Subsection 2.3.1. In short, to reach
agreement one does not actually require the states (or outputs) of the entire group, but
rather only their centroid. Since the centroid always has the same dimension as a single
agent, emulating it directly renders the controllers invariant to the number of agents
and thus scalable. These ideas were then further exploited in the various generaliza-
tions described in Chapter 3 and Chapter 4, where scalable, distributed sampled-data
controllers were designed for increasingly complicated agreement problems with inter-
mittent and asynchronous sampling.

While the first part of this thesis is clearly motivated by the original research ques-
tion, the second part diverges slightly. An important property exploited within the
emulation architecture is the importance of the centroid and its orthogonality to the
disagreement. This is an intrinsic property of the diffusive structure, regardless of
sampling. Interestingly, the ideal analog closed-loop derived in Subsection 3.2.1 shows
that in general the centroid is unstable, regardless of the feedback gain used on the
disagreements. This hinted that there may be some hidden instability even in clas-
sical MAS controllers, a notion supported by anecdotal evidence. Since problems in
the emulated analog loop will naturally propagate to the sampled-data version, this
prompted the investigation of general analog diffusive coupling in Chapter 5. The
system-theoretic investigation in Chapter 5 revealed a fundamental issue common to
all diffusive controllers: it cannot internally stabilize agents with a common unstable
pole and direction. This in particular covers all variations of agreement with homoge-
nous agents, since such a pole is necessary for agreement [44]. Moreover, this instability
manifests in complete lack of feedback in the agreement direction, just like the centroid
dynamics in the ideal case. Consequently, even if this instability is disregarded, diffu-
sive controllers cannot attenuate the effects of disturbances and measurement noise on
the agreement trajectory. Robustness to such signals is the bread and butter of classical
control, making diffusive coupling an unsuitable architecture in practical applications.

Over the years diffusive coupling and the consensus protocol became almost synony-
mous with solving P 1, these architectures are usually assumed a priori when variations
of P71 are considered. The instability results of Chapter 5 imply that it may be advan-
tageous to sever this tie, and reexamine the consensus protocol and #; independently.
This preliminary research is the focus of Chapter 6. By conducting an input-output
analysis of the consensus protocol, we were able to both highlight its shortcomings

and isolate its strengths. Namely, the lack of feedback in the direction of 1 naturally
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reduces agreement to a simple stabilization problem assuming that the agents P; share
an internal model of the agreement trajectory. However, it also makes it impossible
to change the agreement trajectory or attenuate the effects of external inputs in this
direction. Furthermore, as shown in (6.3”), locally the consensus protocol is equivalent
to a proportional controller acting on the error between the local measurement and
neighboring centroid. With external inputs, this is essentially a servo-regulation prob-
lem with the reference generated internally. This parallel to classical servo problems
motivated the two degrees-of-freedom approach derived in Section 6.2 as an alterna-
tive to consensus. We have then shown that not only does this architecture retain the
feedback path in the 1 direction, it almost completely decouples the local loops. Unlike
standard consensus, reaching agreement is no longer a simple stabilization problem, but
also requires some interpolation constraints to be satisfied. This complexity is offset by
the ability to attenuate network noise and even completely reject certain disturbances

as shown in Section 6.3, hinting that that this architecture may have significant upside.

7.2 Future research directions

A reoccurring theme in this research, is that small modifications can have significant
ramifications. Consequently, there are numerous additional modifications and exten-
sions that can be made to the difference results in this thesis. Some of these proposed
directions are outlined in the three subsections below, each dedicated to one of the
three main components of this work: i) the emulation scheme, ii) internal stability,
and iii) the 2DOF structure.

