On the Definiteness of the Weighted Laplacian and its Connection to Effective Resistance

1

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

IEEE Conference on Decision and Control Los Angeles, CA December 16, 2014 3 באוגוסט, 4102 $\frac{1}{4}$ \mathbf{r}_{max} , which is a set of \mathbf{r}_{max}

Mathias Bürger

Cognitive Systems Group Robert Bosch GmbH

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering** \mathbf{r} **Example 3 Faculty of Aerospace Engineer**

Diffusively Coupled Networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

2

Diffusively Coupled Networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

2

The Consensus Protocol

$$
\text{Consensus Protocol}
$$
\n
$$
u_i(t) = \sum_{i \sim j} w_{ij}(x_j(t) - x_i(t))
$$
\n
$$
\dot{x}(t) = -L(\mathcal{G})x(t)
$$

Theorem Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ be a weighted and *connected graph with positive edge weights* $W(k) > 0$ *for* $k = 1, \ldots, |\mathcal{E}|$ *. Then the consensus dynamics synchronizes; i.e.,* $\lim_{t\to\infty} x_i(t) = \beta$ *for* $i = 1, \ldots, |\mathcal{V}|$ *.*

Mesbahi & Egerstedt, Olfati-Saber, Ren

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
\dot{x}_i(t) = \sum_{i \sim j} w_{ij}(x_j(t) - x_i(t))
$$

 $G²⁵$ nodes
98 edges

2

$$
x(t) = e^{-L(\mathcal{G})t}x_0
$$

lim $t\rightarrow\infty$ $x(t) = \beta \mathbb{1} \Leftrightarrow L(\mathcal{G})$ has only **one** eigenvalue at the origin

has only **one** eigenvalue at the zero $L(G) \geq 0$ *L*(*G*) ≥ 0

has **more than one** eigenvalue at the zero

L(*G*) has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
\dot{x}(t) = -L(\mathcal{G})x(t)
$$

system behavior depends on the spectral properties of the graph Laplacian

has only **one** eigenvalue at the zero $L(G) \geq 0$ *L*(*G*) ≥ 0

has **more than one** eigenvalue at the zero

 $L(G)$ has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
\dot{x}(t) = -L(\mathcal{G})x(t)
$$

can we understand spectral properties of the Laplacian from the structure of the graph?

has only **one** eigenvalue at the zero $L(G) \geq 0$ *L*(*G*) ≥ 0

has **more than one** eigenvalue at the zero

 $L(G)$ has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Spanning Trees and Cycles

A graph as the union of a spanning tree and edges that complete cycles

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Spanning Trees and Cycles

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Spanning Trees and Cycles

Proposition The matrix $L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T$ *has the same inertia as* $R_{(\tau,c)}WR_{(\tau,c)}^T$ *. Similarly, the matrix* $(L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T)^{-1}$ *has the same* $inertia \; as \; (R_{(\tau,c)}WR_{(\tau,c)}^T)^{-1}.$

Recall: The *inertia* of a matrix is the number of negative, 0, and positive eigenvalues

Proposition The matrix $L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T$ *has the same inertia as* $R_{(\tau,c)}WR_{(\tau,c)}^T$ *. Similarly, the matrix* $(L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T)^{-1}$ *has the same* $inertia \; as \; (R_{(\tau,c)}WR_{(\tau,c)}^T)^{-1}.$

Recall: The *inertia* of a matrix is the number of negative, 0, and positive eigenvalues

Proof:

$$
L_e(\mathcal{T})R_{(\tau,c)}WR_{(\tau,c)}^T \sim L_e(\mathcal{T})^{\frac{1}{2}}R_{(\tau,c)}WR_{(\tau,c)}^T L_e(\mathcal{T})^{\frac{1}{2}}
$$

$$
L_e(\mathcal{T})^{\frac{1}{2}}R_{(\tau,c)}WR_{(\tau,c)}^T L_e(\mathcal{T})^{\frac{1}{2}}
$$
 is congruent to $R_{(\tau,c)}WR_{(\tau,c)}^T$

congruent matrices have the same inertia

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

 $L(G) \geq 0 \Leftrightarrow R_{(\tau,c)}WR_{(\tau,c)}^T \geq 0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

 $L(G) \geq 0 \Leftrightarrow R_{(\tau,c)}WR_{(\tau,c)}^T \geq 0$

The definiteness of the graph Laplacian can be studied through another matrix!

