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The Consensus Protocol

ẋ(t) = �L(G)x(t)

Consensus Protocol

ui(t) =
X

i⇠j

wij(xj(t)� xi(t))

Theorem 1 Let G = (V, E ,W) be a weighted and

connected graph with positive edge weights W(k) > 0
for k = 1, . . . , |E|. Then the consensus dynamics

synchronizes; i.e., limt!1 xi(t) = � for i = 1, . . . , |V|.

Mesbahi & Egerstedt, Olfati-Saber, Ren
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Synchronization and the Laplacian
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ẋ(t) = �L(G)x(t)
system behavior depends on  
the spectral properties of the  
graph Laplacian G

6



CDC Dec. 16, 2014 
Los Angeles, CA

 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Synchronization and the Laplacian

0 5 10 15
−6

−4

−2

0

2

4

6

8

10

12

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

has only one 
eigenvalue at  
the zero

L(G) � 0 L(G) � 0
has more than  
one eigenvalue  
at the zero

L(G)
has at least one 
negative eigenvalue 
(indefinite)
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A graph as the union of a spanning  
tree and edges that complete cycles

Spanning Trees and Cycles
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Spanning Trees and Cycles

a spanning tree
remaining edges 

“complete cycles”

T [ C
E(G) = E(T )

⇥
I T(T ,C)

⇤
| {z }

R(T ,C)

T(T ,C) = (ET
T ET )

�1ET
T| {z }

EL
T
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L(G) = E(G)E(G)T
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A graph as the union of a spanning  
tree and edges that complete cycles

Spanning Trees and Cycles

a spanning tree
remaining edges 

“complete cycles”

T [ C

Weighted Edge Laplacian

L(G) Le(G)

Le(T )R(T ,C)RT
(T ,C)

similarity between edge  
and graph LaplaciansR(T ,C)

rows form a basis for the  
cut space of the graph

Essential Edge Laplacian

E(G) = E(T )
⇥
I T(T ,C)

⇤
| {z }

R(T ,C)

T(T ,C) = (ET
T ET )

�1ET
T| {z }

EL
T

E(C)

Le(G) = W
1
2E(G)TE(G)W 1

2 Le(T )R(T ,C)WRT
(T ,C)

:= Less(G)
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Some Properties of Le(G)
Proposition 1 The matrix Le(T )R(T ,C)WRT

(T ,C)

has the same inertia as R(T ,C)WRT
(T ,C). Similarly,

the matrix (Le(T )R(T ,C)WRT
(T ,C))

�1
has the same

inertia as (R(T ,C)WRT
(T ,C))

�1
.

Recall:  The inertia of a matrix  
is the number of negative, 0,  
and positive eigenvalues
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Proposition 1 The matrix Le(T )R(T ,C)WRT

(T ,C)

has the same inertia as R(T ,C)WRT
(T ,C). Similarly,

the matrix (Le(T )R(T ,C)WRT
(T ,C))

�1
has the same

inertia as (R(T ,C)WRT
(T ,C))

�1
.

Recall:  The inertia of a matrix  
is the number of negative, 0,  
and positive eigenvalues

Proof: 

Le(T )R(T ,C)WRT
(T ,C) ⇠ Le(T )

1
2R(T ,C)WRT

(T ,C)Le(T )
1
2

Le(T )
1
2R(T ,C)WRT

(T ,C)Le(T )
1
2 is congruent to R(T ,C)WRT

(T ,C)

congruent matrices have the same inertia
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Some Properties of Le(G)

Proposition 1

L(G) � 0 , R(T ,C)WRT
(T ,C) � 0
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Some Properties of Le(G)

Proposition 1

L(G) � 0 , R(T ,C)WRT
(T ,C) � 0

The definiteness of the graph 
Laplacian can be studied  
through another matrix!

R(T ,C)WRT
(T ,C)
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Some Properties of Le(G)

Proposition 1

L(G) � 0 , R(T ,C)WRT
(T ,C) � 0

The definiteness of the graph 
Laplacian can be studied  
through another matrix!

R(T ,C)WRT
(T ,C)

intimately related to the notion 
of effective resistance of a 
network
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Effective Resistance of a Graph

u

v

u

v

wk

rk
rk =

1

wk

The effective resistance between two nodes u and v is the 
electrical resistance measured across the nodes when the 
graph represents an electrical circuit with each edge a resistor

edge weights are the  
conductance of each resistor

ruv = (eu � ev)
TL†(G)(eu � ev)

=
⇥
L†(G)

⇤
uu

� 2
⇥
L†(G)

⇤
uv

+
⇥
L†(G)

⇤
vv

Klein and Randić 
1993
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Effective Resistance of a Graph

Proposition 1

L†(G) = (EL
T )

T
�
R(T ,C)WRT

(T ,C)

��1
EL

T

Proof: Consider the following sub-matrix of (9) obtained by deleting the center block row and column,
 |W�|�1

E

T

�NF+

N

T

F+
E� 0

�
2 R(m+c)⇥(m+c)

,

where m = |E�| and c is the number of connected components of G+. We assume that G+ is not connected, and
thus NF+

contains c columns. Partition the matrix as NF+
=

⇥
n1 · · · n

c

⇤
and recall that [E

T

�n
i

]

k

= ±1 if
and only if k = (u, v) 2 E� such that u and v are not in the same components of G+. Denote by CUT

i

✓ E� as
the set of negative weight edges used to form a cut with the ith component of G+, and let CUT = [

i

CUT
i

. Then
an expression for the quadratic form of the matrix of interest is

x

T

 |W�|�1
E

T

�NF+

N

T

F+
E� 0

�
x =

X

i2E�

|W�(i)|�1
x

2
i

+

X

k2CUT1

±2x

k

x

m+1 + · · · +

X

k2CUT
c

±2x

k

x

m+c

.

From the quadratic form, it is now clear that the elements of the vector x

i

for i = m + 1, . . . , m + c can be
arbitrarily chosen to make the inequality negative. Therefore, there exists at least one negative eigenvalue and the
matrix in (9) is indefinite. From Corollary IV.2 we can conclude that the weighted graph Laplacian is indefinite
independent of the value of the negative weights.

Theorem IV.3 shows that if any of the negative weight edges forms a cut in the graph, then the Laplacian matrix
must have negative eigenvalues. A particular class of graphs satisfying the conditions of Theorem IV.3 are the
balanced signed graphs.

Corollary IV.4 If a signed graph G is balanced then L(G) is indefinite for any choice of negative edge weights.

B. Effective Resistance and the Stability of ⌃(G)

The main result of Section IV-A provides an analytical justification of what may be considered an intuitive result.
That is, if the negative weight edges form a cut in the graph, then the weighted Laplacian will be indefinite; i.e.,
⌃(G) will be unstable. In this section, we reveal a more general condition on the negative edge weights that can lead
to an indefinite weighted Laplacian. This condition turns out to be related to the notion of the effective resistance

of a graph. Results from this section were recently reported in [14], and thus the reader is referred to that work for
related proofs.

It is well known that the weighted Laplacian of a graph can be interpreted as a resistor network [20]. Each
edge in the network can be thought of as a resistor with resistance equal to the inverse of the edge weight,
r

k

= W(k)

�1
= w

�1
k

for k 2 E .5 The resistance between any two pairs of nodes can be determined using standard
methods from electrical network theory [20]. It may also be computed using the Moore-Penrose pseudo-inverse of
the graph Laplacian, denoted L(G)

†.

Definition IV.5 ( [20]) The effective resistance between nodes u, v 2 V in a weighted graph G = (V, E , W) is

R
uv

(G) = (e
u

� e
v

)

T

L

†
(G)(e

u

� e
v

)

= [L

†
(G)]

uu

� 2[L

†
(G)]

uv

+ [L

†
(G)]

vv

,

where e
u

is the indicator vector for node u, that is e
u

= 1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance between two nodes is related to the matrix R(T ,C)WR

T

(T ,C)

and the essential edge Laplacian.

Proposition IV.6 ( [14]) Let G be a connected graph and assume s(L(G)) = (n+, n�, 1). Then

L

†
(G) = (E

L

T )

T

�
R(T ,C)WR

T

(T ,C)

��1
E

L

T

= (E

L

T )

T

L

ess

(T )

�1
E

T

T . (11)

5Thus, the edge weight w
k

can be interpreted as an admittance.
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Our first result shows how the effective resistance between two nodes is related to the matrix R(T ,C)WR
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5Thus, the edge weight w
k

can be interpreted as an admittance.

12



CDC Dec. 16, 2014 
Los Angeles, CA

 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Effective Resistance of a Graph

Proposition 1

L†(G) = (EL
T )

T
�
R(T ,C)WRT

(T ,C)

��1
EL

T

ruv = (eu � ev)
TL†(G)(eu � ev)

u

v

G = T [ C

⌧1

⌧2 ⌧3

⌧4

EL
T (eu � ev) =

2

664

±1
0
±1
0

3

775

⌧1
⌧2
⌧3
⌧4

indicates a path from node  
u to v using only edges in  
the spanning tree

T(T ,C) = (ET
T ET )

�1ET
T| {z }

EL
T

E(C)

Proof: Consider the following sub-matrix of (9) obtained by deleting the center block row and column,
 |W�|�1

E

T

�NF+

N

T

F+
E� 0

�
2 R(m+c)⇥(m+c)

,

where m = |E�| and c is the number of connected components of G+. We assume that G+ is not connected, and
thus NF+

contains c columns. Partition the matrix as NF+
=

⇥
n1 · · · n

c

⇤
and recall that [E

T

�n
i

]

k

= ±1 if
and only if k = (u, v) 2 E� such that u and v are not in the same components of G+. Denote by CUT

i

✓ E� as
the set of negative weight edges used to form a cut with the ith component of G+, and let CUT = [

i

CUT
i

. Then
an expression for the quadratic form of the matrix of interest is

x

T

 |W�|�1
E

T

�NF+

N

T

F+
E� 0

�
x =

X

i2E�

|W�(i)|�1
x

2
i

+

X

k2CUT1

±2x

k

x

m+1 + · · · +

X

k2CUT
c

±2x

k

x

m+c

.

From the quadratic form, it is now clear that the elements of the vector x

i

for i = m + 1, . . . , m + c can be
arbitrarily chosen to make the inequality negative. Therefore, there exists at least one negative eigenvalue and the
matrix in (9) is indefinite. From Corollary IV.2 we can conclude that the weighted graph Laplacian is indefinite
independent of the value of the negative weights.

Theorem IV.3 shows that if any of the negative weight edges forms a cut in the graph, then the Laplacian matrix
must have negative eigenvalues. A particular class of graphs satisfying the conditions of Theorem IV.3 are the
balanced signed graphs.

Corollary IV.4 If a signed graph G is balanced then L(G) is indefinite for any choice of negative edge weights.

B. Effective Resistance and the Stability of ⌃(G)

The main result of Section IV-A provides an analytical justification of what may be considered an intuitive result.
That is, if the negative weight edges form a cut in the graph, then the weighted Laplacian will be indefinite; i.e.,
⌃(G) will be unstable. In this section, we reveal a more general condition on the negative edge weights that can lead
to an indefinite weighted Laplacian. This condition turns out to be related to the notion of the effective resistance

of a graph. Results from this section were recently reported in [14], and thus the reader is referred to that work for
related proofs.

It is well known that the weighted Laplacian of a graph can be interpreted as a resistor network [20]. Each
edge in the network can be thought of as a resistor with resistance equal to the inverse of the edge weight,
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for k 2 E .5 The resistance between any two pairs of nodes can be determined using standard
methods from electrical network theory [20]. It may also be computed using the Moore-Penrose pseudo-inverse of
the graph Laplacian, denoted L(G)
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Definition IV.5 ( [20]) The effective resistance between nodes u, v 2 V in a weighted graph G = (V, E , W) is
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where e
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is the indicator vector for node u, that is e
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= 1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance between two nodes is related to the matrix R(T ,C)WR
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(T ,C)

and the essential edge Laplacian.

Proposition IV.6 ( [14]) Let G be a connected graph and assume s(L(G)) = (n+, n�, 1). Then
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The result of Proposition II.1 and Theorem II.2 shows
that the presence of negative edge weights can introduce
both negative and zero eigenvalues. The next result
relates the signature of the essential edge Laplacian
matrix to the matrix R(F,C)WR

T

(F,C).

Corollary II.3

�(Less(F)) = �(R(F,C)WR

T

(F,C)).

Proof: Using the similarity transformation matrix
L

e

(F)
1
2 we have that L

e

(F)R(F,C)WR

T

(F,C) is similar to
L

e

(F)
1
2
R(F,C)WR

T

(F,C)Le

(F)
1
2 . This matrix is congru-

ent to R(F,C)WR

T

(F,C) and thus has the same signature
as L

e

(F)R(F,C)WR

T

(F,C).

Corollary II.4 Assume G has c connected

components and �(L(G)) = (n+, n�, n0). Then

�(R(F,C)WR

T

(F,C)) = (n+, n�, n0 � c).

The matrix R(F,C)WR

T

(F,C) turns out to be closely
related to many combinatorial properties of a graph. For
example, the rows of the matrix R(F,C) form a basis
for the cut-space of the graph [2]. This matrix is also
intimately related to the notion of effective resistance
of a graph, which will be discussed in the sequel.
Corollary II.4 thus shows that studying the definiteness
of the weighted Laplacian can be reduced to studying the
matrix R(F,C)WR

T

(F,C) which contains in a more explicit
way information on how both the location and magnitude
of negative weight edges influence it spectral properties.

III. EFFECTIVE RESISTANCE AND THE
DEFINITENESS OF THE WEIGHTED LAPLACIAN

The results of Section II reveal that �(L(G)) is related
to �(R(F,C)WR

T

(F,C)). In this section, we exploit the
structure of this matrix to show how the negative edge
weights affect the definiteness of the weighted Laplacian.
The derived conditions turn out to be related to the notion
of the effective resistance of a graph.

It is well known that the weighted Laplacian of a
graph can be interpreted as a resistor network [18]. Each
edge in the network can be thought of as a resistor
with resistance equal to the inverse of the edge weight,
r

k

= W(k)�1 = w

�1
k

for k 2 E .4 The resistance
between any two pairs of nodes can be determined using
standard methods from electrical network theory [18]. It
may also be computed using the Moore-Penrose pseudo-
inverse of the graph Laplacian, denoted L(G)†.

4Thus, the edge weight w
k

can be interpreted as an admittance.

Definition III.1 ( [18]) The effective resistance be-

tween nodes u, v 2 V in a weighted graph, denoted

R
uv

(G), is

R
uv

(G) = (e
u

� e
v

)T

L

†(G)(e
u

� e
v

)

= [L†(G)]
uu

� 2[L†(G)]
uv

+ [L†(G)]
vv

,

where e
u

is the indicator vector for node u, that is e
u

=
1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance be-
tween two nodes is related to the matrix R(T ,C)WR(T ,C).
In this direction, we first derive an expression for the
pseudo-inverse of the graph Laplacian using the essential
edge Laplacian matrix.

Proposition III.2 Let G be a connected graph and as-

sume �(L(G)) = (n+, n�, 1). Then the pseudo-inverse

of the weighted graph Laplacian can be expressed as

L

†(G) = (EL

T )T

�
R(T ,C)WR

T

(T ,C)

��1
E

L

T

= (EL

T )T

Less(T )�1
E

T

T , (3)

where E

L

T = L

e

(T )�1
E

T

T is the left-inverse of ET .

Proof: From Theorem II.2 we conclude the essen-
tial edge Laplacian is invertible and it follows that

Less(T )�1 =
�
R(T ,C)WR

T

(T ,C)

��1
L

e

(T )�1
,

and

L

†(G) = S

 �
R(T ,C)WR

T

(T ,C)

��1
L

e

(T )�1 0
0 0

�
S

�1
,

where S is the transformation matrix defined in Propo-
sition II.1, and (3) follows directly.

From Proposition III.2, it is clear that the effective
resistance between nodes u, v 2 V can be expressed as

R
uv

(G) =(e
u

�e
v

)T (EL

T )
T

⇣
R(T ,C)WRT

(T ,C)

⌘�1
EL

T (eu

�e
v

).

We now show that this equivalent characterization of
the effective resistance is useful for understanding the
definiteness of the weighted Laplacian.

Theorem III.3 Assume that G = (V, E , W) has one

edge with a negative weight, e� = (u, v) 2 E . Let

G+ = (V, E \ {e�}, W) and G� = (V, e�, W) and

assume G+ is connected. Furthermore, let R
uv

(G+)
denote the effective resistance between nodes u, v 2 V
over the graph G+. Then L(G) is positive semi-definite

if and only if |W(e�)|  R�1
uv

(G+).

Proof: Denote by E� the incidence matrix of G�,
and E+ = ET+

R(T+,C+) the incidence matrix of G+ =
T+ [C+. The Laplacian matrix can now be expressed as

L(G) = ET+
R(T+,C+)W+R

T

(T+,C+)E
T

T+
�E�|W(e�)|ET

�.

E�

G+ u

v
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The result of Proposition II.1 and Theorem II.2 shows
that the presence of negative edge weights can introduce
both negative and zero eigenvalues. The next result
relates the signature of the essential edge Laplacian
matrix to the matrix R(F,C)WR
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(F,C).

Corollary II.3
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(F,C) turns out to be closely
related to many combinatorial properties of a graph. For
example, the rows of the matrix R(F,C) form a basis
for the cut-space of the graph [2]. This matrix is also
intimately related to the notion of effective resistance
of a graph, which will be discussed in the sequel.
Corollary II.4 thus shows that studying the definiteness
of the weighted Laplacian can be reduced to studying the
matrix R(F,C)WR
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(F,C) which contains in a more explicit
way information on how both the location and magnitude
of negative weight edges influence it spectral properties.

III. EFFECTIVE RESISTANCE AND THE
DEFINITENESS OF THE WEIGHTED LAPLACIAN

The results of Section II reveal that �(L(G)) is related
to �(R(F,C)WR
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(F,C)). In this section, we exploit the
structure of this matrix to show how the negative edge
weights affect the definiteness of the weighted Laplacian.
The derived conditions turn out to be related to the notion
of the effective resistance of a graph.

It is well known that the weighted Laplacian of a
graph can be interpreted as a resistor network [18]. Each
edge in the network can be thought of as a resistor
with resistance equal to the inverse of the edge weight,
r
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= W(k)�1 = w
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for k 2 E .4 The resistance
between any two pairs of nodes can be determined using
standard methods from electrical network theory [18]. It
may also be computed using the Moore-Penrose pseudo-
inverse of the graph Laplacian, denoted L(G)†.

4Thus, the edge weight w
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can be interpreted as an admittance.

Definition III.1 ( [18]) The effective resistance be-

tween nodes u, v 2 V in a weighted graph, denoted
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where e
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is the indicator vector for node u, that is e
u

=
1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance be-
tween two nodes is related to the matrix R(T ,C)WR(T ,C).
In this direction, we first derive an expression for the
pseudo-inverse of the graph Laplacian using the essential
edge Laplacian matrix.

Proposition III.2 Let G be a connected graph and as-

sume �(L(G)) = (n+, n�, 1). Then the pseudo-inverse

of the weighted graph Laplacian can be expressed as
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where S is the transformation matrix defined in Propo-
sition II.1, and (3) follows directly.

From Proposition III.2, it is clear that the effective
resistance between nodes u, v 2 V can be expressed as
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We now show that this equivalent characterization of
the effective resistance is useful for understanding the
definiteness of the weighted Laplacian.

Theorem III.3 Assume that G = (V, E , W) has one

edge with a negative weight, e� = (u, v) 2 E . Let

G+ = (V, E \ {e�}, W) and G� = (V, e�, W) and

assume G+ is connected. Furthermore, let R
uv

(G+)
denote the effective resistance between nodes u, v 2 V
over the graph G+. Then L(G) is positive semi-definite

if and only if |W(e�)|  R�1
uv

(G+).

Proof: Denote by E� the incidence matrix of G�,
and E+ = ET+

R(T+,C+) the incidence matrix of G+ =
T+ [C+. The Laplacian matrix can now be expressed as

L(G) = ET+
R(T+,C+)W+R

T
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Fig. 1. Resistive network interpretation with one negative weight edge.

By the Schur complement, L(G) � 0 if and only if
 |W(e�)|�1

E

T

�
E� ET+

R(T+,C+)W+R

T

(T+,C+)E
T

T+

�
� 0.

Applying a congruent transformation to the above matrix
using

S =

"
I 0

0
h

(EL

T+
)T 1

i
#

leads to the following LMI condition,
"

|W(e�)|�1
E

T (EL

T+
)T

E

L

T+
E� R(T+,C+)W+R

T

(T+,C+)

#
� 0.

Applying again the Schur complement, we obtain the
equivalent condition that the matrix

|W(e�)|�1 � ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E

must also be positive semi-definite. Observe now that

ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E� = R

uv

(G+).

This then leads to the desired conclusion that
|W(e�)|  R�1

uv

(G+).
The above result has a very intuitive physical inter-

pretation. The entire network G+ can be considered as
a single lumped resistor between nodes u and v with
resistance R

uv

(G+). The negate-weight edge can thus be
thought of adding another resistor in parallel between the
nodes, as in Figure 1. The equivalent resistance between
u and v is well-known to be

R
uv

(G) =
R

uv

(G+)r�
R

uv

(G+) + r�
.

If r� is a negative resistor, then choosing r� =
�R

uv

(G+) corresponds to an equivalent resistance that
is infinite, i.e., an open circuit. The open circuit can be
thought of as a cut between the terminals u and v.

The result in Theorem III.3 can be generalized to
multiple negative weight edges with some additional
assumptions on how those edges are distributed in the
graph. In this direction, let E� and E+ denote, respec-
tively, the edges with negative and positive weights. For
each edge k = (u, v) 2 E�, define the set P

k

✓ E+ to

be the set of all edges in G+ = (V, E+) that belong to a
path connecting nodes u to v,

P

k

= {e 2 E+ | k = (u, v) 2 E�, 9 a path in G+

from u to v using edge e} . (4)

Let G+(P
k

) ✓ G+ be the subgraph induced by the
edges in P

k

.5 Note that if P

k

\ P

k

0 = ; for edges with
distinct nodes (i.e. k = (u, v) and k

0 = (u0
, v

0) 2 E�),
then there exists no cycle in G+ containing the nodes
u, v, u

0
, v

0.An important class of graphs that can admit
such a partition are the cactus graphs [19]. Using this
characterization, the following statement on effective
resistance with multiple negative weight edges can be
stated as follows.

Theorem III.4 Assume that G+ is connected and

|E�| > 1. Let R
k

(G+) denote the effective resistance

between nodes u, v 2 V with k = (u, v) 2 E� over the

graph G+, and let R = diag{R1(G+), . . . , R|E�|(G+)}.

Furthermore, assume that P
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= ; for all i, j 2 E�,

where P

i
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is positive semi-definite if and only if |W�|  R�1
.

Proof: As in the proof of Theorem III.3, we
consider the LMI
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diagonal matrix with R
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).
The LMI condition can now be expressed as

|W�|�1 � R which implies that |W�|  R�1 con-
cluding the proof.

Theorem III.4 also has the same physical interpreta-
tion as Theorem III.3. Indeed, the resistance between
two nodes contained in a sub-graph G+(P

k

) is not
determined by any other edges in the network. Both

5Thus, G+(P
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k
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) where V(P
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) ✓ V are the nodes
incident to edges in P

k

.
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Fig. 1. Resistive network interpretation with one negative weight edge.
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The above result has a very intuitive physical inter-

pretation. The entire network G+ can be considered as
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is infinite, i.e., an open circuit. The open circuit can be
thought of as a cut between the terminals u and v.

The result in Theorem III.3 can be generalized to
multiple negative weight edges with some additional
assumptions on how those edges are distributed in the
graph. In this direction, let E� and E+ denote, respec-
tively, the edges with negative and positive weights. For
each edge k = (u, v) 2 E�, define the set P

k

✓ E+ to

be the set of all edges in G+ = (V, E+) that belong to a
path connecting nodes u to v,

P

k

= {e 2 E+ | k = (u, v) 2 E�, 9 a path in G+

from u to v using edge e} . (4)

Let G+(P
k

) ✓ G+ be the subgraph induced by the
edges in P

k

.5 Note that if P

k

\ P

k

0 = ; for edges with
distinct nodes (i.e. k = (u, v) and k

0 = (u0
, v

0) 2 E�),
then there exists no cycle in G+ containing the nodes
u, v, u

0
, v

0.An important class of graphs that can admit
such a partition are the cactus graphs [19]. Using this
characterization, the following statement on effective
resistance with multiple negative weight edges can be
stated as follows.

Theorem III.4 Assume that G+ is connected and

|E�| > 1. Let R
k

(G+) denote the effective resistance

between nodes u, v 2 V with k = (u, v) 2 E� over the

graph G+, and let R = diag{R1(G+), . . . , R|E�|(G+)}.

Furthermore, assume that P

i

\ P

j

= ; for all i, j 2 E�,

where P

i

is defined in (4). Then the weighted Laplacian

is positive semi-definite if and only if |W�|  R�1
.

Proof: As in the proof of Theorem III.3, we
consider the LMI

|W�|�1�ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E� � 0

Due to the location of the negative weight edges
assumed in the graph, it can be verified that the matrix
E

T

�(EL

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1

E

L

T+
E� is in fact a

diagonal matrix with R
k

(G+) for k = 1, . . . , |E�| on the
diagonal, denoted as R. To see this, observe that E

L

T+
E�

is a {0, ±1} matrix that describes which edges in the
spanning tree T+ can create a cycle with each edge in E�
(this is related to the matrix T(T ,C) used in Proposition
II.1 since T+ = T and therefore E� ✓ E

c

). Observe
also that an edge k 2 E� can only be incident to nodes
in the subgraph G+(P

k

). Therefore, the matrix E

L

T+
E�

has a partitioned structure (after a suitable relabeling of
the edges) such that the kth column of E

L

T+
E� will

contain non-zero elements corresponding to edges in
T+ \ G+(P

k

).
The LMI condition can now be expressed as

|W�|�1 � R which implies that |W�|  R�1 con-
cluding the proof.

Theorem III.4 also has the same physical interpreta-
tion as Theorem III.3. Indeed, the resistance between
two nodes contained in a sub-graph G+(P

k

) is not
determined by any other edges in the network. Both

5Thus, G+(P
k

) = (V(P
k

), P
k

) where V(P
k

) ✓ V are the nodes
incident to edges in P

k

.
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ruv(G+)
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The result of Proposition II.1 and Theorem II.2 shows
that the presence of negative edge weights can introduce
both negative and zero eigenvalues. The next result
relates the signature of the essential edge Laplacian
matrix to the matrix R(F,C)WR

T

(F,C).

Corollary II.3

�(Less(F)) = �(R(F,C)WR

T

(F,C)).

Proof: Using the similarity transformation matrix
L

e

(F)
1
2 we have that L

e

(F)R(F,C)WR

T

(F,C) is similar to
L

e

(F)
1
2
R(F,C)WR

T

(F,C)Le

(F)
1
2 . This matrix is congru-

ent to R(F,C)WR

T

(F,C) and thus has the same signature
as L

e

(F)R(F,C)WR

T

(F,C).

Corollary II.4 Assume G has c connected

components and �(L(G)) = (n+, n�, n0). Then

�(R(F,C)WR

T

(F,C)) = (n+, n�, n0 � c).

The matrix R(F,C)WR

T

(F,C) turns out to be closely
related to many combinatorial properties of a graph. For
example, the rows of the matrix R(F,C) form a basis
for the cut-space of the graph [2]. This matrix is also
intimately related to the notion of effective resistance
of a graph, which will be discussed in the sequel.
Corollary II.4 thus shows that studying the definiteness
of the weighted Laplacian can be reduced to studying the
matrix R(F,C)WR

T

(F,C) which contains in a more explicit
way information on how both the location and magnitude
of negative weight edges influence it spectral properties.

III. EFFECTIVE RESISTANCE AND THE
DEFINITENESS OF THE WEIGHTED LAPLACIAN

The results of Section II reveal that �(L(G)) is related
to �(R(F,C)WR

T

(F,C)). In this section, we exploit the
structure of this matrix to show how the negative edge
weights affect the definiteness of the weighted Laplacian.
The derived conditions turn out to be related to the notion
of the effective resistance of a graph.

It is well known that the weighted Laplacian of a
graph can be interpreted as a resistor network [18]. Each
edge in the network can be thought of as a resistor
with resistance equal to the inverse of the edge weight,
r

k

= W(k)�1 = w

�1
k

for k 2 E .4 The resistance
between any two pairs of nodes can be determined using
standard methods from electrical network theory [18]. It
may also be computed using the Moore-Penrose pseudo-
inverse of the graph Laplacian, denoted L(G)†.

4Thus, the edge weight w
k

can be interpreted as an admittance.

Definition III.1 ( [18]) The effective resistance be-

tween nodes u, v 2 V in a weighted graph, denoted

R
uv

(G), is

R
uv

(G) = (e
u

� e
v

)T

L

†(G)(e
u

� e
v

)

= [L†(G)]
uu

� 2[L†(G)]
uv

+ [L†(G)]
vv

,

where e
u

is the indicator vector for node u, that is e
u

=
1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance be-
tween two nodes is related to the matrix R(T ,C)WR(T ,C).
In this direction, we first derive an expression for the
pseudo-inverse of the graph Laplacian using the essential
edge Laplacian matrix.

Proposition III.2 Let G be a connected graph and as-

sume �(L(G)) = (n+, n�, 1). Then the pseudo-inverse

of the weighted graph Laplacian can be expressed as

L

†(G) = (EL

T )T

�
R(T ,C)WR

T

(T ,C)

��1
E

L

T

= (EL

T )T

Less(T )�1
E

T

T , (3)

where E

L

T = L

e

(T )�1
E

T

T is the left-inverse of ET .

Proof: From Theorem II.2 we conclude the essen-
tial edge Laplacian is invertible and it follows that

Less(T )�1 =
�
R(T ,C)WR

T

(T ,C)

��1
L

e

(T )�1
,

and

L

†(G) = S

 �
R(T ,C)WR

T

(T ,C)

��1
L

e

(T )�1 0
0 0

�
S

�1
,

where S is the transformation matrix defined in Propo-
sition II.1, and (3) follows directly.

From Proposition III.2, it is clear that the effective
resistance between nodes u, v 2 V can be expressed as

R
uv

(G) =(e
u

�e
v

)T (EL

T )
T

⇣
R(T ,C)WRT

(T ,C)

⌘�1
EL

T (eu

�e
v

).

We now show that this equivalent characterization of
the effective resistance is useful for understanding the
definiteness of the weighted Laplacian.

Theorem III.3 Assume that G = (V, E , W) has one

edge with a negative weight, e� = (u, v) 2 E . Let

G+ = (V, E \ {e�}, W) and G� = (V, e�, W) and

assume G+ is connected. Furthermore, let R
uv

(G+)
denote the effective resistance between nodes u, v 2 V
over the graph G+. Then L(G) is positive semi-definite

if and only if |W(e�)|  R�1
uv

(G+).

Proof: Denote by E� the incidence matrix of G�,
and E+ = ET+

R(T+,C+) the incidence matrix of G+ =
T+ [C+. The Laplacian matrix can now be expressed as

L(G) = ET+
R(T+,C+)W+R

T

(T+,C+)E
T

T+
�E�|W(e�)|ET

�.

R
uv

(G+)

u v

r�

Fig. 1. Resistive network interpretation with one negative weight edge.

By the Schur complement, L(G) � 0 if and only if
 |W(e�)|�1

E

T

�
E� ET+

R(T+,C+)W+R

T

(T+,C+)E
T

T+

�
� 0.

Applying a congruent transformation to the above matrix
using

S =

"
I 0

0
h

(EL

T+
)T 1

i
#

leads to the following LMI condition,
"

|W(e�)|�1
E

T (EL

T+
)T

E

L

T+
E� R(T+,C+)W+R

T

(T+,C+)

#
� 0.

Applying again the Schur complement, we obtain the
equivalent condition that the matrix

|W(e�)|�1 � ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E

must also be positive semi-definite. Observe now that

ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E� = R

uv

(G+).

This then leads to the desired conclusion that
|W(e�)|  R�1

uv

(G+).
The above result has a very intuitive physical inter-

pretation. The entire network G+ can be considered as
a single lumped resistor between nodes u and v with
resistance R

uv

(G+). The negate-weight edge can thus be
thought of adding another resistor in parallel between the
nodes, as in Figure 1. The equivalent resistance between
u and v is well-known to be

R
uv

(G) =
R

uv

(G+)r�
R

uv

(G+) + r�
.

If r� is a negative resistor, then choosing r� =
�R

uv

(G+) corresponds to an equivalent resistance that
is infinite, i.e., an open circuit. The open circuit can be
thought of as a cut between the terminals u and v.

The result in Theorem III.3 can be generalized to
multiple negative weight edges with some additional
assumptions on how those edges are distributed in the
graph. In this direction, let E� and E+ denote, respec-
tively, the edges with negative and positive weights. For
each edge k = (u, v) 2 E�, define the set P

k

✓ E+ to

be the set of all edges in G+ = (V, E+) that belong to a
path connecting nodes u to v,

P

k

= {e 2 E+ | k = (u, v) 2 E�, 9 a path in G+

from u to v using edge e} . (4)

Let G+(P
k

) ✓ G+ be the subgraph induced by the
edges in P

k

.5 Note that if P

k

\ P

k

0 = ; for edges with
distinct nodes (i.e. k = (u, v) and k

0 = (u0
, v

0) 2 E�),
then there exists no cycle in G+ containing the nodes
u, v, u

0
, v

0.An important class of graphs that can admit
such a partition are the cactus graphs [19]. Using this
characterization, the following statement on effective
resistance with multiple negative weight edges can be
stated as follows.

Theorem III.4 Assume that G+ is connected and

|E�| > 1. Let R
k

(G+) denote the effective resistance

between nodes u, v 2 V with k = (u, v) 2 E� over the

graph G+, and let R = diag{R1(G+), . . . , R|E�|(G+)}.

Furthermore, assume that P

i

\ P

j

= ; for all i, j 2 E�,

where P

i

is defined in (4). Then the weighted Laplacian

is positive semi-definite if and only if |W�|  R�1
.

Proof: As in the proof of Theorem III.3, we
consider the LMI

|W�|�1�ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E� � 0

Due to the location of the negative weight edges
assumed in the graph, it can be verified that the matrix
E

T

�(EL

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1

E

L

T+
E� is in fact a

diagonal matrix with R
k

(G+) for k = 1, . . . , |E�| on the
diagonal, denoted as R. To see this, observe that E

L

T+
E�

is a {0, ±1} matrix that describes which edges in the
spanning tree T+ can create a cycle with each edge in E�
(this is related to the matrix T(T ,C) used in Proposition
II.1 since T+ = T and therefore E� ✓ E

c

). Observe
also that an edge k 2 E� can only be incident to nodes
in the subgraph G+(P

k

). Therefore, the matrix E

L

T+
E�

has a partitioned structure (after a suitable relabeling of
the edges) such that the kth column of E

L

T+
E� will

contain non-zero elements corresponding to edges in
T+ \ G+(P

k

).
The LMI condition can now be expressed as

|W�|�1 � R which implies that |W�|  R�1 con-
cluding the proof.

Theorem III.4 also has the same physical interpreta-
tion as Theorem III.3. Indeed, the resistance between
two nodes contained in a sub-graph G+(P

k

) is not
determined by any other edges in the network. Both

5Thus, G+(P
k

) = (V(P
k

), P
k

) where V(P
k

) ✓ V are the nodes
incident to edges in P

k

.
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Fig. 1. Resistive network interpretation with one negative weight edge.

By the Schur complement, L(G) � 0 if and only if
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�
� 0.

Applying a congruent transformation to the above matrix
using

S =

"
I 0

0
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leads to the following LMI condition,
"
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Applying again the Schur complement, we obtain the
equivalent condition that the matrix

|W(e�)|�1 � ET

�(E
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T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E

must also be positive semi-definite. Observe now that
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�(E
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T+
)T (R(T+,C+)W+R

T

(T+,C+))
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T+
E� = R

uv

(G+).

This then leads to the desired conclusion that
|W(e�)|  R�1

uv

(G+).
The above result has a very intuitive physical inter-

pretation. The entire network G+ can be considered as
a single lumped resistor between nodes u and v with
resistance R

uv

(G+). The negate-weight edge can thus be
thought of adding another resistor in parallel between the
nodes, as in Figure 1. The equivalent resistance between
u and v is well-known to be

R
uv

(G) =
R

uv

(G+)r�
R

uv

(G+) + r�
.

If r� is a negative resistor, then choosing r� =
�R

uv

(G+) corresponds to an equivalent resistance that
is infinite, i.e., an open circuit. The open circuit can be
thought of as a cut between the terminals u and v.

The result in Theorem III.3 can be generalized to
multiple negative weight edges with some additional
assumptions on how those edges are distributed in the
graph. In this direction, let E� and E+ denote, respec-
tively, the edges with negative and positive weights. For
each edge k = (u, v) 2 E�, define the set P

k

✓ E+ to

be the set of all edges in G+ = (V, E+) that belong to a
path connecting nodes u to v,

P

k

= {e 2 E+ | k = (u, v) 2 E�, 9 a path in G+

from u to v using edge e} . (4)

Let G+(P
k

) ✓ G+ be the subgraph induced by the
edges in P

k

.5 Note that if P

k

\ P

k

0 = ; for edges with
distinct nodes (i.e. k = (u, v) and k

0 = (u0
, v

0) 2 E�),
then there exists no cycle in G+ containing the nodes
u, v, u

0
, v

0.An important class of graphs that can admit
such a partition are the cactus graphs [19]. Using this
characterization, the following statement on effective
resistance with multiple negative weight edges can be
stated as follows.

Theorem III.4 Assume that G+ is connected and

|E�| > 1. Let R
k

(G+) denote the effective resistance

between nodes u, v 2 V with k = (u, v) 2 E� over the

graph G+, and let R = diag{R1(G+), . . . , R|E�|(G+)}.

Furthermore, assume that P

i

\ P

j

= ; for all i, j 2 E�,

where P

i

is defined in (4). Then the weighted Laplacian

is positive semi-definite if and only if |W�|  R�1
.

Proof: As in the proof of Theorem III.3, we
consider the LMI

|W�|�1�ET

�(E
L

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1EL

T+
E� � 0

Due to the location of the negative weight edges
assumed in the graph, it can be verified that the matrix
E

T

�(EL

T+
)T (R(T+,C+)W+R

T

(T+,C+))
�1

E

L

T+
E� is in fact a

diagonal matrix with R
k

(G+) for k = 1, . . . , |E�| on the
diagonal, denoted as R. To see this, observe that E

L

T+
E�

is a {0, ±1} matrix that describes which edges in the
spanning tree T+ can create a cycle with each edge in E�
(this is related to the matrix T(T ,C) used in Proposition
II.1 since T+ = T and therefore E� ✓ E

c

). Observe
also that an edge k 2 E� can only be incident to nodes
in the subgraph G+(P

k

). Therefore, the matrix E

L

T+
E�

has a partitioned structure (after a suitable relabeling of
the edges) such that the kth column of E

L

T+
E� will

contain non-zero elements corresponding to edges in
T+ \ G+(P

k

).
The LMI condition can now be expressed as

|W�|�1 � R which implies that |W�|  R�1 con-
cluding the proof.

Theorem III.4 also has the same physical interpreta-
tion as Theorem III.3. Indeed, the resistance between
two nodes contained in a sub-graph G+(P

k

) is not
determined by any other edges in the network. Both

5Thus, G+(P
k

) = (V(P
k

), P
k

) where V(P
k

) ✓ V are the nodes
incident to edges in P

k

.
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Fig. 2. Resistive network interpretation with one negative weight edge.

V. ON THE ROBUST STABILITY OF THE UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system ⌃F(G, �) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs w(t) to the controlled output z(t) in the presence of the structured
uncertainty � 2 � can be characterized by the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)

�1
M12, (13)

where

M11(s) = P

T

R

T

(F,C)(sI + L

ess

(F))

�1
L

e

(F)R(F,C)P

M12(s) = P

T

R

T

(F,C)(sI + L

ess

(F))

�1
E(F)

T

M21(s) = E(G
o

)

T

(E

L

F )

T

(sI + L

ess

(F))

�1
L

e

(F)R(F,C)P

M22(s) = E(G
o

)

T

(E

L

F )

T

(sI + L

ess

(F))

�1
E(F)

T

.

This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I�M11�)

has a stable proper inverse is to ensure that kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])
kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|
, k�k  �, � diagonal} and assume ⌃F(G) is nominally stable. Then

the uncertain edge agreement protocol is robustly stable for any � 2 � if k�k < (�(M11(0)))

�1
.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E� forms a cut set
of G, is it possible that max

e2E� W(e) < �(M11(0))

�1. The following result shows that this can not be the case.

17

Theorem
kM11(s)k1 = Ruv-

-  The uncertain consensus network is stable for any 
k�k1 < R�1

uv

a consensus network with an 
uncertain edge weight

w = w0 + �
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V. ON THE ROBUST STABILITY OF THE UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system ⌃F(G, �) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs w(t) to the controlled output z(t) in the presence of the structured
uncertainty � 2 � can be characterized by the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)
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where
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(F))

�1
L

e

(F)R(F,C)P

M12(s) = P

T

R

T

(F,C)(sI + L

ess

(F))

�1
E(F)

T

M21(s) = E(G
o

)

T

(E

L

F )

T

(sI + L

ess

(F))

�1
L

e

(F)R(F,C)P

M22(s) = E(G
o

)

T

(E

L

F )

T

(sI + L

ess

(F))

�1
E(F)

T

.

This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I�M11�)

has a stable proper inverse is to ensure that kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])
kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|
, k�k  �, � diagonal} and assume ⌃F(G) is nominally stable. Then

the uncertain edge agreement protocol is robustly stable for any � 2 � if k�k < (�(M11(0)))

�1
.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E� forms a cut set
of G, is it possible that max

e2E� W(e) < �(M11(0))

�1. The following result shows that this can not be the case.
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Theorem
kM11(s)k1 = Ruv-

-  The uncertain consensus network is stable for any 
k�k1 < R�1

uv

a consensus network with an 
uncertain edge weight

w = w0 + �

⌃(G,�) :

⇢
ẋ(t) = �E(G)(W +�)E(G)Tx(t) + w(t)
z(t) = E(G

o

)Tx(t)
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An Illustrative Example
any single edge in the 
cycle can make the 
Laplacian indefinite

w6 = � 1

r6
= �1

4

L(G) has two eigenvalues 
at the origin w1

w2 w3 w4

w5

w6

w7

w9

w8

w9

w10
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Proposition
Consider a graph with only one cycle and one negative weight edge 
contained in the cycle.  Then the number of clusters equals the 
number of components in the graph obtained by removing all the 
edges in the cycle.
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Concluding Remarks

�
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• implications for robustness of consensus networks  
•explore the robust performance and robust synthesis problems 
• how can one measure the effective resistance in a multi-agent system? 
• combinatorial uncertainties
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