7.2.1 Extending the emulation scheme

Heterogeneous agents. In Chapter 3 we considered homogeneous agents under ei-
ther full-state or output only measurements. Despite these changes, the underlying
structure was the same as it was for simple integrators: track the emulated centroid
and update via discrete consensus-like update scheme. It is well-known that a neces-
sary and sufficient condition for synchronization in continuous time is the existence of
a common internal model which the agents must track [44], [46]. This result fits in
nicely with the emulation scheme, where locally the agents had to stabilize the dis-
agreements and just emulate the required trajectory. It seems reasonable that given
agents (A;, B;, C;,0), controllers inspired by [44, Eq. 10] such as

Xi(t) = Ai%i (1) + Bju; (1) + Li(C%; (1) — yi (1))
i (1) = Aofi; (1)

(D) = (s -~ > (s = fu(s0)

l€Nl[k]
ui(t) = Ki(X;(t) = ;) + Ty i ()
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where K; and L; are stabilizing feedback and observer gains, and II; satisfy the regulator
equations I

AiHi + BiFi = HiAO

ClIl; =1

will solve 5. There are technical difficulties, of course, due to the heterogeneity of
the agents, but not a conceptual one. Note that replacing the above with C;I1; = R for

some common R would change P2 from state to putpur synchronization.

Modifying the update map. In Chapter 4, we have seen that the convergence rate
of the discrete dynamics lower bound the convergence rate of the overall system. In
addition, since the update map operates a consensus-like protocol, it is sensitive to mea-
surement noise as described in Chapter 6. The fact the discrete dynamics follow those
of first-order consensus regardless of the actual dynamics can be exploited to improve
the convergence rate and reduce the noise sensitivity. Following Proposition 4.3.1, we
know it is possible, under certain conditions, to tune edge weights without changing the
validity of the results. These weights can also be time-varying as long as they satisfy the
aforementioned conditions. This implies that we can directly implement known results
about optimal edge weights to the existing scheme, cf. [40], [83], [85]-[88], assuming

the conditions of these works hold.

Additional analog dynamics. Our underlying assumption has been that the agents
can continuously measure local information. An interesting and non-trivial extension is
to assume that the agents not only have continuous local information, but continuous
information of some subgraph. This could represent, for example, situations where the
agents start in some clusters which are sufficiently close to allow communication. This is
not a trivial extension, since it is not obvious what the analog part should be doing. On
the one hand, trying to use it to stabilize the agents would require designing structured
stabilizing controllers which are known to be NP-hard [9]. On the other hand, using
it to keep clusters “close” can result in multiconsensus [66], resulting in two different

agreement problems - one in the intersample and one in on sampling instances.

Nonlinear agents and controllers. Although conceptually similar, i.e. locally sta-
bilizing and discretely agreeing, this poses significant technical hurdles. It was conjec-
tured in discussions with Prof. WPMH Heemels and Prof. Erik Steur, that a sufficient
condition on the local loops would be strict incremental stability. Alas, this direction

has not been pursued thus far.

Applications. Consensus and synchronization are important not only for themselves,
but as building blocks for more realistic objectives. Two interesting applications are
rigidity-based formation control and distributed algorithms. In rigidity-based forma-

tion control the controllers used involve objects called rigidity matrices, which can be
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thought of as Laplacians with state-dependent nonlinear weights [113]-[115]. It would
be interesting to try and adapt the emulation scheme for formation control, or at least
for its consensus part. The second application is more straightforward. Consensus-
like steps are a well-known feature of distributed algorithms [17]-[19], [116], hence
implementing the emulation scheme seems like a natural step. Possible hurdles include
accommodating for additional dynamics, possible nonlinearity, and modifications for

discrete-time dynamics.

7.2.2 Doubling down on internal stability

Nonlinear controllers. It is a non-trivial question whether or not nonlinear con-
trollers can stabilize diffusively coupled systems. Clearly the methods used in proving
Theorem 5.1 relied heavily on the linear nature of the controllers through the coprime
factorization, which does not easily translate to the nonlinear case. However, it seems
intuitive that similar results would hold even in the nonlinear case. Even in the non-

linear case, the controller can be represented as
K=(E®IL)K(E"®]I).

for some nonlinear operator K.. Controllers are diffusive if and only if they follow the
structure from Section 5.2, namely the process relative outputs and sum the along the
edges. The pre and post multiplication by the incidence matrix constraint the measure-
ment to be relative, and output to sum over the edges. Hence, the deficient rank would
still be there even for nonlinear edge controllers. Following the discussion in Chapter 6,
this still implies that there are certain inputs which are in a sense uncontrollable by
the diffusive structure. Proofs might be more technically involved, but the results seem
plausible. One possible way to analyze this system is by considering some nonlinear
projection onto the agreement and disagreement spaces, and analyzing whether the

feedback path disappears in the agreement space.

Nonlinear agents. As before, it is reasonable to believe that the instability result
would hold even for nonlinear agents. Some evidence in this direction is due to Lya-
punov’s indirect method, i.e., analyzing the linearized model. Since for any linearized
model the system satisfies the assumptions of Theorem 5.1, it will be locally unstable

around every point.

7.2.3 Maturing the two-degrees-of-freedom protocol

Conditions for graph independence. A staple of diffusive coupling is that if cer-
tain local conditions are satisfied, the controllers will drive the agents to agreement
for any connected graph. This is still a missing piece in the 2DOF protocol, as The-

orem 6.1 requires a robust stability condition with respect to the eigenvalues of A;.
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Example 6.2.3 and Example 6.2.4 showed certain families of network filters that can
ensure consensus or simple harmonic synchronization for arbitrary graphs, but the ar-
chitecture still lacks more general results. Preliminary results based on the small-gain
theorem and the generalized Nyquist criterion hint that such conditions may exist for
SISO agents. Unfortunately, the results were not finalized in time and are therefore

omitted from this thesis.

Dealing with uncertainty. Here there are two types of uncertainties: i) local un-
certainties, and ii) dynamic uncertainties on the edges. The difficulties with the first

kind are due to the component Cpy, in Figure 6.2, which acts as
Cor = P7'T;.

If P is uncertain, then the plant inversion is not perfect and (6.15a) does not hold.
Since the “reference” signal in this case is a filtered version of the real output, the
resulting dynamics are harder to analyze and predict. In contrast, the second type of
uncertainty might be easier to analyze. This type would affect Ag, turning it into a
dynamics variant A’g'(s). For some interesting cases, such as when each edge of A’é(s) is
afflicted by a different delay, certain important properties are unaltered. For example,
note that in the delay case A;(O) = A’g'. Since static consensus is essentially a DC
objective, it implies that it is still achievable. This is supported both by simulations
and preliminary theoretical results saying that if certain small-gain conditions hold for

T;, then consensus can be achieved for arbitrary edge delays.

Designing good 2DOF agreement controllers. As established in Theorem 6.1,
reaching agreement requires that $; has prescribed unstable poles, and that S; are stable
for alli > 1. One possible approach to solving this problem is by first parameterizing all
filters T; ensuring the prescribed poles, and then solving a stabilization problem with
uncertain gain. The resulting problem, however, is not a trivial one for two reasons.
First, potentially there can be some i such that a; = 0, hence S; =1. Assuming nonzero
noise, this implies that T, itself must be stable, rendering this a strong stabilization
problem. Second, strong stabilization problems with uncertain gain has been solved in
the past, cf. [117], but under the assumption that the gain is strictly positive, which
is not the case here. Consequently, even the mere stabilization problem cannot be
generally solved using standard tools.

Moreover, T; and a; completely determine the noise response, thus ideally we would
like to solve a robust H, problem for S; and not simply stabilize it. If the graph is
perfectly known, then this might be slightly simpler as (6.17), for example, could be
designed directly. Note that even directly minimizing (6.17) would only minimize the
variance of the disagreements, and that the agreement mode must be treated separately.

Since 8; is by definition unstable, regular optimal control methods are also not directly
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applicable to design T;.

Revisiting classical tools. The 2DOF protocol could serve as a catalyst for a new
variation in classical control - designing “good” controllers while enforcing certain un-
stable closed-loop poles. This is somewhat of a dual problem to classic internal model
principle [109], where the goal was to place specific blocking zeros in the closed-loop.
Such problem would have been considered nonsense in classical settings, but arises
naturally in agreement problems. For example, the Youla-Kucera parametrization is a
powerful tool that parametrizes all internally stabilizing controllers for a given system.
It is then commonly used in designing both optimal [104, Ch. 7] and robust [118,
Ch. 6 — 7] controllers. As established, agreement problems require specific unstable
closed-loop poles. This precludes internal stability and by extension the use of the
Youla-Kucera parametrization. However, if we could derive a similar parametrization
that relaxes the internal stability requirement, it can bridge the gap between classical
H,, tools and agreement protocols. In particular we would like to be able to enforce only
prescribed unstable closed-loop poles. Assuming this can be done, it could also be used
to derive a parametrization of all possible 2DOF protocols using coprime factorizations

as in the servo case [55], [119].

