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Distributed Estimates of the
Rigidity Eigenvalue (rigidity metrics)

Circled robots: Maintain rigidity while tracking an exogenous command
° 4 : Other robots: Maintain rigidity
° 1 Link colors:

The leader robots (circled) are free to move and operate in the environment
while the entire group ensures that rigidity of the formation is maintained,
avoids inter-robot collisions and ensures obstacle avoidance

Lateral view
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The Consensus Protocol

Consensus Protocol

wi(t) = ) wij(a;(t) —zi(1))

1~

Theorem Let G = (V,E, W) be a weighted and

connected graph with positive edge weights YW(k) > 0
for k=1,...,|&|. Then the consensus dynamics
synchronizes; i.e., lim; o z;(t) =B fort=1,...,|V)|.

Mesbahi & Egerstedt, Olfati-Saber, Ren
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Synchronization and the Laplacian

The Linear Weighted
Consensus Protocol

Ei(t) = ) wij(a;(t) — zi(1))

1~
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Synchronization and the Laplacian

r(t) = e L9ty

lim z(t) = B1 < L(G) has only one eigenvalue at the origin

t— 00

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)
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Synchronization and the Laplacian
#(t) = —L(G)x(t)

system behavior depends on
the spectral properties of the
graph Laplacian

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)
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Synchronization and the Laplacian
#(t) = —L(G)x(t)

can we understand spectral
properties of the Laplacian
from the structure of the graph?

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)
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Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles

\
Y
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Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles

E@G) =E(T)[ 1 Tire ]

R(T,c)
Tire) = (E7Er)” E7 E(C) T U C

7_
\ -

remaining edges

a spanning tree
& 5 “complete cycles”
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Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles
E@G)=E(T)| I T(TC)
R 7.0
T(T>C) — (E;lj 1ET KL‘J C

L(G) = E(9)
remaining edges
a spanning tree
“complete cycles”
Weighted Edge Laplacian Essential Edge Laplacian

N

L.(G) = W2E(G)TE(G)W T)Rire/WRE o = Lesa(0)

: /lmllarlty between ed e\
R( rows form a basis for the and graph Laplacians

TC)  cut space of the graph
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Some Properties of L.(G)

Proposition  The matric L.(T)Rr o WR/,
has the same inertia as R C)WR(T oy Oimilarly,

the matrix (Le(T)R+ C)WR(T o) 1 has the same
inertia as (R oy WR/ o))"

Recall: The inertia of a matrix
is the number of negative, 0,
and positive eigenvalues

R
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Some Properties of L.(G)

Proposition  The matric L.(T)Rr o WR/,
has the same inertia as R C)WR(T oy Oimilarly,

the matrix (Le(T)R+ C)WR(T o) 1 has the same
inertia as (R oy WR/ o))"

Recall: The inertia of a matrix
is the number of negative, 0,
and positive eigenvalues

Proof:
1

L(T)R c>WR<~r ey ~ Le(T) 2 Rt C)WR(T ey Le(T)2

L (T)2R(7' C)WR TC)L (T)% IS congruent to R(T C)WR(T C)

congruent matrices have the same inertia

R

25M NPLINIMKX NDTIND NLMPaAN 9 CDC Dec. 16, 2014
\\7 Faculty of Aerospace Engineering LLos Angeles, CA




Some Properties of L.(G)

Proposition
L(G)>0& R+ C)WR(T ¢, = 0

R
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Some Properties of L.(G)

Proposition
L(G)>0& R+ C)WR(T ¢, = 0

The definiteness of the graph
Laplacian can be studied R(T C) WR (T.C)

through another matrix!
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Some Properties of L.(G)

Proposition
L(G)>0& R+ C)WR(T ¢, = 0

The definiteness of the graph
Laplacian can be studied R(T C) WR(T c)

through another matrix!

intimately related to the notion

of effective resistance of a
network

R
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Effective Resistance of a Graph

The effective resistance between two nodes u and v is the
electrical resistance measured across the nodes when the
graph represents an electrical circuit with each edge a resistor

: AD :
u® wy lﬁ%%\@
U Tk

1 edge weights are the

Tk = w_k conductance of each resistor
TFuv = (eu — er)TL]L (g)(eu — ev)
1Kg|369ig and Randi¢ — [LT (g)}uu —9 [LT (g)]uv 1 [LT (g)}vv

9
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Effective Resistance of a Graph

Proposition
—1
LT (G) = (E7I:)T (R(T,C)WR(TT,C)) E£

(ENTL,..(T) 'ET
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Effective Resistance of a Graph

Proposition
—1
LT (G) = (E7I:)T (R(T,C)WR(TT,C)) E£

(ENTL,..(T) 'ET

Fuv = (eu — ev)TLT(g)(eu — ev)
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Effective Resistance of a Graph

