diodes and the importance of network orientations in diffusively-coupled networks

iacas-63

Feng-Yu Yue and Daniel Zelazo

May 9, 2024

multi-agent systems and cooperative control

- Multi-agent systems:
	- ▶ Highly complex networked systems arising from the large-scale interconnection of many nonlinear dynamical systems
	- ▶ An enabling technology for a diverse range of application domains
- Cooperative control:
	- ▶ Formation flying
	- Cooperative surveillance
	- ▶ Synchronization

synchronization problem

Rendezvous

▶ Objective:

- \blacktriangleright Control the dynamics of each agent to generate the same trajectories or reach an agreement on some quantity or state.
- \blacktriangleright The control strategies are distributed

Formation flying

synchronization problem

Rendezvous

▶ Objective:

- \blacktriangleright Control the dynamics of each agent to generate the same trajectories or reach an agreement on some quantity or state.
- \blacktriangleright The control strategies are distributed

Formation flying

An Undirected graph

A Directed graph

- ▶ Nodes: agents Edges: information exchange protocol
- \blacktriangleright Graph $\mathcal{G} = (\mathbb{V}, \mathbb{E})$
	- \blacktriangleright Vertex set $\mathbb{V} = \{1, 2, 3, 4\}$
	- ▶ Edge set $\mathbb{E} = \{e_{12}, e_{23}, e_{34}, e_{41}\}$
- ▶ Undirected graphs and directed graphs

 \blacktriangleright Diffusively-coupled network $(\Sigma, \Pi, \mathcal{G})$

diffusively-coupled networks

- \blacktriangleright Diffusively-coupled network $(\Sigma, \Pi, \mathcal{G})$
	- \blacktriangleright Defined on graph $\mathcal G$
	- \blacktriangleright Agents Σ_i
	- Edge controllers Π_e
	- ▶ information exchange protocol: Incidence matrix \mathcal{E}_G

- \blacktriangleright Diffusively-coupled network $(\Sigma, \Pi, \mathcal{G})$
	- \blacktriangleright Defined on graph $\mathcal G$
	- \blacktriangleright Agents Σ_i
	- Edge controllers Π_e
	- ▶ information exchange protocol: Incidence matrix \mathcal{E}_G

• **Difference operators:**
$$
\zeta_e = (\mathcal{E}_\mathcal{G}^\top y)_e
$$

- \blacktriangleright Diffusively-coupled network $(\Sigma, \Pi, \mathcal{G})$
	- \blacktriangleright Defined on graph G
	- \blacktriangleright Agents Σ_i
	- \blacktriangleright Edge controllers Π_e
	- ▶ information exchange protocol: Incidence matrix \mathcal{E}_G
- ▶ Difference operators: $\zeta_e = (\mathcal{E}_{\mathcal{G}}^{\top} y)_e$
- ► Edge controllers: $\mu_e = (\Pi(\mathcal{E}_\mathcal{G}^\top y))_e$

- Diffusively-coupled network $(\Sigma, \Pi, \mathcal{G})$
	- Defined on graph G
	- \blacktriangleright Agents Σ_i
	- \blacktriangleright Edge controllers Π_e
	- ▶ information exchange protocol: Incidence matrix \mathcal{E}_G
- ▶ Difference operators: $\zeta_e = (\mathcal{E}_{\mathcal{G}}^{\top} y)_e$
- ► Edge controllers: $\mu_e = (\Pi(\mathcal{E}_\mathcal{G}^\top y))_e$
- ▶ Divergence operators: $u_i = -(\mathcal{E}_{\mathcal{G}} \Pi(\mathcal{E}_{\mathcal{G}}^{\top} y))_i$

- ▶ Classic setup \rightarrow Linear consensus protocol
	- \blacktriangleright $\mathcal{G}, \mathcal{E}_G$
	- $\blacktriangleright \Sigma_i : \dot{x}_i(t) = u_i(t)$ (integrators)
	- $\blacktriangleright \Pi_e : \mu_e(t) = w_e \zeta_e(t)$ $(W = \text{diag}\{(w_e)_{e \in \mathbb{E}}\})$
	- ► closed-loop: $\dot{x} = -\mathcal{E}W\mathcal{E}^{\top}x$

▶ Classic setup \rightarrow Linear consensus protocol

- \blacktriangleright G, \mathcal{E}_G
- $\blacktriangleright \Sigma_i : \dot{x}_i(t) = u_i(t)$ (integrators)
- $\blacktriangleright \Pi_e : \mu_e(t) = w_e \zeta_e(t)$ $(W = \text{diag}\{(w_e)_{e \in \mathbb{E}}\})$
- ► closed-loop: $\dot{x} = -\mathcal{E}W\mathcal{E}^\top x$

Theorem

Let G be a connected graph. Then the undirected agreement protocol $\dot{x}(t) = -\mathcal{E} W \mathcal{E}^\top x(t)$ converges to the agreement set.

Theorem

Let G be a connected graph. Then the undirected agreement protocol $\dot{x}(t) = -\mathcal{E} W \mathcal{E}^\top x(t)$ converges to the agreement set.

Initial condition $x_0 = [1, 2, -3, 8]^\top$ Average: 2

Theorem

Let G be a connected graph. Then the undirected agreement protocol $\dot{x}(t) = -\mathcal{E} W \mathcal{E}^\top x(t)$ converges to the agreement set.

Initial condition $x_0 = [1, 2, -3, 8]^\top$ Average: 2

1. Bürger, M., Zelazo, D., and Allgöwer, F. "Duality and network theory in passivity-based cooperative control." Automatica.

2. Sharf, M., and Zelazo, D. "Analysis and synthesis of MIMO multi-agent systems using network optimization." IEEE TAC.

What about consensus over directed graphs?

What about consensus over directed graphs?

Even if the agents are linear systems, it is difficult to analyze the network dynamic system. Problem is much harder when agents are nonlinear systems.

What about consensus over directed graphs?

Even if the agents are linear systems, it is difficult to analyze the network dynamic system. Problem is much harder when agents are nonlinear systems.

 \triangleright main point: the linear consensus protocol for directed graphs is not a diffusively-coupled network.

Initial condition
$$
x_0 = [1, 2, -3, 8]^\top
$$

Average: 2

How can we model the directed graphs in diffusively coupled networks?

How can we model the directed graphs in diffusively coupled networks?

 \triangleright Single conductance property of a diode

How can we model the directed graphs in diffusively coupled networks?

−3 −2 −1 0 1 2 3 0 1 2 3г $\zeta_e(t)$ $\mu_{\rm e}(t)$

- ▶ Single conductance property of a diode
- Diffusive diode network:

►
$$
\mathcal{G}, \mathcal{E}_{\mathcal{G}}
$$

\n► $\Sigma_i : \dot{x}_i(t) = u_i(t)$ (integrators)
\n► $\Pi_e : \mu_e(t) = \begin{cases} w_e \zeta_e(t), & \zeta_e(t) \ge 0, \\ 0, & \zeta_e(t) < 0, \end{cases}$

How can we model the directed graphs in diffusively coupled networks?

- ▶ Single conductance property of a diode
- Diffusive diode network:
	- \blacktriangleright G, \mathcal{E}_G $\blacktriangleright \Sigma_i : \dot{x}_i(t) = u_i(t)$ (integrators) \blacktriangleright $\Pi_e : \mu_e(t) =$ $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $w_e \zeta_e(t)$, $\zeta_e(t) \geq 0$, 0, $\zeta_e(t) < 0$,
	- \blacktriangleright Edge controllers: nonlinear

bridge the gap?

 $\boldsymbol{\chi}$ $\overline{\mathcal{E}_{\mathcal{G}}^T}$ $\overline{\mathcal{E}_{\mathcal{G}}}$ P $\overline{\zeta}$ μ

Undirected **Diode** Directed

 $\left(\begin{array}{c} 1 \\ 2 \end{array} \right)$ $\left(\begin{array}{c} 2 \\ 3 \end{array} \right)$

Bridge the gap?

Graph G

Graph \mathcal{G}_1

Graph \mathcal{G}_2

Graph \mathcal{G}_3

observation

Graph $\mathcal G$

Graph \mathcal{G}_1

Graph \mathcal{G}_2

Graph \mathcal{G}_3

Bridge the gap?

Can the systems achieve (average) consensus?

- ▶ Different orientations, different protocols
- ▶ Different initial conditions
- \blacktriangleright Each agent has a different initial state

observation

Graph $\mathcal G$

Graph \mathcal{G}_1

Graph \mathcal{G}_2

Graph \mathcal{G}_3

Bridge the gap?

Can the systems achieve (average) consensus?

- ▶ Different orientations, different protocols
- ▶ Different initial conditions
- \blacktriangleright Each agent has a different initial state

NOTE*: Avg(average consensus); Yes(consensus); IC(depends on initial conditions)

$$
x_2(t) > x_1(t), x_2(t) > x_3(t)
$$

\n
$$
\mu_{21} = \zeta_{21} = x_2(t) - x_1(t) > 0,
$$

\n
$$
\mu_{23} = \zeta_{23} = x_2(t) - x_3(t) > 0
$$

$$
\bigcirc \bigcirc \leftarrow e_{21} - \bigcirc \bigcirc \leftarrow e_{23} \rightarrow \bigcirc
$$

 $x_2(t) < x_1(t), x_2(t) > x_3(t)$ $\mu_{21} = \Pi(\zeta_{21}) = \Pi(x_2(t) - x_1(t)) = 0,$ $\mu_{23} = \zeta_{23} = x_2(t) - x_3(t) > 0$

$$
\bigcirc \rightarrow e_{21} = \bigcirc \rightarrow e_{23} \rightarrow \bigcirc
$$

Proposition

Let G be a directed path graph. If $x_1(0) > x_2(0) > \cdots > x_i(0) > \cdots > x_n(0)$, then the network diode dynamics achieves average consensus.

Directed path graph.

Directed cycle graph.

Proposition

Let G be a directed cycle graph. If there is at most one edge $e_k = (k, k + 1)$ such that $x_k(0) - x_{k-1}(0) < 0$, then the network diode dynamics achieves average consensus.

main results: rooted out-branchings

Radially symmetric rooted out-branching.

Proposition

Let G be a radially symmetric rooted out-branching. If all the edges are active when $t = 0$ and the nodes of the same depth have the same initial conditions, then the network diode dynamics achieves average consensus.

Rooted out-branching.

Proposition

Let G be a root out-tree and all the edges are active at the initial time. The network cannot reach an agreement only if there exists time T such that some of the edges displayed in black become inactive.

numerical results: rooted out-branchings

\triangleright Conclusion

- ▶ Properties of networked diode dynamics;
- \triangleright Sufficient condition on when the diffusive diode networks can achieve average consensus;
- \triangleright Sufficient conditions on the graphs (orientations) and the initial conditions of the network that lead to consensus.
- \triangleright A necessary condition that graphs containing rooted out-branchings can not achieve consensus.

▶ Future directions:

- \blacktriangleright Generalize to more complicated graphs and (agent) dynamics
- ▶ More general conditions for rooted out-branchings to achieve consensus.
- ▶ Are there situations where an inactive edge becomes an active edge?

Thank-You!

CoNeCt

Cooperative Networks and Controls Lab

TECHNION Israel Institute of Technology