A 2DOF sampled-data emulation approach. Finally, an obvious direction would
be to revisit the emulation scheme from Chapter 3 and apply it in conjunction with the
2DOF approach. This idea has two immediate variations. One, is to directly emulate
the 2DOF scheme instead of the heuristic diffusive controllers from Chapter 3. The
second variation is to implement the scheme as it is, locally emulate y, and update it
at sampling instances. This potentially would not increase the overall dimension of the

controller, and still keep only the communicated information as sampled-data.
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Appendix A

Introduction to Graph Theory

Graphs are widely studied mathematical objects [23], [120] and are one of the main
tools in modeling multi-agent systems [22]. Therefore, it is important to introduce
some common terminology, notation, and results.

A mathematical graph G is a pair of sets (V, &) where V is the set of vertices, and
&E CV x YV is the set of connecting edges. Given an edge (v;,v;), the node v; is called
an in-neighbor of v;, while node v; is called an out-neighbor of v;. The in (out) degree
of a vertex, denoted deg;(v;) (resp. deg,(v;)) is the number of in (out) neighbors of v;.

The in-neighborhood of vertex j is defined as all vertices v; such that
v; € N}n = (v;,vj) € 8.

Similarly, the out-neighborhood of vertex i is defined as all vertices v; such that
vj € NP = (vi,vj) € E.

A graph is called undirected or symmetric if (v;,v;) € & = (v;,v;) € &, and directed
(digraph) if the ordering of the vertex pair matter. If the graph is undirected then
NiOut = Niin = N; for all i. A graph G’ = (V’,&’) is called a subgraph of G if V' €V
and & C &. A subgraph is called spanning if V' = V.

A directed path is an ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge of the graph. A cycle is a directed path that
starts and ends at the same node, a graph with no cycles is called acyclic. A directed
tree (sometimes rooted tree) is an acyclic graph with the property that there exists a
root node such that there is one and only one directed path from the root to every
other node. Given a graph G and subgraph G’, G’ is called a directed spanning tree of
G if it is a spanning subgraph that is a directed tree. An undirected graph is called
connected if there is some sequence of adjacent edges between every such pair of nodes.
A directed graph is said to be weakly connected if its undirected version is connected.
A graph is said to be strongly connected if there exists a directed path from any node

to any other node. An undirected graph is said to be complete if every pair of distinct
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vertices is connected by an edge. These concepts are illustrated in Figure A.1.

@

(a) A directed graph with (b) A disconnected and undi- ¢) A weakly connected acyclic
a directed spanning tree rected graph. graph.
(green).
) A cyclic (one cycle in (e) connected undirected ) The complete graph on 5
green) strongly connected graph vertices.
graph.

Figure A.1: Illustrations of basic graph concepts.

We shall now define several important matrix representations of graph G. The

adjacency matriz of a graph G is denoted as Ag and defined as:

1, if (vj,v;) €&
[Ag]ij = ! s (Al)

0, else

which is a square binary matrix, and it is symmetric if G is undirected. Note that

[Aglij depends on (vj,v;); this is consistent with [21], but [72] defines the transpose.

The (oriented) incidence matrix of G is denoted by Eg or simply E when the

association with a concrete graph is clear. It is a |V| X |E| matrix, whose (i, j) entry is

1 if vertex i is the head of edge j
[Eglij =1-1 if vertex i is the tail of edge j . (A.2)

0  if vertex i does not belong to edge j

Note that the construction of the incidence matrix implies that 1’Eg = 0 for every G.
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The degree matriz of a graph is a diagonal matrix denoted as Dg and defined as:

deg(v;), ifi=j

[Dglij = (A.3)

0, else

When required we shall use the notation Dig and D‘é to differentiate between the in and
out degree matrices, and for undirected graphs Dig = D‘é = Dg. The degree matrices

can be equivalently defined via the Adjacency matrix through
Dy = diag{Ag1}, D = diag{1'Ag}.

Assuming that Dg is invertible (i.e., no isolated nodes), we can also define the normal-
ized adjacency matric A’é = D;Ag.
The Laplacian matriz of an undirected graph G is denoted as Lg and defined as:

deg(v;), ifi=j
[Lglij =1-1, if i # j and (v;,v;) €& = Lg=Dg-Ag. (A.4)

0, else

We can similarly define the in-degree and out-degree Laplacians of a directed graph as
Lig = Dig - Ag and L‘é = D"g — Ag respectively.

These matrices, and the Laplacian in particular, play a pivotal role in the control
of multi-agent systems and agreement problems. The following proposition lists several

known properties for undirected graphs that will be used throughout this thesis.
Proposition A.0.1. Let G be an undirected graph.

1. [23, Lemma. 13.1.1] The Laplacian, Lg, is symmetric and positive semi-definite

thus its real spectrum can be ordered as

0= /11(Lg) < /lg(Lg) <...< /l|ry|(Lg).

2. [23, Lemma. 13.1.1] The multiplicity of the zero eigenvalue of the graph Laplacian

is equal to the number of connected components of the graph.
3. [23, Thm. 8.3.2] The Laplacian can be written as
Lg =EE’
where E is the incidence matriz with any arbitrary orientation.

4. For any graph G, span{1} C ker Lg. Furthermore, span{1} = ker Lg if and only

if G is connected.
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5. [12, Prop. 1-4] If the graph is connected, then A’; 1s well defined, its eigenvalues
are real and satisfy

spec A € [-1,1].

Moreover, it always has a unique simple eigenvalue at 1 with corresponding eigen-
vectors
A1 =1 and (Dgl)'A; = (Dgl)".

Proof We only have to prove item 4, which is an immediate consequence of items 2 and
3. ]

From the above we may note that the second smallest eigenvalue of Lg is non-zero if
and only if the graph is connected. Hence, it is used as a measure of the connectivity
of the graph, and called the algebraic connectivity [121].

For directed graphs, we can similarly define the following proposition.

Proposition A.0.2. Let G be a directed graph with in-degree and out-degree Laplacian

matrices Lig and L‘é respectively.

1. For any graph span{1} C ker Lig and span{1} C ker(L‘é)’. Equivalently, the in

and out directed Laplacians have zero row and column sums, respectively.

2. [22, Prop. 3.10] The non-zero eigenvalues of Lig and Log have strictly positive

real parts.

3. [22, Prop. 3.8] Lig has a unique and simple zero eigenvalue if and only if G has

a directed spanning tree.

4. [12, Prop. 1-3] IfDig (respectively, D‘é) is invertible, then the directed counterpart
ofA; is well defined and spec A’é € B4, where By is unit ball in the complex plane.

5. Given a graph with v nodes the adjacency matrix satisfies ”Ag”2 < v -1, where

|-l @s the spectral norm, i.e. the induced Fuclidean norm.
6. Given a graph with v nodes, both directed Laplacians satisfy HLg”2 <v(v-1).

7. If Lg is the in-degree Laplacian of a graph with v nodes, then the matriz

1
M=1--L
y G

is row-stochastic (see Definition B.2.1).

Proof The first property is immediate by construction, hence we only have to prove the
last three properties.

For the adjacency matrix, note that Ag is a binary matrix with a;; = 0 for all k.
By Gershgorin’s circle theorem [122, Thm. 6.1.1], this means that all of its eigenvalues

are located in a circle centered at the origin with maximal radius of v —1 (the maximal
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number of non-zero elements in each row). By [123, Thm.1.1], the spectral norm of any
oriented adjacency matrix is upper bounded by the spectral radius of its unoriented
counterpart. Combining the two results we have ”Ag” <vy-1for all k.

Now recall that the maximal possible element of Lg is equal to v — 1. Through the

equivalence of norms [122] we know that for any n X m matrix A
Ally < Vim (| Allmax
hence for the Laplacian we obtain
||Lg||2 <v(v-1).

For the last property, by definition the Laplacian has non-negative diagonal entries
and either 0 on —1 on the off diagonal entries. As established, the diagonal entries are
bounded by v — 1 thus

0<[M];; <1

for all 7, j and any graph and is always non-negative. Moreover, since Lg1 =0, we have

M1 =1 and thus a row sum of 1, making it row-stochastic. [
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Appendix B

Elements of Matrix Theory and
Linear Algebra

In this thesis, we make use of some notions and constructions from matrix theory which
go beyond the scope of basic undergraduate courses. This appendix is meant to briefly

introduce some relevant definitions and results to ensure common ground.

B.1 The Kronecker product

The definitions and results here are adapted from [65, Ch. 13].

Definition B.1.1. The Kronecker product of A € R™™ and B € R?*" is the ng X mr

matrix
a1B -+ ai,B

A®B=

amB . aymB

Proposition B.1.2 (Properties of the Kronecker product). For appropriate matrices

A,B,C,D and scalars a, 8,7y, 6, the Kronecker product satisfies the following properties.

Bi-linearity

(@A +BB)Q (yC+6D)=ayA®C+adAQD+pByB®C+B6BD. (B.la)

Associativity
(A®B)®@C=A®(B®C(C) (B.1b)
Transpose
(A®B) =A’®B’ (B.1¢c)
The mixed-product
(A® B) (C®D)=(AC®BD) (B.1d)
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Eigenpair
Av=Av, Bu=uw = (AQB)(w®w)=Au (v w) (B.1le)

Spectrum
spec (A ® B) = {/l,u | A espec(A), u e spec(B)} (B.1f)

Inverse For square A, B, the product A ® B is invertible if and only if A and B are

invertible, and is given by

(A®B) '=A"'g@B! (B.1g)

B.2 Stochastic and non-negative matrices
Definition B.2.1. A square matrix A € R™" is said to be
(i) non-negative (positive) if a;; > 0 for all i, j.
(ii) row-stochastic if it is non-negative and A1 = 1.
(iii) column-stochastic if it is non-negative and A’1 = 1.
(iv) doubly-stochastic if it is both row and column stochastic.
Proposition B.2.2. Below are several properties of stochastic matrices.

1. Let A be a v X v row-stochastic matriz, then
All2 < VIIAllL < V.

2. The product of row stochastic matrices is again row-stochastic.
Proof 1. The first inequality is an immediate consequence of the known inequality

Allz < VAl 1Al

and the fact that the row sum of a row-stochastic matrix is always 1. The second
inequality is also immediate since if each row sums to 1, the maximal possible

column sum is .7 ; 1 =v.

2. Let A, B be two row-stochastic matrices, i.e. square, non-negative and with row-
sum 1. Note that the row-sum condition is equivalent to AT = 1. Consider
the AB, clearly AB is square and non-negative since it is the product of square
and non-negative matrices. Since B is row-stochastic Bl = 1 and A1 = 1, thus
AB1 =1. Thus the product AB is also row-stochastic. [ ]
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Appendix C

Background on Dynamical

Systems

C.1 Linear time-invariant systems

A system G : u +— y is an operator mapping some input signal u € F™ to output
signal y € FP. The signals u and y are often described as functions of an independent
variable ¢ which represent time, and often take values in R. We say a system is SISO
if m=p =1, and MIMO otherwise.

Definition C.1.1. A system G is called linear if it satsifies the property of superpo-

sition:
G (aiui+asus) = a1 (Guy)+as(Gusg), for all admissible signals uy, us and scalars a1, as.

A system is called time-invariant if any constant time shift of its input results in the

same time shift of its output.

Note that Gu represents the action of system (operator) G on signal u. For an LTI

system, this action is given by the following convolution integral

90 = [ ste=suts)as (C.1)

where g(t) is called the impulse response of system G. An LTI system is said to be

causal if and only if g(#) = 0 whenever ¢ < 0.

Definition C.1.2 (Stability). Define

L5(R) = {x : R—->R"

1/2
llxll2 = (/[R IIX(I)IIth) < oo}.

A system is said to be Lo stable if for any u € Ly we have y € Lo.
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C.1.1 LTI systems and their transfer functions

It is often useful to analyze LTI systems in transformed domains. In particular, applying

the Laplace Transform to (C.1) simplifies the integral to
Y(s) = G(s)U(s), (C.2)

where G (s), U(s), and Y (s) are the Laplace transforms of g(z), u(t), and y(¢) respectively.
We then call G(s) the transfer function of G, and it is a complex function of s = o +jw.

An LTI system is said to be finite-dimensional if its transfer function is real-rational.

In this domain, we can directly characterize the stability of LTI and causal systems
via their transfer functions [95, §A.6.3].

Lemma C.1.3 (Stability via Transfer Functions [124]). An LTI and causal system is
stable if and only if its transfer function G(s) is holomorphic and bounded in Cy, i.e.
iff G € HZ™, where

HY™ = {G : Co — CP*™ |G(s) is holomorphic in Cy and |G|l = sup ||G(s)| < oo}
SGCO
(C.3)

and ||G(s)|| is the matrixz spectral norm. We write Ho, when the dimensions are clear.

Definition C.1.4 (Properness). A p xm transfer function G(s) is said to be proper if

da > 0 such that sup [|G(s)| < oo,

seCqy

and strictly proper if there exists @ > 0 such that

li G =0.
m_ G

[s]—00,s€

Functions M € H™ and N € H2*™ are said to be right coprime if there are X € H™*™

and Y € HZ P (Bézout coefficients) such that
XM +YN = I, (C.4a)

Functions M € H2*? and N € HZ*™ are said to be left coprime if there are X € HP*P
and Y € HZ*P such that
VXNV =1, (C.4b)

A transfer function G(s) is said to have coprime factorizations over Hy if there are
right coprime Mg, Ng € Hs and left coprime Mg, NG € Hy, known as right and left

coprime factors of G, respectively, such that

G =NgM;' = M;'Ng. (C.5)



Coprime factors are unique up to post- or pre-multiplication by bi-stable transfer func-

tions for right and left factors, respectively.

Lemma C.1.5. If G(s) has coprime factorizations, then
GeHo &= M;'€Ho & M;' € Hes.

Proof The “if” part of the first equivalence relation is immediate from (C.5). Its “only
if” part follows from rewriting the Bézout equality (C.4a) as M5! = Xg +YgG. The

second relation follows by similar arguments. [

Lemma C.1.6. Let G(s) have coprime factorizations. If A € Cqy is a pole of G(s),
then Mg () and Mg(Q) are singular.

Proof Because A € Cy, the singularity of Mg (1) or M (1) does not depend on concrete
factorizations taken. If Mg (Q) is nonsingular, then Ng(1)Mg(2)~! is bounded, which
implies that A cannot be a pole of G(s). The proof for Mg is similar. ]

A comprehensive exposition of the subject can be found in [119].

C.1.2 State-space realizations and transfer Functions

Let G be a finite-dimensional LTI system having a proper transfer function G(s). The

system G has a state-space realization

Gl - AlB
Y=l

The eigenvalues of A are known as poles of the realization (C.6). A realization is called

=D +C(s[ —A)"'B. (C.6)

minimal if and only if the set of all realization poles, multiplicities counted, coincides
with that of the poles of the transfer function G(s).

A matrix pair (A,B) € R™" x R™™ ig called controllable if the eigenvalues of
A + BK can be freely assigned by a suitable choice of K, and called uncontrollable
otherwise. Eigenvalues of A that cannot be freely assigned are called uncontrollable
modes. A pair is called stabilizable if all of its uncontrollable modes are in C\ Cg.There
are numerous criteria for analyzing controllability, some common ways are presented
below, and proven in [104, Thm. 4.1].

Lemma C.1.7. The following statements are equivalent:

1. The pair (A, B) is controllable.
2. The matriz [ A-sl B ] has full rank Vs € C (the PBH test).

3. The controllability matrix
M. :=[B AB --- A™1B
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has full rank.

Similarly, a pair (C, A) € RP*" x R™*" ig called observable if the eigenvalues of A + LC
can be freely assigned by a suitable choice of L. FKigenvalues of A that cannot be
freely assigned are called unobservable modes. A pair is called detectable if all of its
unobservable modes are in C\ Cy. Like in the controllability case, there are numerous

tools to analyze observability which are proven in [104, Prop. 4.6].
Lemma C.1.8. The following statements are equivalent:

1. The pair (C, A) is observable.
| A=l
2. The matriz l c ] has full rank Vs € C (the PBH test).

3. The observability matrix

has full rank.
4. The pair (A’,C") is controllable.

A realization is minimal if and only if it is controllable and observable.

Invariant zeros of the realization (C.6) are defined as the points A € C at which

A—-slI B
D

A-Al B

rank < nrank

(the matrix polynomial of s in the right-hand side is dubbed the Rosenbrock system
matrix). The set of all invariant zeros comprises transmission zeros of the transfer
function G(s) and hidden modes of realization (C.6).

Poles and zeros have (spatial) directions for MIMO systems. Assume through the
rest of this appendix that the realization in (C.6) is minimal. By input and output

directions of a realization pole A of (C.6), we understand the subspaces

pdir;(G, ) := BT ker(Al — A)T c C" (C.7a)
and

pdiry (G, 2) := Cker(Al — A) c CP, (C.7b)

respectively. If A is not a pole of G(s), then both definitions in (C.7) result in the trivial
subspace {0}.

Lemma C.1.9. If 1 € C is a pole of G(s), then
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i) A is a pole of G(s)v whenever 0 # v € pdir;(G, 1),
it) A is a pole of vT G(s) whenever 0 # v € pdiry(G, Q).

Proof Bring in a minimal realization of G as in (C.6). If (A, Bv) is controllable, then
every eigenvalue of A is a pole of G(s)v, by the observability of (C,A). If (A, Bv) is

uncontrollable, without loss of generality we may assume that

|

with controllable (Ac, B.v) and Bzv = 0. In this case A is not a pole of G(s)v iff
A ¢ spec(Ac). So assume that A ¢ spec(A.), which implies that A € spec(Ag) and that

Ac Aqo
0 Ag

Be
Bz

2

(A,B) =(

BT ker(A — A)T ¢ [Bg BT ] Im|  |=ImB.

But then v € pdirj(G,4) = v € ImB] = (ker Bg)*, which contradicts the condition
Bzv = 0. Hence, 4 must be a pole of G(s)v. The second item follows by similar

arguments. n

Input and output directions of an invariant zero A are defined as

[ A—aI B
2dirs(G, 1) == [0 I, ] ker ccm (C.8a)
L C D |
and ] ]
A-Al B|"T
2dirg (G, 1) == [o I ] ker| OO ) con, (C.8)

respectively. With some abuse of notation we use the definitions in (C.8) also if A is

not an invariant zero of (C.6), but the normal rank of G(s) is deficient. For example,

1 -1
zdir; ,A| = zdir,
-1 1

for all A1 € C. In such situations directions are understood as normal null spaces.

in our notation

1 -1
,/l :Imﬂg
11

Lemma C.1.10. If A ¢ spec(A), then it is an invariant zero of G iff rank G(2) <
nrank G(s) and

zdir;(G,1) =ker G(1) and zdir,(G,A) =ker [G(A)]T.
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Proof Follows from the relations

A=Al B| |A-A 0 I (A-AD7'B
c p| | ¢ Gwll|o I
~ I 0||A-AI B
lc@a-anpTt o 0 G
and the assumed invertibility of A — Al. [ ]

Lemma C.1.11. If A € Cy, then it is a pole of G(s) if and only if it is a zero of the

denominators M (s) and Mg (s) of its coprime factorizations. Moreover,
pdiri(G, ) = zdiro (Mg, 1) and pdire(G, ) = zdir;(Mg, )
in this case.

Proof Follows by [104, Prop. 4.16] and the fact that a pole of G(s) in Cy is a zero of all

possible denominators. [

More details can be found in [93], although we use slightly different definitions of

directions (subspaces, rather than vectors), in line with [104].
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