Proposition
—1
£H(G) = (BN (Ripe WY, ) BL

= (EH)"L...(T)'E]

Fuv = (eu — ev)TLT(g)(eu — ev)

G=TUC
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Effective Resistance of a Graph

Proposition
—1
LT (G) = (E7I:)T (R(T,C)WR(TT,C)) E£

(ENTL,..(T) 'ET

Fuv = (eu — ev)TLT(g)(eu — ev)

i T ] T1

0 T2

E7I: (eu B ev) - +1 T3
I 0 | T4

indicates a path from node -
uto v using only edges in ~ L(r.e) = SET Er)"ElE
the spanning tree
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Effective Resistance of a Graph

—1
Ty = (€4 — ev)T(Eﬁ)T (RW,C)WR(TT,C)) E’% (ew — €y)

u

Er(e, —e,) =1

T = w—k (HTWT_l]l) w6_1

W, = diag{ws, ..., ws}
<
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Spectral Properties of Signed Graphs

Theorem Assume that G = (V,E, W) has one
edge with a negative weight, e = (u,v) € &. Let
G. = V,.E\{e_},W) and G = (V,e_, W) and
assume G. is connected. Furthermore, let R, (G )
denote the effective resistance between nodes u,v € V
over the graph G.. Then L(G) is positive semi-definite
if and only if W(e_)| < Ry (G ).

v 25M NPLINIMKX NDTIND NLMPaAN | 4 CDC Dec. 16, 2014
\

Faculty of Aerospace Engineering lLos Angeles, CA



Spectral Properties of Signed Graphs

Proof:

L(G)=Er Ry ¢ W+RL . ET —E_|W(e_)|ET

(TL,Cy) Ty

(e )] ! 20
E Er R W,RL . ET | =Y
— T YT " ATy ) T
‘W(I?—H_l E_T(E7L’+); > ()
_ ET+E_ R(T_|_,C_|_)W-|—R(T+,C+) | B

Wt - ET(EZ)T(R<f+,c+>W+R<j;+,c+>)_1E£+E— > 0
—_

Tuv(G+)
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Spectral Properties of Signed Graphs

Proof:

L(G)=Er Ry ¢ W+RL . ET —E_|W(e_)|ET

(TL,Cy) Ty

(e )| BT |
Schur Complement - pT I 20

I E_ ET_I_R(T_I_,C_|_)W+R(T_|_,C_|_)ET—|— .
Congruent \W(e—)|_1 ET(E7I:+)T > ()
Transformation L ) ) _

_ ET+ b R(T_|_,C_|_)W-|—R(T+,C+) ]

1 T L \T T —1pL
Schur Complement |W_|7" — E~ (EF+) (R(f+’c+)W+R(f+7c+>) EF+ £- 20

_—

Tuv(g+)
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Spectral Properties of Signed Graphs

Tuv(G4)

°V

Wi(e_ )~}

Ty (g+)W(€—)_1

’I”uv(g) — Tuv(g—l—) —|—W(€_)_1
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Spectral Properties of Signed Graphs

(e
u ° oy
VWA
W(e )
ruw(G) = ruu (G4 )W(e_) ™!

ruv(G4) + W(e-)™?

a single negative weight edge can create an open-circuit
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Uncertain Consensus Networks

a consensus network with an q(t) I A \ p(t)

uncertain edge weight

W = wo + 0

S(X-(G),A) = Moy + Moy A (I — MllA)_l Mo

Theorem
} ‘ Mll(s)Hoo = Ruw

- The uncertain consensus network is stable for any
—1
‘ AHOO < Ruv

R
25M NPLINIMKX NDTIND NLMPaAN 17 CDC Dec. 16, 2014
\ Faculty of Aerospace Engineering lLos Angeles, CA




Uncertain Consensus Networks

a consensus network with an q(t) I A \ p(t)

uncertain edge weight

W = wo + 0

—E(G)(W + A)E(G)" x(t) + w(t)
E(Go)" x(t)

“
Q
b
—
=
=
Il

(X7(G),A) = Moy + Moy A (I — MllA)_l Mo

92l

Theorem
) ‘ Mll(s)Hoo = Ruw

- The uncertain consensus network is stable for any
—1
‘ AHOO < Ruv
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An lllustrative Example

any single edge in the
cycle can make the
Laplacian indefinite

(G) has two eigenvalues
at the origin

Proposition

Consider a graph with only one cycle and one negative weight edge
contained in the cycle. Then the number of clusters equals the
number of components in the graph obtained by removing all the
edges in the cycle.

R
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Concluding Remarks

e implications for robustness of consensus networks

e explore the robust performance and robust synthesis problems

* how can one measure the effective resistance in a multi-agent system?
e combinatorial uncertainties

~

Y
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