 $R_{(\tau,c)}$ *W* $R_{(\tau,c)}^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

 $L(G) \geq 0 \Leftrightarrow R_{(\tau,c)}WR_{(\tau,c)}^T \geq 0$

The definiteness of the graph Laplacian can be studied through another matrix!

intimately related to the notion of **effective resistance** of a network

 $R_{(\tau,c)}$ *W* $R_{(\tau,c)}^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Effective Resistance of a Graph

The **effective resistance** between two nodes *u* and *v* is the electrical resistance measured across the nodes when the graph represents an electrical circuit with each edge a resistor

Faculty of Aerospace Engineering

Proposition $Proposition$

$$
L^{\dagger}(\mathcal{G}) = (E_{\tau}^{L})^{T} (R_{(\tau,c)}WR_{(\tau,c)}^{T})^{-1} E_{\tau}^{L}
$$

$$
= (E_{\tau}^{L})^{T} L_{ess}(\mathcal{T})^{-1} E_{\tau}^{T}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

E^L

Proposition $L^{\dagger}(\mathcal{G})=(E_{\tau}^{L})$ T $\left(R_{(\tau,c)} W R_{(\tau,c)}^T\right)$ $^{-1}$ E_{τ}^L \overline{I} $Proposition$ $L^{\intercal}(\mathcal{G})=(E_{\tau}^{L})^{T}$ $\left(R_{(\mathcal{T},c)} W R_{(\mathcal{T},c)}^{T}\right)^{-1}$ $^{\mathsf{L}}E_{\tau}^{I}$ $=$ $(E_{\tau}^{L})^{T}L_{ess}(\mathcal{T})^{-1}E_{\tau}^{T}$ $\frac{1}{\tau}$

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

E^L

Proposition $L^{\dagger}(\mathcal{G})=(E_{\tau}^{L})$ T $\left(R_{(\tau,c)} W R_{(\tau,c)}^T\right)$ $^{-1}$ E_{τ}^L \overline{I} $Proposition$ $L^{\intercal}(\mathcal{G})=(E_{\tau}^{L})^{T}$ $\left(R_{(\mathcal{T},c)} W R_{(\mathcal{T},c)}^{T}\right)^{-1}$ $^{\mathsf{L}}E_{\tau}^{I}$ $=$ $(E_{\tau}^{L})^{T}L_{ess}(\mathcal{T})^{-1}E_{\tau}^{T}$ $\frac{1}{\tau}$

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

E^L

Proposition $L^{\dagger}(\mathcal{G})=(E_{\tau}^{L})$ T $\left(R_{(\tau,c)} W R_{(\tau,c)}^T\right)$ $^{-1}$ E_{τ}^L \overline{I} $Proposition$ $L^{\intercal}(\mathcal{G})=(E_{\tau}^{L})^{T}$ $\left(R_{(\mathcal{T},c)} W R_{(\mathcal{T},c)}^{T}\right)^{-1}$ $^{\mathsf{L}}E_{\tau}^{I}$ $=$ $(E_{\tau}^{L})^{T}L_{ess}(\mathcal{T})^{-1}E_{\tau}^{T}$ $\frac{1}{\tau}$

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)
$$

$$
E_{\tau}^L(\mathbf{e}_u - \mathbf{e}_v) = \begin{bmatrix} \pm 1 \\ 0 \\ \pm 1 \\ 0 \end{bmatrix} \begin{matrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_4 \end{matrix} \qquad u \qquad \qquad \qquad \mathcal{U} \qquad \qquad \mathcal{U} \qquad \mathcal{U}
$$

 ${\bf \overline{E}}$ E_{τ}^L \overline{I}

 $T_{(\mathcal{T},c)} = (E_\mathcal{T}^T E_\mathcal{T})^{-1} E_\mathcal{T}^T$

indicates a path from node *u* to *v* using only edges in the spanning tree

$$
\sqrt{}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $E(\mathcal{C})$

CDC Dec. 16, 2014 Los Angeles, CA

E^L

 $G = T \cup C$

Effective Resistance of a Graph

Spectral Properties of Signed Graphs Γ is a Γ Ju t_{max} $\sum_{n=1}^{n}$ $\sum_{n=1}^{n}$ definitive the weight of the weighted Laplacian.

Theorem Assume that $G = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ has one *edge with a negative weight,* $e_{-} = (u, v) \in \mathcal{E}$. Let $G_{+} = (\mathcal{V}, \mathcal{E} \setminus \{e_{-}\}, \mathcal{W})$ and $G_{-} = (\mathcal{V}, e_{-}, \mathcal{W})$ and *assume* G_+ *is connected. Furthermore, let* $\mathcal{R}_{uv}(\mathcal{G}_+)$ *denote the effective resistance between nodes* $u, v \in V$ *over the graph* G_+ *. Then* $L(G)$ *is positive semi-definite if and only if* $|\mathcal{W}(e_{-})| \leq \mathcal{R}_{uv}^{-1}(\mathcal{G}_{+})$ *.*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Spectral may also be computed using the Moore-Penrose pseudoand *E*⁺ = *E^T*⁺ *R*(*T*+*,C*+) the incidence matrix of *G*⁺ =

Proof:

 $L(G)$

$\vert \vert$ $R_{(\mathcal{T}_+, \mathcal{C}_+)} W_+ R_{(\mathcal{T}_+)}^T$ han a tha ann an t-ainm an t-a
Iomraidhean $\frac{1}{\sqrt{2}}$ $\lceil W(e_{-})|$ $E_{-}^{T}(E_{\tau_{+}}^{L})^{T}$ E_{τ}^L $R_{(\mathcal{T}_{+},c_{+})}W_{+}R_{(\mathcal{T}_{+},c_{+})}^{T}$ $\overline{}$ 0*.*

|W| leads to the following LMI condition, $\vert W_{-} \vert$

15 *E R*(*T*+*,C*+)*W*+*R^T*

T (*R*) *W* $\frac{1}{2}$

CDC Dec. 16, 2014 \Box *E* os Angeles, CA $\frac{1000 \text{ mJ}}{200 \text{ mJ}}$

