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Abstract

This thesis investigates agreement and synchronization problems of continuous-time
multi-agent systems (MASs) operating under sampled-data communication constraints.
It challenges the prevailing reliance on diffusive consensus protocols, arguing that their
structural simplicity can conceal fundamental performance limitations—particularly in
the presence of external disturbances, measurement noise, and unstable dynamics.

The study begins with the consensus problem for integrator agents exchanging in-
formation intermittently at asynchronous sampling instants. A novel sampled-data
protocol is proposed, emulating suitable global analog dynamics at each agent and
transmitting sampled centroids of these emulators between neighbours. The closed-
loop dynamics naturally decompose into centroid and disagreement components. The
centroid subsystem evolves autonomously according to time-varying discrete consensus
dynamics, independent of the sampling intervals. Under mild assumptions on per-
sistency of connectivity and bounded sampling intervals, the system asymptotically
converges to agreement. A simplified, scalable implementation is given for a specific
choice of emulated topology.

The framework is then extended to general agreement of identical linear time-
invariant (LTI) agents under the same connectivity assumptions, with both state-
feedback and output-feedback designs accommodating practical sensing constraints.
Conditions for exponential convergence are derived, and augmentations such as predictor-
based updates for small delays and weighted update maps are proposed, preserving
convergence guarantees while potentially offering improved performance.

A central theoretical contribution is the identification of a fundamental internal
instability in diffusively coupled MASs when the agents satisfy certain constraints.
For finite-dimensional agents, these manifest as a common unstable pole and direction
canceled in the feedback loop, illustrating a unique multi-input multi-output (MIMO)
phenomenon: pole cancellations due to deficient normal rank of the controller. This
explains reported fragility to load disturbances and measurement noise, and proves that
no purely diffusive feedback can stabilize such systems.

Motivated by this limitation, a 2 degrees-of-freedom (2DOF) distributed archi-
tecture is proposed, separating local stabilization from network-based coordination.
This decouples plant dynamics from network filter design, enabling heterogeneous con-
trollers, targeted disturbance rejection, and explicit noise shaping—capabilities absent
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in standard consensus-like designs. An input–output analysis highlights these advan-
tages and the architecture’s ability to retain feedback in the consensus mode.

The analysis combines spectral graph theory, sampled-data control, and classi-
cal control tools, producing novel theoretical characterizations and practical design
methods applicable for various LTI agents. The thesis concludes with open directions,
including extensions of the emulation scheme to heterogeneous agents and the 2DOF
architecture, systematic network filter design, and further studies of performance under
communication and sensing constraints.
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Notation and Abbreviations

ℕ The set of natural numbers.
ℕ𝜈 The set {𝑖 ∈ ℤ | 1 ≤ 𝑖 ≤ 𝜈}.
ℤ The set of integers.
ℤ+ The set of positive integers.
ℝ The field of real numbers.
jℝ The set of pure imaginary numbers.
ℂ The field of complex numbers.
ℂ𝛼 The open complex right half-plane {𝑠 ∈ ℂ | Re 𝑠 > 𝛼}.
ℂ̄𝛼 The closed complex right half-plane {𝑠 ∈ ℂ | Re 𝑠 ≥ 𝛼}.
<(𝑠) The real part of complex number 𝑠.
=(𝑠) The imaginary part of complex number 𝑠.
|𝑠 | The modulus of complex number 𝑠.

𝑒𝑖 The 𝑖th standard basis vector in a field 𝔽 𝑛.
𝐼𝜈 The 𝜈 × 𝜈 identity matrix.
diag{𝐴𝑖} A block-diagonal matrix with diagonal elements 𝐴𝑖.
𝐴′ The complex-conjugate transpose of a matrix 𝐴.
Im 𝐴 The image (range) space of 𝐴.
ker 𝐴 The kernel (null) space of 𝐴.
spec(𝐴) The set of all eigenvalues of the matrix 𝐴.
tr(𝐴) The trace of a square matrix 𝐴.
𝜎(𝐴) The minimal singular value of 𝐴.
‖𝐴‖• The • norm of matrix (vector) 𝐴.
𝐴 ⊗ 𝐵 The Kronecker product of matrices 𝐴 and 𝐵.
𝟙 The all-ones vector.
𝑃𝟙 The orthogonal projection on Im 𝟙.
G A mathematical graph with node set V and edge set E.
𝐴G The adjacency matrix of graph G.
𝐷G The degree matrix of graph G.
𝐸 The incidence matrix of graph G.
𝐿G The Laplacian matrix of graph G.
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𝐴★G The normalized adjacency matrix of graph G.

𝐺 (𝑠) The transfer function of an LTI system 𝐺.
(𝐴, 𝐵, 𝐶, 𝐷) A state-space realization of a finite-dimensional LTI system

𝐺.
𝐻∞ Hardy space of holomorphic and bounded functions.
𝐿2 Lebesgue space of square integrable functions.
‖·‖∞ The 𝐻∞ norm of a system or 𝐿∞ norm of a signal.
pdiri(𝐺, 𝑝) The input direction of a pole 𝑝 of 𝐺 (𝑠).
pdiro(𝐺, 𝑝) The output direction of a pole 𝑝 of 𝐺 (𝑠).
zdiri(𝐺, 𝑧) The input direction of a zero 𝑧 of 𝐺 (𝑠).
zdiro(𝐺, 𝑧) The output direction of a zero 𝑧 of 𝐺 (𝑠).

2DOF 2 degrees-of-freedom
A/D analog to digital
BIBO bounded-input bounded-output
D/A digital to analog
LTI linear time-invariant (A system described by linear time-

invariant differential (difference) equations.)
MAS multi-agent system (A collection of independent dynamical

units, interacting to achieve a common goal.)
MIMO multi-input multi-output (A dynamical system with multiple

inputs and multiple outputs.)
SISO single-input single-output (A dynamical system with a single

input and a single output.)
ZOH zero-order hold (zero-order hold)
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Chapter 1

Introduction

It’s a dangerous business, Frodo, going out
your door. You step onto the road, and if
you don’t keep your feet, there’s no knowing
where you might be swept off to.

J.R.R Tolkien, The Fellowship of the Ring [1]

Many engineering problems can be understood through the lens of large collections
of simpler, interacting subsystems. When these subsystems are coupled—for example,
when spatially separated sensors and actuators must cooperate, or when otherwise
independent units share a common objective—the overall plant is typically called large-
scale. The analysis and control of such systems has been an active research area for
more than five decades [2], [3].

A large-scale plant can always be represented as a standard MIMO system and,
in principle, controlled with standard synthesis tools. However, the resulting con-
trollers are almost always centralized: each control input depends on measurements
from all outputs. Guaranteeing reliable, low-latency communication between every
sensor–actuator pair becomes technically challenging and prohibitively expensive as
the dimension grows [4]. This has driven sustained interest in decentralized designs
whose controller matrices are block-diagonal, so that every subsystem is driven solely
by its local measurements. Unfortunately, such severe sparsity constraints introduce
their own difficulties. For example, even for two interacting systems with a quadratic
cost optimal design is NP-complete [5], [6], and certain plants cannot be stabilized by
block-diagonal controllers [7].

A pragmatic compromise is distributed control, in which the controller matrix is
only sparse rather than block-diagonal, allowing each subsystem to exploit limited in-
formation from carefully chosen neighbors. This can be visualized by pixel diagrams,
where the 𝑖th row corresponds to the 𝑖th control signal, 𝑢𝑖, and each column repre-
sents an agent’s measurement, 𝑦 𝑗 . A diagonal structure (Figure 1.1(a)) demands no
communication since each control signal uses only local measurements, 𝑢𝑖 = 𝑘𝑖 (𝑦𝑖) for
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some operator 𝑘𝑖. A cyclic structure (Figure 1.1(b)) requires two links for each agent,
𝑢𝑖 = 𝑘𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑦𝑖+1), and still more exotic patterns are also possible (Figure 1.1(c)).

(a) Diagonal (decentral-
ized) structure.

(b) Cycle structure. (c) General sparse struc-
ture.

Figure 1.1: Illustration of distributed controller structures: a shaded 𝑖 𝑗th element
represent the 𝑗th measurement is available for the 𝑖th control.

How these “information structures’’ influence synthesis has been studied for decades
[3]. For certain special cases—positive plants, for instance—optimal distributed con-
trollers can even be computed in closed form [8]. In the generic LTI setting, however,
convexity of the optimal synthesis problem is guaranteed only when plant and controller
share a quadratically invariant sparsity pattern [9], [10]. Tractability deteriorates fur-
ther when considering more realistic scenarios, for example when the information topol-
ogy is time- or parameter- varying, or when the communication itself is intermittently
sampled.

Among the many systems amenable to distributed control, MASs stand out as
both a rich source of theoretical challenges and a key application domain. Here, a
network of dynamical agents pursues a common, cooperative objective. Coordination
tasks such as velocity agreement in vehicle platoons [11], formation keeping for multi-
robot teams [12], [13], or distributed sensing and estimation [14], [15] all fit naturally
in this framework. A fully decentralized controller is rarely adequate—cooperation
demands some level of information sharing—yet a fully centralized architecture inherits
the communication and implementation pitfalls described. The goal, therefore, is to
devise distributed controllers that are as sparse as possible while still satisfying the
cooperative specification and any temporal constraints.

1.1 Agreement problems in multi-agent systems

A prime example of cooperative objectives is reaching agreement between autonomous
dynamical systems in the presence of communication constraints. It is a fundamental
problem in numerous scientific disciplines such as opinion dynamics [16], distributed
algorithms [17]–[19], physics [20], and control [21], [22].

P1: Consider 𝜈 possibly heterogeneous agents, each with dynamics 𝑃𝑖, control inputs
𝑢𝑖, and outputs 𝑦𝑖. Design bounded control signals 𝑢𝑖 such that the agents asymp-
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totically reach output agreement in the sense that

lim
𝑡→∞

��𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)�� = 0 ∀ 𝑖, 𝑗 ∈ ℕ𝜈 , (1.1)

for all initial conditions.

If in addition lim𝑡→∞ 𝑦𝑖 (𝑡) = const, we say that the agents achieved consensus, and
if the consensus value is 0 we say that the agreement is trivial, since this is akin to
independent stabilization of the agents.

This would be an elementary problem if every agent had continuous access to the
output of all other agents. However, this scenario is not practical in networked ap-
plications, where information exchange is costly. Hence, additional constraints are
introduced. A natural assumption in large-scale networks is that each agent can inter-
act only with a subset of the group often called its neighbors. Formally, this can be
expressed as the constraint that the 𝑖th agent can communicate only with agents whose
indices belong to a neighborhood set N𝑖 ⊂ ℕ𝜈 \ {𝑖}, which can be fixed or time-varying.
We refer to such constraints as spatial constraints. Controllers satisfying prescribed
spatial constraints are naturally distributed.

Physical System

Graph Abstraction

Figure 1.2: Modeling multi-agent systems via graphs: each agent is mapped to a node,
and each communication channel to an edge.

These neighborhood sets and communication channels form a mathematical object
called a graph. A simple graph G = (V, E) associates each agent with a node 𝑣𝑖 ∈ V
and each communication channel with an edge 𝑒𝑖 𝑗 = {𝑣𝑖 , 𝑣 𝑗} ∈ E. When information
exchange is bidirectional the graph is said to be undirected. The communication graph
has substantial influence over the properties of the resulting closed-loop system, re-
gardless of the particular controller used. This influence can be analyzed by exploiting
the established a correspondence between graphs and certain matrix representations,
in what is now called spectral graph theory [23], see a brief overview in Appendix A.
This allows us to relate graph-theoretic properties such as connectivity, spanning trees,
and cycles, to spectral properties of these matrices such as eigenvalues, positivity, and
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invariant quantities. This is best illustrated in the following subsection, which considers
the classical solution to the integrator consensus problem.

1.1.1 The consensus protocol

In its arguably simplest form, P1 can be formulated in continuous time for a group of
𝜈 first-order autonomous agents described by

¤𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡), 𝑥𝑖 (0) = 𝑥0𝑖 , (1.2)

for all 𝑖 ∈ ℕ𝜈, attempting to achieve consensus. One solution for the consensus problem
for agents (1.2) which harnesses graph theory is the celebrated consensus protocol [21],
[22], [24],

𝑢𝑖 (𝑡) = 𝜅
∑
𝑗∈N𝑖

(
𝑥 𝑗 (𝑡) − 𝑥𝑖 (𝑡)

)
, (1.3)

for some 𝜅 > 0. Note that only information within the 𝑖th neighborhood is used to
generate this control, making it naturally distributed. The consensus protocol as shown
in (1.3) exhibits the relative sensing nature of the protocol. Relative sensing appears
naturally in MAS tasks, where absolute measurements are hard to obtain, such as space
and aerial exploration and sensor localization, see [25]–[27] and the references therein.
A different perspective of (1.3) is

𝑢𝑖 (𝑡) = −𝜅
(
|N𝑖 |𝑥𝑖 (𝑡) −

∑
𝑗∈N𝑖

𝑥 𝑗 (𝑡)
)
, (1.4)

which emphasizes that agents exchange state-information by communication. This
perspective is useful in problems where the agents are assumed to be communicating,
and hence may exchange more complex, and possibly private, information.

Regardless of viewpoint, the analysis of the resulting closed-loop system is partic-
ularly elegant in the aggregate form. Assume that the spatial constraints describe a
particular (undirected) graph. Then, using the notation from Appendix A, the aggre-
gate version of the consensus protocol then reads

𝑢(𝑡) = −𝜅𝐿G𝑥(𝑡), where
[
𝑥(𝑡) 𝑢(𝑡)

]
≔


𝑥1(𝑡) 𝑢1(𝑡)
...

...

𝑥𝜈 (𝑡) 𝑢𝜈 (𝑡)

 ,
and results in the collective closed-loop dynamics

¤𝑥(𝑡) = −𝜅𝐿G𝑥(𝑡), 𝑥(0) = 𝑥0, (1.5)

with 𝐿G being the graph Laplacian. Equation (1.5) is one of the main reasons for the
renewed interest in graph theory within the control community. It clearly shows that,
at least for integrators, the global dynamics are almost completely determined by the
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underlying graph via 𝐿G. The benefit of this property is that we can tell quite a bit
about the spectral properties of 𝐿G without knowing the graph explicitly. In particular,
we know that for any undirected graph, even disconnected, 𝟙 ∈ ker 𝐿G. Since

𝑥𝑖 (𝑡) = 𝑥 𝑗 (𝑡), ∀𝑖, 𝑗 ∈ ℕ𝜈 ⇐⇒ 𝑥(𝑡) ∈ Im 𝟙,

this implies that agreement is always a possible equilibrium of the consensus dynamics
with undirected topologies. It turns out that for undirected graphs, dynamics (1.5)
reach agreement if and only if G is connected. Moreover the convergence to agreement
is exponential with rate determined by the second smallest eigenvalue of 𝜅𝐿G and can
be made arbitrarily fast by increasing the gain 𝜅, see [22, Sec. 3.1]. Similar results, i.e.,
consensus iff connectivity, exist for both directed and time-varying graphs with suitable
notions of connectivity, e.g. [21, Ch. 2].

1.1.2 General consensus-like protocols

Despite appearing in other fields for over 40 years, variations of (1.3) began appearing
in the control literature only over the last two decades. In particular as part of several
papers, published almost concurrently, which considered vehicle formation or heading
problems [12], [28]–[31]. These papers which cite the simple discrete-time model from
[20] as their inspiration, all considered variations of (1.3) acting on a group of identi-
cal agents attempting to drive their states into consensus without a common reference
signal. In all cases, similar results, i.e., consensus iff connectivity, were derived. This
successful marriage between graph and control theory led to a rapid surge of publica-
tions exploring the new subfield. For example, the Laplacian-like structure was shown
to preserve passivity [32], and the graph and cycle structure were connected to the 𝐻2

norm [33] of agreeing systems. In [34] a consensus model with an input was considered,
and controllability properties were related to symmetries of the graph.

As the field evolved, variations of P1 retained their significance. It turns out that
agreement is a necessary building block for more sophisticated objectives, ranging from
leaderless formation control [35] to coordinated wildfire monitoring [21]. Hence, we
may consider a more general consensus-like protocol of the form

𝑢𝑖 = 𝑘𝑖
∑
𝑗∈N𝑖

(𝑦 𝑗 − 𝑦𝑖), 𝑖 ∈ ℕ𝜈 , (1.6)

for some measured signals 𝑦𝑖 (𝑡) and possibly dynamic controllers 𝑘𝑖. Commonly con-
trollers 𝑘𝑖 are chosen to be identical, since this facilitates the overall design. In partic-
ular, this reduces the affects of the network to a perturbation of the gain by the eigen-
values of the Laplacian, reducing agreement to a simultaneous stabilization problem
[12], [36]. This property was also exploited to analyze the robustness of consensus-like
protocols to uniform time-delays [37], [38] and sampling [29]. However, even when iden-
tical, the gains are not necessarily square, static, or time-invariant. For example in [39]
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a group of second-order integrators was driven to consensus by using a variant of a PD
controller, or equivalently full state-feedback. Others solved the consensus problem
for general LTI agents with output measurements through a Riccati-based low-gain
approach [36]. Time-varying controllers were also considered, mostly in the context
of time-varying topologies [31] and noisy measurements [40], [41]. Over time, the as-
sumption that the agents can communicate controller states became more widespread.
This lead to several observer-based consensus-like controllers [42], [43], providing a
methodical design process for homogeneous LTI agents.

Simultaneously, attention was directed toward two other important variations: i)
agreement of heterogeneous agents, and ii) controlling the agreement trajectory. The
former arises naturally in practical applications, since agents are often uncertain and
thus not exactly homogeneous. The latter originated from the fact the aforementioned
controllers could only drive agents to agreement trajectories generated by the homoge-
neous uncontrolled model, cf. [43, Thm. 2]. It can be formulated as solving P1, while
ensuring that

lim
𝑡→∞

‖𝑦𝑖 (𝑡) − 𝑟 (𝑡)‖ = 0, ∀𝑖 ∈ ℕ𝜈 , (1.7)

where 𝑟 (𝑡) ∈ R for some prescribed family of trajectories R. This cumulated in the semi-
nal result that a necessary condition for agreement is the existence of a common internal
model between all the agents [44]. Combined with the prevalence of the communication
viewpoint, this result paved the way to cooperative output regulation approaches. In
these methods, each agent embeds a generator into their controller which can generate
the required family of trajectories. For example, the set R is often generated by an LTI
generator with uncontrolled dynamics

¤𝑟 = 𝐴0𝑟 𝑟 (0) = 𝑟0

𝜂 = 𝑅𝑟
,

such that spec(𝐴0) are all in the closed left half-plane. The agents then locally track
their generators, while cooperativly exchanging the generator’s output and agreeing on
them. This requires each agent to have a local controller based on the regulator equa-
tions [45, Ch. 1], which may result in the agents having different dynamic controllers,
𝑘𝑖 [44, Thm. 5]. This result was later extended to non-linear agents, generators, and
controllers [46].

Yet despite increasing generality, at the heart of all of these variants sits consensus
protocol (1.6), or more generally controllers of the form

𝑢𝑖 =
∑
𝑗∈N𝑖

𝑘𝑖 𝑗 (𝑦 𝑗 − 𝑦𝑖), 𝑖 ∈ ℕ𝜈 , (1.8)

for possibly dynamic controllers 𝑘𝑖 𝑗 . Control laws which are based on a linear combi-
nation of some function of the relative outputs of all neighbors as in (1.8) are generally

10

 

 

 



called diffusive, and the closed-loop systems are called diffusively coupled. It seems that
over the years this diffusive structure became almost an a priori assumption in control
design of MASs, regardless of the actual problem. Even when no actual sensing is in-
volved, for example [44], [47], the incoming information is processed via a consensus-like
protocol using relative measurements.

1.2 Structure and goals of this thesis

While such results highlight the elegance and utility of the consensus framework, prac-
tical deployments reveal important limitations under realistic conditions. Sampling or
communication delays, measurement noise, and exogenous disturbances all interact in-
tricately with the network structure. This interaction makes tuning rules opaque and
reduces robustness margins. Even worse, robustness can be hard to define and quantify
due to the coupling via the network structure. Consider, for example, a group of inte-
grator agents attempting to reach consensus with sampled-data interaction. Although
this is perhaps the simplest variant of P1, adhering to the structure of protocol (1.6)
requires much deeper analysis. Even synchronous periodic sampling requires the gains
to be tuned with respect to both the sampling period ℎ and the eigenvalues of the
Laplacian [29]. If the sampling is intermittent, event-triggered, or asynchronous, more
conservative gains are needed [48]. Similarly, uniform transmission delays – where each
pair 𝑦𝑖 − 𝑦 𝑗 are delayed by the same amount – also constrain the allowable controller
gains [29], [38], [49]. Because the graph, and thus Laplacian eigenvalues, is generally
unknown, satisfying even basic constraints necessitates adopting a conservative design
approach. This is a stark contrast to traditional control problems involving integra-
tors, where such constraints often have analytical solutions with guaranteed stability
margins.

Such limitation under non nominal conditions are not confined to information con-
straints like delays and sampling. It is well documented that diffusively-coupled systems
behave poorly when affected by external signals. Measurement noise significantly de-
grades performance [33, §III-A], while disturbance and uncertainties can hardly be
attenuated even by dynamic [43], [50] or non-linear [51] controllers. To cope with the
difficulties, various relaxed assumptions are adopted. Some allow the controllers to
be time-varying [40], [52] or non-linear [53], and in both cases some boundedness or
convergence assumptions must be made on the external signals. Moreover, if these
assumptions fail, the resulting trajectories exhibit certain common traits that can be
associated with instability. It is notable that despite being well documented, these
failings are rarely investigated for themselves. This alarming fragility and instability
were not properly explained, and different architectures are hardly explored.

These oddities served as the main motivation for the research detailed in this disser-
tation, which advocates we take a more control-oriented perspective on MASs control
problems as a whole, and the agreement problem in particular. Historically, the suc-
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(b) Independent network (𝑧𝑖) and local (𝑦𝑖)
measurements.

Figure 1.3: Distributed control paradigms for agents 𝑃𝑖 and controller 𝜅: a singe uni-
form measurement, or separation to local and networked measurements.

cess of control theory lies in match-making the right controllers to the right problems.
This can be seen in matching 2DOF control to classical servo-regulation [54], [55], pre-
dictors to dead-time systems [56], [57], or generalized sample-and-hold functions for
sampled-data systems [58]. A common theme in all of these examples is that they ex-
ploit something in the structure of the problem to either simplify the design or improve
the performance. This is most evident in 2DOF controllers, where the design exploits
the fact that there are two distinct measurement channels, one for the output and one
for the reference, to expedite the design. In sampled-data control the key was to not
assume a priori an ideal sampler and a zero-order hold (ZOH), and instead to con-
sider both analog to digital (A/D) and digital to analog (D/A) devices as free design
components.

The main focus of this dissertation is to bring similar insights into the realm of
MASs and agreement problems. First, much like in 2DOF, we note that (1.6) can be
rewritten in communication form much like the vanilla (1.4),

𝑢𝑖 = − |N𝑖 | 𝑘𝑖𝑦𝑖 + 𝑘𝑖
∑
𝑗∈N𝑖

𝑦 𝑗 := − |N𝑖 | 𝑘𝑖𝑦𝑖 + 𝑘𝑖𝑧𝑖 , 𝑖 ∈ ℕ𝜈 .

This results in at least two different signals, the local output 𝑦𝑖 and the network signal
𝑧𝑖. This is not a mere algebraic manipulation; often these signals are subject to different
constraints. For example, it is reasonable to expect that network-sourced information
will be sampled less frequently or will be more heavily affected by noise. This alone
makes problems such as “agreement of sampled-data MASs” much more nuanced. Sec-
ond, we may want to process these two measurements differently to try and exploit
the interplay between their differing constraints. We argue that adhering rigidly to the
diffusive consensus structure may inadvertently introduce conservatism and complex-
ity in the design. In fact, as we shall show, when additional constraints appear, even
modest departures from the conventional form can yield both performance gains and
dramatic simplification of the design process. Unlocking these gains, however, demands
a deeper look at the interplay between communication topology, sampling, delays, and
plant dynamics. The difference between the two approaches is illustrated in Figure 1.3.

The research in this thesis focuses on explicitly considering control structures such
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as Figure 1.3(b), rather than the diffusive structures in Figure 1.3(a), as well as high-
lighting the shortcomings of the latter. Chapter 2 begins with deeper inspection of
the classic consensus protocol, and how naïvely discretizing (1.3), i.e., using an ideal
sampler and a ZOH, requires conservative and small gains. The rest of this chapter
is dedicated to an alternative architecture, published in [59], which eliminates this
conservatism by incorporating generalized sampled-and-hold functions inspired by op-
timal sampled-data control. This is made possible by viewing the consensus protocol
through the lens of Figure 1.3(b), and separating the intermittent network measure-
ment 𝑧𝑖 from the fast and reliable 𝑦𝑖. Notably, the proposed architecture guarantees
consensus under asynchronous and intermittent communication, even for possibly time-
varying directed graphs. The only requirement is that a weak connectivity assumption
holds. Specifically, it requires only a necessary assumption for discrete-time integrators
under switching graphs, and uniformly bounded sampling intervals.

Building on the sampled-data architecture from Chapter 2, Chapter 3 extends the
discussion to general LTI agents that must synchronise to a time-varying reference. Mo-
tivated by structural insights from the integrator case, we propose a new state-feedback
control law to emulate a different control law instead of the standard Laplacian-based
one. We then show that when combined with the update scheme from the integrator
case, synchronization is achieved under the same communication constraints. We then
extend the results to controllers using output measurements only in two different ways:
i) by directly emulating an observer-based control law, or ii) by including a simplified
observer into the original scheme. Both for state and output measurements we provide
a scalable and low-order implementation. The state-feedback case was presented (with-
out some of the proofs) in [60], while the second output-feedback version was published
in [61].

Chapter 4 concludes our investigation of sampled-data agreement problems, by
deriving several smaller results most of which are unpublished. Specifically, we investi-
gate the convergence rate of the emulation scheme, as well as provide graph-theoretical
conditions to ensure exponential convergence. We also consider two augmented up-
date maps. The first variation is a predictor capable of guaranteeing agreement under
heterogeneous and time-varying small delays, a work published in [62]. The second
demonstrates that adding weights to the original update scheme does not alter the
convergence result. Such weights are commonly used in the literature in various ways
to improve performance.

In Chapter 5 we deviate from the linear progression of increasingly complicated
sampled-data agreement problems, and explicitly consider Figure 1.3(a) under diffu-
sive controllers (1.8). This deviation is motivated by the odd, unstable looking, dis-
turbance response of the consensus protocol as detailed in Section 5.1. This prompts
a system-theoretic analysis of generic diffusive couplings, in an attempt to understand
this behavior, as well as others exhibited in the literature. We prove that the diffusive
structure fundamentally cannot internally stabilize certain classes of agents. This clari-
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fies the disturbance amplification and instability reported in the literature, and further
supports our focus on the architecture in Figure 1.3(b). For finite-dimensional agents
this result has an intuitive interpretation as cancellations of common agent poles by
the diffusive structure. This work was published in [63].

Motivated by the results of Chapter 5, Chapter 6 begins with revisiting the classi-
cal consensus protocol in an input-output framework. By deriving known results from
this perspective it is possible to better understand the underlying structure and limi-
tations of consensus-like protocols. By drawing parallels to servo-regulation problems,
we develop an alternative architecture to diffusive coupling. Namely, we propose a
2DOF architecture that fuses classical servo-regulation ideas with distributed control
requirements. It requires more careful tuning to ensure agreement, as opposed to classic
consensus, but has demonstrably improved robustness and disturbance rejection.

We conclude our work in Chapter 7, where we summarize our findings and insights,
and provide a few intriguing directions for future research. To keep the main text
readable, three appendices are provided. Appendix A provides and introduction to
graph theory, relevant notations, and some required standard results, while auxiliary
results on the Kronecker product and matrix theory are collected in Appendix B. It
is generally assumed that the reader is familiar with continuous-time LTI dynamical
systems, yet some background and relevant results appear in Appendix C. The reader
is referred to standard monographs for deeper coverage.
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Chapter 2

On Sampled-Data Consensus:
Divide and Concur

“Begin at the beginning,” the King said,
gravely, “and go on till you come to the
end; then stop.”

Lewis Carrol, Alice in Wonderland [64]

In this chapter, we take our first steps into the world of constrained agreement
problems. It begins with a quick recap of the consensus version of P1 for integrators
controlled by consensus protocol (1.3). We first formalize the results alluded to in
Subsection 1.1.1, and then show the differences when naïvely discretizing (1.3). This
motivates our alternative sampled-data architecture, which is the main topic of this
chapter.

2.1 Between discretization and sampled-data

Consider the integrator consensus problem as defined in Section 1.1, with controller
(1.3). That is, a group of 𝜈 first-order autonomous agents described by

¤𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡), 𝑥𝑖 (0) = 𝑥0𝑖 ,

with the aggregate closed-loop dynamics

¤𝑥(𝑡) = −𝜅𝐿G𝑥(𝑡), 𝑥(0) = 𝑥0

as defined in (1.5), where 𝐿G is the graph Laplaican of the underlying communication
topology. The first property of these dynamics we wish to introduce is the invariance
of the centroid, as stated below.

Proposition 2.1.1 (Proposition 3.13 in [22]). Let 𝐿𝑖G be the in-degree Laplacian of G,
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with left eigenvector 𝑞′𝐿𝑖G = 0. The quantity 𝑞′𝑥(𝑡) is an invariant of dynamics (1.5).
In particular, the centroid, 𝑥(𝑡) = (1/𝜈)𝟙′𝑥(𝑡), is an invariant of dynamics (1.5) for all
undirected graphs.

As mentioned in Chapter 1, for undirected graphs, dynamics (1.5) reach agreement
if and only if G is connected. This is a well known result even for directed graphs,
with various proofs available in standard textbooks, e.g. [22, Thm. 3.12] or [21, Thm.
2.8]. Despite being well known, it may be instructive to understand the mechanism
behind them. To this end, we state and prove below the simplest case in a slightly
non-orthodox way to provide some intuition required for the rest of this dissertation.

Proposition 2.1.2. Consider 𝜈 identical integrator agents controlled by (1.3) for some
scalar 𝜅 > 0 and an undirected graph G. The following statements are equivalent.

1. G is connected.

2. The agents reach average consensus for all initial conditions.

Proof Consider a representation of the aggregate system in the frequency domain, where
the closed-loop can be written as

𝑥 =
(
𝐼𝜈 +

𝜅

𝑠
𝐿G

)−1
𝑥0

with 𝑥0 is the aggregate initial condition response. Since G is undirected, 𝐿G is positive
semi-definite and there exists a unitary transformation 𝑈 such that 𝑈𝐿G𝑈′ = diag{𝜆𝑖},
which allows us to rewrite the closed-loop dynamics as

𝑥 = 𝑈′ diag{𝑆𝑖}𝑈𝑥0

with
𝑆𝑖 (𝑠) := 1

1 + 𝜅𝜆𝑖
𝑠

.

Moreover, since 𝐿G𝟙 = 0, we can pick a unitary 𝑈 such that 𝑈′𝑒1 = (1/√𝜈)𝟙 and
𝑒′1𝑈 = (1/√𝜈)𝟙′. Note that we can rewrite the above dynamics as

𝑥 =
𝜈∑
𝑖=2

𝑆𝑖 (𝑠)𝑈′𝑒𝑖𝑒
′
𝑖𝑈𝑥0 + 𝑆1(𝑠)

1
𝜈
𝟙𝟙′𝑥0

and that 𝑆1(𝑠) ≡ 1.

=⇒ Since G is undirected and connected, by Proposition A.0.1 𝜆1 = 0 and 𝜆𝑖 > 0 for
all 𝑖 > 1. This implies that for all 𝑖 > 1

𝑆𝑖 (𝑠) =
𝑠

𝑠 + 𝜅𝜆𝑖
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is stable, thus by the final value theorem

lim
𝑡→∞

𝑥(𝑡) = 1
𝜈
𝟙𝟙′𝑥0 = 𝑥0𝟙.

⇐= Since the agents reach average consensus for all initial conditions and the centroid
is invariant, we have

lim
𝑡→∞

(𝑥(𝑡) − 𝟙𝑥(𝑡)) = lim
𝑡→∞

(𝐼𝜈 − 𝑃𝟙) 𝑥(𝑡) = 0

where 𝑃𝟙 := (1/𝜈)𝟙𝟙′ is the orthogonal projection on Im 𝟙 [65, Thm. 7.5]. From
the previous decomposition we have

(𝐼𝜈 − 𝑃𝟙) 𝑥 =
𝜈∑
𝑖=2

𝑆𝑖 (𝑠)𝑈′𝑒𝑖𝑒
′
𝑖𝑈𝑥0,

therefore 𝑆𝑖 (𝑠) must be stable for all 𝑖 > 1 and any 𝜅 > 0, which requires that
𝜆𝑖 > 0 for all 𝑖 > 1. Thus 𝐿G has a simple eigenvalue at 0 and the rest strictly
positive, implying that G is connected. ■

Before moving on to the sampled-data case, there are two things that are important to
notice for the sequel. First, for undirected graphs the centroid is an invariant quantity.
It is unaffected by the dynamics and predetermines the final value regardless of the gain
𝜅. Second, the convergence rate directly depends on 𝜅 and the graph structure. This
is readily seen in the frequency domain, since the closed-loop poles are determined by

𝑆𝑖 (𝑠) =
𝑠

𝑠 + 𝜅𝜆𝑖

with poles 𝑝𝑖 = −𝜅𝜆𝑖. Hence, the most dominant mode (excluding the agreement direc-
tion) is −𝜅𝜆2, which can be made arbitrarily fast without risking the overall stability
of the system. This may not be the case in discrete-time or considering more complex
dynamics.

To this point we only discussed the problem in continuous time, where the spatial
constraints limited the subset of neighbors each agent can communicate with. How-
ever, networked implementations may impose additional limitations on the information
exchange between agents, related to the time instances at which communication is pos-
sible. Specifically, we assume that agents can convey information to neighbors only
at time instances 𝑡 = 𝑠𝑘 , 𝑘 ∈ ℤ+, for a strictly increasing monotone sequence of sam-
pling instances {𝑠𝑘}𝑘 . If all agents transmit their states simultaneously, at each 𝑠𝑘 ,
sampling is said to be synchronous. If the 𝑖th agent at each 𝑠𝑘 receives information
from only a subset of its neighbors, sampling is referred to as asynchronous. These
concepts are illustrated in Figure 2.1, where each time axis denotes an agent, and each
impulse a sampling instance. Note that even in the asynchronous case of Figure 2.1(c),
there is only one sampling sequence that encompasses all agents. For example, even
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thought agent 3 does not transmit at 𝑡 = 𝑠1, agent 1 does, hence 𝑡 = 𝑠1 ∈ {𝑠𝑘}𝑘 . This
formalism can naturally accommodate changing interconnection topologies. There is
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(a) Periodic and synchronous.
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(b) Aperiodic and synchronous.
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(c) Asynchronous.

Figure 2.1: Different sampling patterns for 𝜈 = 3 agents: each time axis corresponds to
an agent, and an impulse on the 𝑖th axis indicates the corresponding agent transmits
information.

rich literature on sampled-data consensus, studying problems under synchronous and
asynchronous sampling, time- and event-triggered sampling mechanisms, see [48] and
the references therein. Still, the vast majority of available approaches assumes that the
control signal is piecewise constant, unchanged between updates from neighbors, i.e.,
uses the zero-order hold as the D/A converter. This assumption facilitates the reduc-
tion of the problem to a pure discrete agreement, at least under synchronous sampling.
Indeed, in the latter case the discretized aggregate system is

𝑥 [𝑘 + 1] = 𝑥 [𝑘] + ℎ[𝑘]𝑢[𝑘],

where 𝑥 [𝑘] ≔ 𝑥(𝑠𝑘) and ℎ[𝑘] ≔ 𝑠𝑘+1 − 𝑠𝑘 (sampling interval). Substituting in the
discrete version of the consensus protocol,

𝑢[𝑘] = −𝜅𝐿G𝑥 [𝑘],

leads to the closed-loop dynamics

𝑥 [𝑘 + 1] = (𝐼 − 𝜅ℎ[𝑘]𝐿G)𝑥 [𝑘], (2.1)

which can be thought of as the Euler approximation of (1.5).
Like in the continuous-time case, system (2.1) still has its only equilibrium at an

agreement set. Yet the stability required by Proposition 2.1.2 is now guaranteed only
if 𝜅ℎ[𝑘] is sufficiently small for all possible sampling intervals ℎ[𝑘] [24]. This compro-
mises the convergence rate for networks with large variability in sampling intervals.
There are other agreement-reaching protocols for discrete systems [24], but they all
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require sufficiently small, and normally conservative, gains to guarantee stability. For
asynchronous sampling, the situation is even more dire, as illustrated in the following
example.

x1

x2 x3

G

x1

x2 x3

G[s1]

x1

x2 x3

G[s3]

x1

x2 x3

G[s2]

Figure 2.2: Top: original graph. Bottom: possible subgraphs induced by the asyn-
chronous sampling sequence.

Example 2.1.3. Consider a simple case of 𝜈 = 3 agents, interacting over a graph with
edges E = {(1, 2), (2, 1), (1, 3), (3, 1)}. Note that this graph is undirected, hence the in
and out Laplacians are equal and given by

𝐿G =


2 −1 −1
−1 1 0
−1 0 1

 .
Now assume that the agents are sampled in an asynchronous way, such that agent 2
transmits Δ2 seconds after agent 1, and agent 3 transmits Δ3 seconds after agent 2.
Moreover, assume without loss of generality that Δ3 > Δ2, and that agent 1 does not
transmit again before agent 3 does. Consequently, the first three sampling instances
are

𝑠1 = 𝑠1, 𝑠2 = 𝑠1 + Δ2, 𝑠3 = 𝑠1 + Δ3,

and each sampling instance induces a different directed subgraph of G based on the
transmitting agent. This is illustrated in Figure 2.2, and results with the following
in-degree Laplacians

𝐿G [𝑠1] =


0 0 0
−1 1 0
−1 0 1

 , 𝐿G [𝑠2] =


1 −1 0
0 0 0
0 0 0

 , and 𝐿G [𝑠3] =


1 0 −1
0 0 0
0 0 0

 ,
all of which are directed. ▽
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As shown in Example 2.1.3, the asynchrony naturally turns 𝐿G into a time-varying
matrix, which often requires even smaller gains and more complex technical machinery
[66].

Remark (discrete vs. sampled-data) 2.1. The simple case considered above exemplifies
well a key difference between pure discrete-time and sampled-data networked setups.
The latter typically has shift-varying discretized models, as realistic network sampling is
intermittent. Moreover, parameters of those models are uncertain, unless we somehow
know the next sampling instance. ▽

We argue for parting with the use of the zero-order hold, synchronized with measure-
ment updates, in sampled-data consensus protocols. This custom does not appear to be
justified by implementation requirements nowadays and might be an atavism, survived
from the early days of computer-controlled systems. We aim at exploiting opportuni-
ties offered by the use of more sophisticated hold mechanisms to reach agreement over
agents (1.2) under both spatial (distributed) and temporal (sampling) constraints.

The design of control waveforms, or D/A converters, is not new to sampled-data
control per se. In the centralized setting, optimal converters for periodic [58], [67],
[68] and intermittent [69] sampling rates can be designed. Similar control waveform
generators are also used in the networked control context in [70], [71], also without
spatial constraints. Their common property is that they in effect emulate the control
signal of the desired analog closed-loop control in an open-loop way. This property
was observed in [68, Sec. 6] and conjectured as a guiding principle for situations where
direct performance-justified design of the hold function is not available.

We follow that logic to put forward a sampled-data consensus protocol based on
emulating (1.4). The challenge is that such an emulation has to be carried out in a
distributed manner, locally at each agent. We work it out by implementing a model of
the whole world, viz. (1.5), at each agent in continuous time. Each local controller uses
then the states of these emulators to mimic the continuous-time consensus protocol
(1.4). Information about real states of neighboring agents is used to adjust local emu-
lators each time this information becomes available at sampling instances. We propose
sample and update protocols, based on the centroids of the corresponding emulators of
each agent. This idea is illustrated in Figure 2.3, where each agent transmits the local
centroid at 𝑡 = 𝑠𝑘 to its corresponding neighbors.

The choice of transmitting the centroids is not unique, but provides certain distinct
advantages. Namely, with such a choice, the resulting closed-loop dynamics can be
divided into those of the decoupled centroids, which behave as an autonomous system,
and those of local disagreements, which evolves according to the analog consensus
dynamics driven by the emulator centroids. Remarkably, the dynamics of the centroids
are also independent of the sampling intervals, i.e., are certain, unlike (2.1). As such,
the analysis is simplified and global asymptotic convergence to agreement is proved
under mild connectivity assumptions on the sampled-data topology and with no need
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Figure 2.3: An illustration of the emulation architecture: each agent locally emulates
all of the other continuously, and transmits their centroid when possible.

for a priori knowledge of sampling instances and specific bounds on sampling intervals.
Another noteworthy property of the proposed architecture is that the spatial topology
emulated locally need not match that of the actual network. This is demonstrated in
Figure 2.3, where the emulated topology is the complete graph, while G[𝑘] is not. This
property can be further exploited to substantially reduce computational complexity,
rendering it independent of the number of agents.

2.2 An emulation approach

As discussed, we aim at reaching agreement for the group of 𝜈 agents described by (1.2)
under given spatial and temporal communication constraints. These constraints are
determined by a strict monotonically increasing sequence of sampling instances {𝑠𝑘}𝑘
and associated sets N𝑖 [𝑘] ⊂ ℕ𝜈\{𝑖} of neighbors of the 𝑖th agent that convey information
about their states at each 𝑠𝑘 . These information updates are intrinsically directional
and not necessarily symmetric, i.e., 𝑗 ∈ N𝑖 [𝑘] might not imply that 𝑖 ∈ N𝑗 [𝑘]. Each
set N𝑖 [𝑘] can thus be associated with a directed graph, say G[𝑘], having the Laplacian
𝐿G [𝑘] ∈ ℝ𝜈×𝜈.

To ensure persistent connectivity in the whole scheme, we assume hereafter that

A1: there is a strictly increasing sub-sequence of sampling indices {𝑘𝑛}𝑛 such that for
all 𝑛 ∈ ℤ+
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(i) the intervals 𝑠𝑘𝑛+1 − 𝑠𝑘𝑛 are uniformly bounded, and

(ii) the union graph ⋃𝑘𝑛+1−1
𝑘=𝑘𝑛

G[𝑘] contains a directed rooted tree.

Assumption A1 is commonly employed in works related to coordination protocols over
switching or time-varying graphs [21], [28], [31]. This assumption ensures that informa-
tion propagates throughout the entire network persistently across bounded sampling
intervals, leaving no nodes forever detached from the rest of the network. This is illus-
trated in Figure 2.4, where neither of the three graphs contain a directed rooted tree,
yet their union does.

x1

x2 x3

G[s1]

x1

x2 x3

G[s3]

x1

x2 x3

G[s2]

Figure 2.4: A sequence of graphs satisfying A1: neither graph contains a directed
rooted tree, yet their union does.

Remark (variants of A1) 2.2. Some readers might be more familiar with variants of
A1 requiring a globally reachable node rather then a directed rooted tree. This is
because of the inherent ambiguity when defining directed graph Laplacians. This goes
beyond the obvious confusion regarding in or out degree Laplacians. For example,
in some popular books (e.g. [22], [72]) 𝐴G is defined as the transpose of (A.1), which
changes the left and right kernels of the directed Laplacians. Unless otherwise specified,
when talking about the directed graph Laplacian in this thesis, we refer to the in-
degree Laplacian as defined in Appendix A. This choice allows us to naturally consider
an arrow “going in to” agent 𝑖 as that agent receiving information. For example, in
Figure 2.4 in G[𝑠1] agent 2 transmitted information to agent 1. This imposes no loss
of generality since the same results would hold, under slightly modified assumptions,
for both in and out Laplacians defined elsewhere in the literature. ▽

Following the discussion in Section 2.1, the proposed architecture is based on em-
ulating the “ideal” analog consensus behavior à la (1.5) at each agent. To this end,
associate with each agent an emulated spatial communication topology, which is repre-
sented by a graph Ĝ with Laplacian 𝐿 Ĝ ∈ ℝ𝜈×𝜈, and the corresponding set of neighbors
N̂𝑖 ⊂ ℕ𝜈 \ {𝑖} of the 𝑖th agent. We emphasize that this Ĝ need not match the actual
spatio-temporal topology represented by G[𝑘]. All we require is that

A2: the graph Ĝ is undirected and connected,

which implies that 𝐿 Ĝ = 𝐿′
Ĝ

and its eigenvalue at the origin is single.
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Remark (undirected vs. directed emulated graphs) 2.3. In fact, the emulator topology
may also be directed. We require primarily the property that 𝐿 Ĝ has a single eigenvalue
at the origin with corresponding left eigenvector 𝟙. This can be also achieved, for
example, by weakly connected and balanced directed graphs. ▽

By the emulator at the 𝑖th agent we then understand the function 𝜇𝑖 (𝑡) ∈ ℝ𝜈, whose
elements 𝜇𝑖 𝑗 ≔ [𝜇𝑖] 𝑗 satisfy

¤𝜇𝑖 𝑗 (𝑡) = −𝜅
∑
𝑙∈N̂𝑗

(
𝜇𝑖 𝑗 (𝑡) − 𝜇𝑖𝑙 (𝑡)

)
, ∀ 𝑗 ∈ ℕ𝜈 \ {𝑖}

𝜇𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡),
(2.2)

for some given initial conditions 𝜇𝑖 𝑗 (0). It is readily seen that (2.2) at each 𝑗 ≠ 𝑖

matches the 𝑗th row of (1.5). The purpose of (2.2) is to emulate the analog consensus
protocol (1.4) at the 𝑖th agent by replacing the actual (remote) neighboring states 𝑥 𝑗
by their local clones 𝜇𝑖 𝑗 , i.e., as

𝑢𝑖 (𝑡) = −𝜅
(
|N̂𝑖 |𝜇𝑖𝑖 (𝑡) −

∑
𝑗∈N̂𝑖

𝜇𝑖 𝑗 (𝑡)
)
. (2.3)

Taking into account that ¤𝜇𝑖𝑖 = 𝑢, by (1.2), we end up with

¤𝜇𝑖 (𝑡) = −𝜅𝐿 Ĝ𝜇𝑖 (2.4)

as the collective dynamics of the 𝑖th agent.
It should be clear that the control law (2.2)–(2.3) is incomplete, for the resulted

dynamics (2.4) are autonomous, not synchronized with other agents. We thus need
to complement it by a synchronization mechanism satisfying given spatio-temporal
constraints.

To this end, two aspects are to be decided:

(i) what information agents should broadcast about their own states, and

(ii) how emulators should utilize the conveyed information.

One can think of a number of possible approaches here, even if each agent may broad-
cast only a scalar signal. For instance, agents may broadcast their own sampled states,
𝑥 𝑗 (𝑠𝑘), or a function of the state of their complete emulator, 𝜙(𝜇 𝑗 (𝑠𝑘)). The receiving-
side emulators may then update only components corresponding to the received up-
dates, e.g., as 𝜇𝑖 𝑗 (𝑠+𝑘) = 𝑥 𝑗 (𝑠𝑘), or all their states simultaneously.

Our choice is to broadcast the centroid of the corresponding emulator,

𝜇 𝑗 (𝑡) ≔
1
𝜈
𝟙′𝜇 𝑗 (𝑡) =

1
𝜈

𝜈∑
𝑗=1

𝜇𝑖 𝑗 (𝑡),
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and is motivated by two insights. First, by Proposition 2.1.1 we know that the cen-
troid is an invariant quantity of Laplacian dynamics, meaning it is not affected by the
emulator “flow” dynamics (2.4). For the second insight, consider the following example.

Example 2.2.1. Consider dynamics (1.4), and assume that G is the complete graph. For
the complete graph each agent is connected to all of the others, hence

𝐿G = 𝜈(𝐼𝜈 − 𝑃𝟙) and N𝑖 = ℕ𝜈 \ {𝑖} ∀𝑖 ∈ ℕ𝜈 ,

where 𝑃𝟙 = (1/𝜈)𝟙𝟙′ is the orthogonal projection on Im 𝟙. For this scenario the consen-
sus protocol can be rewritten as

𝑢𝑖 (𝑡) = −𝜅
(
(𝜈 − 1)𝑥𝑖 (𝑡) −

∑
𝑗≠𝑖

𝑥 𝑗 (𝑡)
)

= −𝜅𝜈
(
𝑥𝑖 (𝑡) −

1
𝜈

𝜈∑
𝑖

𝑥 𝑗 (𝑡)
) .

Thus, in the “best” scenario the consensus protocol is essentially a proportional gain
acting on the error between the local state and the global centroid. Moreover, since it
is an invariant quantity in this case the agents essentially solve 𝜈 individual tracking
problems using a particular proportional controller. ▽

When combined, these two insights show that the global centroid is somewhat akin to a
reference that the agents attempt to track. Hence, it seems that the emulated centroid
somehow encompasses all the required information. We then update components of 𝜇𝑖
at the receiver end as

𝜇𝑖 𝑗 (𝑠+𝑘) = 𝜇𝑖 𝑗 (𝑠𝑘) − 𝛼𝑖 𝑗
∑

𝑙∈N𝑖 [𝑘 ]

(
𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘)

)
(2.5)

for all 𝑗 ≠ 𝑖 and some gains 𝛼𝑖 𝑗 ∈ ℝ. Summing up these updates and dividing them by
𝜈, we have the following update algorithm for the centroid of the 𝑖th emulator:

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −
∑
𝑗≠𝑖

𝛼𝑖 𝑗

𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(
𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘)

)
.

This algorithm bears a resemblance to a discrete consensus protocol.

Having determined the control architecture, we are now in the position to analyze
the closed-loop system and its capability to reach agreement. The first step in that
direction is, naturally, to characterize the closed-loop dynamics.

Lemma 2.2.2. Consider the set of agents described by (1.2) and controlled by (2.3),
where components of the emulators satisfy (2.2) and (2.5). The cumulative state of the
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resulted closed-loop system 𝜇(𝑡) ∈ ℝ𝜈
2 satisfies the hybrid equations,{

¤𝜇(𝑡) = −𝜅(𝐼𝜈 ⊗ 𝐿 Ĝ)𝜇(𝑡), 𝜇(0) = 𝜇0

𝜇(𝑠+𝑘) = 𝐴jmp [𝑘]𝜇(𝑠𝑘)
, (2.6)

for initial conditions 𝜇0 comprised those of all 𝜇𝑖 𝑗 , where

𝐴jmp [𝑘] ≔ 𝐼𝜈2 − 1
𝜈

𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖 (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ (𝛼𝑖𝟙′), (2.7)

and 𝛼𝑖 =
[
𝛼𝑖1 · · · 𝛼𝑖𝜈

]
′ satisfy 𝑒′𝑖𝛼𝑖 = 0 for all 𝑖 ∈ ℕ𝜈.

Proof The “flow” part of (2.6) is the cumulative block-diagonal version of (2.4). The
“jump” part follows from (2.5) by the relations 𝜇 =

∑
𝑖

∑
𝑗 𝑒𝑖 ⊗ 𝑒 𝑗𝜇𝑖 𝑗 , 𝜇𝑖 = (𝑒′𝑖 ⊗ 𝟙′)𝜇/𝜈,

and with a little help of the mixed-product property of the Kronecker product in Propo-
sition B.1.2. ■

Equation (2.6) represents hybrid dynamics, with the continuous flow part, whose evo-
lution is shaped by the block-diagonal matrix −𝜅(𝐼𝜈 ⊗ 𝐿 Ĝ), and the discontinuous jump
part, whose evolution is shaped by 𝐴jmp [𝑘]. The former matrix is actually the Lapla-
cian of the union of 𝜈 disconnected clones of Ĝ.

2.3 Divide and concur

As mentioned, the flow dynamics are comprised of 𝜈 disconnected copies of Ĝ. Impor-
tantly, these clones are then connected at jump stages which are dictated by 𝐴jmp [𝑘].
The result below plays a key role to understand properties of this connectivity mecha-
nism.

Lemma 2.3.1. Every 𝐴jmp [𝑘] defined by (2.7) satisfies

𝐴jmp [𝑘] (𝐼𝜈 ⊗ (𝐼𝜈 − 𝑃𝟙)) = 𝐼𝜈 ⊗ (𝐼𝜈 − 𝑃𝟙), (2.8a)

where 𝐼𝜈 − 𝑃𝟙 is the orthogonal projection onto ker 𝟙′. Also,

(𝐼𝜈 ⊗ 𝟙′)𝐴jmp [𝑘] =
(
𝐼𝜈 −

1
𝜈
𝐿G [𝑘]

)
⊗ 𝟙′, (2.8b)

whenever 𝟙′𝛼𝑖 = 1 for all 𝑖 ∈ ℕ𝜈.

Proof By the mixed-product property of the Kronecker product, 𝑀r [𝑘] ≔ (𝐼𝜈2 −
𝐴jmp [𝑘]) (𝐼 ⊗ (𝐼 − 𝑃𝟙)) satisfies

𝑀r [𝑘] =
1
𝜈

𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖 (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ (𝛼𝑖𝟙′(𝐼 − 𝑃𝟙)) = 0,
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which proves (2.8a). Likewise,

𝑀l [𝑘] ≔ (𝐼𝜈 ⊗ 𝟙′)(𝐼𝜈2 − 𝐴jmp [𝑘]) =
1
𝜈

𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖 (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ (𝟙′𝛼𝑖𝟙′)

=
1
𝜈

𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖 (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ 𝟙′ =

1
𝜈
𝐿G [𝑘] ⊗ 𝟙′,

which yields (2.8b). ■

It follows from (2.8b) that every 𝐴jmp [𝑘] has at least 𝜈(𝜈 − 1) eigenvalues at 1 and
their right eigenspace, Im[𝐼 ⊗ (𝐼 −𝑃𝟙)], is independent of 𝑘. Hence, jumps alone cannot
result in an agreement between agents either. But, as we show below, alternating flow
and jump propagation actions does lead to agreement in the system.

To show that, we need two signals,

𝜇(𝑡) ≔ 1
𝜈
(𝐼𝜈 ⊗ 𝟙′)𝜇(𝑡) (2.9a)

which is the 𝜈-dimensional vector comprised of the centroids 𝜇𝑖 (𝑡), and

𝛿(𝑡) ≔ (𝐼𝜈 ⊗ (𝐼𝜈 − 𝑃𝟙))𝜇(𝑡) (2.9b)

which is the 𝜈2-dimensional vector of local disagreements. It is readily seen that

𝜇(𝑡) = (𝐼 ⊗ 𝟙)𝜇(𝑡) + 𝛿(𝑡),

and ‖𝜇(𝑡)‖2 = 𝜈 ‖𝜇(𝑡)‖2 + ‖𝛿(𝑡)‖2 owing to the orthogonality of the centroid and dis-
agreement. Hence, the boundedness of both 𝜇 and 𝛿 implies that of 𝜇 itself. Moreover,
because

𝑥(𝑡) =
𝜈∑
𝑖=1

𝑒𝑖 (𝑒′𝑖 ⊗ 𝑒′𝑖)𝜇(𝑡) = 𝜇(𝑡) +
𝜈∑
𝑖=1

𝑒𝑖 (𝑒′𝑖 ⊗ 𝑒′𝑖)𝛿(𝑡),

the states of agents 𝑥𝑖 agree whenever the centroids agree, i.e., 𝜇(𝑡) ∈ Im 𝟙, and local
disagreements vanish, i.e., 𝛿(𝑡) → 0. In this direction, we now show that for an appro-
priate choice of the weight vector 𝛼𝑖, the emulator centroid dynamics evolve according
to a discrete consensus protocol over a switching graph.

Lemma 2.3.2. If 𝟙′𝛼𝑖 = 1 for all 𝑖 ∈ ℕ𝜈, then

𝜇(𝑠𝑘+1) =
(
𝐼 − 1

𝜈
𝐿G [𝑘]

)
𝜇(𝑠𝑘) (2.10)

at sampling instances 𝑠𝑘, and is constant between samples, i.e., at times 𝑡 ∈ (𝑠𝑘 , 𝑠𝑘+1].

Proof From the jump equation in (2.6), we can analyze the emulator centroid dynamics
as

𝜇(𝑠+𝑘) =
1
𝜈
(𝐼𝜈 ⊗ 𝟙′)𝐴jmp [𝑘]𝜇(𝑠𝑘) =

(
𝐼𝜈 −

1
𝜈
𝐿G [𝑘]

)
𝜇(𝑠𝑘),
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where (2.8b) was used for the second equality. Similarly, it follows from the flow
equation in (2.6) that the centroid dynamics are invariant, i.e.,

¤̄𝜇(𝑡) = 1
𝜈
(𝐼𝜈 ⊗ 𝟙′) ¤𝜇(𝑡) = − 𝜅

𝜈
(𝐼𝜈 ⊗ (𝟙′𝐿 Ĝ))𝜇(𝑡) = 0,

because 𝟙′𝐿 Ĝ = 0. ■

The result of Lemma 2.3.2 says that the dynamics of the centroids are completely
decoupled from the rest of the state of (2.6), i.e., 𝛿, and are driven only by the interac-
tion topology at sampling instances. This shouldn’t come as a surprise in light of the
discussion preceding Example 2.2.1. Note that dynamics (2.10) are in fact standard
discrete consensus dynamics with gain 𝜅 = 1

𝜈 and switching over the induced graphs
G[𝑘]. Despite similarities to (2.1), there is one important distinction: the parameters
of (2.10) do not depend on the sampling intervals. This implies that whether the em-
ulated centroids converge does not depend on the length of the individual sampling
intervals or on any upper bound on them.

Having established that the emulator centroid dynamics are decoupled from those
of the disagreement vector, we now focus our attention on analyzing the disagreement
dynamics.

Lemma 2.3.3. If 𝟙′𝛼𝑖 = 1 for all 𝑖 ∈ ℕ𝜈, then{ ¤𝛿(𝑡) = −𝜅(𝐼𝜈 ⊗ 𝐿 Ĝ)𝛿(𝑡), 𝛿(0) = 𝛿0

𝛿(𝑠+𝑘) = 𝛿(𝑠𝑘) + 𝐵jmp𝐿G [𝑘]𝜇(𝑠𝑘)
, (2.11)

where 𝛿0 ≔ (𝐼𝜈 ⊗ (𝐼𝜈 − 𝑃𝟙))𝜇0 satisfies (𝐼 ⊗ 𝟙′)𝛿0 = 0 and

𝐵jmp ≔
𝜈∑
𝑖=1

(𝑒𝑖𝑒′𝑖) ⊗ (𝟙/𝜈 − 𝛼𝑖)

satisfies (𝐼 ⊗ 𝟙′)𝐵jmp = 0.

Proof By A2, 𝟙′𝐿 Ĝ = 0, so (𝐼 − 𝑃𝟙)𝐿 Ĝ = 𝐿 Ĝ (𝐼 − 𝑃𝟙), whence the flow part of (2.11)
follows directly from that of (2.6). The jump part of (2.6) leads then to

𝛿(𝑠+𝑘) = (𝐼 ⊗ (𝐼 − 𝑃𝟙))𝐴jmp
(
𝛿(𝑠𝑘) + (𝐼 ⊗ 𝟙)𝜇(𝑠𝑘)

)
= 𝛿(𝑠𝑘) + (𝐼 ⊗ (𝐼 − 𝑃𝟙))𝐴jmp(𝐼 ⊗ 𝟙)𝜇(𝑠𝑘),

which can be derived by the fact that (𝐼 ⊗ (𝐼 −𝑃𝟙))𝛿 = 𝛿 and (2.8a). By (2.8b), we have
that

(𝐼 ⊗ (𝐼 − 𝑃𝟙))𝐴jmp(𝐼 ⊗ 𝟙) = (𝐴jmp − 𝐼)(𝐼 ⊗ 𝟙) + 𝐿G [𝑘] ⊗ 𝟙/𝜈,
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and then by (2.7), that

(𝐼 − 𝐴jmp)(𝐼 ⊗ 𝟙) = −
𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖 (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ 𝛼𝑖 = −

𝜈∑
𝑖=1

(𝑒𝑖𝑒′𝑖𝐿G [𝑘]) ⊗ 𝛼𝑖

= −
( 𝜈∑
𝑖=1

(𝑒𝑖𝑒′𝑖) ⊗ 𝛼𝑖
)
𝐿G [𝑘] .

Because 𝐿G [𝑘] ⊗𝟙 = (𝐼 ⊗𝟙)𝐿G [𝑘] = (∑𝑖 (𝑒𝑖𝑒′𝑖) ⊗𝟙)𝐿G [𝑘], we have (𝐼 ⊗ (𝐼 −𝑃𝟙))𝐴jmp(𝐼 ⊗
𝟙) = 𝐵jmp𝐿G [𝑘] and end up with the jump part of (2.11). ■

Lemma 2.3.3 says that 𝛿, similarly to 𝜇, satisfies a hybrid dynamic equation. The
difference of the equation for 𝛿, (2.11), from that for 𝜇, (2.6), is that the former has
constant “𝐴” matrices not only in its flow part, but also for jumps. The only varying
part is the discrete “𝐵” matrix, through which the exogenous input 𝜇 affects 𝛿. This
matrix does not affect the stability of the system, so the stability and convergence
analyses are greatly simplified. In fact, if 𝐿G [𝑘]𝜇(𝑠𝑘) = 0, then (2.11) has no jumps
and comprises effectively 𝜈 clones of the continuous-time consensus dynamics (1.5),
except that 𝛿(𝑡) is kept orthogonal to Im 𝟙 for all 𝑡. The latter is one of the key
properties leading to the main result of this chapter.

Theorem 2.1. If A1,2 hold, then agents (1.2) controlled by (2.3) with emulators (2.2),
(2.5) converge asymptotically to Im 𝟙 for all initial conditions, all sampling sequences
with uniformly bounded sampling intervals 𝑠𝑘+1 − 𝑠𝑘, and all emulator update gains 𝛼𝑖 𝑗
such that ∑

𝑗≠𝑖 𝛼𝑖 𝑗 = 1, for all 𝑖 ∈ ℕ𝜈. Moreover, the emulators remain bounded and
agree asymptotically as well.

Proof We need to show that the vector of centroids, 𝜇, agrees and the vector of lo-
cal disagreements, 𝛿, vanishes asymptotically. So consider 𝜇 first. By A1, system
(2.10) satisfies the conditions of [21, Lem. 2.29, Thm. 2.37] and thus 𝜇(𝑡) is bounded
and converges to Im 𝟙𝜈. This also implies that the sequence {𝐿G [𝑘]𝜇(𝑠𝑘)}𝑘 vanishes
asymptotically.

Now, move to 𝛿. The first result that we need is the stability of the autonomous
version of (2.11), under 𝐿G [𝑘]𝜇(𝑠𝑘) = 0 for all 𝑘 ∈ ℤ+. This is a standard result
for continuous-time disagreement dynamics. Namely, it is known [24, Sec. II-D] that
‖𝛿(𝑡)‖ is bounded and vanishes exponentially, with the rate determined by the smallest
nonzero eigenvalue of 𝐿 Ĝ, which is the algebraic connectivity of Ĝ. Thus, 𝛿(𝑡) is the
state of an exponentially stable linear system, whose exogenous input is bounded and
asymptotically vanishing. Hence, 𝛿 → 0 and is bounded. ■

2.3.1 The choice of the complete graph as Ĝ

An obvious problem with implementing emulators is that their dimension equals the
number of agents. Emulating all agents might not be feasible for large-scale networks.
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Yet this problem can be resolved by an appropriate choice of the emulated connectivity
graph Ĝ, which is in our power.

To this end, note that each agent broadcasts only the centroid of its emulator,
which actually does not change between updates. The only obstacle preventing then to
emulate only the centroid is the need in individual components of 𝜇𝑖 in the control law
(2.3). But if the emulated graph is the complete graph, then following Example 2.2.1
control law (2.3) reads

𝑢𝑖 (𝑡) = −𝜅
(
𝜈𝜇𝑖𝑖 (𝑡) −

𝜈∑
𝑗=1

𝜇𝑖 𝑗 (𝑡)
)
= −𝜅𝜈

(
𝑥𝑖 (𝑡) − 𝜇𝑖 (𝑡)

)
.

Hence, with this choice we do not need individual 𝜇𝑖 𝑗 to implement 𝑢𝑖 either. This, in
turn, allows to drop explicit emulators. The control law becomes then

𝑢𝑖 (𝑡) = −𝜅𝜈
(
𝑥𝑖 (𝑡) − 𝜇𝑖 (𝑠+𝑘)

)
, ∀𝑡 ∈ (𝑠𝑘 , 𝑠𝑘+1], (2.3′)

and the emulator updates (2.5) reduce to the updates of their centroids according to

𝜇𝑖 (𝑠+𝑘) =
1
𝜈

(
(𝜈 − |N𝑖 [𝑘] |)𝜇𝑖 (𝑠+𝑘−1) +

∑
𝑗∈N𝑖 [𝑘 ]

𝜇 𝑗 (𝑠𝑘)
)
, (2.5′)

where the condition ∑
𝑗 𝛼𝑖 𝑗 = 1, required in Theorem 2.1, is used. Note that the control

signal in (2.3′) is still not piecewise constant, as the local feedback is analog.
The controller defined by (2.3′) and (2.5′) has an intuitive interpretation. Namely,

(2.3′) is the proportional analog servo system for agent (1.2) with the piecewise-constant
𝜇𝑖 as its reference signal. This reference is then updated according to the discrete con-
sensus protocol (2.5′) with reference signals of neighboring agents. This is a reasonable
strategy in the case when local agents are easy to control, but the information about
the outside world is hard to acquire. And this logic appears to extend seamlessly to
the cases when agents have higher-order dynamics and unmeasurable states.

Remark (impulsive hold) 2.4. If we were allowed to use the impulsive control signals,
we could cause the actual state of every agent to jump at each sampling time instance.
In this case the choice 𝛼𝑖 = 𝟙/𝜈 would be possible. But with this choice, 𝐵jmp = 0
for all 𝑘, rendering 𝛿 in (2.11) completely decoupled from 𝜇. In that scenario, the
selection of agreeing initial conditions for each emulator, i.e., 𝜇𝑖 (0) ∈ Im 𝟙, would keep
each emulator in agreement for all 𝑡 and allow us to implement only centroids of each
emulator again, now for every Ĝ satisfying A2. ▽

2.3.2 What happens if connectivity fails?

A natural question is what happens if A1 fails. Since the graphs are induced by the
sampling, this could occur, for example, due to repeated packet losses. Once more, we
can simplify the analysis by leveraging the decoupled centroids-disagreements structure.
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The first step in this direction is given in the following Lemma.

Lemma 2.3.4. Consider discrete dynamics (2.10) for some initial conditions 𝜇0. For
any sequence of graphs

𝜇𝑖 (𝑠𝑘+1) ∈ conv 𝜇0 ∀𝑖 ∈ ℕ𝜈

and for all 𝑘, where conv 𝜇0 is the convex hull of the initial conditions vector.

Proof Recall that 𝐿G = 𝐷G − 𝐴G where 𝐴G is a binary matrix with zero diagonal and
𝐷G is a non-negative diagonal matrix whose entries are bounded by 𝜈− 1. This implies
that for any graph, the elements of 1

𝜈 𝐿G [𝑘] are strictly smaller than 1 in magnitude,
rendering

𝑀 [𝑘] := 𝐼 − 1
𝜈
𝐿G [𝑘]

a non-negative matrix. Moreover, since 𝐿G [𝑘]𝟙 = 0, we must have 𝑀 [𝑘]𝟙 = 𝟙 thus
𝑀 [𝑘] is row-stochastic.

Consider 𝑘 = 1, each element of 𝜇[2] is given by

𝜇𝑖 [2] = 𝑚𝑖 [1]′𝜇0

where 𝑚𝑖 [1]′ is the 𝑖th row of 𝑀 [1]. Since 𝑀 [1] is non-negative and row-stochastic,
𝜇𝑖 [2] is a convex combination of 𝜇0 and therefore lies within conv 𝜇0. By induction
𝜇𝑖 [𝑘 + 1] ∈ conv 𝜇[𝑘] for all 𝑖. From convexity we have

conv 𝜇[𝑘] ⊆ conv 𝜇[𝑘 − 1] ⊆ · · · ⊆ conv 𝜇0

which concludes the proof. ■

Now exploiting once more our freedom in choosing Ĝ as the complete graph, we can
state the following result.

Theorem 2.2. If A2 holds and Ĝ is chosen as the complete graph, then agents (1.2)

controlled by (2.3′) and (2.5′) remain bounded within conv
[
𝑥0

𝜇0

]
for all initial condi-

tions, gains 𝜅 > 0, and sampling sequences.

Proof In the interval 𝑡 ∈ [0, 𝑠1] the agents evolve continuously according to

𝑥(𝑡) = e−𝜅𝜈𝑡𝑥0 + (1 − e−𝜅𝜈𝑡 )𝜇0.

Since |e−𝜅𝜈𝑡 | ≤ 1 for all 𝑡 ≥ 0 and 𝜅 > 0, each 𝑥𝑖 (𝑡) is a convex combination of the
corresponding 𝑥0,𝑖 and 𝜇0,𝑖, thus

𝑥𝑖 (𝑡) ∈ conv
[
𝑥0

𝜇0

]
, ∀𝑡 ∈ [0, 𝑠1] .
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Now consider time interval 𝑡 ∈ [𝑠+1, 𝑠2], and not that the state is given by

𝑥(𝑡) = e−𝜅𝜈 (𝑡−𝑠1 )𝑥(𝑠1) + (1 − e−𝜅𝜈 (𝑡−𝑠1 ) )𝜇(𝑠1),

and similar reasoning reveals that

𝑥𝑖 (𝑡) ∈ conv
[
𝑥(𝑠1)
𝜇(𝑠1)

]
, ∀𝑡 ∈ [𝑠+1, 𝑠2] .

However, from the previous analysis and Lemma 2.3.4 we know that

𝑥𝑖 (𝑠1) ∈ conv
[
𝑥0

𝜇0

]
, 𝜇𝑖 (𝑠1) ∈ conv 𝜇0 =⇒ 𝑥𝑖 (𝑡) ∈ conv

[
𝑥0

𝜇0

]
, ∀𝑡 ∈ [0, 𝑠2] .

The rest follows immediately by induction. ■

2.4 Illustrative example

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3

Figure 2.5: The three possible graphs for the example in Section 2.4.

To illustrate the proposed sampled-data protocol, consider the simple system com-
prised of 𝜈 = 3 agents under the fixed (spatial) interaction topology

G = {(1, 2), (1, 3), (2, 1), (3, 1)},

and asynchronous intermittent communication. The edge (𝑖, 𝑗) indicates that the 𝑖th
agent conveys its centroid to the 𝑗th one. By the asynchronous communication we
mean that each agent transmits only at a subset of sampling instances. Consequently,
in this example each G[𝑘] may be the union of any nonempty subset of the graphs
{(1, 2), (1, 3)}, {(2, 1)}, and {(3, 1)}, which are shown in Figure 2.5.

It should be clear that ∪𝑘G[𝑘] contains a directed rooted tree if and only if it
contains {(1, 2), (1, 3)}. In other words, the first agent serves as a fulcrum, facilitating
information exchange between the other agents. Hence, A1 holds if and only if the
first agent transmits persistently, with uniformly bounded intervals. The sequence
{𝑘𝑛}𝑛 in A1 may then comprise all indices of sampling instances, at which the first
agent transmits.
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(a) A1 holds

(b) A1 does not hold

Figure 2.6: State trajectories of agents 𝑥𝑖 (thick lines) and centroids 𝜇𝑖 (thin lines) for
both examples. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from A1.

Figure 2.6 presents simulation results in the interval 𝑡 ∈ [0, 30], where the trajec-
tories of the agents, 𝑥𝑖 (𝑡), are depicted by thick lines and those of the centroids, 𝜇𝑖 (𝑡),
are represented by thin lines. Sampling instances, shown by abscissa ticks, are a ran-
dom variable such that 𝑠𝑘+1 − 𝑠𝑘 ∈ 0.3ℕ7. Major ticks indicate the sub-sequence of
sampling instances {𝑘𝑛}𝑛 defined in A1. The emulators use the complete graph with
𝐿 Ĝ = 3(𝐼 − 𝑃𝟙), as described in Subsection 2.3.1, with 𝜅 = 3.

First, we simulate the system for which A1 holds true. Specifically, the transmitting
agent at each sampling instance 𝑠𝑘 is a random pick from the set {1, 2, 3}. We can see
from the plots in Figure 2.6(a) that the trajectories of the agents exhibit the behavior
discussed at the end of Subsection 2.3.1, namely those of simple first order systems
tracking piecewise-constant reference signals. Because agents are modeled as simple
integrators, there is no local steady-state error. An increase (decrease) of 𝜅 would
accelerate (slow down) local tracking. In any case, the centroids expectably converge
to an agreement point, leading 𝑥𝑖 to satisfy (1.1) asymptotically.
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The situation is different when the first agent stops transmitting its information.
Assume that this happens for the previous simulation after 𝑡 = 𝑠𝑘1 , when the set of
transmitting agents reduces to {2, 3}. The result shown in Figure 2.6(b) demonstrates
that even multi-consensus, in which agents converge to a finite number of clusters,
might not be reachable then. In our case the failure of the first agent to transmit
creates, in a sense, a tug of war between the second and the third agents. The first
agent gets stuck in the middle and keeps oscillating.

2.5 Concluding remarks

In this chapter we took our first steps into the realm of agreement problems. First
by considering the classic consensus problem, and then by its non-trivial sampled-data
counterpart. We were able to leverage ideas from optimal sampled-data control, namely
designing our own A/D and D/A devices, to put forward a novel approach to solving
the sampled-data consensus problem under intermittent and asynchronous sampling.
The proposed architecture yields global asymptotic agreement under very mild connec-
tivity assumptions. It was further shown that a particular choice of analog architecture
can greatly reduce the complexity of the overall controller, resulting in a simple servo
loop with a piecewise constant reference signal. Analysis of the controller’s perfor-
mance under (2.5) as well as other updating protocols is currently being investigated.
Furthermore, the relatively weak assumptions required to guarantee convergence hint
at potential synergy with event-triggering mechanisms.

In a broader perspective, the inherent separation between control and information
processing offered by the proposed approach is particularly appealing. The methods
introduced were derived for the consensus problem, but can potentially be extended to
more general dynamics and multi-agent control goals. This is precisely the subject of the
next chapter, which transitions from integrator consensus to more general agreement
problems.
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Chapter 3

From Sampled-Data Consensus
to General Agreement

Math is not thinking. Math is procedure.
Memory is not thinking. Memory is storage.
Thinking is thinking. Problem, solution.

Andy Weir, Project Hail Mary [73]

Up until now we have considered only the simplest variant of P1, that of identical
integrator agents attempting to reach consensus to a constant. From here on, we shall
consider a more general variant of agreement problem, involving general LTI agents
and possibly non-constant agreement trajectories. As will be shown, the same insights
used in Chapter 2 apply, after a fashion, to the general case. Moreover, the particular
choices of transmitting centroids and updating them via an integrator consensus update
map can be exploited significantly.

3.1 The general agreement problem

Consider 𝜈 homogeneous agents, each with linear dynamics given by

Σ𝑖 :
{
¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡)
𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡)

(3.1)

for some 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚, and 𝐶 ∈ ℝ𝑝×𝑛, where 𝑥𝑖, 𝑢𝑖, and 𝑦𝑖 are the 𝑖th state,
control signal, and measured output, respectively. The global version of the dynamics
can be written via Kronecker products as{

¤𝑥(𝑡) = (𝐼𝜈 ⊗ 𝐴)𝑥(𝑡) + (𝐼𝜈 ⊗ 𝐵)𝑢(𝑡)
𝑦(𝑡) = (𝐼𝜈 ⊗ 𝐶)𝑥(𝑡)

. (3.2)
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The ensemble is subject to some set of communication constraints, manifesting as re-
strictions on the information each agent may use to generate its local control signal 𝑢𝑖.
To this end, we define 𝑧𝑖 (𝑡) as the local information the 𝑖th agent may transmit to its
neighbors.

The spatial constraints are once more represented by neighborhood sets, N𝑖 (𝑡) ⊂
ℕ𝜈 \ {𝑖}, where each N𝑖 (𝑡) denotes the neighbors of agent 𝑖 at time 𝑡. This implies that
𝑢𝑖 (𝑡) is some function of the local output, 𝑦𝑖 (𝑡), and any 𝑧 𝑗 (𝑡) such that 𝑗 ∈ N𝑖 (𝑡).
Mathematically this may be written as 𝑢𝑖 (𝑡) = 𝜅(𝑥𝑖 , 𝑧N𝑖 (𝑡 ) ) where 𝜅 is some function
and 𝑧N𝑖 (𝑡 ) represent the neighbors of agent 𝑖 at time 𝑡. The temporal constraints
are represented by a strict monotonically increasing sequence of sampling instances
{𝑠𝑘}, 𝑘 ∈ ℤ+, where agents may interact only on time instances 𝑡 = 𝑠𝑘 . We also use the
convention that 𝑡 = 𝑠𝑘 corresponds to the time at the receiving agent. When combined,
the two restrict the 𝑖th control signal to be of the form

𝑢𝑖 (𝑡) = 𝜅(𝑦𝑖 (𝑡), 𝑧N𝑖 (𝑠𝑘 ) ), 𝑠𝑘 ≤ 𝑡 < 𝑠𝑘+1. (3.3)

Consequently, at each 𝑠𝑘 the collection of neighborhoods N𝑖 [𝑘] induces a directed graph,
G[𝑘], determining the permitted information exchange, as discussed in Example 2.1.3.

Remark (Scope of communication constraints) 3.1. Note that we only assume the ex-
istence of the sampling sequence {𝑠𝑘} and not how it is generated. For example, it can
be time-triggered, event-triggered, stochastic, or periodic without loss of generality.
Second, note that {𝑠𝑘} is a sequence of sampling instances for the entire ensemble, thus
N𝑖 [𝑘] can be empty for certain agents at some 𝑡 = 𝑠𝑘 . This allows our framework to
encompass asynchronous communication since {𝑠𝑘} is a sequence of all instances on
which at least one of the agents received information. ▽

We consider the following objective in the spirit of [44] and (1.7).
P2: Given 𝐴0 ∈ ℝ𝑛×𝑛 such that spec(𝐴0) ∩ ℂ0 = ∅ and its pure imaginary eigenval-

ues are all semi-simple, design 𝑢𝑖 satisfying the spatio-temporal constraints and
ensuring

lim
𝑡→∞



𝑥𝑖 (𝑡) − e𝐴0𝑡𝑟0


 = 0, ∀𝑖 ∈ ℕ𝜈 , (3.4)

for some constant 𝑟0 ∈ ℝ𝑛 and all initial conditions 𝑥𝑖 (0) of agents (3.1).
It shall be emphasized that the matrix 𝐴0 does not represent a leader node, but rather
the shape of required agreement trajectories. Because setting 𝐴0 = 0 recovers the
consensus problem and setting 𝐴0 = 𝐴 recovers the classical synchronization [42], P2

may be viewed as a generalization of both. Moreover, clearly solving P2 is equivalent
to solving P1 with an additonal constraint on the agreement trajectory. Despite the
possible misnomer, unless stated otherwise, we shall use both “synchronization” and
“agreement” interchangeably to refer to P2, unless stated otherwise.

Agreement problems such as P2 with a singular communication constraint are still
well understood. For homogeneous LTI agents the problem reduces to designing a local
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controller that is robust to certain perturbations, see [12] or [72, Ch. 8], in similar
fashion to Proposition 2.1.2. In general, solution methods are similar to integrator
consensus with some added technical complexity [36], [42]–[44]. Similarly, temporally
constrained control laws with a full spatial structure are also known, even for inter-
mittent and asynchronous sampling [74]. However, the same cannot be said when
attempting to address problems subject to both constraints simultaneously, even when
considering only LTI agents, see [48] and the references therein.

In such problems, the common practice is to use a sequential design. First, de-
sign a spatially constrained control law assuming continuous (analog) communication
and then modify it to conform with the actual sampled communication. Such modi-
fications usually introduce conservatism to the design. For example, zero-order hold
(ZOH) discretization enforces sufficiently small and conservative gains even for integra-
tor agents under synchronous and periodic sampling [24]. Other methods such as the
input-delay approach, e.g. [75], [76], treat the sampling as a perturbation, making them
inherently conservative. This creates a “design, discretize, robustify” approach which
might introduce even more unnecessary conservatism compared to what was discussed
in Chapter 2.
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(a) Standard ZOH and
ideal sampler.
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(b) Emulation-based control.

Figure 3.1: Illustrations of sampled-data multi-agent control architectures: standard
design vs emulation based design.

It is clear that the spatial and temporal constraints completely characterize the
permitted information exchange that any permissible controller must respect. When
compared with (3.3), it is clear that incorporating a ZOH synchronized with {𝑠𝑘} is just
a particular option. Such controllers keep the control signal constant between updates,
an additional constraint imposed by the designer rather than by the communication
network. We opt for a different solution, one employing a generalized hold function
[58] designed for the objective at hand. This is a well-known principle in lumped
sampled-data control systems where, in the absence of an optimal solution, common
wisdom dictates that the hold should attempt to reconstruct a “good” LTI continuous-
time control law [68, §6.1]. In other words, it should locally emulate an analog closed
loop, in an open-loop fashion, between samples. The conceptual difference between
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the approaches is visualized in Figure 3.1. Figure 3.1(a) show the standard approach,
where everything is discrete and the agents transmit their sampled states at 𝑡 = 𝑠𝑘 .
In contrast, Figure 3.1(b) illustrates that the agents emulate an analog world between
samples, resulting in time-varying control signal between samples.

Motivated by the revelations in Subsection 2.3.1, we now assume a priori that there
are no spatial constraints on the emulated closed-loop. Solutions to this unconstrained
problem are not readily available in the literature, hence out first step is to derive some
“good” unconstrained control law to emulate. Before we begin, however, we assume
throughout this chapter that

A3: the triple (𝐶, 𝐴, 𝐵) is stabilizable and detectable, and that

A4: there is 𝐹 such that 𝐴0 = 𝐴 + 𝐵𝐹.

Assumption A3 is obviously needed for the existence of a stabilizing controller. The
matching condition of A4 is required for the existence of a local feedback law guaran-
teeing (3.4) for each agent, at least for all jℝ modes of 𝐴0. Its necessity will be show
in the following sections.

The rest of this chapter is dedicated to solving P2 with both full state and output
only measurements. These results, sans some of the proofs, were published in [60] and
[61], respectively.

3.2 Proposed architecture

3.2.1 The analog control law

The paradigm described hitherto served as the guiding principle in Chapter 2, where
each agent locally emulated the consensus protocol over some agreed-upon spatial topol-
ogy. Interestingly, the emulated topology could be chosen as the complete graph, i.e.,
centralized control law, and still result in a distributed controller respecting the com-
munication constraints. This may be attributed to the fact that the emulators are local
in nature and the particular structure of the update mechanism. Motivated by this, we
shall design an unconstrained control law to emulate via the generalized hold.

To this end, consider first the simplified case of state-feedback, where we assume
that 𝐶 = 𝐼. To satisfy (3.4) the agents must track a common trajectory, implying
that asymptotically the aggregate state must lie in the agreement space, Im(𝟙𝜈 ⊗ 𝐼𝑛).
Introduce the signals

𝑥 := 1
𝜈
(𝟙′𝜈 ⊗ 𝐼𝑛)𝑥 and 𝑥𝛿 := ((𝐼𝜈 − 𝑃𝟙) ⊗ 𝐼𝑛)𝑥,

which may be interpreted as the centroid and disagreement signals, respectively, and
satisfy 𝑥 = 𝑥𝛿 + (𝟙𝜈 ⊗ 𝐼𝑛)𝑥. The control objective (3.4) may then be equivalently
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decomposed into two separate objectives, one for the disagreement,

lim
𝑡→∞

𝑥𝛿 (𝑡) = 0, (3.5a)

and one for the centroid,
lim
𝑡→∞



𝑥(𝑡) − e𝐴0𝑡𝑟0


 = 0. (3.5b)

Because (𝑃𝟙 ⊗ 𝐼𝑛)𝑥 = (𝟙𝜈 ⊗ 𝐼𝑛)𝑥, the centroid and disagreement are orthogonal and
the two objectives are independent, making it natural to propose some 𝑢𝛿 (𝑡) and 𝑢(𝑡)
to independently satisfy (3.5). A state-feedback control in this vein would be

𝑢(𝑡) = (𝐼𝜈 ⊗ 𝐹d)𝑥𝛿 (𝑡) + (𝟙𝜈 ⊗ 𝐹)𝑥(𝑡) (3.6)

for some gains 𝐹d and 𝐹, under which straightforward algebra reveals the following
result.

Proposition 3.2.1. The closed-loop dynamics of agents (3.2) controlled by (3.6) is
given by

¤𝑥𝛿 (𝑡) = (𝐼𝜈 ⊗ (𝐴 + 𝐵𝐹d))𝑥𝛿 (𝑡)
¤̄𝑥(𝑡) = (𝐴 + 𝐵𝐹)𝑥(𝑡)

.

Moreover, (3.5a) holds if and only if 𝐴d ≔ 𝐴+𝐵𝐹d is Hurwitz and (3.5b) holds whenever
𝐴0 = 𝐴 + 𝐵𝐹.

Proof Rewrite (3.6) as

𝑢(𝑡) =
(
(𝐼𝜈 − 𝑃𝟙) ⊗ 𝐹d + 𝑃𝟙 ⊗ 𝐹

)
𝑥(𝑡),

and note that

((𝐼𝜈−𝑃𝟙)⊗𝐼𝑛)𝑢 = (𝐼𝜈−𝑃𝟙)⊗𝐹d𝑥(𝑡) = (𝐼𝜈⊗𝐹d)𝑥𝛿 (𝑡) and 1
𝜈
(𝟙′𝜈⊗𝐼𝑛)𝑢 =

1
𝜈
(𝟙′𝜈⊗𝐹)𝑥(𝑡) = 𝐹𝑥(𝑡).

Hence, by the mixed-product property of Proposition B.1.2

¤̄𝑥 = 1
𝜈
(𝟙′𝜈 ⊗ 𝐼𝑛) ¤𝑥 = (𝐴 + 𝐵𝐹)𝑥(𝑡)

and
¤𝑥𝛿 (𝑡) = ((𝐼𝜈 − 𝑃𝟙) ⊗ 𝐼𝑛) ¤𝑥 = (𝐼𝜈 ⊗ (𝐴 + 𝐵𝐹d))𝑥𝛿 (𝑡).

Note that the disagreement dynamics are in fact 𝜈 identical and independent copies
of the same 𝑛th order system, while the centroid dynamics are simply one 𝑛th order
system. Therefore, (3.5a) holds iff 𝐴d ≔ 𝐴 + 𝐵𝐹d is Hurwitz and (3.5b) holds whenever
𝐴0 = 𝐴 + 𝐵𝐹. ■

Proposition 3.2.1 shows that assumptions A3,4 are indeed necessary for (3.6) to solve
the problem. We require that our emulators solve the unconstrained problem, hence
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these assumptions are necessary for the sampled-data case as well. It is possible to
consider a more general dynamic controller, such as the one in [44], which would result
in a different solvability assumption.

3.2.2 State-feedback sampled-data control law

Let 𝜇𝑖 (𝑡) ∈ ℝ𝜈𝑛 denote the 𝑖th agent’s emulation of the entire ensemble under control
law (3.6). Accordingly, by 𝜇𝑖 𝑗 (𝑡) ∈ ℝ𝑛 we identify the 𝑖th agent’s emulation of the 𝑗th
agent’s state with the convention that 𝜇𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡). As before, we can define the local
disagreement of emulator 𝑖 as

Δ𝑖 :=
(
(𝐼𝜈 − 𝑃𝟙) ⊗ 𝐼𝑛

)
𝜇𝑖

and the centroid of the 𝑖th emulator as

𝜇𝑖 := 1
𝜈
(𝟙′𝜈 ⊗ 𝐼𝑛)𝜇𝑖 .

Between sampling instances 𝜇𝑖 emulates system (3.2), as if controlled by (3.6), and
evolves continuously according to

¤𝜇𝑖 (𝑡) =
(
𝐼𝜈 ⊗ 𝐴d + 𝑃𝟙 ⊗ (𝐵(𝐹 − 𝐹d))

)
𝜇𝑖 (𝑡), (3.7)

for some initial conditions 𝜇𝑖 (0) = 𝜇𝑖,0. Each agent is controlled by a local version of
(3.6) based upon Δ𝑖 and 𝜇𝑖 instead of their analog counterparts, viz.

𝑢𝑖 (𝑡) = (𝑒′𝑖 ⊗ 𝐹d)Δ𝑖 (𝑡) + 𝐹𝜇𝑖 (𝑡). (3.8)

As previously discussed, (3.7) and (3.8) cannot solve P2 on their own since each version
of (3.7) evolves independently from the others. Hence, it must be accompanied by some
information exchange mechanism that updates the local emulators while satisfying the
spatio-temporal constraints.

We have seen that the cooperative aspect of P2 can be reduced to a requirement
on the centroid given by (3.5b). This mirrors the same logic and motivation we had
in Section 2.2 for integrator consensus. Motivated by this similarity, we propose the
same update mechanism based on the local emulated centroids given in (2.5). Namely,
at sampling instances, each local emulator is updated according to a discrete system
given by

𝜇𝑖 𝑗 (𝑠+𝑘) = 𝜇𝑖 𝑗 (𝑠𝑘) − 𝛼𝑖 𝑗
∑

𝑙∈N𝑖 [𝑘 ]
(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘)) , (2.5)

for all 𝑖 ≠ 𝑗 and some gains 𝛼𝑖 𝑗 ∈ ℝ. If gains 𝛼𝑖 =
[
𝛼𝑖1 · · · 𝛼𝑖𝜈

] ′
are chosen such that

𝑒′𝑖𝛼𝑖 = 0 for all 𝑖 ∈ ℕ𝜈, then the closed-loop system of agents (3.2) controlled by (3.8)
which is generated by (3.7) and (2.5) is given by
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{
¤𝜇(𝑡) =

(
𝐼𝜈 ⊗

(
𝐼𝜈 ⊗ 𝐴d + 𝑃𝟙 ⊗ 𝐵(𝐹 − 𝐹d)

) )
𝜇(𝑡)

𝜇(𝑠+𝑘) = (𝐴jmp [𝑘] ⊗ 𝐼𝑛)𝜇(𝑠𝑘), 𝜇(0) = 𝜇0
(3.9)

where 𝐴jmp [𝑘] is defined as in (2.7). Note that the agents communicate only through
(2.5) which is spatially distributed, thus the controller respects the spatio-temporal
constraints. Note that the update scheme is identical to the one we had for simple
integrators, and indeed we must make exactly the same connectivity assumption A1.
Now, with a controller at hand, we are set to show that it solves P2 with full state
measurements.

3.3 Sampled-data solution to P2 with state measurements

In Subsection 3.2.1 we saw that the disagreement and centroid dynamics were decoupled
by (3.6), which in turn enabled P2 to be reduced into two independent problems.
Inspired by this, consider the following partition of the stacked emulators

𝜇(𝑡) = (𝐼𝜈 ⊗ 𝟙𝜈 ⊗ 𝐼𝑛)𝜇(𝑡) + Δ(𝑡) ∈ ℝ𝜈
2𝑛.

Now, 𝜇(𝑡) is an (𝑛𝜈) × 1 block vector, where the 𝑖th 𝑛 × 1 block contains the centroid of
the 𝑖th emulator. Similarly, Δ(𝑡) is a block vector where blocks Δ𝑖 (𝑡) contain the local
disagreement vector of emulator 𝑖. Recall that 𝑥𝑖 (𝑡) = 𝜇𝑖𝑖 (𝑡), hence the aggregate state
is given by

𝑥(𝑡) = 𝜇(𝑡) +
𝜈∑
𝑖=1

(
(𝑒𝑖 (𝑒′𝑖 ⊗ 𝑒′𝑖)) ⊗ 𝐼𝑛

)
Δ(𝑡).

The above allows us to pose equivalent conditions for the solution of P2 in the same
vein as those presented in (3.5). Namely, if the emulator disagreements asymptotically
vanish,

lim
𝑡→∞

Δ(𝑡) = 0, (3.10a)

and the emulator centroids verify

lim
𝑡→∞



𝜇(𝑡) − 𝟙𝜈 ⊗ e𝐴0𝑡𝑟0


 = 0, (3.10b)

then P2 is satisfied.

3.3.1 Centroid-disagreement separation and synchronization

Unlike their analog counterparts, 𝜇(𝑡) and Δ(𝑡) are coupled through (2.5). However,
for some choices of update gains 𝛼𝑖 they take on a simple structure, allowing for a
more streamlined analysis. Below is the high-order counterpart of Lemma 2.3.2 and
Lemma 2.3.3.
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Lemma 3.3.1. If 𝟙′𝜈𝛼𝑖 = 1 for all 𝑖 ∈ ℕ𝜈, then the disagreements dynamics are given
by { ¤Δ(𝑡) = (𝐼𝜈2 ⊗ 𝐴d)Δ(𝑡), Δ(0) = Δ0

Δ(𝑠+𝑘) = Δ(𝑠𝑘) +
(
(𝐵jmp𝐿G [𝑘]) ⊗ 𝐼𝑛

)
𝜇(𝑠𝑘),

(3.11a)

with
𝐵jmp :=

𝜈∑
𝑖=1

(𝑒𝑖𝑒′𝑖) ⊗ (𝟙𝜈/𝜈 − 𝛼𝑖),

and 𝐿G [𝑘] is the Laplacian matrix associated with G[𝑘] [22, §2.3.5]. In addition, the
centroid dynamics are given by


¤̄𝜇(𝑡) = (𝐼𝜈 ⊗ (𝐴 + 𝐵𝐹)𝜇(𝑡), 𝜇(0) = 𝜇0

𝜇(𝑠+𝑘) = ((𝐼𝜈 −
1
𝜈
𝐿G [𝑘]) ⊗ 𝐼𝑛)𝜇(𝑠𝑘)

(3.11b)

Proof The flow dynamics mirror the analog case. Note that 𝐴jmp [𝑘] is defined identi-
cally to the jump map in [59, Lemma 2], hence the result follows from applying it to
the jump map of (3.9). ■

There are two immediate consequences of Lemma 3.3.1: i) the dynamics of 𝜇(𝑡) are
autonomous and do not depend on those of Δ(𝑡) and ii) 𝜇(𝑡) can be thought of as a
discrete input affecting Δ(𝑡) at time instances 𝑡 = 𝑠𝑘 . Consequently, finding conditions
under which the centroids satisfy (3.10b) can be done independently of Δ(𝑡). This is
the purpose of the following result.

Lemma 3.3.2. Consider (3.11b) and denote 𝐴0 := 𝐴 + 𝐵𝐹. If A1 holds true, then
there is 𝑟0 such that

lim
𝑡→∞

‖𝜇(𝑡) − 𝟙 ⊗ 𝜇ss(𝑡)‖ = 0,

where the 𝑛-dimensional 𝜇ss is such that 𝜇ss(𝑡) = e𝐴0𝑡𝑟0. Moreover,

𝑟0 :=
(
𝜈∑
𝑖=1

𝑞𝑖𝜇𝑖,0

)
= (𝑞′ ⊗ 𝐼𝑛)𝜇0

where 𝑞 is some constant vector which depends on the sequence of graphs.

Proof It is readily verified that 𝜇 from (3.11b) satisfies

𝜇(𝑠𝑘 + 𝜏) = e𝐼⊗(𝐴0𝜏 )
( 𝑘∏
𝑗=1

((
𝐼 − 1

𝜈
𝐿G [ 𝑗]

)
⊗ 𝐼

)
e𝐼⊗(𝐴0ℎ 𝑗 )

)
𝜇0

for all 𝑘 and 0 < 𝜏 ≤ ℎ𝑘+1, where ℎ 𝑗 ≔ 𝑠 𝑗 − 𝑠 𝑗−1. Because e𝐼⊗(𝐴0ℎ 𝑗 ) = 𝐼 ⊗ e𝐴0ℎ 𝑗 and
𝑁 ⊗ 𝐼 and 𝐼 ⊗ 𝑀 commute for all compatibly dimensioned 𝑀 and 𝑁, we have

𝜇(𝑠𝑘 + 𝜏) =
(( 𝑘∏
𝑗=1

(
𝐼 − 1

𝜈
𝐿G [ 𝑗]

))
⊗ e𝐴0 (𝑠𝑘+𝜏 )

)
𝜇0.
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If the connectivity assumption A1 holds, then [21, Lem. 2.29 and 2.30] there exists
some constant 𝑞 ∈ ℝ𝜈 such that

lim
𝑘→∞

𝑘∏
𝑗=1

(
𝐼 − 1

𝜈
𝐿G [ 𝑗]

)
= 𝟙𝑞′. (3.12)

Therefore, if we choose 𝑟0 = (𝑞′ ⊗ 𝐼)𝜇0 for 𝜇ss, then

lim
𝑘→∞

(
𝜇(𝑠𝑘 + 𝜏) − 𝟙 ⊗ 𝜇ss(𝑠𝑘 + 𝜏)

)
= lim
𝑘→∞

(( 𝑘∏
𝑗=1

(
𝐼 − 1

𝜈
𝐿G [ 𝑗]

)
− 𝟙𝑞′

)
⊗ e𝐴0 (𝑠𝑘+𝜏 )

)
𝜇0 = 0

whenever e𝐴0𝑡 is bounded. The latter is guaranteed by the assumption that all pure
imaginary eigenvalues of 𝐴0 are semi-simple. ■

Utilizing A4, the flow map ensures that each 𝜇𝑖 (𝑡) aligns precisely with the in-
tended trajectory shape. However, if the initial conditions differ the trajectories would
be different. This cannot be remedied by the non-interacting flows. On the other hand,
the jump map mirrors discrete consensus dynamics. Under A1, this map will asymp-
totically steer a constant vector to a fixed consensus point within the agreement space.
Thus, only the combined flow and jump dynamics under both assumptions guarantee
the solution of P2 for 𝜇(𝑡). Hence, Lemma 3.3.2 proves that under A4,1 and a proper
choice of 𝐹, 𝜇(𝑡) asymptotically satisfy (3.10b). The final step would be to show the
stability of (3.11a), which can be thought of as an LTI system with 𝜇 as an impulsive
input. Moreover, the “input matrix” for these impulses includes a, possibly different,
graph Laplacian matrix at each 𝑘. In particular, for any graph 𝟙𝜈 ∈ ker 𝐿G [𝑘], there-
fore if 𝜇(𝑠𝑘) ∈ Im 𝟙𝜈 ⊗ 𝐼𝜈 then (3.11a) will contain no jumps. This is a key property in
proving the main result, which is stated below.

Theorem 3.1. Consider agents (3.1) with 𝐶 = 𝐼, controlled by (3.8), generated by
emulators (3.9) and update law (2.5). If A4,1 holds, then control law (3.8) solves P2

for all gains 𝐹d and 𝐹 such that 𝐴d = 𝐴 + 𝐵𝐹d is Hurwitz and 𝐴 + 𝐵𝐹 = 𝐴0 and all
emulator update gains 𝛼𝑖 𝑗 such that 𝟙′𝜈𝛼𝑖 = 1 for all 𝑖 ∈ ℕ𝜈. Moreover, the emulators
asymptotically agree and remain bounded if e𝐴0𝑡 is bounded.

Proof By assumption, 𝟙′𝜈𝛼𝑖 = 1 for all 𝑖 ∈ 𝜈, therefore the condition for Lemma 3.3.1
holds. Define the centroid error 𝜖 (𝑡) := 𝜇(𝑡)−𝟙𝜈 ⊗e𝐴0𝑡𝑟0 where 𝑟0 is in Lemma 3.3.2. By
assumption 𝐴+𝐵𝐹 = 𝐴0, and 𝐴d is Hurwitz and A4,1 holds, thus from Lemma 3.3.2 we
know that 𝜇(𝑡) → 𝟙𝜈⊗e𝐴0𝑡𝑟0, or equivalently that 𝜖 (𝑡) → 0 from every initial condition.
Note that 𝟙𝜈 ∈ ker 𝐿G [𝑘] for all 𝑘, thus we can rewrite the jump part of (3.11a) as

Δ(𝑠+𝑘) = Δ(𝑠𝑘) +
(
𝐵jmp [𝑘] ⊗ 𝐼𝑛

) (
𝐿G [𝑘] ⊗ 𝐼𝑛

)
𝜖 (𝑠𝑘).

Since 𝜖 (𝑡) → 0 and is bounded, the sequence {(𝐿G [𝑘] ⊗ 𝐼𝑛)𝜖 (𝑠𝑘)} is bounded and van-
ishes asymptotically, reducing (3.11a) to an LTI system with a bounded and asymptot-
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ically vanishing input. The stability of LTI systems with bounded and vanishing inputs
is independent of the actual input, therefore since 𝐴d is Hurwitz Δ(𝑡) → 0. Combining
with (3.10) yields

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

𝜇(𝑡) = 𝟙𝜈 ⊗ e𝐴0𝑡𝑟0,

implying that the agents agree. Similarly, taking the limit for 𝜇(𝑡) yields

lim
𝑡→∞

𝜇(𝑡) = lim
𝑡→∞

(𝐼𝜈 ⊗ 𝟙𝜈 ⊗ 𝐼𝑛)𝜇(𝑡) = 𝟙𝜈2 ⊗ e𝐴0𝑡𝑟0,

therefore the emulators also agree and remain bounded if e𝐴0𝑡 is bounded. ■

3.3.2 Reduced order implementation

The obvious drawback of emulation-based control architectures is that each agent must
locally emulate the entire group, yielding local controllers whose dimension grows lin-
early with 𝑛𝜈. This may not be feasible for large networks of high-order agents. In an
effort to circumvent that, consider a different representation of

𝑢𝑖 (𝑡) = 𝐹d𝜇𝑖𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡), (3.8′)

which is obtained by substituting Δ𝑖 (𝑡) = 𝜇𝑖 (𝑡) − (𝟙𝜈 ⊗ 𝐼𝑛)𝜇𝑖 (𝑡). Control law (3.8′)
requires two 𝑛th order states, the local emulated centroid and local emulated state,
hinting that it might be possible to obtain a reduced order implementation.

Corollary 3.2. If A4,1 holds and each agent can continuously measure its own state
then the following 𝑛th order local controllers

¤̄𝜇𝑖 (𝑡) = (𝐴 + 𝐵𝐹)𝜇𝑖 (𝑡), 𝜇𝑖 (0) = 𝜇𝑖,0

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −
1
𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡)

(3.13)

solves P2 for all gains 𝐹d, 𝐹 such that 𝐴 + 𝐵𝐹 = 𝐴0 and 𝐴d is Hurwitz.

Proof By definition 𝜇𝑖𝑖 (𝑡) = 𝑥𝑖 (𝑡) which is locally available continuously by assumption,
substituting 𝜇𝑖𝑖 (𝑡) with 𝑥𝑖 (𝑡) in (3.8′) gives the first equivalence. Since 𝑥𝑖 (𝑡) is locally
available, to implement the control each agent needs to implement only 𝜇𝑖 (𝑡). By
Lemma 3.3.1 we know that 𝜇(𝑡) is independent of Δ(𝑡) thus the rest of (3.13) follows
immediately from considering the local version of (3.11b). ■

The above implementation is still distributed and adheres to the spatial and tem-
poral constraints, but now each local controller is only of dimension 𝑛 regardless of the
number of agents. This agrees with the intuition behind the analog control law from
Subsection 3.2.1: the agents must track the centroid and drive the disagreements to
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zero. The logic is reminiscent of a classic servo-regulation problem, where the control
law has a stabilizing component acting on the state and a tracking component acting on
the reference signal. This raises the natural question of how will this structure behave
in the presence of disturbances, something synchronizing systems tend to do poorly
[63].

Note that (3.13) can also be presented in a slightly different form. Using the coor-
dinate transformation 𝑧𝑖 = 𝜈𝜇𝑖 − 𝑥𝑖, it can be rewritten locally as



¤𝑧𝑖 (𝑡) = (𝐴 + 𝐵𝐹)𝑧𝑖 (𝑡) + 𝐵(𝐹𝑥𝑖 (𝑡) − 𝑢𝑖 (𝑡)), 𝑧𝑖 (0) = 𝑧𝑖,0

𝑧𝑖 (𝑠+𝑘) = 𝑧𝑖 (𝑠𝑘) −
1
𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(𝑧𝑖 (𝑠𝑘) − 𝑧𝑙 (𝑠𝑘) + 𝑥𝑖 (𝑠𝑘) − 𝑥𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) +
1
𝜈
(𝐹 − 𝐹d)(𝑧𝑖 (𝑡) + 𝑥𝑖 (𝑡))

. (3.13’)

This form is reminiscent of the Youla parametrization-based redesign approach in [69,
Thm. 4.2], which also resulted in an emulation-based scheme. Implementation (3.13’)
will be beneficial later on when we consider the effects of transmission delays.

3.4 What changes in the output-feedback case

If the state 𝑥𝑖 is not measurable, we can no longer realize the dynamics (3.9) in the
intersample, its 𝜇𝑖𝑖 component is not available. The use of a state observer is a conven-
tional solution in such situations. There is certain ambiguity in how exactly an observer
may be incorporated into the emulation and information exchange procedures. The ex-
tension proposed below is motivated mainly by the relative simplicity of analyzing the
closed-loop dynamics with it.

Because measurement channels of agents (3.1) are uncoupled, we construct the local,
i.e., uncoupled, analog observer

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) − 𝐿 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡)) (3.14)

for some 𝐿 such that 𝐴 + 𝐿𝐶 is Hurwitz. The observer-based counterpart of (3.6) is
then straightforward, we just need to replace 𝑥𝑖 and 𝑥 with 𝑥𝑖 and the centroid of the
observer states of all agents. It is then readily seen that the resulting disagreement 𝑥𝛿
and centroid 𝑥 still satisfy (3.5), the only change in their evolution is the addition of
the aggregate observer error, which vanishes exponentially.

Moving to the spatially distributed sampled-data setting, we now substitute the
control law (3.8) with

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡), (3.15)

where the observed state 𝑥𝑖 is local and can thus be implemented in continuous time
and the emulated centroid 𝜇𝑖 is still generated by the 𝑛-dimensional hybrid system
(3.13).
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Remark 3.2. It can be shown the centroid of the observer states of all agents, say
𝑥 ≔ (1/𝜈)∑𝜈

𝑖=1 𝑥𝑖, under the analog observer-based counterpart of (3.6) satisfies[
¤̌𝑥
¤̄𝜖

]
=

[
𝐴0 −𝐿𝐶
0 𝐴 + 𝐿𝐶

] [
𝑥

𝜖

]
,

where 𝜖 ≔ 𝑥 − 𝑥 is the centroid observation error. This relation may be used for
alternative forms of the emulator. Exploring these alternatives might involve some
involved technicalities and is thus left for future research. ▽

3.5 Synchronization analysis for output feedback

Combining plant (3.2) with the aggregate versions of (3.13),(3.14), and (3.15), the
closed-loop dynamics read as the analog flow


¤𝑥 = (𝐼 ⊗ 𝐴)𝑥 + (𝐼 ⊗ 𝐵𝐹d)𝑥 + (𝐼 ⊗ 𝐵(𝐹 − 𝐹d))𝜇
¤̂𝑥 = −(𝐼 ⊗ 𝐿𝐶)𝑥 + (𝐼 ⊗ (𝐴d + 𝐿𝐶))𝑥 + (𝐼 ⊗ 𝐵(𝐹 − 𝐹d))𝜇
¤̄𝜇 = (𝐼 ⊗ 𝐴0)𝜇

between sampling instances with the jump


𝑥(𝑠+𝑘) = 𝑥(𝑠𝑘)
𝑥(𝑠+𝑘) = 𝑥(𝑠𝑘)
𝜇(𝑠+𝑘) = (𝐼 − (1/𝜈)𝐿G [𝑘])𝜇(𝑠𝑘)

at each 𝑠𝑘 , where 𝐿G [𝑘] is the Laplacian matrix associated with the network connec-
tivity graph G[𝑘] at 𝑠𝑘 . Note that 𝐿G [𝑘]𝟙 = 0 for all 𝑘.

Introduce now the emulation and observation errors

𝜀 ≔ 𝑥 − 𝜇 and 𝜖 ≔ 𝑥 − 𝑥,

respectively, the closed-loop dynamics can be rewritten in the more transparent form


¤𝜀(𝑡)
¤𝜖 (𝑡)
¤̄𝜇(𝑡)

 =


𝐼 ⊗ 𝐴d −𝐼 ⊗ (𝐵𝐹d) 0

0 𝐼 ⊗ (𝐴 + 𝐿𝐶) 0
0 0 𝐼 ⊗ 𝐴0



𝜀(𝑡)
𝜖 (𝑡)
𝜇(𝑡)

 (3.16a)

(here 𝐴d = 𝐴 + 𝐵𝐹d and 𝐴0 = 𝐴 + 𝐵𝐹), with the jump


𝜀(𝑠+𝑘)
𝜖 (𝑠+𝑘)
𝜇(𝑠+𝑘)

 =


𝐼 0 (1/𝜈)𝐿G [𝑘] ⊗ 𝐼𝑛
0 𝐼 0
0 0 (𝐼 − (1/𝜈)𝐿G [𝑘]) ⊗ 𝐼𝑛



𝜀(𝑠𝑘)
𝜖 (𝑠𝑘)
𝜇(𝑠𝑘)

 . (3.16b)
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The signal 𝜀 is affected by both 𝜖 , via flow (3.16a), and 𝜇, via jump (3.16b). At the
same time, 𝜖 and 𝜇 are completely decoupled. As such, we start the analysis with the
last two signals.

It shall be clear that 𝜖 is an exponentially decaying signal. Therefore, it does not
affect asymptotic properties of (3.16) and can be excluded from the analysis. Asymp-
totic behavior of 𝜇 is generally more complex, but follows exactly the same dynamics
it did in the state-feedback case. In particular, by Lemma 3.3.2 we know that although
the 𝜈𝑛-dimensional signal 𝜇 is not decaying, all its 𝑛-dimensional block components are
asymptotically equivalent. This leads to the following result, which is the main result
of this section.

Theorem 3.3. If 𝐹d and 𝐿 are such that 𝐴 + 𝐵𝐹d and 𝐴 + 𝐿𝐶 are Hurwitz and 𝐹 is
such that 𝐴0 = 𝐴+𝐵𝐹, then the control law defined by (3.15), (3.14), and (3.11b) solves
P2 for any sampling sequence {𝑠𝑘} satisfying A1.

Proof By Lemma 3.3.2 and the fact that 𝐿G [𝑘]𝟙 = 0 we have that

lim
𝑘→∞

𝐿G [𝑘]𝜇ss(𝑠𝑘) = 0,

The latter property implies that 𝜇 asymptotically decouples from 𝜀 in (3.16b). Because
the matrix 𝐴d is Hurwitz and because 𝜖 vanishes exponentially, we have lim𝑡→∞ 𝜀(𝑡) = 0.
This, in turn, yields

lim
𝑡→∞

‖𝑥(𝑡) − 𝟙 ⊗ 𝜇ss(𝑡)‖ = 0,

which leads to (3.4). ■

3.6 Directly emulating the observers

It is worth emphasising that despite the simplicity of the control law defined by (3.15),
(3.14), and (3.11b) it is not merely a reapplication of the methodology from the state-
feedback case. In fact, repeating the emulation process described in Section 3.3 with
the simple change of 𝜇𝑖𝑖 ≡ 𝑥𝑖 would result in a significantly different system. It can be
shown that this process would result in the following counterpart of (3.16)


¤𝜀(𝑡)
¤𝜖 (𝑡)
¤̄𝜇(𝑡)

 =


𝐼 ⊗ ¯̄𝐴 −𝐼 ⊗ 𝑀 0

0 𝐼 ⊗ (𝐴 + 𝐿𝐶) 0
0 −𝐼 ⊗ ( 1

𝜈 𝐿𝐶) 𝐼 ⊗ 𝐴0



𝜀(𝑡)
𝜖 (𝑡)
𝜇(𝑡)

 (3.16a′)

(here ¯̄𝐴 = 𝐴 + 𝐵𝐹d + 𝐵𝐹, 𝐴0 = 𝐴 + 𝐵𝐹, and 𝑀 = 𝐵𝐹d + (1/𝜈)𝐿𝐶), with the jumps


𝜀(𝑠+𝑘)
𝜖 (𝑠+𝑘)
𝜇(𝑠+𝑘)

 =


𝐼 0 (1/𝜈)𝐿G [𝑘] ⊗ 𝐼𝑛
0 𝐼 0
0 0 (𝐼 − (1/𝜈)𝐿G [𝑘]) ⊗ 𝐼𝑛



𝜀(𝑠𝑘)
𝜖 (𝑠𝑘)
𝜇(𝑠𝑘)

 . (3.16b′)
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Since now we do not have access to the actual states, this emulation leads to coupling
between the flow of each 𝜇𝑖 (𝑡) and its observation error. Note that 𝐴0 will generally
have eigenvalues on the imaginary axis, hence not asymptotically stable, and that the
stability of ¯̄𝐴 is not guaranteed. Thus while the estimation error, 𝜖 (𝑡), is LTI and
decays exponentially to zero, the same cannot be said for 𝜇(𝑡) and 𝜀(𝑡). In fact both
are hybrid, non-autonomous, with an unstable flow and shift varying jumps.

By forgoing the straightforward derivation via emulation methodology we were able
to decouple 𝜇 for the state and the observer, cumulating with the simpler (3.16) rather
than (3.16′). This significantly streamlined the proof and allowed us to avoid analyzing
the aforementioned complicated hybrid system. The “price” we pay for the simplified
analysis is that 𝜇 is now completely decoupled, and in fact can be thought of as some
sort of exosystem without direct feedback from the agents. It is worth mentioning that
the results of Theorem 3.3 still hold for (3.16′), but the proof is significantly longer and
more involved. It will be presented in the rest of this section for completion, but is not
important for the rest of this thesis.

3.6.1 The analog control law

First, we must verify that the emulated control law can actually solve the prolbem in the
ideal case. To this end, consider the ideal scenario where each agent locally implements
(3.6) by replacing the state components with those of observer (3.14), yielding{ ¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) + 𝐿 (𝐶𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡))

𝑢𝑖 (𝑡) = 𝐹𝑑𝑥𝛿,𝑖 (𝑡) + 𝐹 ˆ̄𝑥(𝑡)
(3.17)

where 𝑥𝛿,𝑖 ((𝑡) and ˆ̄𝑥 are the disagreement and centroid of the observer’s states. Fol-
lowing the same logic of partitioning the states to centroid and disagreements, the
closed-loop dynamics are once more decoupled. Moreover, if 𝐴 + 𝐿𝐶 is Hurwitz then
the estimation error 𝜖 (𝑡) := 𝑥(𝑡) − 𝑥(𝑡) converges exponentially to zero. Thus if 𝑥 syn-
chronize asymptotically, so would 𝑥(𝑡).

Defining observation errors 𝜖𝛿 = 𝑥𝛿 − 𝑥𝛿 and 𝜖 = 𝑥 − ˆ̄𝑥 results in the following global
observer disagreement dynamics[ ¤̂𝛿(𝑡)

¤𝜖𝛿 (𝑡)

]
=

[
𝐼𝜈 ⊗ (𝐴 + 𝐵𝐹𝑑) −𝐼𝜈 ⊗ (𝐿𝐶)

0 𝐼𝜈 ⊗ (𝐴 + 𝐿𝐶)

] [
𝛿(𝑡)
𝜖𝛿 (𝑡)

]
(3.18a)

and observer centroid dynamics[ ¤̄̂𝑥(𝑡)
¤̄𝜖

]
=

[
𝐴 + 𝐵𝐹 −𝐿𝐶

0 𝐴 + 𝐿𝐶

] [
ˆ̄𝑥(𝑡)
𝜖 (𝑡)

]
. (3.18b)

Recall that 𝐴 + 𝐵𝐹𝑑 is Hurwitz, hence (3.18a) is stable iff 𝐴 + 𝐿𝐶 is Hurwitz, as par
standard observer design, and satisfies condition (3.5a). However, 𝐴 + 𝐵𝐹 = 𝐴0 is not
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assumed to be Hurwitz, thus the fact that 𝜖 → 0 does not imply that condition (3.5b)
will be satisfied. The following proposition characterizes conditions under which the
observer based feedback solves P2.

Proposition 3.6.1. If 𝐴 + 𝐵𝐹𝑑 and 𝐴 + 𝐿𝐶 are Hurwitz, 𝐴0 = 𝐴 + 𝐵𝐹, and spec 𝐴0 ∩
spec (𝐴 + 𝐿𝐶) = ∅; then observer-based controller (3.17) solves P2 for agents (3.1).
Moreover, 𝑟0 = (𝐼 − 𝑄) ˆ̄𝑥0 + 𝑋𝑥0 where 𝑄 is the solution of the following Sylvester
equation

𝑄(𝐴 + 𝐿𝐶) − 𝐴0𝑄 = 𝐿𝐶.

Proof Since 𝐴+𝐿𝐶 and 𝐴+𝐵𝐹𝑑 are Hurwitz condition (3.5a) is satisfied, thus we need to
consider only the centroid dynamics. Consider a coordinate transformation of (3.18b)
given by

𝑇 =

[
𝐼 𝑄

0 𝐼

]
, 𝑇−1 =

[
𝐼 −𝑄
0 𝐼

]
,

applying it yields

𝑇

[
𝐴0 −𝐿𝐶
0 𝐴 + 𝐿𝐶

]
𝑇−1 =

[
𝐴0 𝑄(𝐴 + 𝐿𝐶) − 𝐴0𝑄 − 𝐿𝐶
0 𝐴 + 𝐿𝐶

]
.

It is well known [77, Thm 1.1.5] that if spec 𝐴0 ∩ spec 𝐴 + 𝐿𝐶 = ∅ then

𝑄(𝐴 + 𝐿𝐶) − 𝐴0𝑄 − 𝐿𝐶 = 0

always has a unique solution, thus the transformation decouples the centroid dynamics.
Thus the trajectory of the transformed coordinate ˆ̄𝑥𝑄 = ˆ̄𝑥 +𝑄𝜖 is given by

ˆ̄𝑥𝑄 (𝑡) = e𝐴0𝑡 ˆ̄𝑥𝑄 (0) = e𝐴0𝑡
(
(𝐼 −𝑄) ˆ̄𝑥0 +𝑄𝑥(0)

)
and in the original coordinates

ˆ̄𝑥(𝑡) = ˆ̄𝑥𝑄 (𝑡) −𝑄𝜖 (𝑡) = e𝐴0𝑡𝑟0 −𝑄e𝐴𝐿 𝑡𝜖 (0)

where 𝐴𝐿 = 𝐴 + 𝐿𝐶. Since 𝐴𝐿 is Hurwitz

lim
𝑡→∞



ˆ̄𝑥(𝑡) − e𝐴0𝑡𝑟0


 = 0

and similarly for the real centroid 𝑥(𝑡). ■

Proposition 3.6.1 shows that the observer based variation of the “ideal” control law can
indeed solve P2 without temporal constraints, making it suitable for emulation. Note
that this time we have an additional constraint on the spectra of 𝐴0 and 𝐴+ 𝐿𝐶, which
is required to ensure the existence of a solution to a Sylvester equation. It is to be
expected, and is indeed true, that a similar constraint will appear in the sampled-data
variant as well.
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3.6.2 Sampled-data synchronization

Now that we have established that the analog control law can indeed drive the emulators
to agreement between sampling instances, we can consider the full hybrid dynamics of
(3.16a′) and (3.16b′). The main difference is that the flow map of 𝜇 in (3.16a) is
autonomous, while in (3.16a′) it is also driven by 𝜖 (𝑡). Even though 𝜖 (𝑡) is completely
continuous and exponentially stable, this coupling makes the hybrid trajectory of 𝜇
much more complicated. In particular, each sampling instance would introduce a new
term which is a product of the jump map at 𝑡 = 𝑠𝑘 and an integral equation driven by
𝜖 . It is readily verified by combining (3.16a′) and (3.16b′) that 𝜇 evolves according to

𝜇(𝑠𝑘 + 𝜏) =
(
𝐼𝜈 ⊗ e𝐴0 (𝑠𝑘+𝜏 )

) [( 𝑘∏
𝑙=1

𝑀 [𝑙] ⊗ 𝐼𝑛

)
𝜇(0)

− 1
𝜈

𝑘∑
𝑙=1

©­«
𝑘∏
𝑗=𝑙

𝑀 [ 𝑗] ⊗
(∫ 𝑠𝑙

𝑠𝑙−1

e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠d𝑠
)ª®¬ 𝜖 (𝑠𝑙−1)

]
=

(
𝐼𝜈 ⊗ e𝐴0 (𝑠𝑘+𝜏 )

) (
𝜂[𝑘] − 1

𝜈
𝜃 [𝑘]

)
. (3.19)

where

𝑀 [𝑘] := 𝐼𝜈 −
1
𝜈
𝐿G [𝑘], 𝜂[𝑘] :=

(
𝑘∏
𝑙=1

𝑀 [𝑙] ⊗ 𝐼𝑛

)
𝜇(0),

and

𝜃 [𝑘] :=
𝑘∑
𝑙=1

©­«
𝑘∏
𝑗=𝑙

𝑀 [ 𝑗] ⊗
(∫ 𝑠𝑙

𝑠𝑙−1

e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠d𝑠
)ª®¬ 𝜖 (𝑠𝑙−1).

Note that if 𝜂[𝑘] and 𝜃 [𝑘] converge to finite limits then 𝜇 will asymptotically
converge to a solution of

¤𝑟 (𝑡) = (𝐼𝜈 ⊗ 𝐴0)𝑟 (𝑡), 𝑟 (0) = lim
𝑘→∞

(𝜂[𝑘] − 1
𝜈
𝜃 [𝑘]),

but won’t necessarily synchronize. In fact, 𝜇 will synchronize to a solution of e𝐴0𝑡𝑟0 if
and only if

lim
𝑘→∞

(𝜂[𝑘] − 𝜃 [𝑘]) = 𝑟0 = 𝟙𝜈 ⊗ 𝑟0

for some constant vector 𝑟0. Since 𝜂[𝑘] is driven only by the initial conditions, we
know that if A1 holds it will converge to the agreement space. Thus we must prove
two things: i) that 𝜃 [𝑘] converges to a finite limit, and ii) that it converges to the
agreement set. The following lemma provides conditions for the first requirement.

Lemma 3.6.2. Let 𝜆𝑖 denote the eigenvalues of 𝐴0 and 𝜇𝑖 the eigenvalues of 𝐴 + 𝐿𝐶.
If 𝐿 is chosen such that <(𝜇𝑖 − 𝜆 𝑗) < 0 for all 𝑖, 𝑗 and A1 holds, then 𝜃 [𝑘] converges
absolutely to a finite limit.
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Proof First, note 𝜖 (𝑡) is an exponentially stable continuous time LTI system, hence

lim
𝑡→∞

‖𝜖 (𝑡)‖ = 0 and ∃𝜌 > 0 s.t ‖𝜖 (𝑡)‖ ≤ 𝜌 ∀𝑡 ≥ 0.

Next, by definition the Laplacian matrix, 𝐿G [𝑘], has row sum 0, non-negative diagonal
entries bounded by 𝜈 − 1, and either 0 or −1 on the off diagonal. Hence, 𝑀 [𝑘] is
non-negative and with row sum of 1, making it row-stochastic for all 𝑘. Since it is
row-stochastic, by Proposition B.2.2




∏𝑘
𝑗=𝑙 𝑀 [ 𝑗]





2
≤ √

𝜈 for all 𝑙, 𝑘. When combined,
we obtain

‖𝜃 [𝑘] ‖ ≤
√
𝜈𝜌






 𝑘∑
𝑙=1

−
∫ 𝑠𝑙

𝑠𝑙−1

e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠d𝑠






 = √
𝜈𝜌





−∫ 𝑠𝑙

0
e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠d𝑠





 .
Next, note that if 𝐿 is chosen such that <(𝜇𝑖 − 𝜆 𝑗) < 0 for all 𝑖, 𝑗 , then

𝑄 =
∫ ∞

0
e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠d𝑠

exists and is the solution of the Sylvester equation

−𝐴0𝑄 +𝑄𝐴𝐿 + 𝐿𝐶 = 0,

since
−𝐴0𝑄 +𝑄𝐴𝐿 =

∫ ∞

0

d
d𝑠

(
e−𝐴0𝑠𝐿𝐶e𝐴𝐿𝑠

)
d𝑠 = −𝐿𝐶.

In particular, this shows that in the limit ‖𝜃 [𝑘] ‖ is bounded by

lim
𝑘→∞

‖𝜃 [𝑘] ‖ ≤
√
𝜈𝜌 ‖𝑄‖2 .

Moreover, since the series of integrals converge they are bounded and there exists some
constant 𝛽 > 0 such that for any 𝑘

‖𝜃 [𝑘]‖ ≤
√
𝜈𝛽

𝑘∑
𝑙=1

‖𝜖 (𝑠𝑙−1)‖ .

Since ‖𝜖 (𝑠𝑙−1)‖ → 0 exponentially, the series defined by ‖𝜃 [𝑘] ‖ is positive and bounded,
hence converges to a finite limit. Since ‖𝜃 [𝑘] ‖ converges, this means that 𝜃 [𝑘] converges
absolutely. ■

Note that the condition <(𝜇𝑖 −𝜆 𝑗) < 0 is slightly stronger then the one required for the
analog case. This is because now we need to ensure that the integral converges, not just
that the algebraic Sylvester equation has a solution. This is likely just conservatism
due to the technical machinery of the proof.

Now that we have established that 𝜃 [𝑘] converges, we can show that it, and the
states, converge to the agreement space.
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Theorem 3.4. If 𝐹d and 𝐿 are such that 𝐴 + 𝐵𝐹d and 𝐴 + 𝐿𝐶 are Hurwitz and 𝐹 is
such that 𝐴0 = 𝐴 + 𝐵𝐹, and the conditions of Lemma 3.6.2 are satisfied, then the local
hybrid controllers 

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) + 𝐿 (𝐶𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡))

¤̄𝜇𝑖 (𝑡) = 𝐴0𝜇𝑖 (𝑡) +
1
𝜈
𝐿 (𝐶𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡))

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −
1
𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡)

, (3.20)

solves P2 for any sampling sequence {𝑠𝑘} satisfying A1.

Proof Note that

𝜃 [𝑘 + 1] =
(
𝑀 [𝑘 + 1] ⊗ 𝐼𝑛

) (
𝜃 [𝑘] +

(
𝐼𝜈 ⊗

∫ 𝑠𝑘+1

𝑠𝑘

e−𝐴0𝜏𝐿𝐶e𝐴𝐿 𝜏d𝜏
)
𝜖 (𝑠𝑘)

)
and that

𝜃 [𝑛 + 𝑝] =
(
𝑛+𝑝∏
𝑗=𝑛+1

𝑀 [ 𝑗] ⊗ 𝐼𝑛

)
𝜃 [𝑛] +

𝑛+𝑝∑
𝑙=𝑛+1

©­«
𝑘∏
𝑗=𝑙

𝑀 [ 𝑗] ⊗
(∫ 𝑠𝑙

𝑠𝑙−1

e−𝐴0𝜏𝐿𝐶e𝐴𝐿 𝜏d𝜏
)ª®¬ 𝜖 (𝑠𝑙−1).

Since 𝜃 [𝑘] converges absolutely, by Cauchy’s convergence test for all 𝜖 > 0 there exists
some 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁 and 𝑝 ≥ 1







𝑛+𝑝∑
𝑙=𝑛+1

©­«
𝑘∏
𝑗=𝑙

𝑀 [ 𝑗] ⊗
(∫ 𝑠𝑙

𝑠𝑙−1

e−𝐴0𝜏𝐿𝐶e𝐴𝐿 𝜏d𝜏
)ª®¬ 𝜖 (𝑠𝑙−1)







 < 𝜖,
which in turn implies that for all 𝜖 > 0 there exists some 𝑁 ∈ ℕ such that




𝜃 [𝑁 + 𝑝] −

(
𝑁+𝑝∏
𝑗=𝑁+1

𝑀 [ 𝑗] ⊗ 𝐼𝑛

)
𝜃 [𝑁]






 ≤ 𝜖

for all 𝑝 ≥ 1.
Since A1 holds, we know that for any finite 𝑁 [21, Lem. 2.29 and 2.30] there exists

some constant 𝑞𝑁 ∈ ℝ𝜈 such that

lim
𝑝→∞

𝑁+𝑝∏
𝑗=𝑁+1

𝑀 [ 𝑗] = 𝟙𝑞′𝑁 ,

and since a limit is unique, this implies that 𝜃 [𝑘] → Im 𝟙⊗ 𝐼. As we know 𝜂[𝑘] converges
as well, we have from (3.19) that

lim
𝑘→∞




𝜇(𝑠𝑘 + 𝜏) − 𝟙 ⊗ e𝐴0 (𝑠𝑘+𝜏 )𝑟0




 = 0
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where 𝑟0 is defined by lim𝑘→∞ 𝜂[𝑘] − 1
𝜈 𝜃 [𝑘] = 𝟙 ⊗ 𝑟0.

The final step is to show that 𝜀(𝑡) = 𝑥(𝑡) − 𝜇 → 0. To this end, consider first the
auxiliary variable 𝜖 = 𝑥 − 𝜇, with hybrid dynamics

¤̂𝜖 (𝑡) = (𝐼𝜈 ⊗ (𝐴 + 𝐵𝐹𝑑)𝜖 (𝑡) − (1 − 1
𝜈
)(𝐼𝜈 ⊗ 𝐿𝐶)𝜖 (𝑡)

𝜖 (𝑠+𝑘) = 𝜖 (𝑠𝑘) + ( 1
𝜈
𝐿G [𝑘] ⊗ 𝐼𝑛)𝜇(𝑠𝑘)

.

This is an LTI system with two inputs: a continuous 𝜖 (𝑡) and impulsive 𝜇(𝑠𝑘). As we
have seen, 𝜖 (𝑡) → 0 and 𝜇(𝑠𝑘) → Im 𝟙 ⊗ 𝐼 which implies that {(𝐿G [𝑘] ⊗ 𝐼𝑛)𝜇(𝑠𝑘)} → 0
as well. Since 𝐴+𝐵𝐹𝑑 is Hurwitz, we have a stable LTI system with two asymptotically
vanishing inputs, thus 𝜖 (𝑡) → 0. No Note that 𝜀 = 𝜖 + 𝜖 , hence we have

lim
𝑡→∞

‖𝜀(𝑡)‖ = lim
𝑡→∞

‖𝜖 (𝑡) + 𝜖 (𝑡)‖ = 0

and the agents track 𝜇 asymptotically, implying that

lim
𝑡→∞




𝑥(𝑡) − 𝟙 ⊗ e𝐴0 (𝑠𝑘+𝜏 )𝑟0




 = 0,

hence P2 is solved. ■

Curiously, (3.16) consistently outperformed (3.16′) in simulation despite the latter hav-
ing continuous feedback from the agents. This is subject to current research.

3.7 Illustrative examples

To illustrate the proposed sampled-data protocol, consider a simple system comprised
of 𝜈 = 3 agents described by (3.1) with

[
𝐴 𝐵

𝐶

]
=


4 9
1 4

2
1

𝐶


where 𝐶 = 𝐼 in the state feedback example, and 𝐶 =

[
1 0

]
in the output feedback one.

The goal is to synchronize to

𝐴0 =

[
0 1
−1 0

]
,

which corresponds to harmonic oscillations with the frequency 1 rad/sec, note that A4

is satisfied via
𝐹 = −

[
2 4

]
.

We assume that communication between agents is intermittent and asynchronous,
meaning that each agent transmits only at a subset of sampling instances. At each
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sampling instance the connectivity graph G[𝑘] is a union of any nonempty combination
of the three graphs in Figure 3.2. The second condition of assumption A1 is equivalent

x1

x2 x3

G2

x1

x2 x3

G1

x1

x2 x3

G3

Figure 3.2: The three possible graphs for the examples in Section 3.7.

in this case to the existence of a subsequence of sampling instances at which G[𝑘]
contains G1.

3.7.1 State feedback

For the state feedback case we only require a stabilizing gain to satisfy the requirements
of Theorem 3.1, for example

𝐹d =
[
−34.6 39.2

]
.

The system is simulated for time interval 𝑡 ∈ [0, 30], the results of which are shown
in Figure 3.3 and Figure 3.4. The sampling instances, shown by abscissa ticks, are a
random variable such that 𝑠𝑘+1 − 𝑠𝑘 ∈ 0.3ℕ6. Major ticks indicate the sub-sequence
of sampling instances {𝑘 𝑝} satisfying A1. The synchronous trajectory as defined in
Lemma 3.3.2 is plotted in lavender.

Figure 3.3 presents the time evolution of the agents states. It can be seen that each
component of the state converges to a common trajectory as stated in Theorem 3.1.
During the transients the state trajectories display spikes at time instances each agent
receives new information due to the discontinuous jump of the corresponding 𝜇𝑖. These
spikes become progressively smaller the closer the emulated centroids are to one another,
which would be explained in Chapter 4.

A second notable thing is that there is no general counterpart to Lemma 2.3.4, thus
neither the emulated centroids not the actual states are uniformally bounded by the
convex hull of the initial conditions. This is illustrated in the second coordinate of
Figure 3.3, where both the yellow and red agents overshoot the initial conditions at the
beginning.

Figure 3.4(a) shows the decay of the emulator disagreement norm, namely ‖Δ𝑖 (𝑡)‖,
on a logarithmic scale. We can see that ‖Δ𝑖 (𝑡)‖ is not monotonically decreasing, which
is due to the hybrid nature of the system. The signals ‖Δ𝑖 (𝑡)‖ sharply decrease be-
tween samples, but might jump up at 𝑡 = 𝑠𝑘 , when new information is brought in. Still,
there are exponentially decreasing functions upperbounding the combined disagree-
ments norms. The phase portrait of 𝜇𝑖 (𝑡) is given in Figure 3.4(b) and displays similar
discontinuous behaviour, where each centroid sharply changes its trajectory when the
emulators are updated, until they all converge to a common trajectory.

54

 

 

 



Figure 3.3: Evolution of agent states, 𝑥1,𝑖, 𝑥2,𝑖, and the synchronous trajectory for the
example in Subsection 3.7.1. Minor ticks are sampling instances, major ticks indicate
the connected subsequence from A1.

3.7.2 Output feedback

For output measurements only, we must complement our state feedback with an ob-
server gain. A good rule of thumb is to have the observer poles not too aggressive
but still faster than the feedback poles. In the previous example we opted for very
aggressive feedback gain, here we opt for more conservative choices

𝐹d = −
[

7 1
]

and 𝐿 = −
[

19
11

]
,

which satisfy the requirements of Theorem 3.3, assigning the spectrum of 𝐴d to {−3,−4}
and that of 𝐴+𝐿𝐶 to {−5,−6}. The simulation results, carried out over the time interval
𝑡 ∈ [0, 35], are presented in Figure 3.6. The sampling instances, shown by abscissa ticks,
are a random variable such that 𝑠𝑘+1 − 𝑠𝑘 ∈ 0.45ℕ5. Major ticks indicate the sampling
instances at which A1 is satisfied.

Figure 3.5(a) presents the time evolution of the agents states. It can be seen
that each component of the state converges to a common trajectory solving P2. Fig-
ure 3.5(b) portrays the time evolution of the emulated centroid states, while the real
centroid, 𝑥(𝑡), is plotted in dashed lavender line. This is to be expected, as the agents
approach synchronization the only non-zero component of their state is the centroids.
Coupled with the fact that Theorem 3.3 established that 𝜀(𝑡) → 0 as 𝑡 → ∞, this
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(a) Norm of emulator disagreements (logarithmic scale).

(b) Phase portrait of 𝜇𝑖 (𝑡).

Figure 3.4: The emulator’s behavior for the example in Subsection 3.7.1: norm of
emulated disagreements, and phase portrait of the centroids and the synchronous tra-
jectory.

indicates that 𝜇(𝑡) − 𝑥(𝑡) → 0 for all 𝑖 ∈ ℕ3.

Figure 3.6(a) shows the norm of the components of 𝜀, i.e. the signals 𝑥𝑖 − 𝜇𝑖 for
𝑖 ∈ ℕ3, on a logarithmic scale. When no information arrives, these signals decay
exponentially fast because each agents tracks the local emulated centroid 𝜇𝑖. When
new information about neighboring agents is received, each 𝜇𝑖 updates, as the centroids
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(a) Evolution of agent states.

(b) Evolution of centroid states.

Figure 3.5: Evolution of agent states, centroids and synchronous trajectory (dotted)
for the example in Subsection 3.7.2 w/ output measurements. Minor ticks are sampling
instances, major ticks indicate the connected subsequence from A1.

are drawn together by the jump map. This normally increases ‖𝑥𝑖 − 𝜇𝑖 ‖, for the local
target jumps. Yet at the same time these targets at communicating agents approach
each other, which is required to satisfy (3.5b).
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(a) Norm of the components of tracking error 𝜀 (logarithmic scale).

(b) Norm of the aggregate state disagreement (logarithmic scale).

Figure 3.6: Norms of tracking error and state disagreement w/ output measurements.
Minor ticks are sampling instances, major ticks indicate the connected subsequence
from A1.

Finally, Figure 3.6(b) depicts the norm of 𝑥𝛿 on a logarithmic scale. In contrast to
the components of 𝜀 from Figure 3.6(a), the quantity in Figure 3.6(b) decreases when
new information is received. This behaviour indicates that the agent disagreements con-
sistently decrease during information exchange, as required to satisfy condition (3.5a).

3.8 Concluding remarks

In this chapter, we addressed time-varying state synchronization of general LTI agents
under complex communication constraints. The synchronization is not limited to tra-
jectories generated by the open-loop dynamics, but rather to any dynamics reachable
by local state-feedback. We were able to guarantee global asymptotic agreement under
mild assumptions on the persistent connectivity of the graphs and sampling instances.
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Moreover, the control parameters are independent of both the sampling sequence and
spatial graphs. These properties are facilitated by a separation between the control
law and the information processing mechanism, hinting at possible extensions to more
general setups. In particular, extensions to output feedback, disturbance rejection, and
systems affected by delays are currently being considered.
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Chapter 4

Extensions to the Emulation
Scheme

More wittinies, less math

Lewis Carrol, Alice in Wonderland [64]

In this chapter, we shall show several extensions and properties regarding the emula-
tion scheme developed in Chapter 3. These include convergence analysis and conditions
for exponential convergence, addition of time-varying weights to the update map, and
augmentation of the update map with a predictor. The prediction scheme is designed
to counter time-varying and heterogeneous transmission delays assuming that they are
smaller then the sampling interval, and was published in [62].

4.1 Convergence rates and exponential convergence

Our first result concerns the convergence rate of the emulation scheme. Without tempo-
ral constraints, consensus-based synchronization algorithms converge exponentially, as
their disagreement dynamics are stable LTI systems. Similarly, under the assumption
of synchronous and periodic sampling, some discretizations method can also ensure
exponential convergence since the equivalent discrete system is linear shift-invariant
and stable. There are some results about exponential agreements of more general sys-
tems, but they still assume constant undirected graphs, synchronous sampling, and
require solutions of complicated LMIs [78]. When the graphs are directed and time-
varying, which is equivalent to asynchronous sampling, convergence is in general only
asymptotic.

In hybrid systems where the flow and jump and not both contracting, even analyzing
the convergence rate is non-trivial. One way to do so is by considering its set distance
from the agreement space. Clearly, this distance is not monotonically decreasing at
each sampling instance. However, it is indeed monotone along the subsequence {𝑠𝑘𝑝 }
defined in A1. This is formulated in the following proposition.
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Proposition 4.1.1. If the conditions of Theorem 3.1 hold, then

𝑑
(
𝜇(𝑠𝑘𝑝+1), Im 𝟙𝜈 ⊗ e𝐴0𝑡

)
< 𝑑

(
𝜇(𝑠𝑘𝑝 ), Im 𝟙𝜈 ⊗ e𝐴0𝑡

)
where 𝜇(𝑠𝑘) is the aggregation of (3.11b) and 𝑑 (·, ·) is the set (Hausdorff) distance.

Proof The proof follows directly from applying the set-valued Lyapunov function of
[31] to the aggregate solution of (3.11b) along the subsequence defined in A1. ■

Proposition 4.1.1 is the reason the “spikes” at update times in 𝑥𝑖 become progres-
sively smaller, as noted in Subsection 3.7.1. The centroid updates are driven by matrices
of the form 𝐼 − 1

𝜈 𝐿G [𝑘], and by design for any vector 𝑥

(𝐼 − 1
𝜈
𝐿G [𝑘]) (𝑥𝛿 + (𝟙 ⊗ 𝐼)𝑥) = (𝐼 − 1

𝜈
𝐿G [𝑘])𝑥𝛿 .

Hence the closer the centroids are to agreement, the less affected they are by the jumps.
Recently, a new result proposed a special time-varying quadratic Lyapunov function

that exploited the graph structure to ensure exponential convergence for time-varying
graphs [79]. This result required a slightly stronger assumption than A1, which is
given below.

A5: there is a strictly increasing sub-sequence of sampling indices {𝑘 𝑝} such that for
all 𝑝 ∈ ℤ+ (i) the intervals 𝑠𝑘𝑝+1 − 𝑠𝑘𝑝 are uniformly bounded and (ii) ∪𝑘𝑝+1

𝑘=𝑘𝑝+1G[𝑘]
is strongly connected.

Assumption A5 requires that the union graphs are not only connected, but strongly
connected. Below is a variation of [79, Thm. 1] using this assumption and a novel
time-varying Lyapunov function.

Proposition 4.1.2. Consider the discrete-time consensus protocol

𝑥 [𝑘 + 1] = (𝐼 − 𝑐𝐿G [𝑘])𝑥 [𝑘] := 𝑀 [𝑘]𝑥 [𝑘] . (4.1)

If 𝑐 ∈
(
0, 1/sup

𝑘
max
𝑗∈ℕ𝜈

𝜈∑
𝑖=1

𝑚𝑖 𝑗 [𝑘]
)

and A5 holds, then (4.1) converges exponentially to

consensus along the sequence {𝑠𝑘𝑝 }.

Remark 4.1. Please note that Proposition 4.1.2 was modified to fit with our definition
of the adjacency, and hence Laplacian, matrix. ▽

Proposition 4.1.2 guarantees that if A5 discrete-time integrators would converge ex-
ponentially to consensus, provided that the coupling gain is sufficiently small. This
result immediately applies to Theorem 2.1, which concerns integrator consensus.

Lemma 4.1.3. If the conditions of Theorem 2.1 hold and A5 replaces A1, then (2.10)
reaches consensus exponentially along the sequence {𝑠𝑘𝑝 }.
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Proof Recall that the centroid dynamics (2.10) are purely discrete and in-fact identical
to those in (4.1). By construction, the maximal possible column sum of 𝐿G [𝑘] occurs
when a node is an in-neighbor of all other nodes, and out-neighbor of none. For this case
the column sum if 𝜈 − 1, which is exactly the diagonal entry of 𝐿G [𝑘] for that column.
The minimal column sum occurs in the dual case, and is then −(𝜈 − 1). Consequently,
for all 𝑘

1 − 𝜈 − 1
𝜈

=
1
𝜈
≤

𝜈∑
𝑖=1

1 − 1
𝜈

[
𝐿G [𝑘]

]
𝑖 𝑗
≤ 2𝜈 − 1

𝜈

and
𝜈 ≤ 1

1 − (1/𝜈) sup𝑘 max 𝑗∈ℕ𝜈

∑𝜈
𝑖=1

[
𝐿G [𝑘]

]
𝑖 𝑗

≤ 2𝜈 − 1
𝜈

= 2 − 1
𝜈
.

Clearly 𝑐 = 1/𝜈 satisfies the assumption in Proposition 4.1.2 for all 𝜈 ≥ 1, hence 𝜇(𝑠𝑘)
reach consensus exponentially fast along the subsequence {𝑠𝑘 𝑝}. ■

In general, agreement conditions couple the dynamics, controllers, sampling (or switch-
ing sequence), and the graph structure. For simple integrators and consensus the dy-
namics are determined by the control, which is often just a scaled version of the Lapla-
cian. Hence, convergence analysis can be reduced to some graph-theoretical conditions
with some simple condition on the gain. Beyond this simple scenario the analysis can
become exponentially more complex, cf. the double-integrator case in [80]. Hence,
the graph-theoretic Lyapunov function used in the proof of Proposition 4.1.2 does not
easily extend to general LTI agents.

However, the control structure described in Chapter 3 has two special properties:
(i) the centroids are decoupled from the rest of the dynamics, and (ii) the update map
(2.5′) follows integrator consensus dynamics. This is reoccurring in all the variations
presented, along with the fact that the centroid dynamics upper bound the convergence
rate of the actual states. In addition, in the proof of Lemma 3.3.2 we have seen that
the flow dynamics of the centroids do not interfere with the jumps. Therefore, the
equations governing the convergence rate of the states are essentially those of discrete
integrators despite the general framework. This is the key feature which allows us to
state the following result.

Theorem 4.1. If the conditions of Theorem 3.1 hold and A5 replaces A1, then
(3.11b) synchronizes exponentially along the sequence {𝑠𝑘𝑝 }.

Proof Consider the coordinate transformation 𝑧(𝑡) := (𝐼𝜈 ⊗ e−𝐴0𝑡 )𝜇(𝑡) (the same one
from [42]). The dynamics of 𝑧(𝑡) are then given by


¤𝑧(𝑡) = 0

𝑧(𝑠+𝑘) = ((𝐼𝜈 −
1
𝜈
𝐿G [𝑘]) ⊗ 𝐼𝑛)𝑧(𝑠𝑘)

which are identical to those in considered in Lemma 4.1.3. This implies that there
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exists constants 𝛿1, 𝛿2 > 0 and a constant vector 𝑟∗ ∈ ℝ𝑛 such that for every 𝑡 ∈ {𝑠𝑘𝑝 }

‖𝑧(𝑡) − 𝟙𝜈 ⊗ 𝑟∗‖ ≤ 𝛿1e−𝛿2𝑡 ‖𝑧(0) − 𝟙𝜈 ⊗ 𝑟∗‖ .

In the original coordinates this implies that

𝜇(𝑡) − (𝟙𝜈 ⊗ e𝐴0𝑡 ) (𝐼𝑛 ⊗ 𝑟∗)


 ≤



𝐼𝜈 ⊗ e𝐴0𝑡


 𝛿1e−𝛿2𝑡 ‖𝜇(0) − 𝟙𝜈 ⊗ 𝑟∗‖ .

Since all the unstable eigenvalue of 𝐴0 are on the j𝜔 axis, this implies that its norm
can diverge only polynomially fast, and thus still dominated by the convergence to
agreement . Therefore there are constants 𝛿3, 𝛿4 > 0 such that

𝜇(𝑡) − (𝟙𝜈 ⊗ e𝐴0𝑡 )(𝐼𝑛 ⊗ 𝑟∗)



 ≤ 𝛿3e−𝛿4𝑡 ‖𝜇(0) − 𝟙𝜈 ⊗ 𝑟∗‖ .

for all 𝑡 ∈ {𝑠𝑘𝑝 }. ■

Note that in the proof we no longer assumed that the eigenvalues of 𝐴0 on the j𝜔
axis are semi-simple as stated in P2. This assumption was required in the proof of
Lemma 3.3.2 to ensure that e𝐴0𝑡 is bounded, otherwise it can diverge at a polynomial
rate. However, if the jump map converges exponentially it will always dominate the
diverging flow. Indeed, if A5 replaces A1, this assumptions is no longer required in
P2.

It should be clear that 𝑥(𝑡) also synchronizes exponentially, albeit at a slightly
different rate, since the tracking error evolves according to


¤𝜀(𝑡) = 𝐼 ⊗ (𝐴 + 𝐵𝐹d)𝜀(𝑡)

𝜀(𝑠+𝑘) = 𝜀(𝑠𝑘) −
1
𝜈
(𝐿G [𝑘] ⊗ 𝐼)𝜇(𝑠𝑘)

.

As before the flow is exponentially stable, but now impulsive input {(𝐿G [𝑘] ⊗ 𝐼)𝜇(𝑠𝑘)}
also vanishes exponentially. Hence, 𝑥𝑖 (𝑡) will synchronize at an exponential rate upper
bounded by occurrences of subsequence {𝑠𝑘𝑝 } and the convergence rate of 𝐴 + 𝐵𝐹d. A
similar exercise can be done for the output feedback dynamics of (3.16), but now the
convergence rate will also be affected by the observer.

Remark 4.2. In both of the examples in Section 3.7 the sampling randomly switched
between the three graphs in Figure 3.2. It is easily verified that the union of all three
forms a strongly connected graph like the one required by A5, hence all examples in-
fact showed exponential convergence. This is particularly evident in the norm of the
disagreements which represent the deviation of each agent from their emulated centroid.
For example in Figure 3.4(a) there is a clear linearly decreasing trendline bounding the
norms despite the non-monotonicity induced by the jumps. These are plotted on a
logarithmic scale, hence the linear trendline indicates exponential decay. ▽
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x1

x2

x3

x4

x5

GŒk�

(a) Delay free communication: information is
simultaneously sent and received at 𝑡 = 𝑠𝑘 .

(b) Communication with transmission delays:
information sent from agent 𝑖 to 𝑗 at 𝑡 = 𝑠𝑘
is received at 𝑡 = 𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘].

Figure 4.1: Sampled-data multi-agent communication with and without transmission
delays.

4.2 Transmission delays

Consider P2 under the same setup and assumptions as before, but with heterogeneous
time-varying delays on the communicated information between the agents. Denote by
𝜏𝑖 𝑗 [𝑘] the transmission delay from agent 𝑗 to agent 𝑖 at time instance 𝑡 = 𝑠𝑘 , this is
visualized in Figure 4.1. We assume that

A6: incoming information is time stamped and

𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘] < 𝑠𝑘+1, ∀𝑖, 𝑗 ∈ ℕ𝜈 , 𝑘 ∈ ℤ+.

The assumption above does not imply that the delays are known a priori, only that the
receiving agent knows 𝜏𝑖 𝑗 [𝑘] at 𝑡 = 𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘]. The second part guarantees that there
is no packet disorder, which is a reasonable assumption in MAS [49] and networked
systems in general [81]. Note that the delays are allowed to vary between sampling
instances as well as across communication channels. We seek to modify local controllers
(3.13’) to solve P2 for all transmission delays satisfying A6.

Since the agents interact only at discrete time instances and are decoupled otherwise,
the delays modify only the discrete component of (3.13’). Essentially, A6 splits the
delay-free update of agent 𝑖 at 𝑠𝑘 into up to |N𝑖 [𝑘] | different updates spread over the
interval [𝑠𝑘 , 𝑠𝑘+1) but still verifying⋃

𝑗∈N𝑖 [𝑘 ]
N𝑖 [𝑡𝑖 𝑗 [𝑘]] = NDF

𝑖 [𝑘] ∀𝑖 ∈ ℕ𝜈 , 𝑘 ∈ ℤ+ (4.2)
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where 𝑡𝑖 𝑗 [𝑘] := 𝑠𝑘 + 𝜏𝑖 𝑗 [𝑘] and NDF
𝑖 [𝑘] denotes the delay-free neighborhood of agent 𝑖.

Packet loss 4.3. Note that (4.2) does not preclude the possibility of packet losses, but
rather relegates them to the graphs induced by {𝑠𝑘}. ▽

We now need to design an update rule

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜅 ©­«𝛼𝑖𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) +
∑

𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
𝛼 𝑗𝜇 𝑗 (𝑠𝑘)ª®¬

for some function 𝜅(·).
The problem at hand is qualitatively different from the standard delay problems

considered in the literature. Continuous-time delays are infinite dimensional systems,
and therefore so are predictors used in delay compensation. In the proposed setup, the
delays affect continuous information that is sent intermittently and used to update 𝜇𝑖 in
a discrete fashion. In discrete time, delays are finite dimensional and occur at discrete
steps synchronized with the regular increments of the system. However, A6 implies
that the delayed information arrives and is processed before the next global sampling
instance. Hence, the delay at hand does not fit into either of the standard descriptions.
To understand how to construct a predictor for this hybrid type of delay, we shall first
consider the special case of consensus of integrator agents.

4.2.1 Consensus of integrator agents

Consider the special case of first order integrator agents trying to achieve consensus.
This corresponds to P2 with 𝐴 = 𝐴0 = 0, and (3.13’) simplifies to


𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −

1
𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d(𝑥𝑖 (𝑡) − 𝜇𝑖 (𝑠+𝑘))
.

The equation above is a generalization of the control law proposed in Subsection 2.3.1,
for which the dynamics of 𝜇𝑖 are purely discrete. This significantly simplifies the anal-
ysis and, in fact, makes any predictor redundant, as demonstrated in the following
proposition.

Proposition 4.2.1. Consider P2 with 𝐴 = 𝐴0 = 0 and transmission delays. The
control law 

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

∑
𝑙∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d(𝑥𝑖 (𝑡) − 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+))
(4.3)

will drive the agents asymptotically to consensus for all sampling sequences {𝑠𝑘} satis-
fying A1, all time delays 𝜏𝑖 𝑗 [𝑘] satisfying A6, and all gains 𝐹d < 0.
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Proof Consider an ordered sequence {𝑞𝑙 [𝑘]} where each element is defined by

𝑞1 [𝑘] = min
𝑖 𝑗
𝑡𝑖 𝑗 [𝑘]

𝑞𝑙 [𝑘] = min
𝑖 𝑗

{𝑡𝑖 𝑗 [𝑘]} \ {𝑞 𝑗 [𝑘] : 𝑗 < 𝑙} 𝑙 = 2, 3, . . . , |N𝑖 [𝑘] |,
(4.4)

i.e., the ordered time instances for the interval [𝑠𝑘 , 𝑠𝑘+1] in which information arrives.
By A6, {𝑞 𝑗 [𝑘]} has a finite (possibly different) number of elements for each 𝑘. An
illustration of the relationship between {𝑡𝑖 𝑗 [𝑘]} and {𝑞𝑙 [𝑘]} is given in Figure 4.2.
Assume without loss of generality that 𝑞𝑝 [𝑘] is the last instance, since 𝜇𝑖 is discrete

x1

x2 x3

G[s1]

s1 s2
t32[1] t12[1] t31[1]www�

s1 s2
q1[1] q2[1] q3[1]

Figure 4.2: An example of the mapping between delayed times 𝑡𝑖 𝑗 [𝑘] and the ordered
sequence 𝑞𝑝 [𝑘] in (4.4).

this implies that 𝜇𝑖 (𝑠𝑘+1) = 𝜇𝑖 (𝑞𝑝 [𝑘]+). Expanding the above we have

𝜇𝑖 (𝑠𝑘+1) = 𝜇𝑖 (𝑞𝑝 [𝑘]) −
1
𝜈

∑
𝑙∈N𝑖 [𝑞𝑝 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

= 𝜇𝑖 (𝑠𝑘) −
1
𝜈

𝑝∑
𝑟=1

∑
𝑙∈N𝑖 [𝑞𝑟 [𝑘 ] ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘)) .

By A6 and (4.2), we know that

𝑝⋃
𝑟=1

N𝑖 [𝑞𝑟 [𝑘]] = NDF
𝑖 [𝑘] =⇒ 𝜇𝑖 (𝑠𝑘+1) = 𝜇DF

𝑖 (𝑠𝑘+1).

This is true for all 𝑖 ∈ ℕ𝜈 and 𝑘 ∈ ℤ+. Therefore, if (3.13’) will drive the delay-free
system to consensus, (4.3) will as well. Note that for 𝐴 = 𝐴0 = 0, A4 trivially holds,
and that if A1 holds for {𝑠𝑘} then it will also hold for the shifted sequence {𝑠𝑘+1}. Thus,
we can conclude that if the delay-free system will reach agreement for the sequence {𝑠𝑘}
and its induced graphs, then the delayed system will for {𝑠𝑘+1}. ■

Proposition 4.2.1 illustrates how the hybrid nature of the delay can render it redun-
dant in certain cases. Since the updates are event-drive, i.e., an update occurs when
new information arrives, and 𝜇𝑖 is constant between updates, the transmission delays
only amount to splitting one update into several smaller ones within the same time
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interval. When combined with A1, which considers the union of the induced graphs
over some subsequence, it is evident that the delays amount to a partition of the inter-
val [𝑠𝑘 , 𝑠𝑘+1] for which ⋃G[𝑡𝑖 𝑗 [𝑘]] = G[𝑘]. Hence, from a consensus standpoint, there
is no difference between the original problem and the delayed one. As such, there’s
no need to predict anything, simply to guarantee that the original sampling intervals
remain disjoint, as required in A6.

The above reasoning does not hold when 𝜇𝑖 (𝑡) is no longer constant between up-
dates, as in the general case of P2. However, this insight is the guiding principle in
designing an appropriate predictor as will be done in the following section.

4.2.2 Synchronization of LTI agents

The key property exploited in Subsection 4.2.1 was that the value of 𝜇(𝑠𝑘+1) was the
same as it would have been in the delay-free case for all 𝑘. In the following lemma,
we propose an update rule that will guarantee this property for arbitrary 𝐴 and 𝐴0

satisfying A4.

Lemma 4.2.2. If A4,6 hold and 𝐴 + 𝐵𝐹 = 𝐴0, then under the update rule

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

e𝐴0𝜏𝑖 𝑗 [𝑘 ]
∑

𝑗∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)), (4.5)

we recover the same 𝜇𝑖 (𝑠𝑘+1) as in the delay-free system (3.13’).

Proof Consider the ordered sequence {𝑞𝑙 [𝑘]} from (4.4) for an arbitrary agent with
index 𝑖, and assume that it receives 𝑝 delayed updates in the interval [𝑠𝑘 , 𝑠𝑘+1). Define

𝜃𝑖 [𝑘, 𝑙] :=
∑

𝑗∈N𝑖 [𝑞𝑙 [𝑘 ] ]
(𝜇𝑖 (𝑠𝑘) − 𝜇 𝑗 (𝑠𝑘)),

to simplify the notation, we shall omit the argument 𝑘 when it is clear from context or
unimportant. Now consider 𝑘 = 𝑙 = 1, for which the update reads

𝜇𝑖 (𝑞+1) = e𝐴0𝑞1𝜇𝑖,0 −
1
𝜈

e𝐴0𝜏1𝜃 [1, 1] = e𝐴0𝜏1

(
𝜇(𝑠1) −

1
𝜈
𝜃 [1, 1]

)
,

where we used the general fact that e𝐴0 (𝑞𝑙+1−𝑞𝑙 )e𝐴0𝜏𝑙 = e𝐴0𝜏𝑙+1 . From here, by induction

𝜇𝑖 (𝑞+𝑝) = e𝐴0𝜏𝑝

(
𝜇(𝑠1) −

1
𝜈

𝑝∑
𝑙=1

𝜃 [1, 𝑙]
)
,

and once more applying A6 and (4.2) we obtain that

𝜇𝑖 (𝑞+𝑝 [1]) = e𝐴0𝜏𝑝𝜇DF
𝑖 (𝑠+1) = 𝜇DF

𝑖 (𝑞𝑝 [1]).
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For an arbitrary 𝑘 and 𝑙 = 1 the update reads

𝜇𝑖 (𝑞+1 [𝑘]) = e𝐴0 (𝑞1 [𝑘 ]−𝑞𝑝 [𝑘−1] )𝜇𝑖 (𝑞𝑝 [𝑘 − 1]+) − 1
𝜈

e𝐴0𝜏1 [𝑘 ]𝜃 [𝑘, 1]

= e𝐴0𝜏1 [𝑘 ]
(
𝜇(𝑠𝑘) −

1
𝜈
𝜃 [𝑘, 1]

)
,

where we used the identities

e𝐴0 (𝑞1 [𝑘 ]−𝑞𝑝 [𝑘−1] ) = e𝐴0𝜏1 [𝑘 ]e𝐴0 (𝑠𝑘−𝑞𝑝 [𝑘−1] ) and e𝐴0 (𝑠𝑘−𝑞𝑝 [𝑘−1] )𝜇𝑖 (𝑞𝑝 [𝑘−1]+) = 𝜇𝑖 (𝑠𝑘).

From here, by similar arguments, we can conclude that

𝜇𝑖 (𝑞+𝑝 [𝑘]) = e𝐴0𝜏𝑝𝜇DF
𝑖 (𝑠+𝑘) = 𝜇DF

𝑖 (𝑞𝑝 [𝑘]),

since there are no updates between 𝑞𝑝 [𝑘] and 𝑠𝑘+1 and the choice of 𝑖 was arbitrary,
the system evolves like its delay-free counterpart (3.13’). ■

One can view the Lemma 4.2.2 from a different angle. Consider the aggregation
𝜇(𝑡) =

[
𝜇1(𝑡)′, . . . , 𝜇𝜈 (𝑡)′

] ′
, then (4.5) in aggregate form is given by

𝜇(𝑡𝑖 𝑗 [𝑘]+) = 𝜇(𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

(
𝐿G [𝑡𝑖 𝑗 [𝑘]] ⊗ e𝐴0𝜏𝑖 𝑗 [𝑘 ]

)
𝜇(𝑠𝑘)

=

(
(𝐼𝜈 −

1
𝜈
𝐿G [𝑡𝑖 𝑗 [𝑘]]) ⊗ 𝐼𝑛

)
𝜇(𝑡𝑖 𝑗 [𝑘]),

which is exactly the delay-free update rule for the sampling sequence {𝑡𝑖 𝑗 [𝑘]} instead
of {𝑠𝑘}. The predictor can be thought of as inducing a new sequence of graphs and
sampling instances, whose union over the interval [𝑠𝑘 , 𝑠𝑘+1] results in the same induced
graph as the original sampling sequence and delay-free update mechanism. This is the
key step in the proof of the main result.

Theorem 4.2. If assumptions A1,3,4 hold and 𝐹, 𝐹𝑑 are chosen such that 𝐴0 = 𝐴+𝐵𝐹
and 𝐴 + 𝐵𝐹𝑑 is Hurwitz, then the controller

¤̄𝜇𝑖 (𝑡) = (𝐴 + 𝐵𝐹)𝜇𝑖 (𝑡), 𝜇𝑖 (0) = 𝜇𝑖,0

𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]+) = 𝜇𝑖 (𝑡𝑖 𝑗 [𝑘]) −
1
𝜈

e𝐴0𝜏𝑖 𝑗 [𝑘 ]
∑

𝑙∈N𝑖 [𝑡𝑖 𝑗 [𝑘 ] ]
(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐹d𝑥𝑖 (𝑡) + (𝐹 − 𝐹d)𝜇𝑖 (𝑡)

(4.6)

solves P2 for all heterogeneous and time-varying transmission delays satisfying A6.

Proof Consider first the aggregate delay-free state on the sequence {𝑠𝑘}, denoted by
𝜇DF(𝑠𝑘). If A1 holds, we know by Theorem 3.1 that 𝜇DF(𝑠𝑘) → Im 𝟙𝜈 ⊗ 𝐼𝑛, and by
Proposition 4.1.1 that it gets closer to that set along the sequence {𝑘 𝑝} from A1.
Applying Lemma 4.2.2 we know that 𝜇𝑖 (𝑠𝑘+1) = 𝜇DF

𝑖 (𝑠𝑘+1) for all 𝑖 and all 𝑘; hence,
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both of them approach Im 𝟙𝜈 ⊗ 𝐼𝑛 at the same rate. Since the agreement set is an
invariant set of both the continuous and discrete dynamics of (4.6), this implies that

lim
𝑡→∞



𝜇DF
𝑖 (𝑡) − 𝜇𝑖 (𝑡)



 = 0, ∀𝑖 ∈ ℕ𝜈 .

Applying Theorem 3.1 implies that

lim
𝑡→∞

‖𝜇𝑖 (𝑡) − 𝑥𝑖 (𝑡)‖ = 0,

hence the states synchronize. ■

4.2.3 Implementability

Local controllers (4.6) are independent of the size of the system; however, update rule
(4.5) makes use of 𝜇𝑖 (𝑠𝑘). Since the sequence {𝑠𝑘} is not assumed to be known, an
immediate question arises as to whether the control law can be implemented. The
following proposition states that it can be using a small buffer, and details how to
update this buffer accordingly.

Proposition 4.2.3. The update law (4.5) can be implemented using a buffer of size 1.

Proof Each agent constructs its buffer as follows. Let
[
𝑏′𝑖 𝑡

′
𝑖

] ′
denote the values of

the 𝑖th buffer and corresponding timestamp, and denote by 𝑡𝑖 [𝑘] the instance at which
information is received and by 𝑠𝑘 the time when it was sent.

1. If 𝑡𝑖 [𝑘] = 𝑠𝑘 , assign [
𝑏𝑖

𝑡𝑖

]
=

[
𝜇𝑖 (𝑠𝑘)
𝑠𝑘

]
.

2. If 𝑠𝑘 < 𝑡𝑖 [𝑘], check

(a) If 𝑡𝑖 = 𝑠𝑘 , keep the current buffer.

(b) If 𝑡𝑖 < 𝑠𝑘 assign [
𝑏𝑖

𝑡𝑖

]
=

[
e𝐴0 (𝑠𝑘−𝑡𝑖 [𝑘 ] )𝜇𝑖 (𝑡𝑖 [𝑘])

𝑠𝑘

]
.

From A6 we know that if 𝑡𝑖 = 𝑠𝑘 then we are still in the interval (𝑠𝑘 , 𝑠𝑘+1); hence, we
need to keep the start of the interval in the buffer. Similarly, if 𝑡𝑖 < 𝑠𝑘 , this means that
our buffer corresponds to the previous interval. Thus, there were no jumps in [𝑠𝑘 , 𝑡𝑖 [𝑘]]
and we can reconstruct 𝜇𝑖 (𝑠𝑘) like we would for a regular LTI system. ■

4.2.4 Numerical examples

To illustrate the proposed sampled-data protocol, consider two cases, both comprised of
𝜈 = 3 identical agents. We assume that communication between agents is intermittent
and asynchronous, meaning that each agent transmits only at a subset of sampling
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Figure 4.3: The three possible graphs for the examples in Subsection 4.2.4.

instances. At each sampling instance G[𝑘] is a union of any nonempty combination
of the three graphs in Figure 4.3. The sampling instances, shown by abscissa ticks on
the bottom, are a random variable such that 𝑠𝑘+1 − 𝑠𝑘 ∈ 0.3ℕ6, and the induced graphs
satisfy A1. Major ticks indicate instances where agent 1 transmits information, i.e.
corresponding to G1 in Figure 4.3. The simulations were carried out with a time step of
Δ𝑡 = 1×10−3 on the time interval 𝑡 ∈ [0, 24]. For each sampling interval, ℎ𝑘 := 𝑠𝑘+1− 𝑠𝑘 ,
a random integer 𝑚𝑘 was drawn uniformly from the interval [1, ℎ𝑘/Δ𝑡], generating the
delay 𝜏𝑖 𝑗 [𝑘] = 𝑚𝑘Δ𝑡, thus satisfying A6. The major ticks at the top and corresponding
dashed lines correspond to the delayed updates originating from agent 1 to agent 2.
Both examples are simulated for the same delays, sampling sequence, and time interval.

The first simulation involves integrator agents as described in Subsection 4.2.1
with 𝐹d = −5. The agent’s states can be seen in Figure 4.4(a), while the difference
Δ𝜇,𝑖 (𝑡) := 𝜇𝑖 (𝑡) − 𝜇DF

𝑖 (𝑡) is shown in Figure 4.4(b). It can be seen that indeed the agents
asymptotically agree, and that Δ𝜇,𝑖 (𝑡) repeatedly resets to zero after each agent fin-
ishes its “cycle” of delayed updates. Moreover, the trajectories are piecewise constant
for this case since 𝜇𝑖 (𝑡) has no continuous-time dynamics as mentioned in the proof of
Proposition 4.2.1.

The second example is comprised of identical agents with

¤𝑥𝑖 (𝑡) =
[

4 9
1 4

]
𝑥𝑖 (𝑡) +

[
2
1

]
𝑢𝑖 (𝑡)

trying to synchronize to 𝐴0 =
[ 0 1
−1 0

]
. In this case

𝐹 = −
[

2 4
]

and 𝐹d =
[
−34.6 39.2

]
satisfy the requirements of Theorem Theorem 4.2. The components of the agents’ state
are shown in Figure 4.5, and those of Δ𝜇,𝑖 are shown in Figure 4.6.

Once more, we can see that the agents’ states synchronize to a common trajectory
as in P2 with 𝐴0 corresponding to a sine wave with frequency 1. Furthermore, we again
see that the difference between the delayed and delay-free system resets repeatedly after
each “cycle” ends, and that the amplitude of the mismatch decays as the updates drive
the systems closer to the agreement space. Note that this time 𝜇𝑖 (𝑡) is not piecewise
constant between updates, since the synchronous trajectory is not constant.
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(a) Evolution of the agents’ states for 𝐴 = 𝐴0 = 0.

(b) The difference between 𝜇 and its delay-free counterpart for 𝐴 = 𝐴0 = 0.

Figure 4.4: Simulations for the example with 𝐴 = 𝐴0 = 0 from Subsection 4.2.4. Minor
ticks are sampling instances, major ticks indicate the connected subsequence from A1.
Major ticks in lavender correspond to the delayed counterparts of the regular major
ticks.

4.3 Weighted update map

A common variation of the consensus protocol is the inclusion of edge weights. Locally,
these weights modify protocol (1.6) to

𝑢𝑖 =
∑
𝑗∈N𝑖

𝑤𝑖 𝑗 (𝑦 𝑗 − 𝑦𝑖), 𝑖 ∈ ℕ𝜈 ,
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(a) Evolution of the agents’ first state component for 𝐴0 ≠ 0.

(b) [Evolution of the agents’ second state component for 𝐴0 ≠ 0.

Figure 4.5: Evolution of the agents’ states for the second example in Subsection 4.2.4,
with 𝐴0 ≠ 0. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from A1. Major ticks in lavender correspond to the delayed counterparts
of the regular major ticks.

where 𝑤𝑖 𝑗 are some non-negative weights. These weights can arise naturally from the
modeling of the physical process [82], but can also be tuned to improve the convergence
rate [83], [84] or attenuate the effects of measurement noise [85].

Despite being widely used, when constructing the consensus-based update maps
in Chapter 2 and Chapter 3 we have opted to used the unweighted Laplacian. This
choice was motivated by simplicity and in attempt to streamline the derivations, and
is not an intrinsic requirement of the controllers. The following Proposition shows that
under certain constraints on the weights, the original results hold verbatim even for a
weighted update map.
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(a) Evolution of the first component of Δ𝜇,𝑖 .

(b) Evolution of the second component of Δ𝜇,𝑖 .

Figure 4.6: Evolution of the components of Δ𝜇,𝑖 for the second example in Subsec-
tion 4.2.4. Minor ticks are sampling instances, major ticks indicate the connected
subsequence from A1. Major ticks in lavender correspond to the delayed counterparts
of the regular major ticks.

Proposition 4.3.1. Substituting update rule (2.5) with

𝜇𝑖 𝑗 (𝑠+𝑘) = 𝜇𝑖 𝑗 (𝑠𝑘) − 𝛼𝑖 𝑗
∑

𝑙∈N𝑖 [𝑘 ]
(𝑤𝑖𝑙 [𝑘] (𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

for positive weights such that ∑
𝑙 𝑤𝑖𝑙 [𝑘] = 0 and 𝑤𝑖𝑙 [𝑘] < 𝜈 for all 𝑘 does not affect the

convergence properties of Theorem 3.1.
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Proof It is straightforward to verify that the weighted counterpart of (2.7) is

𝐴jmp [𝑘] ≔ 𝐼𝜈2 − 1
𝜈

𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖𝑤𝑖 𝑗 [𝑘] (𝑒𝑖 − 𝑒 𝑗)′

)
⊗ (𝛼𝑖𝟙′).

Reworking Lemma 2.3.1 for the new update map, (2.8a) obviously does not change
since it requires only that 𝟙′(𝐼 − 𝑃𝟙) = 0, and the right hand side of (2.8b) is similarly
unaffected. Now we must evaluate the summation on the left hand side of the Kronecker
product, denote it by

𝐿𝑤G [𝑘] :=
𝜈∑
𝑖=1

∑
𝑗∈N𝑖 [𝑘 ]

(
𝑒𝑖𝑤𝑖 𝑗 [𝑘] (𝑒𝑖 − 𝑒 𝑗)′

)
.

Clearly both Lemma 2.3.2 and Lemma 3.3.1 still hold with this 𝐿𝑤G [𝑘] replacing the
original Laplacian.

Under the assumptions on the weights the matrix 𝐼 − 1
𝜈 𝐿

𝑤
G [𝑘] is still non-negative,

row-stochastic, and all of its entries are uniformly bounded. Thus, by [21, Thm. 2.39]
both (2.10) and (3.11b) will converge to the agreement space. In addition 𝐿𝑤G [𝑘]𝟙 = 0
for any graph and any weights satisfying the assumptions, thus the centroids-induced
jumps asymptotically vanish and the proof for both Theorem 2.1 and Theorem 3.1
proceeds verbatim. ■

At a glance Proposition 4.3.1 appears to be a small technical novelty. We considered a
very general setting in which neither the graphs nor the sampling sequence are known,
thus optimizing the weights seems unreasonable. However, the emulation controller
can still be used under less stringent conditions. For example, perhaps the underlying
graph is in fact known, but the unreliable sampling induces random subgraphs at
each instance. Other possible scenarios are when only some communication links,
i.e. edges, are unreliable; or when the sampling follows some pattern such as round-
robin scheduling. In such situations the flexibility provided by Proposition 4.3.1 can
be used to improve the performance. For example the approach in [86] can be used to
provide improved performance with asymmetric link failures. Other relaxations include
constant graphs and periodic sampling and dynamic induced graphs that are always
undirected (i.e., synchronous sampling). For the former the weights can be chosen to
minimize some quadratic cost [87], and for the latter there adaptive methods to counter
adversarial attacks [88].

4.4 Concluding remarks

Up to this point, we have considered increasingly complex variations of the agreement
problem. Moving from integrators to general LTI agents, from constant to time-varying
trajectories, and from state to output feedback. We even touched upon heterogeneous

75

 

 

 



and time-varying transmission delays. Yet there are two obvious extensions we have,
as of yet, not considered.

The first is transferring from homogeneous to heterogeneous agents. This involves
some technical work, but does not impose a new conceptual problem. In fact, when
considering heterogeneous agents it is well known that a necessary condition is the
existence of a common internal model amongst all of the agents [44], [46]. The imme-
diate solution is to identify 𝜇𝑖 (𝑡) with these models, and emulate some variation of the
aforementioned continuous-time controllers. This avenue is not pursued in this thesis.

The second omission, is the agreement problem with external inputs - either mea-
surement noise or load disturbances. Attenuating or even rejecting the effects of un-
controlled inputs are the bread and butter of classical control, hence this omission is
particularly glaring. Surprisingly, such omissions are common within the multi-agent
community, where it is common to assume the system is driven only by initial condi-
tions. Such input-output analysis is the focus of the next chapter, which attempts to
explain various odd behaviours of multi-agent systems with local disturbances.
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Chapter 5

On Internal Stability of
Diffusive-Coupling and the
Dangers of Cancel Culture

Something is rotten in the state of Denmark.

W. Shakespeare, Hamlet [89]

In the previous chapters, we tackled different variations of sampled-data agreement
problems. In all of them, we made a conscious assumption to explicitly treat each agent
as if it has two distinct measurements: one local and one communicated. We made this
choice since we wanted to explicitly impose different temporal constraints on the two
input signals, but this viewpoint is uncommon in the literature. The common approach
is to consider distributed control laws where only relative measurements are exchanged
between neighbors. In other words, each agent has access only to the difference between
its output and that of each of its neighbors. This restriction forces the agents to use
diffusive control laws as in (1.8).

Yet even with our different approach, our entire work was centered around using the
consensus protocol. The discrete updates were driven by a consensus-like protocol, and
the emulated dynamics while different were inspired by it. This allowed us to utilize
significant existing machinery to solve the resulting hybrid problems. This may be a
double edges sword, inheriting both the useful technical machinery as well as possible
underlying limitations of diffusive architectures. Hence, before continuing further on
the sampled-data path, it would be beneficial to better understand diffusively coupled
systems, their limitations, and how to circumvent them. This is the purpose of this
chapter, which begins with a motivating example to illustrate concretely what we mean
by “limitations”. We then follow this example with an in depth system theoretic analysis
of diffusive systems and fully characterize several issues that were previously reported
but never explained in the literature.
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5.1 Motivation

As discussed in Section 1.2, diffusively-coupled systems behave poorly when affected by
disturbances and noise. In particular, persistent measurement noises or disturbances
may result in trajectories exhibiting certain common traits associated with instability.
Notably, the only systems to not exhibit this behavior are systems which are not purely
diffusive, since they allow absolute measurements [90], [91] or an undisturbed leader [50].
This hints that there may be an intrinsic problem with the diffusive architecture. These
“instability traits” can be illustrated by the classical consensus protocol, considered
below for a set of integrator agents and with a static interaction network.

Example 5.1.1. Revisit the integrator consensus problem introduced in Section 1.1,
which studies a group of independent integrator agents ¤𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡), where 𝑥𝑖 and
𝑢𝑖 are their states and control inputs, respectively. The goal is to reach asymptotic
agreement between all agents, in the sense that

lim
𝑡→∞

(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
= 0, ∀𝑖, 𝑗 , (5.1)

under the constraint that the 𝑖th agent has access only to states of its neighbors, whose
indices belong to a set N𝑖. This problem can be solved by the celebrated consensus
protocol [24]

𝑢𝑖 (𝑡) = −𝜅
∑
𝑗∈N𝑖

(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
, ∀𝑖, (5.2)

which is diffusive state-feedback (1.3). From Proposition 2.1.2 we know that if the
underlying graph is undirected and connected, then the control law (5.2) drives the
agents to agreement exponentially fast. The state trajectories of four agents controlled
by (5.2) with 𝜅 = 1 are shown in Figure 5.1 in the time interval [0, 𝑡𝑑]. Observe that
on this time interval the states converge exponentially to the average of their initial
conditions and the control signals all asymptotically vanish.

This might no longer be the case if the agents are affected by load disturbances 𝑑𝑖,
viz.

¤𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡) + 𝑑𝑖 (𝑡). (5.3)

An example of what happens in such situations is also shown in Figure 5.1. At the
time instance 𝑡 = 𝑡𝑑 one agent is affected by a unit step disturbance. As a result, all
states cease to agree and start to diverge when 𝑡 > 𝑡𝑑, whereas the control signals reach
non-zero steady-state values. The apparent instability of the whole system, manifested
in the unboundedness of the states, can be explained by the well-known fact that the
consensus protocol has a closed-loop eigenvalue at the origin. To see this, note that a
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(a) Evolution of the states. (b) Evolution of the control signals.

Figure 5.1: Simulation of protocol (5.2) with one agent perturbed by a step at 𝑡 = 𝑡𝑑.

state-space realization of the aggregate system is given by
¤𝑥(𝑡) = −𝜅𝐿G𝑥(𝑡) + 𝑑 (𝑡)[
𝑦(𝑡)
𝑢(𝑡)

]
=

[
𝐼

−𝜅𝐿G

]
𝑥(𝑡)

, (5.4)

and since 𝐿G𝟙 = 0 for all G, the system always has a pole at the origin. Nevertheless,
the boundedness of the control signals under such conditions is intriguing. Situations
wherein some signals in the closed-loop system are bounded while some others are not
normally indicate unstable pole-zero cancellations in the feedback loop [92, Sec. 5.3].
However, controller (5.2) is static and thus has no zeros. ▽

The example above suggests that a deeper inspection of the internal stability prop-
erty could offer insight into the behavior of diffusively-coupled systems. The inter-
nal stability of any feedback interconnection requires the stability of all possible in-
put / output relations in the system, see [92], [93]. However, to the best of our knowl-
edge, internal stability has not been explicitly studied in the context of diffusively-
coupled architectures of MASs yet.

In this chapter, which is based on published work [63], we show that diffusively-
coupled systems of LTI agents might not be internally stabilizable. Loosely speaking,
this happens if the agents share common unstable dynamics, directions counting. This,
for example, is always the case in a group of homogeneous unstable agents, like those
discussed in Example 5.1.1. When restricting the result to finite-dimensional agents,
we also explain the mechanism behind the shown internal instability. It is caused by
unstable cancellations in the cascade of the aggregate plant and a diffusive controller.
Important is that these cancellations are caused not by controller zeros, but rather
by an intrinsic spatial deficiency of the diffusively-coupled configuration. These can-
cellations are intrinsic to the diffusive structure and cannot be affected by controller
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Figure 5.2: Block diagram of a general aggregated diffusively-coupled feedback setup
(𝐸 is the incidence matrix of the connectivity graph G).

dynamics. Consequently, the internal stability of feedback systems utilizing only rela-
tive measurements depends solely on the agent dynamics.

In addition to providing a rigorous analysis of the internal stability of diffusively-
coupled systems, we show how the analysis is readily applied to common extensions
found in the literature. In particular, we discuss more general symmetrically coupled
MASs (i.e. not restricted to only diffusive coupling), asymmetric coupling (i.e. MASs
over directed graphs), unstable systems with no closed right-half plane poles, and MASs
over time-varying networks. This chapter relies heavily on several results from both
linear systems and graph theory, the relevant preliminaries can be found in Appendix C
and Appendix A respectively.

5.2 Problem formulation and general diffusive coupling

Consider 𝜈 continuous-time LTI agents 𝑃𝑖, each with 𝑚 inputs and 𝑝 outputs, who
interact over a graph G with 𝜈 nodes and 𝜇 edges. In this formalism, agents 𝑖 and 𝑗

are neighbors if they are incident to the same edge.
A general diffusively-coupled MAS originated in [32], also known as the canonical

cooperative control structure [72, Ch. 9], is presented in Figure 5.2. It comprises the
block-diagonal aggregate plant 𝑃 ≔ diag{𝑃𝑖} with 𝜈 blocks, a block-diagonal edge
controller 𝐾e ≔ diag{𝐾e, 𝑗} with 𝜇 blocks, and pre- and post-processing based on the
incidence matrix 𝐸 associated with G. To describe the logic of this setup we may
disregard the exogenous signals 𝑑𝑦 and 𝑑𝑢 for the time being. The overall controller
𝐾 : 𝑦 ↦→ 𝑢 is thus defined as

𝐾 ≔ (𝐸 ⊗ 𝐼𝑚)𝐾e(𝐸 ′ ⊗ 𝐼𝑝). (5.5)

We now discuss how the controller 𝐾 processes signals.

• The (𝜈𝑝)-dimensional aggregate output of the agents, 𝑦, is first processed by
the transpose of the incidence matrix to produce a (𝜇𝑝)-dimensional vector 𝑦 =

(𝐸 ′ ⊗ 𝐼𝑝)𝑦 representing the relative outputs of neighboring agents.
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• Each component of 𝑦, which is the relative measured coordinate along one edge,
is then processed independently by an edge controller 𝐾e, 𝑗 , to produce a (𝜇𝑚)-
dimensional “edge correction” signal 𝑢.

• The (𝜈𝑚)-dimensional aggregate control signal 𝑢 is then produced by processing
all 𝑢 𝑗 by the incidence matrix, which sums up edge corrections for all edges
connected to the corresponded node.

For example, if G is an undirected star graph on three nodes with node 3 as its center,
then we can choose

𝐸 =


1 0
0 1
−1 −1

 ,
in which case

𝑦 =

[
𝑦1 − 𝑦3

𝑦2 − 𝑦3

]
and 𝑢 =


𝑢1

𝑢2

−𝑢1 − 𝑢2

 .
The consensus protocol (5.2) corresponds to the choice 𝐾e = −𝜅𝐼 in this case, as well
as for any other choice of G and 𝜈.

Now consider the exogenous signals 𝑑𝑢 and 𝑑𝑦, which we refer to as disturbances.
On the physical level they represent inevitable effects of the outside world on the
controlled plant (agents). These signals are supposed to be bounded and independent
of the signals generated by the controlled system. We introduce disturbances to define
the notion of the internal stability for the system in Figure 5.2, which is the focus point
of this chapter.

Definition 5.2.1. We say that the system in Figure 5.2 is internally stable if the 2× 2
operator connecting exogenous signals 𝑑𝑢 and 𝑑𝑦 with internal signals 𝑢 and 𝑦, i.e.

𝑇4 : (𝑑𝑦 , 𝑑𝑢) ↦→ (𝑦, 𝑢) (5.6)

is well defined and stable, see [94, Sec. 4].

The general question of interest in this chapter is under what conditions on the
agents 𝑃𝑖 are there causal edge controllers 𝐾e, 𝑗 internally stabilizing the diffusively-
coupled system in Figure 5.2? Note that the existence of edge controllers rendering the
closed-loop operator well defined is obvious, just take 𝐾e, 𝑗 = 0 for all 𝑗 . We shall thus
focus on the stability of 𝑇4.

Addressing the stability question in the most general, nonlinear and time-varying,
case might be overly technical. We thus limit our attention to the class of LTI plants
and edge controllers, whose transfer functions belong to the quotient field of 𝐻∞, see
[95, §A.7.1], which is a sufficiently general class. We further assume that
A7: there are right coprime 𝑀𝑖 , 𝑁𝑖 ∈ 𝐻∞ and left coprime 𝑀̃𝑖 , 𝑁𝑖 ∈ 𝐻∞ such that

𝑃𝑖 = 𝑁𝑖𝑀−1
𝑖 = 𝑀̃−1

𝑖 𝑁𝑖 for all 𝑖,
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Figure 5.3: Block diagram of a diffusively-coupled feedback setup as edge stabilization.
Here the incidence matrix is attached to the plant, generating the edge dynamics with
a diagonal controller.

where coprimeness is understood as the existence of Bézout coefficients in 𝐻∞, see
Appendix C. The representation of 𝑃𝑖 above is known as its coprime factorization.
We hereafter refer to the transfer functions 𝑀𝑖 (𝑠) and 𝑀̃𝑖 (𝑠) as the right and left
denominators of 𝑃𝑖, respectively, and the transfer functions 𝑁𝑖 (𝑠) and 𝑁𝑖 (𝑠) as its right
and left numerator. Assumption A7 is practically nonrestrictive. It holds for all finite-
dimensional agents with proper transfer functions and is equivalent to the stabilizability
of 𝑃𝑖 by feedback for agents with transfer functions from the quotient field of 𝐻∞ [96].
Thus, if an agent fails to satisfy A7, we cannot expect any MAS that includes it to be
stabilizable by diffusive coupling.

Remark 5.1. We choose the application points of exogenous disturbances for the in-
ternal stability analysis to be at the points where the agents, 𝑃, are connected with
the controller 𝐾 defined in (5.5). In this choice we follow the physical nature of the
interconnection in Figure 5.2 and think of separating the blocks 𝐸 ⊗ 𝐼 and 𝐸 ′ ⊗ 𝐼 in the
controller as merely a way to streamline the choice of the design parameters, which are
the edge controllers in 𝐾e. An alternative viewpoint is presented in Figure 5.3, where
all fixed parts are regarded as the controlled plant,

𝑃e ≔ (𝐸 ′ ⊗ 𝐼𝑝)𝑃(𝐸 ⊗ 𝐼𝑚), (5.7)

much inline with the generalized plant philosophy [93, Sec. 3.8], see e.g. [33, Fig. 6]
or [72, E9.6]. A natural definition of internal stability for it shall be based on the
exogenous inputs 𝑑𝑦 and 𝑑𝑢, entering before and after the edge controller 𝐾e. This
would change the results, see Remark 5.3 at the end of Subsection 5.5.1. Still, we
believe that the configuration in Figure 5.2 is the right way to address the internal
stability of MASs. After all, it is the agents who interact with the environment. ▽
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5.3 The internal stability of diffusive coupling

The main technical result of this chapter, whose proof is postponed to Subsection 5.3.1,
is formulated as follows.

Theorem 5.1. No LTI 𝐾e, 𝑗 can internally stabilize the diffusively-coupled system in
Figure 5.2 if there is 𝜆 ∈ ℂ̄0, common to all agents, such that

𝜈⋂
𝑖=1

ker [𝑀𝑖 (𝜆)]′ ≠ {0} (5.8a)

or
𝜈⋂
𝑖=1

ker 𝑀̃𝑖 (𝜆) ≠ {0}, (5.8b)

where 𝑀𝑖 and 𝑀̃𝑖 are denominators in the coprime factorizations of 𝑃𝑖 under A7.

Theorem 5.1, formulated in terms of coprime factors of agents, might appear some-
what abstract and technical. This is a consequence of considering a fairly general class
of LTI agents under the mild assumption A7. We show in the next section that if
the class of admissible agents is limited to finite-dimensional ones, then more insightful
statements can be provided. Nevertheless, the formulation in Theorem 5.1 becomes
substantially more intuitive in some frequently studied special cases.

The first of them is the case of homogeneous agents, which is perhaps the best
studied situation.

Corollary 5.2. If the agents are homogeneous, i.e. 𝑃𝑖 = 𝑃0 for all 𝑖 ∈ ℕ𝜈, and 𝑃0(𝑠)
has at least one pole in ℂ̄0, then no LTI 𝐾e, 𝑗 can internally stabilize the system in
Figure 5.2.

Proof By Lemma C.1.6, if 𝜆 ∈ ℂ̄0 is a pole of 𝑃0(𝑠), then both 𝑀0(𝜆) and 𝑀̃0(𝜆) are
singular, whence the result follows. ■

This result readily applies to the homogeneous consensus problem studied in Exam-
ple 5.1.1 and more generally to the setups in Subsection 1.1.2. Note that closed-loop
dynamics (5.4) can be rewritten as

¤𝑥(𝑡) = 𝐸 diag{−𝜅}𝐸 ′𝑥(𝑡) + 𝑑 (𝑡)[
𝑦(𝑡)
𝑢(𝑡)

]
=

[
𝐼

𝐸 diag{−𝜅}𝐸 ′

]
𝑥(𝑡)

,

which is in the form of Figure 5.2. The agents in (5.3) are homogeneous and 𝑃0(𝑠) = 1/𝑠,
has an unstable pole at the origin. Corollary 5.2 then agrees with the conclusion of
Example 5.1.1 that the closed-loop system is not internally stable.

Another particular case for which the formulation is simplified is a MAS with single-
input single-output (SISO) agents.
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Corollary 5.3. If the agents are SISO and all have a pole at the same 𝜆 ∈ ℂ̄0, regardless
of multiplicities, then no LTI 𝐾e, 𝑗 can internally stabilize the diffusively-coupled system
in Figure 5.2.

Proof By Lemma C.1.6, in this case 𝑀𝑖 (𝜆) = 𝑀̃𝑖 (𝜆) = 0 for all 𝑖 ∈ ℕ𝜈, whence the result
follows. ■

A consequence of Corollary 5.3 is that the consensus protocol, as well as any other
diffusively-coupled control laws, cannot internally stabilize a group of SISO agents if
all of them contain an integral action. This result is reminiscent of that by [44] that
states that a common internal model is a necessary condition for a diffusively-coupled
system to synchronize their state trajectories. It highlights a contradiction or trade-off
of sorts, where on the one hand, a common pole at the origin among agents is required
for synchronization, and on the other hand, this common (unstable) pole is precisely
the cause for lack of internal stability.

5.3.1 Proof of Theorem 5.1

We are now prepared to prove Theorem 5.1. Only the statement about the right coprime
factor, i.e. (5.8a), is proved. The proof of (5.8b) follows by dual arguments.

The proof requires a technical result of [97], known as the matrix corona theorem,
see also the proof of [94, Prop. 11] for a closer formulation.

Lemma 5.3.1. If 𝐺 ∈ 𝐻𝑛×𝑛∞ , then

𝐺−1 ∈ 𝐻∞ ⇐⇒ inf
𝑠∈ℂ̄0

𝜎(𝐺 (𝑠)) > 0.

It is readily seen that 𝑀𝑃 ≔ diag{𝑀𝑖} and 𝑁𝑃 ≔ diag{𝑁𝑖} are right coprime factors
of 𝑃 = diag{𝑃𝑖}. Because any internally stabilizing 𝐾 in (5.5) is in effect stabilized
by the plant, we only need to consider edge controllers for which 𝐾 admits coprime
factorizations over 𝐻∞. So let 𝐾 = 𝑁𝐾𝑀−1

𝐾 for right coprime 𝑀𝐾 , 𝑁𝐾 ∈ 𝐻∞. By (5.5),

𝑁𝐾 (𝑠) = (𝐸 ⊗ 𝐼𝑚)𝐾e(𝑠)(𝐸 ′ ⊗ 𝐼𝑝)𝑀𝐾 (𝑠).

Because 𝟙′𝐸 = 0, we have that (𝟙′⊗𝐼𝑚) (𝐸⊗𝐼𝑚) = 0 as well and, hence, (𝟙′⊗𝐼𝑚)𝑁𝐾 (𝑠) = 0
for all 𝑠 at which 𝐾e(𝑠) is finite. But 𝐾e(𝑠) is in the quotient field of 𝐻∞, meaning that
the denominators of its entries are holomorphic in ℂ0 and, by [98, Thm. 10.18], may
have at most countable number of isolated zeros. As such, we can always find a region
in ℂ0 in which (𝟙′ ⊗ 𝐼𝑚)𝑁𝐾 (𝑠) = 0. But the latter implies that

(𝟙′ ⊗ 𝐼𝑚)𝑁𝐾 = 0,

by the same [98, Thm. 10.18].
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Now, return to the system in Figure 5.2. It is readily verified that the closed-loop
system 𝑇4 in (5.6) reads

𝑇4 =

[
𝐼

𝐾

]
(𝐼 − 𝑃𝐾)−1

[
𝐼 𝑃

]
≕

[
𝑆 𝑇d

𝑇c 𝑇

]
, (5.9)

where the blocks of 𝑇4 are the four fundamental closed-loop transfer functions. Straight-
forward algebra yields that

𝑇4 =

[
𝑀𝐾 0
𝑁𝐾 0

] [
𝑀𝐾 −𝑁𝑃
−𝑁𝐾 𝑀𝑃

]−1

. (5.10)

This is a right coprime factorization of 𝑇4, as attested by the Bézout equality (cf. (C.4a))[
𝑀̃𝑃 𝑁𝑃

−𝑌𝑃 𝑋𝑃

] [
𝑀𝐾 −𝑁𝑃
−𝑁𝐾 𝑀𝑃

]
+

[
𝑋𝐾 − 𝑀̃𝑃 𝑌𝐾 + 𝑁𝑃
𝑌𝑃 𝑋𝑃

] [
𝑀𝐾 0
𝑁𝐾 0

]
= 𝐼,

where 𝑀̃𝑃 ≔ diag{𝑀̃𝑖} and 𝑁𝑃 ≔ diag{𝑁𝑖}. By Lemma C.1.5, 𝑇4 is stable if and only
if [

𝑀𝐾 −𝑁𝑃
−𝑁𝐾 𝑀𝑃

]−1

∈ 𝐻∞, (5.11)

or

inf
𝑠∈ℂ̄0

𝜎

([
𝑀𝐾 (𝑠) −𝑁𝑃 (𝑠)
−𝑁𝐾 (𝑠) 𝑀𝑃 (𝑠)

])
> 0 (5.12)

by Lemma 5.3.1. But (5.8a) implies that there is 𝑣 ≠ 0 such that 𝑣′𝑀𝑖 (𝜆) = 0 for all 𝑖 or,
equivalently, (𝟙⊗𝑣)′𝑀𝑃 (𝜆) = 0. Taking into account that (𝟙⊗𝑣)′𝑁𝐾 = 𝑣′(𝟙⊗ 𝐼𝑚)′𝑁𝐾 = 0,
we end up with [

0 (𝟙 ⊗ 𝑣)′
] [

𝑀𝐾 (𝜆) −𝑁𝑃 (𝜆)
−𝑁𝐾 (𝜆) 𝑀𝑃 (𝜆)

]
= 0, (5.13)

which violates (5.12). We thus have that if (5.8a) holds, then there is no 𝐾e that
internally stabilizes the system in Figure 5.2.

5.4 Generalizations

Some possible generalizations of the result of Theorem 5.1 are outlined below.

5.4.1 Asymmetric coupling

Some MAS problems consider a directed interaction graph, making the notion of neigh-
boring agents asymmetric. Controllers under such constrains are no longer diffusive in
the sense discussed in Section 5.2. Still, a variant of Theorem 5.1 may apply.

For example, let an edge going from node 𝑖 to node 𝑗 indicate that the 𝑖th agent
has access to 𝑦𝑖 − 𝑦 𝑗 . The existence of the edge (𝑖, 𝑗) does not imply that there is also
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the edge ( 𝑗 , 𝑖). It is evident that the controller outlined in Figure 5.2 and (5.5) can no
longer provide an appropriate distributed controller since, as discussed in Section 5.2,
it sums up all the edge correction terms connected to each corresponding node. Nev-
ertheless, several notable MAS control architectures over directed graphs still admit a
decomposition similar that of (5.5).

Consider again the classic consensus protocol. It can be adapted to accommodate
directed graphs by replacing the symmetric Laplacian, 𝐿G = 𝐸𝐸 ′, with a directed
counterpart such as the in and out degree Laplacians. To this end, define the following
auxiliary matrices

[𝐵out]𝑖𝑒 =


1 if vertex 𝑖 is the head of edge 𝑒

0 otherwise
(5.14a)

and

[𝐵in]𝑖𝑒 =


1 if vertex 𝑖 is the tail of edge 𝑒

0 otherwise
. (5.14b)

Note that by construction 𝐸 = 𝐵out − 𝐵in, hence both are binary matrices with both
column and row sums equal to 1. The following proposition allows us to represents
directed Laplacians using these two matrices and the regular incidence matrix.

Proposition 5.4.1. Given a directed graph G and the in and out incidence matrices
from (5.14), the following relationships hold:

1. The adjacency matrix is given by

𝐴G = 𝐵in𝐵
′
out.

2. The degree matrices satisfy

𝐷𝑖G = 𝐵in𝐵
′
in and 𝐷𝑜G = 𝐵out𝐵

′
out.

3. The directed Laplacians satisfy

𝐿𝑖G = 𝐵in𝐸
′ and 𝐿𝑜G = 𝐸𝐵out.

Proof The proof can be found in [72, E9.13], the only difference is that their adjacency
is defined as the transpose of how we defined 𝐴G in (A.1). Consequently, our Laplacians
are defined slightly differently. ■

Using the above, we can represent the directed Laplacian by the product 𝐿𝑖G = 𝐵in𝐸 ′.
This suggests that a controller of the form

𝐾in ≔ (𝐵in ⊗ 𝐼𝑚)𝐾e(𝐸 ′ ⊗ 𝐼𝑝), (5.15)
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can be used to represent various control laws over directed graphs. For example setting
𝐾e = −𝐼 results in the aforementioned directed consensus protocol, while picking 𝐾e =

𝐼𝜈 ⊗ 𝐾 for some gain 𝐾 yields the synchronizing controllers discussed in [72, Sec. 8.4].
The controller structure in (5.15) mirrors that in (5.5). If (5.8b) holds, then the

proof of Theorem 5.1 applies verbatim to any MAS controlled by it. However, this
is not the case for (5.8a), implying that some systems may be stabilizable only if the
graph is directed, as illustrated in the following example.

v1

v3 v2

Figure 5.4: The communication graph used in Example 5.4.2.

Example 5.4.2. Consider a system of 𝜈 = 3 first-order agents

𝑃1(𝑠) =
[

1 0
1/𝑠 1

]
and 𝑃2(𝑠) = 𝑃3(𝑠) =

[
1/𝑠 0
1 1

]
.

Assume that their connectivity is represented by the directed cycle graph, which has
three directed edges (1, 3), (3, 2), and (2, 1) as shown in Figure 5.4. This system can
be described by (5.15) with

𝐸 =


1 −1 0
0 1 −1
−1 0 1

 , 𝐵in =


0 1 0
0 0 1
1 0 0

 ,
and arbitrary block-diagonal edge controllers. It is then a matter of standard algebra
to verify that these plants admit denominators

𝑀̃1(𝑠) =
[

1 0
0 𝑠/(𝑠 + 1)

]
and

𝑀̃2(𝑠) = 𝑀̃3(𝑠) =
[
𝑠/(𝑠 + 1) 0

0 1

]
= 𝑀𝑖 (𝑠), ∀𝑖 ∈ ℕ3.

Hence, condition (5.8a) holds for 𝜆 = 0, whereas condition (5.8b) holds for no 𝜆. Thus,
if the interconnection graph was undirected, then Theorem 5.1 would rule out the
existence of internally stabilizing edge controllers. But in the directed case in form
(5.15) with 𝐵in having full rank, what matters is only (5.8b). Hence, we cannot rule
out the existence of an internally stabilizing controller. And indeed, it can be verified
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that

𝐾e(𝑠) = diag
{
𝐼2,

[
1 1

5/3 1

]
, 𝐼2

}
results in an internally stable interconnection, with the closed-loop poles in {−1/2,−3/4,−1}.

▽

Of course, following a similar procedure we may define the analogous 𝐾out (corre-
sponding for example to the out-degree directed consensus protocol) and consider only
condition (5.8a), then again the proof holds unchanged.

Remark 5.2. The stabilizability of control architectures over directed graphs may nev-
ertheless still require checking both conditions of Theorem 5.1. This thesis is based
on an interpretation of the edge controller (5.15) as (dynamic) edge weights of the
directed graph. A directed graph is called weight balanced if the accumulated weights
of incoming and outgoing edges are equal for each node. It is known [22, Thm. 3.17]
that the consensus protocol for integrator agents can reach an average agreement, i.e.
𝑥𝑖 (𝑡) → (1/𝜈)𝟙′𝑥(0) for all 𝑖, iff the underlying digraph is weight balanced and weakly
connected. A key property to prove this result is that the Laplacian of a weight-
balanced digraph, 𝐿𝑜G, satisfies ker 𝐿𝑜G = ker(𝐿𝑜G)

′ = Im 𝟙. Viewed within the context of
Theorem 5.1, this implies that if edge controllers in (5.15) are chosen such that digraph
is weight balanced, then both conditions of (5.8) must be checked anyway. ▽

5.4.2 Arbitrary symmetric coupling

The result of Theorem 5.1 still holds if the incidence matrix is replaced with a different
coupling matrix, say 𝐹 ∈ ℝ𝜇×𝜈, as long as there is a vector 0 ≠ 𝑣 ∈ ℝ𝜇 such that 𝑣′𝐹 = 0.
Such generalizations of a MAS were recently discussed in [99], but are also included
in works considering, for example, distributed function calculation in MAS [100]. This
corollary is formulated below.

Corollary 5.4. Consider the setup in Figure 5.2, with some arbitrary coupling matrix
𝐹 ∈ ℝ𝜇×𝜈 with some vector 0 ≠ 𝑣 ∈ ℝ𝜇 such that 𝑣′𝐹 = 0. No LTI 𝐾e, 𝑗 can internally
stabilize the systems if there is 𝜆 ∈ ℂ̄0, common to all agents, such that

𝜈⋂
𝑖=1

ker [𝑣𝑖𝑀𝑖 (𝜆)]′ ≠ {0} (5.16a)

or
𝜈⋂
𝑖=1

ker [𝑣𝑖 𝑀̃𝑖 (𝜆)] ≠ {0}. (5.16b)

where 𝑀𝑖 and 𝑀̃𝑖 are denominators in the coprime factorizations of 𝑃𝑖 under A7.
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Proof The proof follows that of Theorem 5.1, the only change is that (5.13) now reads

[
0 (𝑣 ⊗ 𝜂)′

] [
𝑀𝐾 (𝜆) −𝑁𝑃 (𝜆)
−𝑁𝐾 (𝜆) 𝑀𝑃 (𝜆)

]
=

[
0 (𝑣 ⊗ 𝜂)′𝑀𝑃 (𝜆)

]
.

The element above reads

(𝑣 ⊗ 𝜂)′𝑀𝑃 (𝜆) = 𝜂′(𝑣′ ⊗ 𝐼𝑚)𝑀𝑝 (𝜆) = 𝜂′
[
𝑣1𝑀1(𝜆) · · · 𝑣𝜈𝑀𝜈 (𝜆)

]
and it is equal zero if and only if 𝜂 ∈ ⋂𝜈

𝑖=1 ker [𝑣𝑖𝑀𝑖 (𝜆)]′. The rest follows using identical
arguments to the diffusive coupling case. ■

5.4.3 Unstable systems with no poles in ℂ̄0

It might happen that 𝑃𝑖 ∉ 𝐻∞ not because of poles, or other singularities, in ℂ̄0.
For example, 𝑃𝑖 (𝑠) = 𝑠/(𝑠 + 1 + 𝑠e−𝑠) has no singularities in ℂ̄0, but nonetheless does
not belong to 𝐻∞, see [101]. The proof still applies in this case, and all we need is
to replace (5.8) with the assumption that there is a sequence {𝜆 𝑗} in ℂ0 such that
inf {𝜆 𝑗 } 𝑣

′𝑀𝑖 (𝜆 𝑗) = 0, or its dual version, holds for all 𝑖 ∈ ℕ𝜈 and some 𝑣 ≠ 0.

5.4.4 Time-varying 𝐾

The main result also extends to the case of time-varying controllers. This is particularly
relevant for varying interconnection topologies, i.e. those where 𝐸G(𝑡 ) = 𝐸 (𝑡) is the
incidence matrix of the time-varying graph G(𝑡). Still, the condition 𝟙′𝐸 (𝑡) holds for
any topology, rendering the denominator in (5.10) not stably invertible. We can then
use [102, Theorem (i)] to show that under no choice of 𝐾e the system is stabilizable,
at least in the finite-dimensional case, whenever either one of the conditions in (5.8)
holds.

5.5 Finite-dimensional agents

If the agents 𝑃𝑖 are finite dimensional, the result of the previous section can be re-
formulated in a more insightful way. This is due to the ultimate connection between
stability and pole locations, as well as clear definitions of cancellations in this case. So
we proceed with assuming that all transfer functions 𝑃𝑖 (𝑠) are real rational and proper
(A7 always holds then).

Let pdiri(𝐺, 𝜆) and pdiro(𝐺, 𝜆) denote input and output direction of a pole 𝜆 in 𝐺 (𝑠),
see Appendix C for details and other related definitions. The result below reformulates
the conditions of Theorem 5.1 via pole directions of agents.

Proposition 5.5.1. If 𝑃𝑖 (𝑠) are real rational and proper, then (5.8a) and (5.8b) are
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equivalent to the existence of 𝜆 ∈ ℂ̄0 such that

𝜈⋂
𝑖=1

pdiri(𝑃𝑖 , 𝜆) ≠ {0} (5.17a)

and
𝜈⋂
𝑖=1

pdiro(𝑃𝑖 , 𝜆) ≠ {0}, (5.17b)

respectively.

Proof Because 𝜆 ∈ ℂ̄0 is not a pole of 𝑀𝑖 (𝑠), Lemma C.1.10 applies and (5.8a) reads
∩𝜈𝑖=1 zdiro(𝑀𝑖 , 𝜆) ≠ {0}. Then (5.17a) follows by Lemma C.1.11. The proof for (5.17b)
is similar. ■

In other words, for the system in Figure 5.2 to not be stabilizable, the agents should
not only have a common unstable pole, but also a common nontrivial direction of such a
pole. Directions are obviously matched in the homogeneous and SISO cases addressed
in Corollary 5.2 and Corollary 5.3, respectively. But the MIMO heterogeneous case
may be less trivial.

Example 5.5.2. Consider a system with 𝜈 = 2 first-order agents

𝑃1(𝑠) =
[

1/𝑠 0
0 1

]
and 𝑃2(𝑠) =

[
1
𝛼

]
1
𝑠

[
1 𝛽

]
.

Directions of their pole at the origin are

pdiri(𝑃1, 0) = pdiro(𝑃1, 0) = Im
[

1
0

]
, pdiri(𝑃2, 0) = Im

[
1
𝛽

]
,

and

pdiro(𝑃2, 0) = Im
[

1
𝛼

]
.

There are nontrivial intersections between input and output directions of the agents if
and only if 𝛽 = 0 and 𝛼 = 0, respectively. The incidence matrix is 𝐸 =

[ 1
−1

]
in this

case. Choose the edge controller (there is only one edge in this example) as

𝐾e(𝑠) =
[
(𝛼 − 𝛽)𝛽 −𝛼

𝛽 0

]
.

The closed-loop characteristic polynomial, understood as the lowest common denomi-
nator of elements of 𝑇4(𝑠) in (5.9), is then (𝑠+𝛼2)(𝑠+ 𝛽2). Thus, the closed-loop system
is stable unless 𝛼 = 0 or 𝛽 = 0, which agrees with (5.17). ▽

Also worth emphasizing is that conditions (5.17a) and (5.17b) might not be equiv-
alent for MIMO agents, as illustrated by the example below.
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Example 5.5.3. Return to the system studied in Example 5.4.2. Directions associated
with the (unstable) pole at the origin are

pdiri(𝑃𝑖 , 0) = Im
[

1
0

]
, ∀𝑖 ∈ ℕ3

but

pdiro(𝑃1, 0) = Im
[

0
1

]
≠ Im

[
1
0

]
= pdiro(𝑃2, 0) .

Thus, in this case (5.17a) holds, whereas (5.17b) does not. This agrees with what we
saw in Example 5.4.2 with respect to conditions (5.8). ▽

Another outcome of the finite dimensionality is that the formulation of Corollary 5.2
can be strengthened to an “if and only if” statement.

Corollary 5.5. If the agents are homogeneous, i.e. 𝑃𝑖 = 𝑃0 for all 𝑖 ∈ ℕ𝜈, and 𝑃0(𝑠) is
real rational and proper, then an LTI 𝐾e, 𝑗 can internally stabilize the diffusively-coupled
system in Figure 5.2 if and only if 𝑃0 is stable.

Proof If 𝑃0 is unstable, then it has a pole in ℂ̄0 and Corollary 5.2 applies. If 𝑃0 is
stable, 𝐾e = 0 does the job. ■

One should be careful not to conclude from the proof of Corollary 5.5 that only
𝐾e = 0 can be used to guarantee internal stability. The case of 𝐾e = 0 effectively
decouples all the agents leading only to a “trivial” coordination (i.e. all agents converge
to the origin). One can design edge controllers with additional external inputs to drive
the relative states 𝑦 to non-trivial solutions using the methods, for example, described
in [103]. For non-trivial agreement among the agents, the use of an unstable edge
controller is possible provided that an appropriately defined external input is fed into
the system at the point 𝑑𝑦 in Figure 5.2.

5.5.1 Diffusive control laws and unstable cancellations

𝐺1

𝐺2

𝑑1

𝑑2

Figure 5.5: A generic feedback interconnection for internal stability.

The formulation of Proposition 5.5.1 is more intuitive than that of Theorem 5.1.
Still, neither of them explains why no edge controller can stabilize the system in Fig-
ure 5.2 if agents share common unstable dynamics, directions counted. In this part
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we aim at offering explanations. We argue that a key property to this end is intrinsic
unstable cancellations between the plant and the controller.

Definition 5.5.4. We say that the cascade (series) interconnection 𝐺2𝐺1 has cancel-
lations if

deg(𝐺2𝐺1) < deg(𝐺1) + deg(𝐺2)

where deg(𝐺) is the McMillan Degree (cf. [104, Thm. 3.5]). We say that a pole of
𝐺1(𝑠) and/or 𝐺2(𝑠) is canceled if its multiplicity in 𝐺2(𝑠)𝐺1(𝑠) is smaller than the sum
of its multiplicities in 𝐺1(𝑠) and 𝐺2(𝑠).

In other words, cancellations mean that some parts of the dynamics (modes) of either
factor disappear in the cascade. Cancellations in the SISO case are always caused by
the presence of zeros of 𝐺1(𝑠) at the locations of poles of 𝐺2(𝑠), or vice versa. As such,
they are termed pole-zero cancellations. The situation is more complex in the MIMO
case. For example, let

𝐺1(𝑠) =
1
𝑠

[
1 0
0 1

]
and 𝐺2(𝑠) =

[
1 −1
−1 1

]
,

with deg(𝐺1) = 2 (two poles at the origin) and deg(𝐺2) = 0 (no poles). The system 𝐺2

is static and thus has no zeros either. Nevertheless, the transfer function

𝐺2(𝑠)𝐺1(𝑠) =
1
𝑠

[
1 −1
−1 1

]
is first order, meaning that one of the poles of 𝐺1(𝑠) is canceled. Such cancellations,
brought on by the normal rank deficiency of 𝐺2(𝑠), are a lesser-known phenomenon.

This, it seems, is exactly what happens in classic consensus, as shown in the follow-
ing example.

v3 v2

v1v4

e1e5

e4

e3

e
3

Figure 5.6: The communication graph used in Example 5.5.5

Example 5.5.5. Consider once more Example 5.1.1 of integrator agents attempting to
achieve consensus, this time with 𝜈 = 4 agents, and the corresponding undirected graph
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as shown in Figure 5.6. We have 𝑃(𝑠) = 1
𝑠 𝐼4, and with 𝐾𝑒 = −𝐼5 we obtain the following

consensus protocol

𝐸G =


−1 −1 1 0 0
1 0 0 −1 0
0 1 0 1 −1
0 0 −1 0 1


=⇒ 𝐾 =


−3 1 1 1
1 −2 1 0
1 1 −3 1
1 0 1 −2


.

Clearly deg(𝑃) = 4 and deg(𝐾) = 0, yet it is readily verified that

𝑃(𝑠)𝐸G𝐾𝑒𝐸
′
G =

1
𝑠


−3 1 1 1
1 −2 1 0
1 1 −3 1
1 0 1 −2


=


−3 1 0 1
1 −2 1 0
1 1 −1 0
1 0 0 0




1
𝑠 0 0 0
0 1

𝑠 0 0
0 0 8

𝑠 0
0 0 0 0




1 0 1 −2
0 1 4 −5
0 0 1 −1
0 0 0 1


,

since the two static matrices are unimodular

deg
(
𝑃(𝑠)𝐸G𝐾𝑒𝐸G

)
= 3,

hence a pole at the origin was canceled. ▽

The result below states that such cancellations are present between the plant and
the controller in Figure 5.2 whenever the conditions of Proposition 5.5.1 hold.

Proposition 5.5.6. Let 𝑃(𝑠) and 𝐾e(𝑠) be real rational and proper and let 𝜆 ∈ ℂ̄0 be
a pole of 𝑃(𝑠).

i) If (5.17a) holds, then 𝜆 is canceled in 𝑃(𝑠)𝐾 (𝑠).

ii) If (5.17b) holds, then 𝜆 is canceled in 𝐾 (𝑠)𝑃(𝑠).

Proof Bring in minimal realizations

𝑃𝑖 (𝑠) =
[
𝐴𝑖 𝐵𝑖

𝐶𝑖 𝐷𝑖

]
and 𝐾 (𝑠) =

[
𝐴𝐾 𝐵𝐾

𝐶𝐾 𝐷𝐾

]
so the realization

𝑃(𝑠) =
[
𝐴𝑃 𝐵𝑃

𝐶𝑃 𝐷𝑃

]
≔

[
diag{𝐴𝑖} diag{𝐵𝑖}
diag{𝐶𝑖} diag{𝐷𝑖}

]
is also minimal. To prove the first item of the Proposition it is then sufficient [104,
Prop. 5.2] to show that 𝜆 is an uncontrollable mode of

𝑃(𝑠)𝐾 (𝑠) =


𝐴𝐾 0 𝐵𝐾

𝐵𝑃𝐶𝐾 𝐴𝑃 𝐵𝑃𝐷𝐾

𝐷𝑃𝐶𝐾 𝐶𝑃 𝐷𝑃𝐷𝐾

 .
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To this end, note that (5.5) implies (𝟙 ⊗ 𝐼)′
[
𝐶𝐾 𝐷𝐾

]
= 0 and condition (5.17a) is

equivalent to the existence of 0 ≠ 𝑣 ∈ ℂ𝑚 such that 𝑣 = 𝐵′
𝑖𝜂𝑖 for some 𝜂𝑖 such that

𝜂′𝑖 (𝜆𝐼 − 𝐴𝑖) = 0. The latter is equivalent to the existence of 𝜂 ≠ 0 such that

𝜂′(𝜆𝐼 − 𝐴𝑃) = 0 and 𝜂′𝐵𝑃 = (𝟙 ⊗ 𝑣)′

for some 𝑣 ≠ 0. Therefore,[
0 𝜂′

] [
𝐴𝐾 − 𝜆𝐼 0 𝐵𝐾

𝐵𝑃𝐶𝐾 𝐴𝑃 − 𝜆𝐼 𝐵𝑃𝐷𝐾

]
= 𝑣′(𝟙 ⊗ 𝐼)′

[
𝐶𝐾 0 𝐷𝐾

]
= 0

and the PBH test for the realization of 𝑃𝐾 fails for the mode at 𝜆, proving the first
item. The second item follows by similar arguments. ■

Unstable pole-zero cancellations between a plant and a controller are a consensual
taboo in feedback control. Textbooks treat them as a kind of a cardinal sin, which shall
be avoided at all costs. The reason is that canceled dynamics do not really disappear.
For example, poles of a SISO plant 𝑃(𝑠) canceled by zeros of a controller 𝐾 (𝑠) always
show up in the closed-loop disturbance sensitivity 𝑇d(𝑠), see (5.9). This is the very
reason to require internal stability. Unstable cancellations due to deficient normal
rank are less common and less studied. Nevertheless, they cause same repercussions.
Namely, canceled dynamics shows up in at least one closed-loop relation, rendering the
system prone to the effect of exogenous signals.

Assume, for example, that condition (5.17a), or (5.8a), holds for some 𝜆 ∈ ℂ̄0. It
follows from the proof of Theorem 5.1 that there is then 𝑣 ≠ 0 such that (5.13) holds.
Therefore, [

0
𝟙 ⊗ 𝑣

]
∈ zdiro

([
𝑀𝐾 −𝑁𝑃
−𝑁𝐾 𝑀𝑃

]
, 𝜆

)
= pdiri(𝑇4, 𝜆)

where the equality follows by Lemma C.1.11 and the fact that the factors in (5.10) are
right coprime. By Lemma C.1.9 and (5.9)

𝑇4(𝑠)
[

0
𝟙 ⊗ 𝑣

]
=

[
𝑇d(𝑠)
𝑇 (𝑠)

]
(𝟙 ⊗ 𝑣)

has an unstable pole at 𝑠 = 𝜆. In other words, there is a load disturbance 𝑑𝑢 in
Figure 5.2 such that either 𝑦 or 𝑢 or both is unbounded. Likewise, it can be shown
that if (5.17b) holds, then

[
𝑆 𝑇d

]
∉ 𝐻∞, i.e. 𝑑𝑢 or/and 𝑑𝑦 might cause an unbounded

𝑦. This explains why the consensus protocol in Example 5.1.1 has an unstable load
disturbance response.

It can be shown that if the consensus discussed in Example 5.1.1 can be attained,
then all components of 𝑇4 but 𝑇d are stable, whereas 𝑇d(𝑠) has a pole at the origin. This
agrees with the situation in SISO pole-zero cancellations discussed above. However, 𝑇d

is not necessarily unstable in a general MIMO case if either of the conditions in (5.17)
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holds. The example below illustrates a different scenario.

Example 5.5.7. Consider a system with 𝜈 = 2 agents

𝑃1(𝑠) =
[
𝑠/(𝑠 + 1) 0

1/𝑠 1

]
and 𝑃2(𝑠) =

[
1/𝑠 0
1 𝑠/(𝑠 + 1)

]
(both are second order). In this case there is only one edge. Select

𝐾e(𝑠) = 𝐾e,1(𝑠) = −1
3

[
1 0
0 2/𝑠

]
.

It is then a matter of routine calculations to see that 𝑆, 𝑇d, and 𝑇c are stable, each having
(𝑠 + 2)(2𝑠 + 1)2(3𝑠 + 1) as the lowest common denominator of its entries. However, 𝑇 (𝑠)
has a pole at the origin in addition, rendering the whole 𝑇4 unstable. ▽

Moreover, it may even happen that canceled dynamics of 𝑃 are not excited by the
(load) disturbance 𝑑𝑢, but rather only by 𝑑𝑦.

Example 5.5.8. Consider a system with 𝜈 = 2 agents, yet again, now with the second
order

𝑃1(𝑠) =
[
𝑠/(𝑠 + 1) 1/𝑠

0 1

]
, 𝑃2(𝑠) =

[
1/𝑠 1
0 𝑠/(𝑠 + 1)

]
and the edge controller from Example 5.5.7. It can be calculated that in this case 𝑇 , 𝑇d,
and 𝑇c are stable, each having (𝑠+2) (2𝑠+1)2(3𝑠+1) as the lowest common denominator
of its entries. The sensitivity 𝑆(𝑠) has an additional pole at the origin. This implies
that the responses to 𝑑𝑢 are all stable, whereas the response of 𝑦 to 𝑑𝑦 is unstable. ▽

Remark 5.3. Stabilizability conditions for the setup in Figure 5.3 would be substantially
different from those in Theorem 5.1 or Proposition 5.5.1. If we consider the class of
LTI edge controllers 𝐾e, then the stabilizability problem boils down to the question of
existing decentralized fixed modes (DFMs) in 𝑃e defined by (5.7), see [3, Sec. 2.2]. If
controllers are allowed to be periodically time-varying, then even this condition is not
restrictive [105]. However, this analysis has a snag in that the very construction of 𝑃e

might have unstable cancellations. For example, return to the case of 𝜈 = 3 integrator
agents with an undirected star interconnection graph discussed in Section 5.2. In this
case 𝑃(𝑠) = (1/𝑠)𝐼3 has three poles at the origin, whereas

𝑃e(𝑠) =
[

1 0 −1
0 1 −1

] (1
𝑠
𝐼3

) 
1 0
0 1
−1 −1

 =
1
𝑠

[
2 1
1 2

]

is a second-order transfer function. This 𝑃e is easily stabilizable by decentralized edge
controllers, e.g. by 𝐾e = −𝐼2. But this controller cannot see the canceled unstable mode,
which remains a part of the closed-loop system. ▽
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5.6 Concluding remarks

In this chapter we have studied the internal stability of MASs controlled by diffusively
coupled laws. We have argued that internal stability, with entry points of exogenous
signals at the connections between the agents and the controller, is a vital property
in MASs and have proved that it can never be attained if the agents share common
unstable dynamics, directions counted. In particular, this class always includes the case
of homogeneous unstable agents or heterogeneous SISO agents with a common unstable
pole, like an integral action. We have shown that the underlying reason for the lack of
stabilizability is intrinsic cancellations of aligned unstable dynamics of agents by the
diffusive coupling mechanism.

An immediate outcome of this analysis is that the consensus protocol described
in Subsection 1.1.1 as well as its dynamic extensions cannot attenuate disturbance
affecting the agreement mode, assuming all the agents share an unstable pole and
direction. Since sharing such a pole is a necessary condition for reaching agreement
[44], this implies that diffusive coupling is extremely fragile in non-ideal scenarios.
Somehow, this uniformity must be carefully broken in order to avoid perturbations
to the agreement mode. This is the underlying reason behind several of the different
assumptions mentioned in Section 1.2 and Section 5.1. For example, in our notation
the condition in [53, Prop. 7] reads

𝑑𝑢 (𝑡)

 ≤ 𝛾 ∀𝑡 ≥ 0, 𝑑𝑢 (𝑡) := 1

𝜈

∫ 𝑡

0
(𝟙′𝜈 ⊗ 𝐼𝑛)𝑑𝑢 (𝑠)d𝑠.

Since in that case the agents are integrators, the conditions requires that applying the
projection of 𝑑𝑢 (𝑡) on the agreement space as an input to an uncontrolled agent would
result in a bounded trajectory. This agrees with our cancellations analysis, as the pole
at the origin is always a source of instability.

Agreement, by definition, is an unstable phenomenon, as it requires the agents to
converge to a non-zero trajectory from any initial conditions. Yet, there is more to gain
from Theorem 5.1 beyond internal instability. The generic zero direction implies that
in the all-ones direction there is no feedback. The diffusive controller cannot shape the
trajectory or attenuate disturbances or noise inputs at all. This begs the question, is
there an alternative architecture that can guarantee agreement, but still retain some
measure of feedback in the all-ones direction. This is precisely the motivation and
proposed solutions in the next chapter.

96

 

 

 



Chapter 6

Beyond Consensus: The Next
Step?

The most important step a man can take. It’s
not the first one, is it? It’s the next one. Always
the next step, Dalinar.

Brandon Sanderson, Oathbringer [106]

Chapter 5 has exposed a crucial and intrinsic problem with diffusive controllers
whenever external inputs are introduced. Similar observations have been noted in the
literature, although without explanations and often brushed aside. Despite the focus
on internal stability, there are other, less obvious, issues stemming from the afore-
mentioned cancellations. Some have, to the best of our knowledge, never been clearly
stated or explored in the literature. The most common class of diffusive controllers
is by far variations of the consensus protocol, whose popularity exploded over the last
twenty years. Hence, it would be instructive to conduct an input-output analysis of the
consensus structure to illustrate some of the potential issues. Through such analysis,
we can gain insight and propose modifications to improve performance.

6.1 The consensus protocol revisited

Consider a system comprised 𝜈 homogeneous SISO agents

Σ𝑖 : 𝑦𝑖 = 𝑃(𝑢𝑖 + 𝑑𝑖) + 𝑦0,𝑖 , for all 𝑖 ∈ ℕ𝜈 (6.1)

where 𝑃 is a given LTI model, 𝑢𝑖 is a control input, 𝑑𝑖 is a disturbance input, 𝑦𝑖 is a
measured regulated output, and 𝑦0,𝑖 is an initial condition response of the agent. The
studied control problem for this system is to attain consensus among the agents, in the
sense

lim
𝑡→∞

𝑦𝑖 (𝑡) = 𝑦agt, for all 𝑖 ∈ ℕ𝜈 (6.2)
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for an agreement variable 𝑦agt ∈ ℝ, which is not prespecified. The consensus problem
is not-trivial if 𝑦agt ≠ 0 and if the information about the neighbors is available to each
Σ𝑖. A more general form of consensus protocol (1.3) at the 𝑖th agent may be expressed
as the following diffusively-coupled law

𝑢𝑖 = 𝑘𝑖𝐹
∑
𝑗∈ N𝑖

(𝑦 𝑗 − 𝑦𝑖)

for some 𝑘𝑖 > 0 and filter 𝐹, which are design parameters. Furthermore, it is not unrea-
sonable to assume that measurements coming from neighboring agents are imperfect,
e.g. corrupted by additive noise. In this case the control input

𝑢𝑖 = 𝑘𝑖𝐹
∑
𝑗∈ N𝑖

(𝑦 𝑗 + 𝑛𝑖 𝑗 − 𝑦𝑖) (6.3)

for some noise signals 𝑛𝑖 𝑗 .
Assume that G is undirected and connected. It is then convenient to aggregate (6.1)

and (6.3) for all indices 𝑖, which facilitates the use of the rich algebraic graph theory.
So introduce the aggregate variables 𝑢, 𝑦, and 𝑦0 (e.g. 𝑢′ =

[
𝑢1 · · · 𝑢𝜈

]
), as well as

the aggregate noise 𝑛, whose 𝑖th entry,

𝑛𝑖 =
∑
𝑗∈ N𝑖

𝑛𝑖 𝑗 , (6.4)

sums up noises of all measurement channels of Σ𝑖. In this case the controlled system
defines the relation

𝑦 = (𝐼𝜈 ⊗ 𝑃) (𝑢 + 𝑑) + 𝑦0 (6.5)

and the consensus protocol reads

𝑢 = −𝐾𝐿G𝐹𝑦 + 𝐾𝐹𝑛 = −(𝐾𝐿G ⊗ 𝐹)𝑦 + (𝐾 ⊗ 𝐹)𝑛 (6.6)

for 𝐾 ≔ diag{𝑘𝑖} > 0, where 𝐿G is the graph Laplacian of G. A key technical result
required to understand properties of the controlled systems is given in the lemma below.

Lemma 6.1.1. The consensus protocol (6.6) results in

𝑦 = 𝑈−1
𝐾 diag{𝑆𝑖}𝑈𝐾 𝑦0 +𝑈−1

𝐾 diag{𝑆𝑖𝑃}𝑈𝐾𝑑 +𝑈−1
𝐾 diag{𝑆𝑖𝑃𝐹}𝑈𝐾𝐾𝑛

)
, (6.7)

where 𝑆𝑖 are systems with the transfer functions

𝑆𝑖 (𝑠) ≔
1

1 + 𝜆𝐾,𝑖𝑃(𝑠)𝐹 (𝑠)
(6.8)

(with 𝑆1 = 1) and 𝑈𝐾 ∈ ℝ𝜈×𝜈 is such that 𝑈𝐾𝐾1/2 is unitary and

𝑈𝐾𝐾𝐿G𝑈
−1
𝐾 = diag{𝜆𝐾,𝑖} (6.9)
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for 0 = 𝜆𝐾,1 < 𝜆𝐾,2 ≤ · · · ≤ 𝜆𝐾,𝜈.

Proof It is known from Proposition A.0.1 that for undirected and connected graphs
𝐿G = 𝐿′G ≥ 0, with only a simple eigenvalue at the origin. This implies the existence of
a sought 𝑈𝐾 and the validity of properties of 𝜆𝐾,𝑖.

The rest of the proof essentially goes along developments in Proposition 2.1.2. Sub-
stituting (6.6) to (6.5) and using the mixed-product property from Proposition B.1.2,
we end up with the controlled system

𝑦 = (𝐼𝜈 + 𝐾𝐿G ⊗ 𝑃𝐹)−1(𝑦0 + (𝐼𝜈 ⊗ 𝑃)𝑑 + (𝐼 ⊗ 𝑃𝐹)𝐾𝑛).

Note that (6.9) implies
𝐾𝐿G = 𝑈−1

𝐾 diag{𝜆𝐾,𝑖}𝑈𝐾 ,

and since 𝑈𝐾 = 𝑈𝐾 ⊗ 1 applying the mixed-product property once more results in

(𝐼𝜈 + 𝐾𝐿G ⊗ 𝑃𝐹)−1 = 𝑈−1
𝐾 diag

{
1

1 + 𝜆𝐾,𝑖𝑃(𝑠)𝐹 (𝑠)

}
𝑈𝐾 ,

which yields (6.7). ■

By (6.7), the controlled dynamics decouples into 𝜈 independent subsystems

𝜂′𝑖𝑦 = 𝑆𝑖𝜂
′
𝑖𝑦0 + 𝑆𝑖𝑃𝜂′𝑖𝑑 + 𝑆𝑖𝑃𝐹𝜂′𝑖𝐾𝑛, 𝑖 ∈ ℕ𝜈

for every 𝜂𝑖 ∈ Im𝑈′
𝐾𝑒𝑖. Choose

𝜂𝑖 := 𝜅𝑈′
𝐾𝑒𝑖 for 𝜅 := 1/

√
tr(𝐾−1).

The signals 𝜂′𝑖𝑦 reflect then important properties of the controlled system. Because
𝐿G𝟙 = 0, 𝑈𝑘 from (6.9) can be chosen such that 𝑈−1

𝐾 𝑒1 = 𝜅𝟙. Hence, 𝜂1 = 𝜅𝑈′
𝐾 (𝜅𝑈𝐾𝟙) =

𝜅2𝐾−1𝟙 and
𝜂′1𝑦 = 𝜅

2𝟙′𝐾−1𝑦 =
𝜈∑
𝑖=1

𝑦𝑖
tr(𝐾−1)𝑘𝑖

≕ 𝑦𝐾 .

This is a weighted average of the outputs 𝑦𝑖 of all agents. It becomes the standard
average if all gains 𝑘𝑖 are equal.

Each 𝜂′𝑖𝑦 for 𝑖 ≥ 2 is not as transparent as 𝜂′1𝑦. Yet the sum of their squares

Δ :=
𝜈∑
𝑖=2

(𝜂′𝑖𝑦)2 = ‖𝜅𝑈𝐾 𝑦‖2 −


𝜂′1𝑦

2

,

is meaningful. Indeed, by the unitary property of𝑈𝐾𝐾1/2, we have ‖𝜅𝑈𝐾 𝑦‖2 =


𝜅𝐾−1/2𝑦



2.
Hence,

Δ = 𝜅2𝑦′𝐾−1/2(𝐼 − 𝜅2𝐾−1/2𝟙𝟙′𝐾−1/2)𝐾−1/2𝑦.

Because 𝐼 − 𝜅2𝐾−1/2𝟙𝟙′𝐾−1/2 is an orthogonal projection matrix [65, Thm. 7.5], we end
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up with

Δ = ‖𝜅𝐾−1/2(𝑦 − 𝟙𝑦𝐾 )‖2 =
𝜈∑
𝑖=1

(𝑦 − 𝑦𝐾 )2

tr(𝐾−1)𝑘𝑖
. (6.10)

Thus, Δ can quantify the deviation of 𝑦𝑖 from their weighted average, i.e. the disagree-
ment between Σ𝑖.

The previous discussion implies that if 𝜂′𝑖𝑦 vanish asymptotically for all 𝑖 ≥ 2, then
the agents agree on the trajectory 𝑦𝐾 . This prompts the requirement to render all 𝑆𝑖
for those indices decaying. At the same time, 𝑆1 = 1 regardless of the choice of 𝐹.
Thus,

𝑦𝐾 = 𝑦0,𝐾 + 𝜅2𝑃𝟙′𝐾−1𝑑 + 𝜅2𝑃𝐹𝟙′𝑛 (6.11)

where 𝑦0,𝐾 := 𝜅2𝟙′𝐾−1𝑦0 is the weighted average of the responses of the agents to
their initial conditions, 𝜅2𝟙′𝐾−1𝑑 is the weighted average disturbance, and 𝟙′𝑛 is the
cumulated noise. In the conventionally assumed disturbance and noise free setting,
consensus (6.2) is attained iff all initial condition responses 𝑦0,𝑖 converge, in which case
𝑦agt = lim𝑡→∞ 𝑦0,𝐾 (𝑡). Moreover, the disagreement Δ typically vanishes faster under
larger gains 𝑘𝑖. However, the external signals change this situation dramatically.

6.1.1 Performance limitations of the consensus protocol

The best studied version of the consensus problem is that for 𝑃(𝑠) = 1/𝑠. The initial
condition responses 𝑦0,𝑖 are then constant for all 𝑖. It is common to have 𝐾 = 𝑘 𝐼𝜈 and
𝐹 = 1. With these choices, 𝜆𝐾,𝑖 = 𝑘𝜆𝑖, where 𝜆𝑖 are the eigenvalues of the Laplacian
𝐿G sorted increasingly, the rows of 𝑈𝐾 comprise an orthonormal eigenbasis of 𝐿G,

𝑆𝑖 (𝑠) =
𝑠

𝑠 + 𝑘𝜆𝑖
and 𝑆𝑖 (𝑠)𝑃(𝑠) =

1
𝑠 + 𝑘𝜆𝑖

are stable for all 𝑘 > 0, 𝑦𝐾 = (1/𝜈)∑𝜈
𝑖=1 𝑦𝑖, and 𝜅2 = 𝑘/𝜈.

If 𝑑 = 𝑛 = 0, then 𝑦𝐾 (𝑡) = (1/𝜈)∑𝜈
𝑖=1 𝑦0,𝑖 for all 𝑡 ≥ 0 and 𝜂′𝑖𝑦(𝑡) = (1/√𝜈)e−𝑘𝜆𝑖 𝑡𝑒′𝑖𝑈𝐾 𝑦0.

Consequently, ∫ ∞

0



𝑦(𝑡) − 𝟙𝑦0,𝐾


2 d𝑡 = 𝜈

∫ ∞

0
Δ(𝑡)d𝑡 = 1

𝑘

𝜈∑
𝑖=2



𝑒′𝑖𝑈𝐾 𝑦0


2

2𝜆𝑖
,

meaning that the energy of disagreement is inversely proportional to the gain 𝑘. In
other words, increasing 𝑘 reduces the disagreement between the agents.

This analysis is different from the standard ones in the literature, yet arrives to the
same conclusion: increasing 𝑘 improves the convergence rate of the system. If 𝑛 or 𝑑
are non-zero, however, the analysis changes in two major ways.

1. Internal stability is compromised. In this case 𝑦𝐾 satisfies

d𝑦𝐾 (𝑡)
d𝑡

=
1
𝜈

∑
𝑖∈ℕ𝜈

(𝑑𝑖 (𝑡) + 𝑘𝑛𝑖 (𝑡)) ,
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which is directly proportional to the average disturbance and the cumulative
noise. Hence, if either of the averages is persistently non-zero the agreement
variable will diverge. This is a special case of the results of Chapter 5, where
the canceled integrator pole reappears. Similar results extend to general agent
dynamics with unstable/marginally stable poles.

2. There is a trade-off between noise sensitivity and nominal performance.
Assume that 𝑛𝑖 𝑗 are independent zero-mean white processes with unit intensity
and 𝑑𝑖 (𝑡) = 0. From the above equation, it is clear that 𝑦𝐾 (𝑡) is a Wiener process,
whose mean is 𝑦0,𝐾 and steady-state variance grows unbounded, proportionally
to 𝑘2𝑡. Likewise, consider the steady-state variance of disagreement, understood
as the mean value of lim𝑡→∞ 𝜈Δ(𝑡). In this case 𝑛𝑖 are also white, with the inten-
sity |N𝑖 | and the covariance of 𝑛 is 𝐷G𝛿(𝑡 − 𝑠). Because the effect of the initial
conditions on 𝜂′𝑖𝑦 vanishes, the steady-state variance of disagreement equals [107,
Thm. 1.53] the square 𝐻2-norm of

𝑇𝑛 = 𝜅


𝑆2𝑃 0

. . .

0 𝑆𝜈𝑃



𝑒′2
...

𝑒′𝜈

 𝑈𝐾𝐾𝐷
1/2
G , (6.12)

where 𝐷G is the degree matrix of G. It is readily verified that

‖𝑇𝑛‖2
2 = 𝑘𝜅2

𝜈∑
𝑖=2

𝑒′𝑖𝑈𝐾𝐷G𝑈′
𝐾𝑒𝑖

2𝜆𝑖
.

Therefore, noise sensitivity, both of the agreed variable and disagreement, dete-
riorates as 𝑘 increases.

As established, the first issue is unavoidable when using consensus-like (and more gen-
erally, diffusive) controllers as it depends solely on the agent dynamics. Moreover, if
we wish to reach non-trivial agreement this way the agents must have unstable poles.
To illustrate this, consider now general 𝑃 and 𝐹. In the Laplace domain 𝑦𝐾 (𝑠) satisfies

𝑦𝐾 (𝑠) =
1
𝜈
(𝟙′𝑦0 + 𝑃(𝑠)𝟙′𝑑 (𝑠) + 𝑘𝑃(𝑠)𝐹 (𝑠)𝟙′𝑛(𝑠)) .

This represents uncontrolled initial conditions and disturbance responses, while the
noise acts on a series interconnection of the uncontrolled dynamics 𝑃(𝑠) and controller
𝑘𝐹 (𝑠). Hence, to reach non-trivial agreement through controller (6.3) the uncontrolled
response to initial conditions cannot converge to 0, ergo 𝑃 must be unstable.

Even if we ignore stability concerns, the second issue also poses a problem. Say we
assume that external signals cannot excite the unstable modes, hence we do not need
to worry about unboundedness of the agreement trajectory. In this case we may want
to choose 𝑘 and 𝐹 to somehow attenuate the noise. Revisiting the integrator consensus
example, it is clear that unless 𝐹 (0) = 0, 𝑦𝐾 is still a Wiener process. This, however, is

101

 

 

 



not legitimate as it would result in non-decaying 𝑆𝑖𝜂′𝑖𝑦0. In general, choosing 𝐹 is not
quite trivial since it affects 𝑦𝐾 in an open-loop fashion and the other 𝜂′𝑖𝑦 via feedback.
For example, a naïve choice of first-order low-pass 𝐹 with 𝐹 (𝑠) = 1/(𝜏𝑠 + 1), which still
results in stable 𝑆𝑖, would increase each term in the expression of ‖𝑇𝑛‖2

2 above by a
factor of 1 + 𝑘𝜏𝜆𝑖 > 1.

6.1.2 A different perspective

Perhaps the fundamental difficulty of understanding the consensus protocol, is that it
attempts to solve a problem that is fundamentally different from those usually studied
in control theory. First and foremost, reaching agreement from initial conditions is
inherently an unstable phenomenon - a taboo in classical control problems. Second,
the problem is often analyzed without external inputs. Even when there are external
inputs, they are by large harmful signals to be attenuated. Consequently, many classical
tools such as loop-shaping are absent from the realm of multi-agent systems.

Yet throughout this work we have alluded to the similarities between agreement
and tracking, and between the consensus protocol to error feedback. In fact, we have
seen in Example 2.2.1 that this is exactly the case for complete undirected graphs.
Motivated by this, consider a slightly different outlook on this structure can be obtained
by rewriting (6.3) as

𝑢𝑖 = −𝑘𝑖𝐹 |N𝑖 |
(
𝑦𝑖 − 𝑦𝑖 +

1
|N𝑖 |

𝑛𝑖
)
, where 𝑦𝑖 := 1

|N𝑖 |
∑
𝑗∈N𝑖

𝑦 𝑗 , (6.3′)

and 𝑛𝑖 is as in (6.4). This form is reminiscent of a servo problem in unity feedback
where only the error is supplied to the controller [108, Sec. 1.3]. In this perspective,
𝑘𝑖 |N𝑖 | is the local feedback gain and 𝑦𝑖, which is the average of measured neighbors,
is the “reference” signal. A similar viewpoint was first proposed in [12, § III.A], and
indeed agreement is achieved if and only if the underlying graph is connected and all
the agents simultaneously solve this tracking problem.

Balancing the inherent tradeoffs between performance and robustness are the bread
and butter of classical control. In servo-regulation, for example, tracking performance
and robustness are difficult to simultaneously balance. This is, in part, a product of
the error-based unity feedback control architecture. To see why, note that the output
equation of the unity-feedback configuration in Figure 6.1(a) reads

𝑦 = (𝐼 + 𝑃𝑅)−1(𝑃𝑅𝑟 − 𝑃𝑅𝑛 + 𝑃𝑑) := 𝑇𝑟 − 𝑇𝑛 + 𝑇𝑑𝑑.

Loop-shaping arguments would require that in the frequency domain |𝑇 (j𝜔) | ≈ 1 where
the spectrum of 𝑟 is concentrated, |𝑇 (j𝜔) | � 1 where the spectrum of 𝑛 is concentrated,
and |𝑇𝑑 (j𝜔) | � 1 where the spectrum of 𝑑 is concentrated. Yet all of these functions
are coupled with only one tuning parameter, 𝑅. Hence, if the spectra of the external
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(a) Error-based unity feedback.
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(b) Two Degrees of Freedom control.

Figure 6.1: Classical servo-regulation control architectures: 1 degree-of-freedom and 2
degrees-of-freedom.

signal are not well separated there are strict limitations on achievable performance.
One classical solution to this is employing a two degrees-of-freedom (2DOF) archi-

tecture, using separate controllers for outputs and reference signals. Indeed, variations
of 2DOF architectures, first introduced over 70 years ago [54], have been extensively
studied [108, Sec. 2.9]. The term “two-degrees-of-freedom control” is used to refer to
several slightly different control architectures. Here we consider the architecture shown
in Figure 6.1(b), which can completely decouple the disturbance and tracking design.
This is accomplished by designing the control law in the following fashion. First, define
a signal 𝑦 to represent the required output behavior. This is often modeled as the
response of some system 𝑇r to the reference signal 𝑟. Then, the signal 𝑢 is designed to
achieve this behavior in an open-loop fashion, i.e. satisfying

𝑦 = 𝑃𝑢 = 𝑇r𝑟.

If designed correctly, the control law reads

𝑢 = 𝑢 + 𝑅(𝑦 − 𝑃𝑢) = 𝑅𝑦 + (𝐼 − 𝑅𝑃)𝑢,

and using the identities 𝑦 = 𝑃𝑢 and (𝐼 − 𝑅𝑃)−1𝑃 = 𝑃(𝐼 − 𝑃𝑅)−1 we obtain

𝑦 = 𝑦 + (𝐼 − 𝑃𝑅)−1𝑃𝑑.

Therefore, the disturbance response depends only on 𝑅, and the tracking response on
𝑢 = 𝑃−1𝑇r𝑟.

It is reasonable to assume that, as in servo regulation, there might be an alternative
architecture to consensus that will simplify the design. The next section outlines some
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preliminary work in this vein, motivated by the analogy to the servo problem.

6.2 A two-degrees-of-freedom approach

Tr

Col

RiPi

ỹiuiyi r̃i
di

ũi

5
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8

9

i− 1

i− 2

i+ 1

i+ 2

i− 3

G

Figure 6.2: A Two-Degrees-of-Freedom consensus protocol inspired by Figure 6.1(b)
with a network-generated reference signal.

Motivated by the parallels to tracking problems, we wish to derive a 2DOF variant
of the consensus protocol, as illustrated in Figure 6.2. To this end, consider a system
comprised 𝜈 possibly heterogeneous 𝑝 × 𝑚 agents

Σ𝑖 : 𝑦𝑖 = 𝑃𝑖 (𝑢𝑖 + 𝑑𝑖) + 𝑦0,𝑖 , for all 𝑖 ∈ ℕ𝜈 (6.13)

where 𝑃𝑖 is a given LTI model, 𝑢𝑖 is a control input, 𝑑𝑖 is a disturbance input, 𝑦𝑖 is a
measured regulated output, and 𝑦0,𝑖 is an initial condition response of the 𝑖th agent.

The main difference between servo-regulation and agreement problems is that the
latter lacks a well-defined reference signal. Consequently, there are various ways to
select both 𝑟 and 𝑦. It can be done in an open-loop way, with the agents exchanging
controller variables and agreeing on their common rendezvous point or trajectory. This
would lead to a control structure akin to that of [44], where the agents exchange the
state of some common internal model. Alternatively, it can be done in a closed-loop
way, where 𝑦 is generated using only the measured neighbors outputs. Consider the
latter approach, which can be motivated by the classic consensus protocol. To this end,
assume that 𝐹 = 1 and 𝑛𝑖 = 0, then the aggregate form of (6.3′) reads

𝑢 = −(𝐾𝐷G ⊗ 𝐼)(𝑦 − 𝑦), where 𝑦 := (𝐴★G ⊗ 𝐼𝑝)𝑦

and 𝐾 := diag{𝑘𝑖}. The above indicates that for consensus 𝑟 = 𝑦, which is already
distributed according to the graph structure. A standing assumption is that the noise,
𝑛, is generated at the network level. Hence, we assume it is additive to 𝑦. This implies
that a good model for the required behavior is a filtered version of 𝑦, i.e.

𝑦 = (𝐼 ⊗ 𝑇r)
(
(𝐴★G ⊗ 𝐼)𝑦 + 𝑛

)
(6.14)
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where 𝑇r is the additional degree of freedom and 𝑛 represents additive noise induced
by the network (a la (6.4)). Note that we assume a uniform filter 𝑇r for all the agents,
even heterogeneous ones.

Let 𝑃 := diag{𝑃𝑖} and 𝑅 := diag{𝑅𝑖} denote the aggregate plant and local controller
respectively. Substituting (6.14) into the 2DOF architecture yields the 2DOF consensus
protocol

𝑢 = 𝑅𝑦 + (𝐼𝜈𝑚 − 𝑅𝑃) 𝑢, 𝑢 = 𝑃−1𝑦 (6.15a)

and resulting closed-loop dynamics

𝑦 = 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐾 (𝑇d𝑑 + (𝐼 ⊗ 𝑇r)𝑛 + 𝑆𝑦0) (6.15b)

with
𝑆𝑖 :=

(
𝐼𝑝 − 𝛼𝑖𝑇r

)−1
, 𝑇d := (𝐼𝜈𝑝 − 𝑃𝑅)−1𝑃, and 𝑆 := (𝐼𝜈𝑝 − 𝑃𝑅)−1.

and 𝑈𝐷 ∈ ℝ𝜈×𝜈 is such that 𝑈𝐷𝐷−1/2
G is unitary

𝑈𝐷𝐴
★
G𝑈

−1
𝐷 = diag{𝛼𝑖}.

Note that the control signal has a decentralized, i.e. block-diagonal, component
while the other component is distributed with respect to the communication graph G
since

𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 =

(
𝐼𝜈𝑝 − 𝐴★G ⊗ 𝑇r

)−1
.

Recall that in agreement problems the objective is to reach agreement driven only by
initial conditions, thus the nominal performance of (6.15) depends on𝑈−1

𝐷 diag{𝑆𝑖}𝑈𝐷𝑆.
Like in the control law, the nominal dynamics have a decentralized component in 𝑆,
and a distributed component in 𝑈−1

𝐷 diag{𝑆𝑖}𝑈𝐷. Similarly, the disturbance dynamics
depend on the distributed 𝑈−1

𝐷 diag{𝑆𝑖}𝑈𝐷 and on the decentralized 𝑇d.
Unlike 1DOF consensus protocols, the closed-loop dynamics in (6.15b) explicitly

separate the network and local dynamics. The network component depends only on
𝑇r, which is uniform across agents, while local dynamics captured by 𝑆 and 𝑇d are de-
centralized by construction. This inherent separation naturally accommodates agent
heterogeneity provided that their network component, 𝑇r, is homogeneous. The follow-
ing theorem formalizes these observations.

Theorem 6.1. Consider heterogeneous agents driven only by initial conditions, inter-
acting over an undirected and connected graph G, and controlled by (6.15b). If each
local controller 𝑅𝑖 stabilizes its corresponding plant 𝑃𝑖, then the agents reach asymptotic
agreement if and only if

𝑆𝑖 :=
(
𝐼𝑝 − 𝛼𝑖𝑇r

)−1 ∈ 𝐻∞, ∀𝛼𝑖 ∈ spec 𝐴★G \ {1}

and 𝑆1 =
(
𝐼𝑝 − 𝑇r

)−1 has all poles in the closed left half-plane.
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Proof By assumption G is undirected and connected, therefore from Proposition A.0.1
there is a nonsingular 𝑈𝐷 such that

𝑈𝐷𝐴
★
G𝑈

−1
𝐷 = diag{𝛼𝑖},

and since 𝐴G is symmetric there exists one such that 𝑈𝐷𝐷−1/2
G is unitary. Defining

𝑦 = (𝑈𝐷 ⊗ 𝐼)𝑦 and pre-multiplying (6.15b) by 𝑈𝐷 ⊗ 𝐼 yields

𝑦 =
(
𝐼𝜈𝑝 − diag{𝛼𝑖} ⊗ 𝑇r

)−1
𝑦0, with 𝑦0 := (𝑈𝐷 ⊗ 𝐼)𝑆𝑦0.

By assumption 𝑅𝑖 internally stabilizes 𝑃𝑖, therefore 𝑦0(𝑡) is bounded and asymptotically
decays to zero. Now the system from input 𝑦0(𝑡) to 𝑦 is a block-diagonal system,
therefore each 𝑦𝑖 depends only on 𝑦0,𝑖 as

𝑦𝑖 = 𝑆𝑖𝑦0,𝑖 .

For the first direction, assume that 𝑆𝑖 is stable for all 𝛼𝑖 ≠ 1 and that for 𝛼1 = 1 all
of its poles are in the closed left half-plane. Then, for every 𝜖 > 0 there exists a time
𝑡𝜖 ≥ 0 such that for all 𝑡 > 𝑡𝜖

‖𝑦(𝑡) − 𝑒1 ⊗ 𝑦1(𝑡)‖ < 𝜖,

where 𝑦1(𝑡) is the time response of the first block of 𝑦. Since no coordinate of 𝑦
diverges exponentially, the transformations are well defined and invertible. Returning
to the original coordinates, we obtain

‖𝑦(𝑡) − 𝟙𝜈 ⊗ 𝑦1(𝑡)‖ < 𝜖

because we can choose 𝑈𝐷 such that 𝑈−1
𝐷 𝑒1 = 𝟙𝜈.

For the other direction, suppose the agents reach asymptotic agreement. Then there
exists a trajectory 𝑦agt(𝑡) such that, for all 𝜖 > 0, there is a 𝑡𝜖 ≥ 0 with

𝑦(𝑡) − 𝟙𝜈 ⊗ 𝑦agt(𝑡)



 < 𝜖 ∀𝑡 > 𝑡𝜖 .

The remainder of the proof follows by reversing the above steps. ■

Theorem 6.1 provides clear conditions for agreement but does not explicitly specify the
resulting agreement trajectory. Since 𝑆 is stable, the trajectory is determined solely
by the unstable poles of 𝑆1. Hence, 𝑇r must be designed to both solve a simultaneous
stabilization problem against the eigenvalues of 𝐴★G and satisfy certain interpolation
constraints.

Still, pole cancellations can occur in the series interconnection 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷𝑆,

altering the agreement trajectory. Such cancellations, however, are outside the feedback
loop and thus do not jeopardize stability. The following proposition provides a simple
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necessary condition for these cancellations.

Proposition 6.2.1. Let 𝑅, 𝑃, and 𝑇r be finite-dimensional systems, and denote by 𝑝𝑖

the imaginary-axis poles of 𝑆1. If 𝑝𝑖 is not a pole of 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷𝑆, then it must be

a zero of 𝑆𝑖 for all 𝑖.

Proof It is known [104, Prop. 5.2] that given a cascade interconnection𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷𝑆,

a pole 𝑝𝑖 of 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 is cancelled if and only if

pdiri

(
𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 , 𝑝𝑖

)
∩ zdiro(𝑆, 𝑝𝑖) ≠ {0}.

Bring in a minimal realization (𝐴, 𝐵, 𝐶, 𝐷) of diag{𝑆𝑖}, By definition

diag{𝑆𝑖} = 𝐷 + 𝐶 (𝑠𝐼 − 𝐴)−1𝐵 ⇐⇒ 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 = 𝐷̂ + 𝐶 (𝑠𝐼 − 𝐴)−1𝐵

where
𝐷̂ = (𝑈−1

𝐷 ⊗ 𝐼)𝐷 (𝑈𝐷 ⊗ 𝐼), 𝐶 = (𝑈−1
𝐷 ⊗ 𝐼)𝐶, and 𝐵 = 𝐵(𝑈𝐷 ⊗ 𝐼).

Now let 𝑝𝑖 be an unstable pole of 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷, then it must be a pole only of

𝑆1 since the other components are stable. Thus

𝑣𝑖 ∈ pdiri

(
𝑆1, 𝑝𝑖

)
=⇒ (𝑒1 ⊗ 𝑣𝑖) ∈ pdiri

(
diag{𝑆𝑖}, 𝑝𝑖

)
,

and this is true for all unstable 𝑝𝑖. By definition

pdiri

(
𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 , 𝑝𝑖

)
= 𝐵′ ker(𝑝𝑖 𝐼 − 𝐴)′

= (𝑈′
𝐷 ⊗ 𝐼)𝐵′ ker(𝑝𝑖 𝐼 − 𝐴)′

= (𝑈′
𝐷 ⊗ 𝐼)pdiri

(
diag{𝑆𝑖}, 𝑝𝑖

)
,

and consequently

(𝑒1 ⊗ 𝑣𝑖) ∈ pdiri

(
diag{𝑆𝑖}, 𝑝𝑖

)
⇐⇒ ((𝑈′

𝐷𝑒1) ⊗ 𝑣𝑖) ∈ pdiri

(
𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷 , 𝑝𝑖

)
.

We know that 𝑈′
𝐷𝑒1 = 𝛾, where 𝛾 is the normalized left eigenvector associated with

𝛼1 = 1. Moreover, we know that

𝛾′ =
1√

tr(𝐷G)
𝟙′𝜈𝐷G ,

and 𝐷G is a diagonal matrix with only positive entries, therefore all the components of 𝛾
are nonzero. This implies that for 𝑝𝑖 to be canceled we must have (𝛾⊗ 𝑣𝑖) ∈ zdiro(𝑆, 𝑝𝑖),
since all the coordinates of 𝛾 are non-zero, this implies that 𝑝𝑖 must be zero of all 𝑆𝑖.■

Proposition 6.2.1 has an important implication for robustness. In consensus-like pro-
tocols, the resulting agreement trajectory is generally vulnerable to persistent dis-
turbances in the agreement direction, as these disturbances excite common unstable
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poles. Intentionally introducing heterogeneity in local controllers, however, can ex-
ploit the cancellation properties described above to improve robustness against such
disturbances. This insight follows a conjuncture made in the concluding remarks of
Chapter 5, and is demonstrated in the following example.

Example 6.2.2. Consider a group of 𝜈 identical SISO agents, each with a pole at the
origin, aiming to achieve consensus. Standard consensus protocols with disturbance-
rejection mechanisms (for example [50]) typically cannot reject step disturbances, re-
sulting in linear divergence of outputs. Suppose one agent, say agent 1, is not affected
by DC disturbances. By intentionally designing local controllers such that 𝑅𝑖 is a
PI controller for all 𝑖 > 1, all 𝑇d,𝑖 (except the first) have a zero at the origin, thus
effectively rejecting DC disturbances. Despite this heterogeneity, agents still reach
consensus since, according to Proposition 6.2.1, no cancellations between the network
and local dynamics occur. ▽

In the absence of cancellations in 𝑈−1
𝐷 diag{𝑆𝑖}𝑈𝐷𝑆, the agreement trajectory is

entirely determined by 𝑇r, as is the response to network noise 𝑛. Consequently, the
design of the network filter 𝑇r depends only on the graph G, the desired agreement
trajectory, and the spectrum of network-induced noise. Crucially, it does not depend
on the agents’ dynamics, 𝑃. This significantly simplifies the design of 𝑇r for prescribed
agreement trajectories, as illustrated in the following example.

Example 6.2.3. Assume for simplicity that the agents are SISO, and that their goal is
to reach consensus, i.e. agreement to a constant. Assuming that the are no unstable
cancellations in the local loops, by Theorem 6.1 reaching consensus depends only on 𝑇r

and the eigenvalues of 𝐴★G. Since we know that spec 𝐴★G ∈ [−1, 1] (c.f Proposition A.0.1),
we can easily derive some simple prototype network filters to guarantee consensus for
any connected graph. Some examples are provided below.

1. First order low-pass: we have

𝑇r(𝑠) =
𝑘

𝜏𝑠 + 1
=⇒ 𝑆𝑖 = (1 − 𝛼𝑖𝑇r(𝑠))−1 =

𝜏𝑠 + 1
𝜏𝑠 + 1 − 𝛼𝑖𝑘

.

Clearly for 𝑘 = 1 𝑆1 always has a simple pole at the origin, and 𝑆𝑖 for 𝑖 > 1 will
be stable for any 𝜏 > 0 and any undirected graph.

2. Second order low-pass: similarly, for arbitrary 2nd order filter we have

𝑇r(𝑠) =
𝑘

(𝜏1𝑠 + 1) (𝜏2𝑠 + 1) =⇒ 𝑆𝑖 (𝑠) =
(𝜏1𝑠 + 1) (𝜏2𝑠 + 1)

𝜏1𝜏2𝑠2 + (𝜏1 + 𝜏2)𝑠 + (1 − 𝛼𝑖𝑘)
,

which again requires 𝑘 = 1 to ensure an integrator and is otherwise stable for any
graph and 𝜏𝑖 > 0. Note that the same holds for a second order underdamped
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system since

𝑇r(𝑠) =
𝑘𝜔2

𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛

=⇒ 𝑆𝑖 (𝑠) =
𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2

𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛 (1 − 𝛼𝑖𝑘)

.

3. Third order system: here we have

𝑇r(𝑠) =
𝑘𝜔2

𝑛

(𝜏𝑠 + 1)(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛)

=⇒

𝑆𝑖 (𝑠) =
(𝜏𝑠 + 1) (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2

𝑛)
𝜏𝑠3 + (2𝜁𝜔𝑛𝜏 + 1)𝑠2 + (𝜏𝜔2

𝑛 + 2𝜁𝜔𝑛)𝑠 + 𝜔2
𝑛 (1 − 𝛼𝑖𝑘)

.

Applying the Routh-Hurwitz criterion results in

𝜔𝑛 (2𝜁 (𝜏𝜔𝑛)2 + (4𝜁2 + 1)𝜏𝜔𝑛 + 2𝜁) > 𝜏(1 − 𝛼𝑖)

under the assumption that 𝑘 = 1 and that all parameters are positive. This case
is slightly more challenging, but can still be addressed with some conservatism.

Define
𝑓 (𝜏𝜔𝑛) = 2𝜁 (𝜏𝜔𝑛)2 + (4𝜁2 + 1)𝜏𝜔𝑛 + 2𝜁 .

The polynomial 𝑓 (𝜏𝜔𝑛) has roots at −2𝜁 and −1/(2𝜁); hence for 𝜏𝜔𝑛 > 0 it is
strictly positive. Since (1 − 𝛼𝑖) ≤ 2 and 𝑓 (0) = 2𝜁 , the original inequality is
satisfied if

2𝜁𝜔𝑛 > 2𝜏,

which is easily achieved. ▽

Similar procedures can be carried out for more complex filters, such as ones with zeros,
as well as for other agreement trajectories.

Example 6.2.4. Assume that the goal is to reach agreement on some harmonic signal
at frequency 𝜔0. All 𝑇r(𝑠) ensuring that 𝑆1(𝑠) has poles at ±j𝜔0 can be parametrized
via

𝑇r(𝑠) = 1 +
𝑠2 + 𝜔2

0
(𝑠 + 1)2𝑄(𝑠)

for any stable and proper 𝑄(𝑠). Ensuring stability, however, is more difficult. Rewriting
𝑆𝑖 (𝑠) we have

𝑆𝑖 (𝑠) =
1

1 − 𝛼𝑖
1

1 − 𝛼𝑖
1−𝛼𝑖

𝑠2+𝜔2
0

(𝑠+1)2𝑄(𝑠)

which is equivalent to the following robust control problem:

Find 𝑄 ∈ 𝐻∞ to stabilize 𝑃(𝑠) = 𝑘
𝑠2 + 𝜔2

0
(𝑠 + 1)2 , 𝑘 ∈ [−0.5,∞).
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Optimizing on 𝑄 may not be trivial, but it follows that any static 𝑄 satisfying

𝑄 <
1

−0.5𝜔2
0

solves the equivalent problem. ▽

Finally, to see the potential of the method in combating noise, consider the counter-
part of signals 𝜂′𝑖𝑦 as in Section 6.1. Note that 𝐴G is symmetric just like 𝐿G, hence we
can construct vectors 𝜂𝑖 that decouple 𝜂′𝑖𝑦 into 𝜈 independent subsystem by repeating
the procedure we did for 𝐾𝐿G but for 𝐴★G = 𝐷−1

G 𝐴G. Namely, we may choose

𝜂𝑖 := 𝜅2𝑈
′
𝐷𝑒𝑖 , 𝜅2 := 1/

√
tr(𝐷G)

resulting in

𝜂′𝑖𝑦 = 𝑆𝑖
(
𝑒′𝑖𝑈𝐷𝑇d,𝑖𝑑 + 𝑇r𝑛 + 𝑒′𝑖𝑈𝐷𝑆𝑦0

)
, 𝑛𝑖 := 𝑒′𝑖𝑈𝐷𝑛 𝑖 ∈ ℕ𝜈 . (6.16)

In general 𝑒′𝑖𝑈𝐷 is not known, hence each 𝜂′𝑖𝑦 depends on some linear combination
of the local loops. There are two notable exception to this, one being the agreement
direction and the other the noise response. For the agreement direction we can choose
𝑈𝐷 such that

𝑈−1
𝐷 𝑒1 = 𝜅2𝟙 and 𝑒′1𝑈𝐷 = 𝜅2𝟙

′𝐷G ,

resulting in
𝜂′1𝑦 = 𝜅

2
2𝑆1𝟙

′𝐷G (𝑇d𝑑 + (𝐼 ⊗ 𝑇r)𝑛 + 𝑆𝑦0) .

Assuming that 𝐷G is globally known, this implies that we can calculate precisely the
dynamics generating 𝜂′1𝑦. As for the noise response, since 𝑇r is uniform among all agents
things simplify in similar fashion to classical consensus. Namely, we can construct
an explicit expression for the steady-state variance of the disagreements as in (6.12)
through the squared 𝐻2 norm of

𝑇𝑛 = 𝜅2


𝑆2𝑇r 0

. . .

0 𝑆𝜈𝑇r



𝑒′2
...

𝑒′𝜈

 𝑈𝐷𝐷
1/2
G . (6.17)

Similar standard consensus, each 𝑆𝑖 depend on the corresponding 𝛼𝑖, and to minimize
(6.17) we must a-priori know the graph just like in (6.12). However, the noise response
in the agreement direction always depends on 𝑆1𝑇r which is independent of the graph.
This is a stark contrast with 1DOF agreement protocols, where there was no feedback
at all in the agreement direction. Using the 2DOF architecture we can directly design
𝑇r to attenuate the effects of the noise in the agreement direction, and still implicitly
attenuate the disagreement variance.
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6.3 Numerical examples

P1

P4

P5

P2

P3

Figure 6.3: The underlying communication graph for the examples in Section 6.3.

The following two examples illustrate the flexibility and potential of the 2DOF
protocol. In all examples, a group of 𝜈 = 5 integrator agents, 𝑃0 = 1/𝑠, attempts
to reach static consensus. The agents interact over the undirected graph shown in
Figure 6.3, whose spectral properties are given by

𝛾 =
1
12



1
2
3
4
2


, spec𝐷−1

G 𝐴G =

{
±
√

33 − 3
12

,−0.5, 0, 1
}
.

In both examples we compare two architectures: (i) classic 1DOF consensus using (6.6),
and (ii) the 2DOF protocol (6.15). The controllers are tuned to achieve similar nominal
performance as measured by settling time. Then, we show how we can improve the
behavior of the agreement mode under non-nominal conditions.

6.3.1 Attenuating agreement mode drift

One of the main issues with the consensus protocol is the lack of feedback in the
agreement direction as illustrated in (6.11). When afflicted with white-noise as in
Subsection 6.1.1, this imposes a direct trade-off between the nominal performance and
the variance of the output. In particular, when considering the agreement variable
under white-noise we see that the variance diverges at a rate proportional to the gain
𝑘. In this example, assume that the agents are controlled via (6.6) with 𝐾 = 𝑘 𝐼𝜈.
For the given graph, numerical simulations indicate that a choice of 𝑘 = 2.65 yields
a settling time of 𝑡s ≈ 1.433[𝑠]. Using (6.11), when driven by additive white noise
this design results in Wiener process with a linearly increasing drift with a slope of
𝑘/𝜈 = 0.53. Moreover, by (6.12) the steady-state variance of the disagreements equals
‖𝑇𝑛‖2

2 = 0.9858.
To illustrate the potential of the 2DOF scheme, we shall design controllers 𝑇r and 𝑅

to ensure consensus with the same nominal performance and improved noise sensitivity.
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To this end, consider a third order network filter

𝑇r(𝑠) =
𝜔2
𝑛

(𝜏𝑠 + 1) (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛)
,

resulting in noise response

𝑆𝑖 (𝑠)𝑇r(𝑠) =
𝜔2
𝑛

𝜏𝑠3 + (2𝜁𝜔𝑛𝜏 + 1)𝑠2 + (𝜏𝜔2
𝑛 + 2𝜁𝜔𝑛)𝑠 + 𝜔2

𝑛 (1 − 𝛼𝑖)
.

Minimizing the slope of the Wiener process’ drift amounts to minimizing the squared
𝐻2 norm of

𝑠𝑆1(𝑠)𝑇r(𝑠) =
𝜔2
𝑛

𝜏𝑠2 + (2𝜁𝜔𝑛𝜏 + 1)𝑠 + (𝜏𝜔2
𝑛 + 2𝜁𝜔𝑛)

which is a simple second order system with a canonical companion realization

𝑠𝑆1(𝑠)𝑇r(𝑠) =


0 1 0

− 𝜏𝜔
2
𝑛+2𝜁 𝜔𝑛

𝜏 −2𝜁 𝜔𝑛𝜏+1
𝜏 1

𝜔2
𝑛
𝜏 0 0

 .
For this simple structure we can analytically calculate the squared 𝐻2 norm by solving
a Lyapunov equation, resulting in


𝑠𝑆1(𝑠)𝑇r(𝑠)




2

2
=

𝜔3
𝑛

(2𝜔𝑛𝜏 + 2𝜁) (2𝜔𝑛𝜏𝜁 + 1) . (6.18)

From Example 6.2.3 we know that this third order filter will ensure consensus for any
undirected and connected graph if

𝜁𝜔𝑛 > 𝜏,

and when combined with (6.18) we have a non-linear minimization problem. Note
that a heuristic minimization strategy would be to keep 𝜔𝑛 small and 𝜏 large, while
selecting 𝜁 to enforce the stability constraint. This, however, could lead to slow poles
and a dominant zero at 1/𝜏 in 𝑆𝑖 (𝑠) which would impact the nominal convergence rate.
After some trial and error with different bounds on the parameters, we obtained

𝜔𝑛 = 3

𝜏 = 5

𝜁 = 2

=⇒ 𝑇r(𝑠) =
9

(5𝑠 + 1) (𝑠2 + 12𝑠 + 9) . (6.19)

For this 𝑇r we can calculate the disagreement norm via (6.17) as well as estimate the
slope of the variance via (6.18), resulting in

𝑇𝑛

2

2 = 0.1605 and ‖𝑠𝑆1(𝑠)𝑇r(𝑠)‖2
2 =

27
34 · 61

≈ 0.0116.
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After some trial and error, a uniform local controller

𝑅0(𝑠) = −7.586𝑠 + 16
𝑠 + 0.4143

achieves a nominal settling time of 𝑡s ≈ 1.432[𝑠] which is comparable to the standard
protocol.

(a) Evolution of the outputs under nominal condi-
tions.

(b) Evolution of the outputs w/ additive white
measurement noise.

(c) The squared disagreement norm, Δ(𝑡), at steady-state for both designs.

Figure 6.4: Simulations of the control designs for the example in Subsection 6.3.1 (solid:
2DOF design, dashed: standard consensus protocol).

Figure 6.4(a) shows the nominal behavior of both designs, which indeed have com-
parable settling time. Note that the designs converge to different consensus points,
classical consensus to the average of initial conditions and the 2DOF to some weighted
average which also depends on 𝑇r and 𝑆. Figure 6.4(b) shows the same setups, now
with white noise with intensity |N𝑖 | applied at 𝑡 = 5[𝑠]. Since both designs have a pole
at the origin for 𝜂′1𝑦, both behave as a Wiener process with linearly diverging variance.
However, the 2DOF design has noticeably smaller drift compared to the system con-
trolled by classic consensus. In fact, denoting the nominal consensus values by 𝑦2dof
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and 𝑦con, after 60 seconds we have errors of

‖𝑦2dof(60) − 𝑦2dof𝟙‖2 = 0.64 and ‖𝑦con(60) − 𝑦con𝟙‖2 = 9.1698,

respectively. The improved performance also extends to the disagreements as predicted
by comparing the 𝐻2 norm of 𝑇𝑛 and 𝑇𝑛. This is illustrated in Figure 6.4(c), where
Δ(𝑡) = ∑𝜈

𝑖=2(𝜂′𝑖𝑦)2 is shown in steady state for both designs.

6.3.2 Consensus with disturbance rejection

Consider now again Example 5.1.1, which served as a motivating example for the insta-
bility discussed in Chapter 5. Namely, assume that one agent in the group is perturbed
by a step disturbance at 𝑡𝑑 = 5[𝑠]. Since this common instability is necessary for the
agents to reach agreement, the 2DOF framework is not internally stable either. Despite
this, as in the previous example, we can attenuate the divergence rate of the output
by shaping 𝑇r. For example, Figure 6.5 compares the designs discussed in the previous
example with a delayed step applied to the first agent. Indeed the output trajectories of
both designs diverge linearly in response to the step disturbance, but the 2DOF design
does so significantly slower.

Still, we can obtain even better results. Contrary to the response to noise, the
disturbance response does not depend strictly on 𝑇r but also on 𝑇d. Following Exam-
ple 6.2.2, we know by Proposition 6.2.1 that if there is at least a single “safe” agent,
the 2DOF architecture can reject disturbances. This requires the agents to simply de-
sign local controller to reject the particular disturbance using the celebrated internal
model principle [109]. For the particular case of a step disturbance, any PI controller
would ensure perfect rejection of the step disturbance. Hence, a 2DOF protocol with
an appropriate network filter 𝑇r, local PI controllers 𝑅𝑖 for 𝑖 = 1, . . . , 𝜈 − 1, and any
stabilizing controller 𝑅𝜈, would still achieve asymptotic consensus.

To illustrate this, consider once more classic consensus with 𝑘 = 2.65 and the 2DOF
protocol with network filter (6.19), and assume that the fifth agent is not affected by
DC disturbances. Following the logic outlined in Example 6.2.2 we design the following
local controllers

𝑅𝑖 (𝑠) = −4.74𝑠 + 8.777
𝑠

, 𝑖 ∈ ℕ4, and 𝑅5(𝑠) = −7.586𝑠 + 16
𝑠 + 0.4143

.

Since the first four agents have local PI controllers, they will asymptotically reject step
disturbances. Despite this, we know from Proposition 6.2.1 that 𝑆𝑇d would still have a
pole at the origin in the agreement direction, as required for consensus. Consequently,
the agents would converge to consensus, but as long as agent 5 is safe, the outputs
would not diverge. This is illustrated in Figure 6.6 where agent 1 suffers from a step
disturbances at 𝑡𝑑 = 5[𝑠]. This simple way to ensure disturbance rejection is in stark
contrast to the unavoidable fragility of diffusive coupling discussed in Chapter 5.
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(a) Output trajectories of standard consensus protocol.

(b) Output trajectories of the 2DOF design.

Figure 6.5: The output trajectories of controllers from the example in Subsection 6.3.1
for a step disturbance applied to agent 1 at 𝑡 = 5.

6.4 Concluding remarks

The 2DOF architecture developed here is an intriguing and novel alternative to consensus-
like protocols. The separation between the local loop and network filter is a power-
ful tool, which allowed us to treat heterogeneous agents using similar tools to those
employed in homogeneous 1DOF consensus protocols. Combined with the clean sepa-
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Figure 6.6: The output trajectories of the 2DOF design with PI controller from the
example in Subsection 6.3.2 for a step disturbance applied to agent 1 at 𝑡 = 5.

ration between local dynamics and the network noise, the architecture allows for “off
the shelf” design of network filters. Such filters can be designed a-priori to achieve
some prescribed noise attenuation: explicitly in the agreement direction and implicitly
for the disagreements. In addition, controller heterogeneity can be exploited to reject
local disturbances - even those exciting unstable agreement poles. As shown in Chap-
ter 5, this is strictly impossible under standard diffusive coupling. Combined with the
parallels to classical servo problems, 2DOF consensus protocols seem like a promising
alternative to their classical counterpart.
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Chapter 7

Conclusions and Future
Directions

Learning does not make one learned: there are those
who have knowledge and those who have understanding.
The first requires memory and the second philosophy.

Alexandre Dumas, The Count of Monte Cristo [110]

In this chapter we conclude the research of this thesis. We begin with a brief
summary and concluding remarks, and follow with suggestions for future research di-
rections.

7.1 Summary and conclusions.

The research in this thesis was motivated by the lack of distributed sampled-data
controllers incorporating tools from modern optimal sampled-data control such as gen-
eralized D/A (hold) and A/D (sampler) devices. The obvious reason is that such tools
tend to naturally incorporate local emulation of the entire system [69], [74], [111], thus
scale with the dimension of the system. In multi-agent systems scalability is paramount
since the dimension of the overall system increases with the number of agents, reducing
the attractivity of such tools. Hence, we asked the simple yet practical question: is
there an interplay between spatial (distributed) and temporal (sampling) constraints
in multi-agent systems that can be exploited.

In an attempt to answer this question, we considered the simplest of multi-agent
system control problems, consensus of integrator agents, with the constraint that the
communication is sampled. This resulted in the first insight to be exploited, hidden
in the word communication. Unlike lumped systems, multi-agent systems can natu-
rally have at least two time-scales (or sampling rates) – one for communicated and
one for locally measured information. A second insight into how the spatial and tem-
poral constraints interplay is that asynchronous sampling is equivalent to a switching

117

 

 

 



spatial topology, as discussed in Example 2.1.3. We then combined these two insight
with an additional assumption, motivated by practical considerations through Moore’s
law [112]: computing power tend to becomes exponentially smaller, cheaper, and more
powerful over time. Hence, assuming that each agent has significant computing power
locally available can be reasonable. Combined, these three principles led us to down the
road of the emulation architecture in Chapter 2, which employs fast local measurements
and complex local emulators. While deriving the main results, we inadvertently dis-
covered another fundamental insight, as detailed in Subsection 2.3.1. In short, to reach
agreement one does not actually require the states (or outputs) of the entire group, but
rather only their centroid. Since the centroid always has the same dimension as a single
agent, emulating it directly renders the controllers invariant to the number of agents
and thus scalable. These ideas were then further exploited in the various generaliza-
tions described in Chapter 3 and Chapter 4, where scalable, distributed sampled-data
controllers were designed for increasingly complicated agreement problems with inter-
mittent and asynchronous sampling.

While the first part of this thesis is clearly motivated by the original research ques-
tion, the second part diverges slightly. An important property exploited within the
emulation architecture is the importance of the centroid and its orthogonality to the
disagreement. This is an intrinsic property of the diffusive structure, regardless of
sampling. Interestingly, the ideal analog closed-loop derived in Subsection 3.2.1 shows
that in general the centroid is unstable, regardless of the feedback gain used on the
disagreements. This hinted that there may be some hidden instability even in clas-
sical MAS controllers, a notion supported by anecdotal evidence. Since problems in
the emulated analog loop will naturally propagate to the sampled-data version, this
prompted the investigation of general analog diffusive coupling in Chapter 5. The
system-theoretic investigation in Chapter 5 revealed a fundamental issue common to
all diffusive controllers: it cannot internally stabilize agents with a common unstable
pole and direction. This in particular covers all variations of agreement with homoge-
nous agents, since such a pole is necessary for agreement [44]. Moreover, this instability
manifests in complete lack of feedback in the agreement direction, just like the centroid
dynamics in the ideal case. Consequently, even if this instability is disregarded, diffu-
sive controllers cannot attenuate the effects of disturbances and measurement noise on
the agreement trajectory. Robustness to such signals is the bread and butter of classical
control, making diffusive coupling an unsuitable architecture in practical applications.

Over the years diffusive coupling and the consensus protocol became almost synony-
mous with solving P1, these architectures are usually assumed a priori when variations
of P1 are considered. The instability results of Chapter 5 imply that it may be advan-
tageous to sever this tie, and reexamine the consensus protocol and P1 independently.
This preliminary research is the focus of Chapter 6. By conducting an input-output
analysis of the consensus protocol, we were able to both highlight its shortcomings
and isolate its strengths. Namely, the lack of feedback in the direction of 𝟙 naturally
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reduces agreement to a simple stabilization problem assuming that the agents 𝑃𝑖 share
an internal model of the agreement trajectory. However, it also makes it impossible
to change the agreement trajectory or attenuate the effects of external inputs in this
direction. Furthermore, as shown in (6.3′), locally the consensus protocol is equivalent
to a proportional controller acting on the error between the local measurement and
neighboring centroid. With external inputs, this is essentially a servo-regulation prob-
lem with the reference generated internally. This parallel to classical servo problems
motivated the two degrees-of-freedom approach derived in Section 6.2 as an alterna-
tive to consensus. We have then shown that not only does this architecture retain the
feedback path in the 𝟙 direction, it almost completely decouples the local loops. Unlike
standard consensus, reaching agreement is no longer a simple stabilization problem, but
also requires some interpolation constraints to be satisfied. This complexity is offset by
the ability to attenuate network noise and even completely reject certain disturbances
as shown in Section 6.3, hinting that that this architecture may have significant upside.

7.2 Future research directions

A reoccurring theme in this research, is that small modifications can have significant
ramifications. Consequently, there are numerous additional modifications and exten-
sions that can be made to the difference results in this thesis. Some of these proposed
directions are outlined in the three subsections below, each dedicated to one of the
three main components of this work: i) the emulation scheme, ii) internal stability,
and iii) the 2DOF structure.

7.2.1 Extending the emulation scheme

Heterogeneous agents. In Chapter 3 we considered homogeneous agents under ei-
ther full-state or output only measurements. Despite these changes, the underlying
structure was the same as it was for simple integrators: track the emulated centroid
and update via discrete consensus-like update scheme. It is well-known that a neces-
sary and sufficient condition for synchronization in continuous time is the existence of
a common internal model which the agents must track [44], [46]. This result fits in
nicely with the emulation scheme, where locally the agents had to stabilize the dis-
agreements and just emulate the required trajectory. It seems reasonable that given
agents (𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 0), controllers inspired by [44, Eq. 10] such as

¤̂𝑥𝑖 (𝑡) = 𝐴𝑖𝑥𝑖 (𝑡) + 𝐵𝑖𝑢𝑖 (𝑡) + 𝐿𝑖 (𝐶𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡))
¤̄𝜇𝑖 (𝑡) = 𝐴0𝜇𝑖 (𝑡)

𝜇𝑖 (𝑠+𝑘) = 𝜇𝑖 (𝑠𝑘) −
1
𝜈

∑
𝑙∈N𝑖 [𝑘 ]

(𝜇𝑖 (𝑠𝑘) − 𝜇𝑙 (𝑠𝑘))

𝑢𝑖 (𝑡) = 𝐾𝑖 (𝑥𝑖 (𝑡) − Π𝑖𝜇𝑖) + Γ𝑖𝜇𝑖 (𝑡)

,
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where 𝐾𝑖 and 𝐿𝑖 are stabilizing feedback and observer gains, and Π𝑖 satisfy the regulator
equations Γ𝑖

𝐴𝑖Π𝑖 + 𝐵𝑖Γ𝑖 = Π𝑖𝐴0

𝐶𝑖Π𝑖 = 𝐼

will solve P2. There are technical difficulties, of course, due to the heterogeneity of
the agents, but not a conceptual one. Note that replacing the above with 𝐶𝑖Π𝑖 = 𝑅 for
some common 𝑅 would change P2 from state to putpur synchronization.

Modifying the update map. In Chapter 4, we have seen that the convergence rate
of the discrete dynamics lower bound the convergence rate of the overall system. In
addition, since the update map operates a consensus-like protocol, it is sensitive to mea-
surement noise as described in Chapter 6. The fact the discrete dynamics follow those
of first-order consensus regardless of the actual dynamics can be exploited to improve
the convergence rate and reduce the noise sensitivity. Following Proposition 4.3.1, we
know it is possible, under certain conditions, to tune edge weights without changing the
validity of the results. These weights can also be time-varying as long as they satisfy the
aforementioned conditions. This implies that we can directly implement known results
about optimal edge weights to the existing scheme, cf. [40], [83], [85]–[88], assuming
the conditions of these works hold.

Additional analog dynamics. Our underlying assumption has been that the agents
can continuously measure local information. An interesting and non-trivial extension is
to assume that the agents not only have continuous local information, but continuous
information of some subgraph. This could represent, for example, situations where the
agents start in some clusters which are sufficiently close to allow communication. This is
not a trivial extension, since it is not obvious what the analog part should be doing. On
the one hand, trying to use it to stabilize the agents would require designing structured
stabilizing controllers which are known to be NP-hard [9]. On the other hand, using
it to keep clusters “close” can result in multiconsensus [66], resulting in two different
agreement problems - one in the intersample and one in on sampling instances.

Nonlinear agents and controllers. Although conceptually similar, i.e. locally sta-
bilizing and discretely agreeing, this poses significant technical hurdles. It was conjec-
tured in discussions with Prof. WPMH Heemels and Prof. Erik Steur, that a sufficient
condition on the local loops would be strict incremental stability. Alas, this direction
has not been pursued thus far.

Applications. Consensus and synchronization are important not only for themselves,
but as building blocks for more realistic objectives. Two interesting applications are
rigidity-based formation control and distributed algorithms. In rigidity-based forma-
tion control the controllers used involve objects called rigidity matrices, which can be
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thought of as Laplacians with state-dependent nonlinear weights [113]–[115]. It would
be interesting to try and adapt the emulation scheme for formation control, or at least
for its consensus part. The second application is more straightforward. Consensus-
like steps are a well-known feature of distributed algorithms [17]–[19], [116], hence
implementing the emulation scheme seems like a natural step. Possible hurdles include
accommodating for additional dynamics, possible nonlinearity, and modifications for
discrete-time dynamics.

7.2.2 Doubling down on internal stability

Nonlinear controllers. It is a non-trivial question whether or not nonlinear con-
trollers can stabilize diffusively coupled systems. Clearly the methods used in proving
Theorem 5.1 relied heavily on the linear nature of the controllers through the coprime
factorization, which does not easily translate to the nonlinear case. However, it seems
intuitive that similar results would hold even in the nonlinear case. Even in the non-
linear case, the controller can be represented as

𝐾 ≔ (𝐸 ⊗ 𝐼𝑚)𝐾e(𝐸>⊗ 𝐼𝑝).

for some nonlinear operator 𝐾e. Controllers are diffusive if and only if they follow the
structure from Section 5.2, namely the process relative outputs and sum the along the
edges. The pre and post multiplication by the incidence matrix constraint the measure-
ment to be relative, and output to sum over the edges. Hence, the deficient rank would
still be there even for nonlinear edge controllers. Following the discussion in Chapter 6,
this still implies that there are certain inputs which are in a sense uncontrollable by
the diffusive structure. Proofs might be more technically involved, but the results seem
plausible. One possible way to analyze this system is by considering some nonlinear
projection onto the agreement and disagreement spaces, and analyzing whether the
feedback path disappears in the agreement space.

Nonlinear agents. As before, it is reasonable to believe that the instability result
would hold even for nonlinear agents. Some evidence in this direction is due to Lya-
punov’s indirect method, i.e., analyzing the linearized model. Since for any linearized
model the system satisfies the assumptions of Theorem 5.1, it will be locally unstable
around every point.

7.2.3 Maturing the two-degrees-of-freedom protocol

Conditions for graph independence. A staple of diffusive coupling is that if cer-
tain local conditions are satisfied, the controllers will drive the agents to agreement
for any connected graph. This is still a missing piece in the 2DOF protocol, as The-
orem 6.1 requires a robust stability condition with respect to the eigenvalues of 𝐴★G.
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Example 6.2.3 and Example 6.2.4 showed certain families of network filters that can
ensure consensus or simple harmonic synchronization for arbitrary graphs, but the ar-
chitecture still lacks more general results. Preliminary results based on the small-gain
theorem and the generalized Nyquist criterion hint that such conditions may exist for
SISO agents. Unfortunately, the results were not finalized in time and are therefore
omitted from this thesis.

Dealing with uncertainty. Here there are two types of uncertainties: i) local un-
certainties, and ii) dynamic uncertainties on the edges. The difficulties with the first
kind are due to the component 𝐶OL in Figure 6.2, which acts as

𝐶OL = 𝑃−1𝑇r.

If 𝑃 is uncertain, then the plant inversion is not perfect and (6.15a) does not hold.
Since the “reference” signal in this case is a filtered version of the real output, the
resulting dynamics are harder to analyze and predict. In contrast, the second type of
uncertainty might be easier to analyze. This type would affect 𝐴★G, turning it into a
dynamics variant 𝐴★G (𝑠). For some interesting cases, such as when each edge of 𝐴★G (𝑠) is
afflicted by a different delay, certain important properties are unaltered. For example,
note that in the delay case 𝐴★G (0) = 𝐴★G. Since static consensus is essentially a DC
objective, it implies that it is still achievable. This is supported both by simulations
and preliminary theoretical results saying that if certain small-gain conditions hold for
𝑇r, then consensus can be achieved for arbitrary edge delays.

Designing good 2DOF agreement controllers. As established in Theorem 6.1,
reaching agreement requires that 𝑆1 has prescribed unstable poles, and that 𝑆𝑖 are stable
for all 𝑖 > 1. One possible approach to solving this problem is by first parameterizing all
filters 𝑇r ensuring the prescribed poles, and then solving a stabilization problem with
uncertain gain. The resulting problem, however, is not a trivial one for two reasons.
First, potentially there can be some 𝑖 such that 𝛼𝑖 = 0, hence 𝑆𝑖 = 1. Assuming nonzero
noise, this implies that 𝑇r itself must be stable, rendering this a strong stabilization
problem. Second, strong stabilization problems with uncertain gain has been solved in
the past, cf. [117], but under the assumption that the gain is strictly positive, which
is not the case here. Consequently, even the mere stabilization problem cannot be
generally solved using standard tools.

Moreover, 𝑇r and 𝛼𝑖 completely determine the noise response, thus ideally we would
like to solve a robust 𝐻2 problem for 𝑆𝑖 and not simply stabilize it. If the graph is
perfectly known, then this might be slightly simpler as (6.17), for example, could be
designed directly. Note that even directly minimizing (6.17) would only minimize the
variance of the disagreements, and that the agreement mode must be treated separately.
Since 𝑆1 is by definition unstable, regular optimal control methods are also not directly
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applicable to design 𝑇r.

Revisiting classical tools. The 2DOF protocol could serve as a catalyst for a new
variation in classical control - designing “good” controllers while enforcing certain un-
stable closed-loop poles. This is somewhat of a dual problem to classic internal model
principle [109], where the goal was to place specific blocking zeros in the closed-loop.
Such problem would have been considered nonsense in classical settings, but arises
naturally in agreement problems. For example, the Youla-Kucera parametrization is a
powerful tool that parametrizes all internally stabilizing controllers for a given system.
It is then commonly used in designing both optimal [104, Ch. 7] and robust [118,
Ch. 6 – 7] controllers. As established, agreement problems require specific unstable
closed-loop poles. This precludes internal stability and by extension the use of the
Youla-Kucera parametrization. However, if we could derive a similar parametrization
that relaxes the internal stability requirement, it can bridge the gap between classical
𝐻∞ tools and agreement protocols. In particular we would like to be able to enforce only
prescribed unstable closed-loop poles. Assuming this can be done, it could also be used
to derive a parametrization of all possible 2DOF protocols using coprime factorizations
as in the servo case [55], [119].

A 2DOF sampled-data emulation approach. Finally, an obvious direction would
be to revisit the emulation scheme from Chapter 3 and apply it in conjunction with the
2DOF approach. This idea has two immediate variations. One, is to directly emulate
the 2DOF scheme instead of the heuristic diffusive controllers from Chapter 3. The
second variation is to implement the scheme as it is, locally emulate 𝑦, and update it
at sampling instances. This potentially would not increase the overall dimension of the
controller, and still keep only the communicated information as sampled-data.
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Appendix A

Introduction to Graph Theory

Graphs are widely studied mathematical objects [23], [120] and are one of the main
tools in modeling multi-agent systems [22]. Therefore, it is important to introduce
some common terminology, notation, and results.

A mathematical graph G is a pair of sets (V, E) where V is the set of vertices, and
E ⊂ V ×V is the set of connecting edges. Given an edge (𝑣𝑖 , 𝑣 𝑗), the node 𝑣𝑖 is called
an in-neighbor of 𝑣 𝑗 , while node 𝑣 𝑗 is called an out-neighbor of 𝑣𝑖. The in (out) degree
of a vertex, denoted deg𝑖 (𝑣𝑖) (resp. deg𝑜 (𝑣𝑖)) is the number of in (out) neighbors of 𝑣𝑖.
The in-neighborhood of vertex 𝑗 is defined as all vertices 𝑣𝑖 such that

𝑣𝑖 ∈ N in
𝑗 ⇐⇒ (𝑣𝑖 , 𝑣 𝑗) ∈ E .

Similarly, the out-neighborhood of vertex 𝑖 is defined as all vertices 𝑣 𝑗 such that

𝑣 𝑗 ∈ Nout
𝑖 ⇐⇒ (𝑣𝑖 , 𝑣 𝑗) ∈ E .

A graph is called undirected or symmetric if (𝑣𝑖 , 𝑣 𝑗) ∈ E =⇒ (𝑣 𝑗 , 𝑣𝑖) ∈ E, and directed
(digraph) if the ordering of the vertex pair matter. If the graph is undirected then
Nout
𝑖 = N in

𝑖 = N𝑖 for all 𝑖. A graph G′ = (V′, E′) is called a subgraph of G if V′ ⊆ V
and E′ ⊆ E. A subgraph is called spanning if V′ = V.

A directed path is an ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge of the graph. A cycle is a directed path that
starts and ends at the same node, a graph with no cycles is called acyclic. A directed
tree (sometimes rooted tree) is an acyclic graph with the property that there exists a
root node such that there is one and only one directed path from the root to every
other node. Given a graph G and subgraph G′, G′ is called a directed spanning tree of
G if it is a spanning subgraph that is a directed tree. An undirected graph is called
connected if there is some sequence of adjacent edges between every such pair of nodes.
A directed graph is said to be weakly connected if its undirected version is connected.
A graph is said to be strongly connected if there exists a directed path from any node
to any other node. An undirected graph is said to be complete if every pair of distinct
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vertices is connected by an edge. These concepts are illustrated in Figure A.1.

v1

v2

v3 v4

v5

(a) A directed graph with
a directed spanning tree
(green).

v1

v2

v3 v4

v5

(b) A disconnected and undi-
rected graph.

v1

v2

v3 v4

v5

(c) A weakly connected acyclic
graph.

v1

v2

v3 v4

v5

(d) A cyclic (one cycle in
green) strongly connected
graph.

v1

v2

v3 v4

v5

(e) A connected undirected
graph.

v1

v2

v3 v4

v5

K5

(f) The complete graph on 5
vertices.

Figure A.1: Illustrations of basic graph concepts.

We shall now define several important matrix representations of graph G. The
adjacency matrix of a graph G is denoted as 𝐴G and defined as:

[𝐴G]𝑖 𝑗 =


1, if (𝑣 𝑗 , 𝑣𝑖) ∈ E

0, else
, (A.1)

which is a square binary matrix, and it is symmetric if G is undirected. Note that
[𝐴G]𝑖 𝑗 depends on (𝑣 𝑗 , 𝑣𝑖); this is consistent with [21], but [72] defines the transpose.

The (oriented) incidence matrix of G is denoted by 𝐸G or simply 𝐸 when the
association with a concrete graph is clear. It is a |V| × |E| matrix, whose (𝑖, 𝑗) entry is

[𝐸G]𝑖 𝑗 =


1 if vertex 𝑖 is the head of edge 𝑗

−1 if vertex 𝑖 is the tail of edge 𝑗

0 if vertex 𝑖 does not belong to edge 𝑗

. (A.2)

Note that the construction of the incidence matrix implies that 𝟙′𝐸G = 0 for every G.
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The degree matrix of a graph is a diagonal matrix denoted as 𝐷G and defined as:

[𝐷G]𝑖 𝑗 =


deg(𝑣𝑖), if 𝑖 = 𝑗

0, else
. (A.3)

When required we shall use the notation 𝐷𝑖G and 𝐷𝑜G to differentiate between the in and
out degree matrices, and for undirected graphs 𝐷𝑖G = 𝐷𝑜G = 𝐷G. The degree matrices
can be equivalently defined via the Adjacency matrix through

𝐷𝑖G = diag{𝐴G𝟙}, 𝐷𝑜G = diag{𝟙′𝐴G}.

Assuming that 𝐷G is invertible (i.e., no isolated nodes), we can also define the normal-
ized adjacency matrix 𝐴★G := 𝐷−1

G 𝐴G.
The Laplacian matrix of an undirected graph G is denoted as 𝐿G and defined as:

[𝐿G]𝑖 𝑗 =


deg(𝑣𝑖), if 𝑖 = 𝑗

−1, if 𝑖 ≠ 𝑗 and (𝑣𝑖 , 𝑣 𝑗) ∈ E

0, else

=⇒ 𝐿G = 𝐷G − 𝐴G . (A.4)

We can similarly define the in-degree and out-degree Laplacians of a directed graph as
𝐿𝑖G = 𝐷𝑖G − 𝐴G and 𝐿𝑜G = 𝐷𝑜G − 𝐴G respectively.

These matrices, and the Laplacian in particular, play a pivotal role in the control
of multi-agent systems and agreement problems. The following proposition lists several
known properties for undirected graphs that will be used throughout this thesis.

Proposition A.0.1. Let G be an undirected graph.

1. [23, Lemma. 13.1.1] The Laplacian, 𝐿G, is symmetric and positive semi-definite
thus its real spectrum can be ordered as

0 = 𝜆1(𝐿G) ≤ 𝜆2(𝐿G) ≤ . . . ≤ 𝜆 |V | (𝐿G).

2. [23, Lemma. 13.1.1] The multiplicity of the zero eigenvalue of the graph Laplacian
is equal to the number of connected components of the graph.

3. [23, Thm. 8.3.2] The Laplacian can be written as

𝐿G = 𝐸𝐸 ′

where 𝐸 is the incidence matrix with any arbitrary orientation.

4. For any graph G, span{𝟙} ⊆ ker 𝐿G. Furthermore, span{𝟙} = ker 𝐿G if and only
if G is connected.
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5. [12, Prop. 1–4] If the graph is connected, then 𝐴★G is well defined, its eigenvalues
are real and satisfy

spec 𝐴★G ∈ [−1, 1] .

Moreover, it always has a unique simple eigenvalue at 1 with corresponding eigen-
vectors

𝐴★G𝟙 = 𝟙 and (𝐷G𝟙)′𝐴★G = (𝐷G𝟙)′.

Proof We only have to prove item 4, which is an immediate consequence of items 2 and
3. ■

From the above we may note that the second smallest eigenvalue of 𝐿G is non-zero if
and only if the graph is connected. Hence, it is used as a measure of the connectivity
of the graph, and called the algebraic connectivity [121].

For directed graphs, we can similarly define the following proposition.

Proposition A.0.2. Let G be a directed graph with in-degree and out-degree Laplacian
matrices 𝐿𝑖G and 𝐿𝑜G respectively.

1. For any graph span{𝟙} ⊆ ker 𝐿𝑖G and span{𝟙} ⊆ ker(𝐿𝑜G)
′. Equivalently, the in

and out directed Laplacians have zero row and column sums, respectively.

2. [22, Prop. 3.10] The non-zero eigenvalues of 𝐿𝑖G and 𝐿𝑜G have strictly positive
real parts.

3. [22, Prop. 3.8] 𝐿𝑖G has a unique and simple zero eigenvalue if and only if G has
a directed spanning tree.

4. [12, Prop. 1–3] If 𝐷𝑖G (respectively, 𝐷𝑜G) is invertible, then the directed counterpart
of 𝐴★G is well defined and spec 𝐴★G ∈ B1, where B1 is unit ball in the complex plane.

5. Given a graph with 𝜈 nodes the adjacency matrix satisfies


𝐴G




2 ≤ 𝜈 − 1, where

‖·‖2 is the spectral norm, i.e. the induced Euclidean norm.

6. Given a graph with 𝜈 nodes, both directed Laplacians satisfy


𝐿G




2 ≤ 𝜈(𝜈 − 1).

7. If 𝐿G is the in-degree Laplacian of a graph with 𝜈 nodes, then the matrix

𝑀 = 𝐼 − 1
𝜈
𝐿G

is row-stochastic (see Definition B.2.1).

Proof The first property is immediate by construction, hence we only have to prove the
last three properties.

For the adjacency matrix, note that 𝐴G is a binary matrix with 𝑎𝑖𝑖 = 0 for all 𝑘.
By Gershgorin’s circle theorem [122, Thm. 6.1.1], this means that all of its eigenvalues
are located in a circle centered at the origin with maximal radius of 𝜈 − 1 (the maximal
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number of non-zero elements in each row). By [123, Thm.1.1], the spectral norm of any
oriented adjacency matrix is upper bounded by the spectral radius of its unoriented
counterpart. Combining the two results we have



𝐴G


 ≤ 𝜈 − 1 for all 𝑘.

Now recall that the maximal possible element of 𝐿G is equal to 𝜈 − 1. Through the
equivalence of norms [122] we know that for any 𝑛 × 𝑚 matrix 𝐴

‖𝐴‖2 ≤
√
𝑛𝑚 ‖𝐴‖max ,

hence for the Laplacian we obtain 

𝐿G




2 ≤ 𝜈(𝜈 − 1).

For the last property, by definition the Laplacian has non-negative diagonal entries
and either 0 on −1 on the off diagonal entries. As established, the diagonal entries are
bounded by 𝜈 − 1 thus

0 ≤ [𝑀]𝑖 𝑗 ≤ 1

for all 𝑖, 𝑗 and any graph and is always non-negative. Moreover, since 𝐿G𝟙 = 0, we have
𝑀𝟙 = 𝟙 and thus a row sum of 1, making it row-stochastic. ■
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Appendix B

Elements of Matrix Theory and
Linear Algebra

In this thesis, we make use of some notions and constructions from matrix theory which
go beyond the scope of basic undergraduate courses. This appendix is meant to briefly
introduce some relevant definitions and results to ensure common ground.

B.1 The Kronecker product

The definitions and results here are adapted from [65, Ch. 13].

Definition B.1.1. The Kronecker product of 𝐴 ∈ ℝ𝑛×𝑚 and 𝐵 ∈ ℝ𝑞×𝑟 is the 𝑛𝑞 × 𝑚𝑟
matrix

𝐴 ⊗ 𝐵 =


𝑎11𝐵 · · · 𝑎1𝑚𝐵
...

. . .
...

𝑎𝑛1𝐵
. . . 𝑎𝑛𝑚𝐵

 .
Proposition B.1.2 (Properties of the Kronecker product). For appropriate matrices
𝐴, 𝐵, 𝐶, 𝐷 and scalars 𝛼, 𝛽, 𝛾, 𝛿, the Kronecker product satisfies the following properties.

Bi-linearity

(𝛼𝐴 + 𝛽𝐵) ⊗ (𝛾𝐶 + 𝛿𝐷) = 𝛼𝛾𝐴 ⊗ 𝐶 + 𝛼𝛿𝐴 ⊗ 𝐷 + 𝛽𝛾𝐵 ⊗ 𝐶 + 𝛽𝛿𝐵 ⊗ 𝐷. (B.1a)

Associativity
(𝐴 ⊗ 𝐵) ⊗ 𝐶 = 𝐴 ⊗ (𝐵 ⊗ 𝐶) (B.1b)

Transpose
(𝐴 ⊗ 𝐵)′ = 𝐴′ ⊗ 𝐵′ (B.1c)

The mixed-product
(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = (𝐴𝐶 ⊗ 𝐵𝐷) (B.1d)
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Eigenpair
𝐴𝑣 = 𝜆𝑣, 𝐵𝑤 = 𝜇𝑤 =⇒ (𝐴 ⊗ 𝐵) (𝑣 ⊗ 𝑤) = 𝜆𝜇 (𝑣 ⊗ 𝑤) (B.1e)

Spectrum
spec (𝐴 ⊗ 𝐵) =

{
𝜆𝜇

�� 𝜆 ∈ spec(𝐴), 𝜇 ∈ spec(𝐵)
}

(B.1f)

Inverse For square 𝐴, 𝐵, the product 𝐴 ⊗ 𝐵 is invertible if and only if 𝐴 and 𝐵 are
invertible, and is given by

(𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1 (B.1g)

B.2 Stochastic and non-negative matrices

Definition B.2.1. A square matrix 𝐴 ∈ ℝ𝑛×𝑛 is said to be

(i) non-negative (positive) if 𝑎𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 .

(ii) row-stochastic if it is non-negative and 𝐴𝟙 = 𝟙.

(iii) column-stochastic if it is non-negative and 𝐴′𝟙 = 𝟙.

(iv) doubly-stochastic if it is both row and column stochastic.

Proposition B.2.2. Below are several properties of stochastic matrices.

1. Let 𝐴 be a 𝜈 × 𝜈 row-stochastic matrix, then

‖𝐴‖2 ≤
√
‖𝐴‖1 ≤

√
𝜈.

2. The product of row stochastic matrices is again row-stochastic.

Proof 1. The first inequality is an immediate consequence of the known inequality

‖𝐴‖2 ≤
√
‖𝐴‖∞ ‖𝐴‖1

and the fact that the row sum of a row-stochastic matrix is always 1. The second
inequality is also immediate since if each row sums to 1, the maximal possible
column sum is ∑𝜈

𝑖=1 1 = 𝜈.

2. Let 𝐴, 𝐵 be two row-stochastic matrices, i.e. square, non-negative and with row-
sum 1. Note that the row-sum condition is equivalent to 𝐴𝟙 = 𝟙. Consider
the 𝐴𝐵, clearly 𝐴𝐵 is square and non-negative since it is the product of square
and non-negative matrices. Since 𝐵 is row-stochastic 𝐵𝟙 = 𝟙 and 𝐴𝟙 = 𝟙, thus
𝐴𝐵𝟙 = 𝟙. Thus the product 𝐴𝐵 is also row-stochastic. ■
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Appendix C

Background on Dynamical
Systems

C.1 Linear time-invariant systems

A system 𝐺 : 𝑢 ↦→ 𝑦 is an operator mapping some input signal 𝑢 ∈ 𝔽𝑚 to output
signal 𝑦 ∈ 𝔽 𝑝. The signals 𝑢 and 𝑦 are often described as functions of an independent
variable 𝑡 which represent time, and often take values in ℝ. We say a system is SISO
if 𝑚 = 𝑝 = 1, and MIMO otherwise.

Definition C.1.1. A system 𝐺 is called linear if it satsifies the property of superpo-
sition:

𝐺 (𝛼1𝑢1+𝛼2𝑢2) = 𝛼1(𝐺𝑢1)+𝛼2(𝐺𝑢2), for all admissible signals 𝑢1, 𝑢2 and scalars 𝛼1, 𝛼2.

A system is called time-invariant if any constant time shift of its input results in the
same time shift of its output.

Note that 𝐺𝑢 represents the action of system (operator) 𝐺 on signal 𝑢. For an LTI
system, this action is given by the following convolution integral

𝑦(𝑡) =
∫
ℝ

𝑔(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠 (C.1)

where 𝑔(𝑡) is called the impulse response of system 𝐺. An LTI system is said to be
causal if and only if 𝑔(𝑡) = 0 whenever 𝑡 < 0.

Definition C.1.2 (Stability). Define

𝐿𝑛2 (ℝ) :=
{
𝑥 : ℝ → ℝ𝑛

��� ‖𝑥‖2 :=
(∫

ℝ

‖𝑥(𝑡)‖2 𝑑𝑡

)1/2
< ∞

}
.

A system is said to be 𝐿2 stable if for any 𝑢 ∈ 𝐿2 we have 𝑦 ∈ 𝐿2.
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C.1.1 LTI systems and their transfer functions

It is often useful to analyze LTI systems in transformed domains. In particular, applying
the Laplace Transform to (C.1) simplifies the integral to

𝑌 (𝑠) = 𝐺 (𝑠)𝑈 (𝑠), (C.2)

where 𝐺 (𝑠),𝑈 (𝑠), and 𝑌 (𝑠) are the Laplace transforms of 𝑔(𝑡), 𝑢(𝑡), and 𝑦(𝑡) respectively.
We then call 𝐺 (𝑠) the transfer function of 𝐺, and it is a complex function of 𝑠 = 𝜎 + j𝜔.
An LTI system is said to be finite-dimensional if its transfer function is real-rational.

In this domain, we can directly characterize the stability of LTI and causal systems
via their transfer functions [95, §A.6.3].

Lemma C.1.3 (Stability via Transfer Functions [124]). An LTI and causal system is
stable if and only if its transfer function 𝐺 (𝑠) is holomorphic and bounded in ℂ0, i.e.
iff 𝐺 ∈ 𝐻 𝑝×𝑚

∞ , where

𝐻 𝑝×𝑚
∞ :=

{
𝐺 : ℂ0 → ℂ𝑝×𝑚

���𝐺 (𝑠) is holomorphic in ℂ0 and ‖𝐺‖∞ := sup
𝑠∈ℂ0

‖𝐺 (𝑠)‖ < ∞
}

(C.3)
and ‖𝐺 (𝑠)‖ is the matrix spectral norm. We write 𝐻∞ when the dimensions are clear.

Definition C.1.4 (Properness). A 𝑝 ×𝑚 transfer function 𝐺 (𝑠) is said to be proper if

∃𝛼 ≥ 0 such that sup
𝑠∈ℂ𝛼

‖𝐺 (𝑠)‖ < ∞,

and strictly proper if there exists 𝛼 ≥ 0 such that

lim
|𝑠 |→∞,𝑠∈ℂ𝛼

‖𝐺 (𝑠)‖ = 0.

Functions 𝑀 ∈ 𝐻𝑚×𝑚
∞ and 𝑁 ∈ 𝐻 𝑝×𝑚

∞ are said to be right coprime if there are 𝑋 ∈ 𝐻𝑚×𝑚
∞

and 𝑌 ∈ 𝐻𝑚×𝑝
∞ (Bézout coefficients) such that

𝑋𝑀 + 𝑌𝑁 = 𝐼𝑚. (C.4a)

Functions 𝑀̃ ∈ 𝐻 𝑝×𝑝
∞ and 𝑁 ∈ 𝐻 𝑝×𝑚

∞ are said to be left coprime if there are 𝑋 ∈ 𝐻 𝑝×𝑝
∞

and 𝑌 ∈ 𝐻𝑚×𝑝
∞ such that

𝑀̃𝑋 + 𝑁𝑌 = 𝐼𝑝 . (C.4b)

A transfer function 𝐺 (𝑠) is said to have coprime factorizations over 𝐻∞ if there are
right coprime 𝑀𝐺 , 𝑁𝐺 ∈ 𝐻∞ and left coprime 𝑀̃𝐺 , 𝑁𝐺 ∈ 𝐻∞, known as right and left
coprime factors of 𝐺, respectively, such that

𝐺 = 𝑁𝐺𝑀
−1
𝐺 = 𝑀̃−1

𝐺 𝑁𝐺 . (C.5)
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Coprime factors are unique up to post- or pre-multiplication by bi-stable transfer func-
tions for right and left factors, respectively.

Lemma C.1.5. If 𝐺 (𝑠) has coprime factorizations, then

𝐺 ∈ 𝐻∞ ⇐⇒ 𝑀−1
𝐺 ∈ 𝐻∞ ⇐⇒ 𝑀̃−1

𝐺 ∈ 𝐻∞.

Proof The “if” part of the first equivalence relation is immediate from (C.5). Its “only
if” part follows from rewriting the Bézout equality (C.4a) as 𝑀−1

𝐺 = 𝑋𝐺 + 𝑌𝐺𝐺. The
second relation follows by similar arguments. ■

Lemma C.1.6. Let 𝐺 (𝑠) have coprime factorizations. If 𝜆 ∈ ℂ̄0 is a pole of 𝐺 (𝑠),
then 𝑀𝐺 (𝜆) and 𝑀̃𝐺 (𝜆) are singular.

Proof Because 𝜆 ∈ ℂ̄0, the singularity of 𝑀𝐺 (𝜆) or 𝑀̃𝐺 (𝜆) does not depend on concrete
factorizations taken. If 𝑀𝐺 (𝜆) is nonsingular, then 𝑁𝐺 (𝜆)𝑀𝐺 (𝜆)−1 is bounded, which
implies that 𝜆 cannot be a pole of 𝐺 (𝑠). The proof for 𝑀̃𝐺 is similar. ■

A comprehensive exposition of the subject can be found in [119].

C.1.2 State-space realizations and transfer Functions

Let 𝐺 be a finite-dimensional LTI system having a proper transfer function 𝐺 (𝑠). The
system 𝐺 has a state-space realization

𝐺 (𝑠) =
[
𝐴 𝐵

𝐶 𝐷

]
≔ 𝐷 + 𝐶 (𝑠𝐼 − 𝐴)−1𝐵. (C.6)

The eigenvalues of 𝐴 are known as poles of the realization (C.6). A realization is called
minimal if and only if the set of all realization poles, multiplicities counted, coincides
with that of the poles of the transfer function 𝐺 (𝑠).

A matrix pair (𝐴, 𝐵) ∈ ℝ𝑛×𝑛 × ℝ𝑛×𝑚 is called controllable if the eigenvalues of
𝐴 + 𝐵𝐾 can be freely assigned by a suitable choice of 𝐾, and called uncontrollable
otherwise. Eigenvalues of 𝐴 that cannot be freely assigned are called uncontrollable
modes. A pair is called stabilizable if all of its uncontrollable modes are in ℂ \ ℂ̄0.There
are numerous criteria for analyzing controllability, some common ways are presented
below, and proven in [104, Thm. 4.1].

Lemma C.1.7. The following statements are equivalent:

1. The pair (𝐴, 𝐵) is controllable.

2. The matrix
[
𝐴 − 𝑠𝐼 𝐵

]
has full rank ∀𝑠 ∈ ℂ (the PBH test).

3. The controllability matrix

𝑀𝑐 :=
[
𝐵 𝐴𝐵 · · · 𝐴𝑛−1𝐵

]
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has full rank.

Similarly, a pair (𝐶, 𝐴) ∈ ℝ𝑝×𝑛 × ℝ𝑛×𝑛 is called observable if the eigenvalues of 𝐴 + 𝐿𝐶
can be freely assigned by a suitable choice of 𝐿. Eigenvalues of 𝐴 that cannot be
freely assigned are called unobservable modes. A pair is called detectable if all of its
unobservable modes are in ℂ \ ℂ̄0. Like in the controllability case, there are numerous
tools to analyze observability which are proven in [104, Prop. 4.6].

Lemma C.1.8. The following statements are equivalent:

1. The pair (𝐶, 𝐴) is observable.

2. The matrix
[
𝐴 − 𝑠𝐼
𝐶

]
has full rank ∀𝑠 ∈ ℂ (the PBH test).

3. The observability matrix

𝑀𝑜 :=


𝐶

𝐶𝐴
...

𝐶𝐴𝑛−1


has full rank.

4. The pair (𝐴′, 𝐶′) is controllable.

A realization is minimal if and only if it is controllable and observable.
Invariant zeros of the realization (C.6) are defined as the points 𝜆 ∈ ℂ at which

rank
[
𝐴 − 𝜆𝐼 𝐵

𝐶 𝐷

]
< nrank

[
𝐴 − 𝑠𝐼 𝐵

𝐶 𝐷

]
(the matrix polynomial of 𝑠 in the right-hand side is dubbed the Rosenbrock system
matrix). The set of all invariant zeros comprises transmission zeros of the transfer
function 𝐺 (𝑠) and hidden modes of realization (C.6).

Poles and zeros have (spatial) directions for MIMO systems. Assume through the
rest of this appendix that the realization in (C.6) is minimal. By input and output
directions of a realization pole 𝜆 of (C.6), we understand the subspaces

pdiri(𝐺, 𝜆) ≔ 𝐵> ker(𝜆𝐼 − 𝐴)> ⊂ ℂ𝑚 (C.7a)

and

pdiro(𝐺, 𝜆) ≔ 𝐶 ker(𝜆𝐼 − 𝐴) ⊂ ℂ𝑝, (C.7b)

respectively. If 𝜆 is not a pole of 𝐺 (𝑠), then both definitions in (C.7) result in the trivial
subspace {0}.

Lemma C.1.9. If 𝜆 ∈ ℂ is a pole of 𝐺 (𝑠), then
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i) 𝜆 is a pole of 𝐺 (𝑠)𝑣 whenever 0 ≠ 𝑣 ∈ pdiri(𝐺, 𝜆),

ii) 𝜆 is a pole of 𝑣>𝐺 (𝑠) whenever 0 ≠ 𝑣 ∈ pdiro(𝐺, 𝜆).

Proof Bring in a minimal realization of 𝐺 as in (C.6). If (𝐴, 𝐵𝑣) is controllable, then
every eigenvalue of 𝐴 is a pole of 𝐺 (𝑠)𝑣, by the observability of (𝐶, 𝐴). If (𝐴, 𝐵𝑣) is
uncontrollable, without loss of generality we may assume that

(𝐴, 𝐵) =
([
𝐴c 𝐴12

0 𝐴c̄

]
,

[
𝐵c

𝐵c̄

])
with controllable (𝐴c, 𝐵c𝑣) and 𝐵c̄𝑣 = 0. In this case 𝜆 is not a pole of 𝐺 (𝑠)𝑣 iff
𝜆 ∉ spec(𝐴c). So assume that 𝜆 ∉ spec(𝐴c), which implies that 𝜆 ∈ spec(𝐴c̄) and that

𝐵> ker(𝜆𝐼 − 𝐴)> ⊂
[
𝐵>

c 𝐵>
c̄

]
Im

[
0
𝐼

]
= Im 𝐵>

c̄ .

But then 𝑣 ∈ pdiri(𝐺, 𝜆) =⇒ 𝑣 ∈ Im 𝐵>
c̄ = (ker 𝐵c̄)⊥, which contradicts the condition

𝐵c̄𝑣 = 0. Hence, 𝜆 must be a pole of 𝐺 (𝑠)𝑣. The second item follows by similar
arguments. ■

Input and output directions of an invariant zero 𝜆 are defined as

zdiri(𝐺, 𝜆) ≔
[

0 𝐼𝑚

]
ker

[
𝐴 − 𝜆𝐼 𝐵

𝐶 𝐷

]
⊂ ℂ𝑚 (C.8a)

and

zdiro(𝐺, 𝜆) ≔
[

0 𝐼𝑝

]
ker

[
𝐴 − 𝜆𝐼 𝐵

𝐶 𝐷

] >
⊂ ℂ𝑝, (C.8b)

respectively. With some abuse of notation we use the definitions in (C.8) also if 𝜆 is
not an invariant zero of (C.6), but the normal rank of 𝐺 (𝑠) is deficient. For example,
in our notation

zdiri

([
1 −1
−1 1

]
, 𝜆

)
= zdiro

([
1 −1
−1 1

]
, 𝜆

)
= Im 𝟙2

for all 𝜆 ∈ ℂ. In such situations directions are understood as normal null spaces.

Lemma C.1.10. If 𝜆 ∉ spec(𝐴), then it is an invariant zero of 𝐺 iff rank𝐺 (𝜆) <
nrank𝐺 (𝑠) and

zdiri(𝐺, 𝜆) = ker𝐺 (𝜆) and zdiro(𝐺, 𝜆) = ker [𝐺 (𝜆)]>.
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Proof Follows from the relations[
𝐴 − 𝜆𝐼 𝐵

𝐶 𝐷

]
=

[
𝐴 − 𝜆𝐼 0
𝐶 𝐺 (𝜆)

] [
𝐼 (𝐴 − 𝜆𝐼)−1𝐵

0 𝐼

]
=

[
𝐼 0

𝐶 (𝐴 − 𝜆𝐼)−1 𝐼

] [
𝐴 − 𝜆𝐼 𝐵

0 𝐺 (𝜆)

]
and the assumed invertibility of 𝐴 − 𝜆𝐼. ■

Lemma C.1.11. If 𝜆 ∈ ℂ̄0, then it is a pole of 𝐺 (𝑠) if and only if it is a zero of the
denominators 𝑀𝐺 (𝑠) and 𝑀̃𝐺 (𝑠) of its coprime factorizations. Moreover,

pdiri(𝐺, 𝜆) = zdiro(𝑀𝐺 , 𝜆) and pdiro(𝐺, 𝜆) = zdiri(𝑀̃𝐺 , 𝜆)

in this case.

Proof Follows by [104, Prop. 4.16] and the fact that a pole of 𝐺 (𝑠) in ℂ̄0 is a zero of all
possible denominators. ■

More details can be found in [93], although we use slightly different definitions of
directions (subspaces, rather than vectors), in line with [104].
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מסוימים. תנאים תחת הקונצנזוס, פרוטוקול דוגמת דיפוסיביים, בקרים בעזרת המבוקרות סוכנים

טריוויאלי לא גרעין חולקים המכנים כל אם הסוכנים, של יציבים זרים לגורמים פירוק בהינתן בפרט,

עבור דיפוסיבי. בקר בעזרת לייצוב ניתנת אינה המערכת אזי הימני המישור בחצי כלשהן נקודות עבור

אך הטורי, בחיבור המצטמצמים משותפים וכיוון יציב לא בקוטב מתבטא הדבר סופי, מממד סוכנים

מרובות־קלט מערכות של ייחודית לתופעה דוגמה זו הסגור. החוג של התמסורות מן באחת מופיעים

את מסבירה זו תוצאה הבקר. של הנורמלית בדרגה ממחסור הנובעים קטבים צמצומי מרובות־פלט:

בספרות מקומות במספר צויינה אשר מדידה ורעשי הפרעות תחת שכאלו מערכות של השבריריות

ורעשים הפרעות תחת להסכמה להביא המנסים בקרים מדוע מסבירה גם זו תוצאה הסבר. ללא

המערכת. לייצוב מקומי אלמנט ועוד קונצנזוס מבוסס אלמנט לכלול נוטים חיצוניים

בעבודה מבוזרות. למערכות חלופית בקרה ארכיטקטורת לחפש צורך על מעידה זו יסודית מגבלה

עקיבה מבעיות חופש דרגות שתי מבקרת השראה השואבת שכזו, חלופית בקרה שיטת מוצגת זו

תחת הרשת. דרך הסוכנים בין התיאום לבין המקומי בחוג יציבות בין הפרדה המייצרת קלאסיות,

לא אך התקשורת, ובגרף אחיד רשת במסנן תלויה מדידה לרעשי הסגור החוג תגובת זה, בקרה חוק

בדינמיקה הן תלויה מקומיות להפרעות התגובה זאת, לעומת המקומיים. והחוגים הסוכנים בדינמיקת

קונצנזוס. מבוססי בבקרים משימוש המתקבלת זו מאשר יותר פשוטה בצורה אך והגלובלית, המקומית

תכנון ׳׳מוגן״, אחד סוכן לפחות שקיים ההנחה שתחת היא החדשה הארכיטקטורה של מעניינת תכונה

חסרות אלו תכונות שתי מקומיות. הפרעות מושלם באופן לדחות יכול המקומיים הבקרים של נכון

משובי ענף קיים עדיין זו בארכיטקטורה כי העובדה מן ונובעות דיפוסיבים, הסכמה בפרוטוקולי

המדידה רעשי השפעת את להנחית והן הפרעות לדחות הן שמאפשר דבר ההסכמה, משתנה בכיוון

זה. משתנה על

קלאסית, ובקרה דגומה, בקרה הספטקרלית, הגרפים מתורת כלים משלבים זו בעבודה והתכן הניתוח

בעיות של רחב למגוון המתאימות מעשיות תכן שיטות גם כמו חדשות, תאורטיות תוצאות ומייצרים

מחקר ולכיווני לסיכום מוקדש זו בעבודה האחרון הפרק קבועים-בזמן. לינארי סוכנים עבור בקרה

החופש, דרגות שתי ולארכיטקטורת הטרוגניים לסוכנים האמולציה שיטת הרחבת דוגמת עתידיים,

אילוצי תחת לביצועים הנוגעות נוספות ושאלות סיסטמטי באופן אופטימליים רשת מסנני תכנון

וחישה. תקשורת
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תקציר

הפועלות רציף, בזמן מרובות־סוכנים במערכות והסכמה סנכרון בבעיות עוסקת זו דוקטורט עבודת

הנשענת הרווחת הגישה את מאתגרת העבודה מרחביים. תקשורת לאילוצי בנוסף דגימה אילוצי תחת

מגבלות להסוות עלולה שלהם המבנית הפשטות כי בטענה דיפוסיביים, ובקרים קונצנזוס פרוטוקולי על

יציבה. בלתי ודינמיקה מדידה רעש חיצוניות, הפרעות בנוכחות יסודיות—במיוחד

בצורה מידע המחליפים ראשון, מסדר אינטגרליים סוכנים עבור הקונצנזוס בבעיית נפתח המחקר

פרוטוקול של דיסקרטיזציה בעזרת בעבר נפתרה זו בעייה א־סינכרוניים. דגימה ובזמני מחזורית לא

טבעי באופן מוסיפה זו בקרה צורת אידאלי. ודוגם אפס מסדר מחזיק בעזרת רציף לזמן הקונצנזוס

קיים הדגומה שבגירסה בעוד מוגבל, אינו הפרוטוקול הגבר רציף בזמן לדוגמא למערכת, שמרנות

קצב גבוה הבקר שהגבר וככל היות התקשורת. וגרף הדגימה זמן של פונקציה שהוא עליון חסם

מנת על האפשריים. הביצועים על קשיח חסם מחייב זה בבקר שימוש גדל, להסכמה ההתכנסות

אופטימלית. דגומה בבקרה קלאסיים מעקרונות השראה הלוקח חדש פרוטוקול מוצע זו, בעיה לפתור

את לייצר בכדי בה ומשתמש גלובלית אנלוגית דינמיקה של מקומית אמולציה מבצע סוכן כל בפרט,

שלו האמולטור של מרכז-המסה את משדר סוכן כל הדגימה, ברגעי הדגימה רגעי בין הבקרה אות

הסגור בחוג הדינמיקה זה, בקרה חוק תחת בלבד. האמיתית המדידה את לשדר במקום לשכניו,

מרכזי-המסה עבור בפרט, ואי-הסכמות. מרכזי-מסה נפרדים: חלקים לשני טבעי באופן מתפרקת

הדגימה. מרווחי או בזמני תלות ללא אך בזמן, המשתנה גרף תחת בדיד קונצנזוס דינמיקת מתקבלת

חסומים דגימה וזמני האיחוד גרף קשירות על סטנדרטיות הנחות תחת להסכמה מתכנסת זו דינמיקה

דינמיקת של מסוימת בחירה עבור כן, על יתר הבקר. בהגבר או עצמה הדגימות בסדרת תלות ללא

תלות ללא ראשון מסדר היברידי בקר בעזרת הבקרה חוק את לממש יכול סוכן כל האמולטורים,

הכולל. הסוכנים במספר

סוכנים עבור בפרט, יותר, כלליים למקרים מורחבת אמולציה מבוססת בקרה גישת אותה מכן, לאחר

משוב או מלא מצב משוב תחת דינמי לאות המסנכרנים קבועה-בזמן לינארית דינמיקה בעלי זהים

באופן אך, הנוספת, הדינמיקה עקב יותר מורכבות אלו במקרים ההוכחה טכניקות בלבד. יציאה

גם נעשתה הכללי המקרה עבור הכללי. במקרה גם זהה נותר הסוכנים בין הקשירות תנאי מפתיע,

סדירה, הלא הדגימה אף על להסכמה מעריכית להתכנסות מספיק תנאי ונמצא ביצועים, אנליזת

שיטת של הרחבות שתי מוצגות לבסוף אחרות. בקרה בארכיטקטורות סטנדרטית שאינה תוצאה

בחילופי ידועות לא אך קטנות השהיות על לפצות מנת על חזאי מוסיפה הראשונה המוצעת. הבקרה

שעשויים משקלים הסוכנים, בין הנשלח המידע היתוך עבור דינמיים משקלים כוללת והשנייה המידע,

הבקר. ביצועי את לשפר

מרובות במערכות פנימית יציבות אי זיהוי היא זו בעבודה המחקר של מרכזית תאורטית תרומה

i

 

 

 



תודות
העידוד, ההנחיה, על זלזו, דניאל ופרופ’ מירקין לאוניד פרופ’ מנחי, לשני להודות ברצוני ראשית,

של להתפתחותו עצמו שמקדיש אחד מנחה אפילו למצוא נדיר הסבלנות. על – ובעיקר החוכמה,

גילגלו כאשר פלא, בדרך שלו. האישית הקריירה לקידום רק ולא כאדם, ולרווחתו כחוקר תלמידו

ובין תרצו אם כחוקר,בין אותי עיצבתם אתם יום של בסופו כאלה. בשניים זכיתי עבורי, הקוביות את

התוצאה. מן מרוצים שאתם מקווה אז לא, אם

לדעת בלי שחלקם נוספים, אנשים לכמה גם להודות מבקש ואני שגרתית, הייתה לא לכאן דרכי

ריאלים “מקצועות לי שאמרה בתיכון שלי למתמטיקה למורב הדרך. את עבורי סללו כוונה, בלי או

הכרחת לערער. יכולת בלי מתמטיקה יחידות לשלוש אותי ושיבצה אחר”, משהו נסה בשבילך, לא זה

תועלת. קצת יצאה מזה אפילו אז החוקרים, רוב לפני הרבה המתחזה תסמונת עם להתמודד אותי

להנדסה. התשוקה את בי והצית מדעתה התעלם שמייד בתיכון, לרובוטיקה שלי המורה הרשקו, לאייל

תודה -- להצלחה חיוניים שניהם וכמה למנטור, מורה בין ההבדל את למעשה הלכה לי הראית אתה

מזדמנות, בעבודות זמן לבזבז להפסיק לי שאמר וולף, אלון לפרופ’ עבורי. מנטור ועודך שהייתה

— פשוטה שיחה אותה הטכניון. של הקדם־אקדמי המרכז אל פיזית אותי והוליך ידי, את לקח

ולהירשם. מכישלון הפחד עם להתמודד להתמהמה, להפסיק לי גרמה — זוכר שאינך להניח שסביר

הסערה את לצלוח לי עזרו גם אלא טובים, חברים שהם רק שלא קנת, ויותם ימאי ליאור לחברי

חסרות הוכחות על בשאלות הרף ללא שהטרדתי אבידן, דניאלה לגב’ בטכניון. הראשונה השנה שהיא

אמנם שאירשם. והציעה למתמטיקה למחלקה אותי שגררה עד — במד״ר הרצאה כל אחרי והכללות

ובעיקר חדשים, דברים ללמוד קורסים, עוד לקחת לי גרם עידודך אך במתמטיקה, תואר סיימתי לא

ולפרופ’ ספולקרה רודולף לפרופ’ לנסות. הפחד הוא חדשים דברים ללמידת העיקרי שהמחסום להבין

נוספות. זוויות ואראה חדשים דברים שאלמד כדי רק שלהם לקבוצות אותי שהזמינו שאמס, אימן

מה' משנה לא אותי ולעודד בי לתמוך הצליחו שאיכשהו להורי, למשפחתי. — הכול מעל ולבסוף,

ברור שגם מקווה ואני בי, גאים שאתם יודע אני עצמי. את חיפשתי כאשר עלי ללחוץ לא בבד ובד

הזו. להצלחה חיונית הייתה — לטעות מרחב לי לתת מתי בהבנה — אותי גידלתם שבה שהדרך לכם

מתמטיקה למדתי כשאני גם כשווה איתי שדיברה שחר, שיעור, לאין ממני והחכמה הקטנה לאחותי

בלי משוואות לפתור ממך שביקשתי מצטער גם אני מוצק. מצב של בפיזיקה עסקה והיא בתיכון

שלי, העוגן את מאיה. המופלאה לרעייתי ולבסוף, לך. לגלות בלי שמונה, בת כשהיית ממשי פתרון

כדי שלך הקריירה את ודחית הנפלאים, ילדינו את לעולם הבאת חיי. ואהבת שלי, המשען נקודת

עבורי, מושלמת שאת לכך נהדרת הוכחה לי יש כחוקר. קריירה של הזה החלום אחר לרדוף שאוכל

אם השום כקליפת ושווה בזכותך, אפשרי ואעשה שעשיתי מה כל אותה. מלהכיל קצר העמוד אבל

לצידי. שם תהיי לא

יעד. לפני מסע

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

 

 

 



מכונות. להנדסת בפקולטה זלזו, דניאל ופרופסור מירקין לאוניד פרופסור של בהנחייתם בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק
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בפרט באקדמיה. המקובלות האתיות המידה אמות ולפי ביושר, כולו נערך זה חיבור שבבסיס המחקר

קודמים למחקרים והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף בפעילויות הדברים אמורים

וישר, מלא הוא זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו המחקר. מן חלק שהיוו ככל וכו',

מידה. אמות אותן לפי
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