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Challenges in Multi-Robot Systems

Solutions to coordination
problems in multi-robot
systems are highly dependent
on the sensing and
communication mediums
available!

selection criteria depends on
mission requirements, cost,

Sensing Communication .
= environment...
e GPS * Internet
e Relative Position < Radio
Sensing * Sonar

* Range Sensing * MANet
* Bearing Sensing
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Challenges in Multi-Robot Systems

Solutions to coordination
problems in multi-robot
systems are highly dependent
on the sensing and
communication mediums
available!

selection criteria depends on
mission requirements, cost,
environment...

Are there architectural features of a multi-agent
system that are independent of any particular
mission or hardware capabilities?
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Towards a Multi-Robot Control Architecture

control architecture for a single quadrotor
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Towards a Multi-Robot Control Architecture

what is the architecture for a multi-robot system?
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Towards a Multi-Robot Control Architecture

what is the architecture for a multi-robot system?

Connectivity

Ji and Egerstedt, 2007
Dimarogonas and Kyriakopoulos, 2008
~ Yangetal., 2010
& Robuffo Giordano et al., 2013
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Towards a Multi-Robot Control Architecture

is connectivity sufficient for higher-level objectives?

formation control localization

communication link
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http://www.commesys.isy.liu.se/en/research

Rigidity Theory provides the correct framework to
address many multi-agent mission objectives
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Towards a Multi-Robot Control Architecture

what is the architecture for a multi-robot system?

Controlled Variables
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Environment

——— | B ;, B
\ _...\ \ \ _...\ \
> s s
Y= multi-robot systems must
- be able to dynamically
<+ . . . .
\ — maintain the connectivity
(Inner Loop: ) and rlgldlty Of the team
connectivity -
rigidity
i Outer Loop: \<
formation control o
localization < M'SS,'O”
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Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility” of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Parallel Rigidity

- maintain distance pairs - maintain angles (shape)

- rigid body rotations and - rigid body translations
translations and dilations
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Infinitesimal Motions in SE(2)

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility” of structures formed by rigid bodies connected by
flexible linkages or hinges.

SE(2) Rigidity
- maintain bearings in /ocal frame

- rigid body rotations and
translations + coordinated rotations
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Rigidity Theory

bar-and-joint frameworks in SE(2) T

(Q y P @b) (P, %) ng<> — (p(vr), ¥(v1))

g = (V, 5) a directed graph
p:V — R?

x(v3)
1 >
Y:YV =S
a directed edge indicates availability
of relative bearing measurement
A ,% stacked vector of entire framework

xp = p(V) € R*
; XID _ w(v) c 81|V|
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Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Parallel Rigidity SE(2) Rigidity
Rigidity Matrix Parallel Rigidity Matrix SE(2) Rigidity Matrix
R(p)é =0 Ri(p)e=0 20t FO Je=
Bg(x(V))
Theorem

A framework is infinitesimally (distance, parallel) rigid if and only if
the rank of the rigidity matrix is 2|V| — 3

A framework is SE(2) infinitesimally rigid if and only if the rank of the
rigidity matrix is 3|V| — 4
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Rigidity Theory

Rigidity is a combinatorial theory for characterizing the “stiffness”
or “flexibility of structures formed by rigid bodies connected by
flexible linkages or hinges.

Distance Rigidity Parallel Rigidity
distance formation control bearing formation control
. 2 2 - m. - m\T
Di = Z (sz —ij — dw) (p] _pz) Z < (pj pz)(pj sz) )g;j
joi i lpi — py” Ipi — pjll
- control requires distances - control requires bearings and
and relative positions distances
- distance-only control requires - bearing-only control modification
estimation of relative positions (almost global stability)
[Krick2007, Anderson2008, Dimarogonas2008, Dorfler2010] [Zhao and Zelazo, TAC2014 (submitted)]
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Formation Control: Bearing-Constrained Formations
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Towards a Multi-Robot Control Architecture

what is the architecture for a multi-robot system?

Controlled Variables

4 )
> q\“ B ‘n\" " )
--—n\" "

Environment

——— | B ;, B
\ _...\ \ \ _...\ \
> s s
Y= multi-robot systems must
- be able to dynamically
<+ . . . .
\ — maintain the connectivity
(Inner Loop: ) and rlgldlty Of the team
connectivity -
rigidity
i Outer Loop: \<
formation control o
localization < M'SS,'O”
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Rigidity Maintenance

Theorem

A framework is infinitesimally (distance, parallel) rigid if and only if
the rigidity eigenvalue is strictly positive.

R = R(p)" R(p) N(R) = {trivial infinitesimal motions}
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Rigidity Maintenance

pr, k € N;(t) Pi» k € Ni(t)

o N lip - pil .
ke Ni(t) " : . .y
N Ll oor [ e Rty
Environment > ") Estimator
/ \ /
4 N\ —
4,
Control |«
D
\ Y

- Power lteration (vang et al. 2010)
- consensus filters used to distribute
computation
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Rigidity Maintenance

Decentralized Rigidity Maintenance Control with Range-only Measurements for Multi-Robot Systems

Daniel Zelazo, Antonio Franchi and Heinrich H. Builthoff, Paolo Robuffo Giordano,
Technion, Israel Max Planck Institute for Biological Cybernetics, Germany CNRS at Irisa, France

imulated Distributed Estimates of the

Rigidity Eigenvalue (rigidity metrics)

Circled robots: Maintain rigidity while tracking an exogenous command
Other robots: Maintain rigidity

Link colors:
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Conclusions and Outlook

* COOrIcC

Ination methods

on se

-

or multi-agent systems depend

nsing and commu

nication mediums

* rigidity theory is a powerful framework for handling
high-level multi-agent objectives under different
sensing and communication constraints

* rigidity maintenance is an important “inner-loop” for
multi-robot systems
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