Spectral may also be computed using the Moore-Penrose pseudoand *E*⁺ = *E^T*⁺ *R*(*T*+*,C*+) the incidence matrix of *G*⁺ =

Proof:

 $L(G)$

Schur Complement

Congruent Transformation

$$
\begin{bmatrix} |W(e_{-})|^{-1} & E_{-}^{T}(E_{\tau_{+}}^{L})^{T} \\ E_{\tau_{+}}^{L}E_{-} & R_{(\tau_{+},e_{+})}W_{+}R_{(\tau_{+},e_{+})}^{T} \end{bmatrix} \geq 0
$$

 $\mathbb{E}[\mathbf{W}]$ leads to the following LMI condition, Schur Complement

T (*R*) *W* $\frac{1}{2}$

CDC Dec. 16, 2014 \Box *E* os Angeles, CA $\frac{1000 \text{ mJ}}{200 \text{ mJ}}$

Spectral Properties of Signed Graphs

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Spectral Properties of Signed Graphs

a single negative weight edge can create an *open-circuit*

 Γ results of the providence Γ the robust stability of the robust stabil α consensus neavon with all $\frac{P(Y)}{P(Y)}$ via the celebrated *small gain theorem*. While the small gain theorem often provides very conservative results, we *uncertain* edge weight a consensus network with an

$$
w=w_0+\delta
$$

$$
\overline{S}(\Sigma_{\mathcal{F}}(\mathcal{G}), \Delta) = M_{22} + M_{21}\Delta (I - M_{11}\Delta)^{-1} M_{12}
$$

Theorem

- *M*11(*s*) = *P ^T R^T* $||M_{11}(s)|| - R$ *M*12(*s*) = *P ^T R^T* $\frac{1}{2}$ $k\in M_{11}(s)\mathbb{I}_{\infty} = \mathcal{R}_{uv}$
- *M*21(*s*) = *E*(*Go*) T (*A*^{H}) \leq T \sim T ^{-1}) *F*) *M*22(*s*) = *E*(*Go*) $||\Delta||_{\infty} < \mathcal{R}_{uv}^{-1}$ - The uncertain consensus network is stable for any

 $z(t)$

 $p(t)$

 Γ results of the providence Γ the robust stability of the robust stabil α consensus neavon with all $\frac{P(Y)}{P(Y)}$ via the celebrated *small gain theorem*. While the small gain theorem often provides very conservative results, we *uncertain* edge weight a consensus network with an

$$
w=w_0+\delta
$$

$$
\Sigma(\mathcal{G},\Delta) : \left\{ \begin{array}{lcl} \dot{x}(t) & = & -E(\mathcal{G})(W + \Delta)E(\mathcal{G})^{T}x(t) + \mathrm{w}(t) \\ z(t) & = & E(\mathcal{G}_o)^{T}x(t) \end{array} \right.
$$

 $\overline{S}(\Sigma_{\mathcal{F}}(\mathcal{G}), \Delta) = M_{22} + M_{21} \Delta \left(I - M_{11} \Delta \right)^{-1} M_{12}$

Theorem

- *M*11(*s*) = *P ^T R^T* $||M_{11}(s)|| - R$ *M*12(*s*) = *P ^T R^T* $\frac{1}{2}$ $k\in M_{11}(s)\mathbb{I}_{\infty} = \mathcal{R}_{uv}$
- *M*21(*s*) = *E*(*Go*) T (*A*^{H}) \leq T \sim T ^{-1}) *F*) *M*22(*s*) = *E*(*Go*) $||\Delta||_{\infty} < \mathcal{R}_{uv}^{-1}$ - The uncertain consensus network is stable for any

 $z(t)$

 $p(t)$

An Illustrative Example

any single edge in the cycle can make the Laplacian indefinite

 $w_6=-\frac{1}{r_6}$ *r*6 $= -\frac{1}{4}$ 4

has two eigenvalues at the origin *^w*¹

Proposition

Consider a graph with only one cycle and one negative weight edge contained in the cycle. Then the number of clusters equals the number of components in the graph obtained by removing all the edges in the cycle.

Concluding Remarks

- implications for robustness of consensus networks
- •explore the robust performance and robust synthesis problems
- how can one *measure* the effective resistance in a multi-agent system?
- *combinatorial uncertainties*

Acknowledgements

Dr. Mathias Bürger

Cognitive Systems Group at Robert Bosch GmbH

Thank-you!

Questions? $\ddot{}$ $\ddot{}$ uestions?

[1] D. Zelazo and M. Bürger, "On the Definiteness of the Weighted Laplacian and its Connection to Effective Resistance," IEEE CDC, Los Angeles, CA, 2014. [2] D. Zelazo and M. Bürger, "On the Robustness of Uncertain Consensus Networks," submitted to IEEE Transactions on Control of Network Systems, 2014 (preprint on arXiv)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering