symmetry-forced formation control

with Shin-Ichi Tanigawa (University of Tokyo) and Bernd Shulze (Lancaster University)

Formation Control Objective

Given a team of robots endowed with the ability to sense/ communicate with neighboring robots, design a control for each robot using only local information that moves the team into a desired spatial configuration.

formation constraints

- The desired formation is characterized by a set of M constraints, encoded in the function $F:\mathbb{R}^{nd}\to\mathbb{R}^{M}$, and a configuration \mathbf{p}^{\star} satisfying the constraints.
- The set of all feasible formations is

$$
\mathcal{F}(p) = \{ p \in \bar{\mathcal{D}} \mid F(p) = F(\mathbf{p}^*) \}
$$

Formation Control Objective

For an ensemble of n agents with dynamics

$$
\dot{p}_i=u_i,
$$

with $p_i(t) \in \mathbb{R}^d$, an information exchange graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and formation constraint function $F:\mathbb{R}^{nd}\to\mathbb{R}^{M}$, design a distributed control law for each agent $i\in\{1,\ldots,n\}$ such that the set $\mathcal{F}(p) = \{p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^\star)\},$

is asymptotically stable.

Theorem - Distance Constrained Formation Control [Krick 2009]

Consider the potential function

$$
F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(||p_i(t) - p_j(t)||^2 - (d_{ij}^*)^2 \right)^2
$$

and assume the desired distances d_{ij}^\star correspond to a feasible formation. Then the gradient dynamical system

$$
u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (||p_i - p_j||^2 - (d_{ij}^*)^2) (p_j - p_i)
$$

$$
\dot{p} = -\nabla_p F_f(p) = -R^T(p)R(p)p + R^T(p)(d^*)^2
$$

asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial F_f(p)}{\partial p} = 0.$

- $R(p)$ is the *rigidity matrix* for the framework (\mathcal{G}, p)
- rigidity theory used to understand more about the equilibrium sets $\frac{3}{2}$

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

$$
\text{rk}\,R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{ (in } \mathbb{R}^2\text{)}
$$

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

$$
rk R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{(in } \mathbb{R}^2\text{)}
$$

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

$$
rk R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{(in } \mathbb{R}^2\text{)}
$$

Q: is this a necessary condition? (can we solve the problem with fewer edges?) **A:** Impose additional symmetry constraints without requiring more information exchange (in fact, less!)

Graph Symmetries **Point Groups**

• graph automorphisms • isometries

Graph Automorphism

An automorphism of the graph $G = (V, \mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$

Graph Automorphism

An automorphism of the graph $G = (V, \mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$

Automorphisms encode graph symmetries

Definition

Let X be a set, and let Γ be a collection of invertible functions $X \to X$. Then Γ is called a group if the identity map, Id, belongs to Γ, and for any $\Gamma \ni f, q: X \to X$, both the composite function $f\circ g$ and the inverse function f^{-1} belong to $\Gamma.$

Automorphisms of a graph form a *group* - $Aut(G)$

 $- \text{Aut}(\mathcal{G}) = \{ \text{Id}, \psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6, \psi_7 \}$

A subgroup is a subset of a group, and also satisfies all properties of a group

- $\{Id, \psi_1, \psi_2, \psi_3\}$
- $\{Id, \psi_2, \psi_4, \psi_5\}$
- $\{Id, \psi_2\}$
- $\{Id, \psi_6\}$
- $\{Id, \psi_7\}$

Γ**-symmetric graphs**

- Subgroups of $Aut(\mathcal{G})$ define specific symmetries in $\mathcal G$
- for any subgroup $\Gamma \subseteq \text{Aut}(\mathcal{G})$, we say that $\mathcal G$ is Γ -symmetric

Γ**-symmetric graphs**

- Subgroups of $Aut(G)$ define specific symmetries in G
- for any subgroup $\Gamma \subset \text{Aut}(\mathcal{G})$, we say that $\mathcal G$ is Γ -symmetric

Definition

For a Γ-symmetric graph $G = (\mathcal{V}, \mathcal{E})$ and vertex $i \in \mathcal{V}$, the set $\Gamma_i = \{\gamma(i) | \gamma \in \Gamma\}$ is called the vertex orbit of i. Similarly, for an edge $e = ij \in \mathcal{E}$, the set $\Gamma_e = \{\gamma(i)\gamma(i) | \gamma \in \Gamma\}$ is termed the edge orbit of e.

Consider $\Gamma = \{ \mathrm{Id}, \psi_2 \}$ (ψ_2 is the 180 \degree rotation)

• **Vertex Orbit:** $\Gamma_1 = \Gamma_3 = \{1,3\}, \ \Gamma_2 = \Gamma_4 = \{2,4\}$

vertices inside a vertex orbit are equivalent

representative vertex set: $V_0 = \{1, 2\}$

• **Edge Orbit**:

 $\Gamma_{e_1} = \Gamma_{e_3} = \{e_1, e_3\},\,$ $\Gamma_{ee} = \Gamma_{ee} = \{e_2, e_4\}$ representative edge set: $\mathcal{E}_0 = \{e_1, e_2\}$ combine notions of graph symmetries with point groups

- let G be a Γ -symmetric graph
- Γ also represented as a *point group*
	- a set of isometries that preserve symmetries
	- homomorphism $\tau : \Gamma \to O(\mathbb{R}^d)$
	- $\, \tau \,$ assigns an orthogonal matrix (describing an isometry of \mathbb{R}^d such as a rotation or reflection) to each element of Γ

Definition

A framework $(\mathcal G,p)$ in $\mathbb R^d$ is called $\tau(\Gamma)$ -symmetric if

 $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$.

τ (Γ)**-symmetric framework**

- consider $\Gamma = {\text{Id}}, \psi_4$ \subseteq Aut (G)
- $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma) : (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i)=p_{\gamma(i)}$ for all $i\in\mathcal{V}.$

• note: for a $\tau(\Gamma)$ -symmetric framework (G, p) and for every $j\in\Gamma_i$, there is a $\gamma_j\in\Gamma$ such that $\tau(\gamma_j)p_j=p_i$ for all $i \in \Gamma_i$

isometries of configuration p coincide with symmetries of the automorphisms of G

- in $\tau(\Gamma)$ -symmetric frameworks, the configurations p are in a special geometric position (not necessarily generic)
- symmetry can lead to unexpected infinitesimal flexibility/rigidity

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (G, p) is $\tau(\Gamma)$ -symmetric if

 $\tau(\gamma)(u_i) = u_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$. (1)

We say that (G, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix
- we can find a subspace of the kernel that is isomorphic to the space of 'fully-symmetric' infinitesimal motions
- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry as the configuration p

- C_{4v} -symmetric (and hence $\tau(\Gamma)$ -symmetric for any subgroup $\tau(\Gamma)$ of \mathcal{C}_{4v}
- $\tau(\Gamma)$ -symmetric infinitesimally rigid
- C_s -symmetric (with respect to the reflection σ)
- $τ(Γ)$ -symmetric infinitesimally rigid
- C_s -symmetric (with respect to the reflection σ) with a non-trivial C_s -symmetric infinitesimal motion
- $\tau(\Gamma)$ -symmetric infinitesimally flexible

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the Γ -symmetric sensing graph $\mathcal{G}.$ Let $p^\star \in \mathbb{R}^{dn}$ be a configuration such that (\mathcal{G}, p^\star) is $\tau(\Gamma)$ -symmetric for some desired point group $\tau(\Gamma)$, and let \mathcal{V}_0 be a set of representatives of the vertex orbits of G under Γ. Design a control $u_i(t)$ for each agent i such that

\n- (i)
$$
\lim_{t \to \infty} \|p_i(t) - p_j(t)\| = \|p_i^* - p_j^*\| = d_{ij}^*
$$
 for all $ij \in \mathcal{E}$;
\n- (distance constraints)
\n- (ii) $\lim_{t \to \infty} \|p_u(t) - \tau(\gamma_{vu})p_v(t)\| = 0$ for all $u, v \in \Gamma_i$, $i \in \mathcal{V}_0$.
\n- (symmetry constraints)
\n

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} (||p_i(t) - p_j(t)||^2 - (d_{ij}^*)^2)^2
$$

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(||p_i(t) - p_j(t)||^2 - (d_{ij}^*)^2 \right)^2
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the formation potential

$$
F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(||p_i(t) - p_j(t)||^2 - (d_{ij}^*)^2 \right)^2
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

$$
F(p(t)) = F_f(p(t)) + F_s(p(t))
$$

• propose the gradient control

 $u(t) = -\nabla F(p(t))$

• propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• closed-loop dynamics

$$
\dot{p}(t) = -R(p(t))^T (R(p(t))p(t) - (d^*)^2) - Qp(t)
$$

where Q is symmetric and a block-diagonal matrix with

$$
[Q_i]_{uv} = \begin{cases} d_{\Gamma_i}(u)I, & u = v, u \in \Gamma_i & \cdot Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ -\tau(\gamma_{uv}), & uv \in \mathcal{E}, u, v \in \Gamma_i \\ 0, & \text{o.w.} \end{cases}
$$

$$
\begin{array}{ll}\n\cdot & Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ \n\cdot & Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ \n\cdot & \tau(\gamma_{uv})^{-1} = \tau(\gamma_{uv})^T\n\end{array}
$$

"nice" graphs

- symmetric formation potential makes no assumption on relation between the graph G and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as G

•
$$
\Gamma = {\text{Id}, \psi_4} \subseteq \text{Aut}(\mathcal{G})
$$

•
$$
\Gamma_1 = \Gamma_2 = \{1, 2\}, \ \Gamma_3 = \Gamma_4 = \{3, 4\}
$$

$$
\bullet\ \mathcal{V}_0=\{1,4\}
$$

• isometry $\tau(\gamma) : (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i)=p_{\gamma(i)}$ for all $i\in\mathcal{V}$ and for each $i \in \mathcal{V}_0$ and $j \in \Gamma_i \setminus \{i\},$ the edge ij is in $\mathcal E$ (i.e. $\mathcal G(\Gamma_i)$ is connected) • propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• closed-loop dynamics

$$
\dot{p}(t) = -R(p(t))^T (R(p(t))p(t) - (d^*)^2) - Qp(t)
$$

• dynamics at for each agent

$$
\dot{p}_i(t) = \sum_{ij \in \mathcal{E}} (\|p_i(t) - p_j(t)\|^2 - (d_{ij}^*)^2)(p_j(t) - p_i(t)) + \sum_{\substack{ij \in \mathcal{E} \\ i,j \in \Gamma_u}} (\tau(\gamma_{ij})p_j(t) - p_i(t)).
$$

Theorem

Consider a team of n integrator agents interacting over a Γ -symmetric graph G satisfying Assumption 1 that can be drawn with maximum point group symmetry S in \mathbb{R}^d , and let

 $\mathcal{F}_f=\{p\in\mathbb{R}^{dn}\ |\ \|p_i-p_j\|=d_{ij}^\star\ ij\in\mathcal{E}\},\text{ and }\mathcal{F}_s=\{p\in\mathbb{R}^{dn}\ |\ \tau(\gamma)(p_i)=p_{\gamma(i)}\ \forall\gamma\in\Gamma,\ i\in\mathcal{V}\}.$

Then for initial conditions $p_i(0)$ satisfying

$$
\sum_{ij \in \mathcal{E}} (||p_i(0) - p_j(0)|| - d_{ij}^*)^2 \le \epsilon_1, \text{ and } ||p_i(0) - \tau(\gamma_{ij})p_j(0)||^2 \le \epsilon_2
$$

for all $i, j \in \Gamma_u$ and $u \in V_0$, for a sufficiently small and positive constant ϵ_1 and ϵ_2 , the control

$$
u = -\nabla F(p(t)),
$$

renders the set $\mathcal{F}_f \cap \mathcal{F}_s$ exponentially stable, i.e.

 $\lim_{t\to\infty} ||p_i(t)-p_j(t)|| = d_{ij}^*$ and $\lim_{t\to\infty} \tau(\gamma)(p_i(t)) = \lim_{t\to\infty} p_{\gamma(i)}(t)$ for all $\gamma \in \Gamma, i \in \mathcal{V}$.

Proof Sketch

• observe the invariant quantity (group average)

$$
z(t) = \sum_{v \in \mathcal{V}} \sum_{\gamma \in \Gamma} \tau(\gamma) p_v(t)
$$

• combine with stability properties of gradient dynamical systems

example: the vic formation

- formation flight for aircraft originated in WWI
- Vic formation used by pilots to improve visual communication and defensive advantages

Vic formation with symmetry Flexible framework (9 edges; mirror satisfies Assumption 1) Minimally Rigid framework (11 edges)

example: the vic formation

- symmetry constraints force agents to correct formation
- requires less agent communication than standard formation control with MIR requirement

• with flexible framework and only formation potential can not guarantee convergence to correct shape

• proposed strategy does not take advantage of the full power of symmetry

- proposed strategy does not take advantage of the full power of symmetry
- can we find redundant information between the symmetry constraints and the distance constraints?

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (G, p) is $\tau(\Gamma)$ -symmetric if

 $\tau(\gamma)(u_i) = u_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$. (2)

We say that (G, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

- $\tau(\gamma)(u_i) = u_{\theta(\gamma)(i)}$
- understanding symmetry structure means we only need to find infintesimal motion for one representative vertex in each vertex orbit

 (\mathcal{G}, p)

•
$$
p_1 = (a, b)^T
$$

\n• $p_2 = (0, c)^T$
\n• $p_4 = (0, d)^T$

$$
R(p) = \begin{bmatrix} (a \ b - c) & (-a \ c - b) & (0 \ 0) & (0 \ 0) \\ (a \ b - d) & (0 \ 0) & (0 \ 0) & (-a \ d - b) \\ (0 \ 0) & (a \ c - b) & (-a \ b - c) & (0 \ 0) \\ (0 \ 0) & (0 \ 0) & (-a \ b - d) & (a \ d - b) \end{bmatrix}
$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1\;0\;0\;\frac{a}{c-b}\;1\;0\;0\;\frac{a}{d-b})^T$ flex is symmetric! with respect to s $(\tau(\gamma) : (a, b) \mapsto (-a, b))$

Rigidity matrix

$$
R(p) = \begin{bmatrix} (a - c b - d) & (c - a d - b) & (0 0) & (0 0) \\ (2a 0) & (0 0) & (0 0) & (-2a 0) \\ (0 0) & (2c 0) & (-2c 0) & (0 0) \\ (0 0) & (0 0) & (a - c d - b) & (c - a b - d) \end{bmatrix}
$$

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 -1 -1 \frac{2(c-a)+b-d}{d-b} -1 - \frac{2(c-a)+b-d}{d-b} 11)^T$ flex is not symmetric with respect to s

- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 0 \frac{cd - ab}{ad - bc} \frac{a^2 - c^2}{ad - bc} 1 0 - \frac{cd - ab}{ad - bc} - \frac{a^2 - c^2}{ad - bc})^T$ flex is symmetric with respect to 180° rotation (C_2)

- 180 $^{\circ}$ rotation of points corresponds to $\psi_2 \in \text{Aut}(\mathcal{G})$
- recall: vertex orbits : $\{1,3\}$, $\{2,4\}$, edge orbits: $\{e_1, e_3\}$, $\{e_2, e_4\}$

symmetries make certain rows and columns of the rigidity matrix redundant

orbit rigidity matrix

symmetries make certain rows and columns of the rigidity matrix redundant

$$
R(p) = \begin{pmatrix} 1 & 2 & 3 = \mathcal{C}_2(1) & 4 = \mathcal{C}_2(2) \\ e_1 & (a - c \ b - d) & (c - a \ d - b) & (0 \ 0) & (0 \ 0) \\ \mathcal{C}_2(e_1) & (0 \ 0) & (0 \ 0) & (c - a \ d - b) & (a - c \ b - d) \\ \mathcal{C}_2(e_4) & (0 \ 0) & (a + c \ b + c) & (-a - c \ - b - d) & (0 \ 0) \end{pmatrix}
$$

orbit rigidity matrix

symmetries make certain rows and columns of the rigidity matrix redundant

$$
R(p) = \begin{pmatrix} 1 & 2 & 3 = \mathcal{C}_2(1) & 4 = \mathcal{C}_2(2) \\ e_1 & (a - c \ b - d) & (c - a \ d - b) & (0 \ 0) & (0 \ 0) \\ \mathcal{C}_2(e_1) & (0 \ 0) & (0 \ 0) & (c - a \ d - b) & (a - c \ b - d) \\ \mathcal{C}_2(e_4) & (0 \ 0) & (a + c \ b + c) & (-a - c \ - b - d) & (0 \ 0) \end{pmatrix}
$$

Orbit Rigidity Matrix

$$
\begin{pmatrix}\n1 & 2 & 1 & 2 \\
e_1 \left((p_1 - p_2)^T & (p_2 - p_1)^T \\
e_4 \left((p_1 - C_2(p_2))^T & (p_2 - C_2^{-1}(p_1))^T \right) = \left((a - c, b - d) & (c - a, d - b) \\
(a + c, b + d) \right) & (c + a, d + b)\n\end{pmatrix}
$$

- 2 rows one for each representative of edge orbits under action of C_2
- 4 columns nodes p_1, p_2 each have two dof; nodes $p_3 = C_2(p_1)$ and $p_4 = C_2(p_2)$ are uniquely determined by the symmetries
- relation between vertices within vertex orbits and between vertex orbits (through edge orbits) captured by quotient gain graph of a Γ -symmetric graph
	- node set is representative vertex set V_0
	- edge set is representative edge set \mathcal{E}_0 : choose edge of form $i\gamma(j)$ with $i, j \in \mathcal{V}_0$

```
it is ok for i = j
```
edges are directed with 'edge gain' being the group action $\gamma \in \Gamma$

- $\Gamma = \{ \text{Id}, \psi_1 \}$ (rotation)
- $\Gamma_i = \{1, 2, 3, 4\}$
- $V_0 = \{1\}, \mathcal{E}_0 = \{e_1\}$

 $10<$ ψ_1

• $\Gamma = \{Id, \psi_4\}$ (reflection)

•
$$
\Gamma_{1,2} = \{1,2\}, \Gamma_{3,4} = \{3,4\}
$$

•
$$
V_0 = \{1, 3\},
$$

 $\mathcal{E}_0 = \{12, 13, 24\}$

- $\Gamma = \{\text{Id}, \psi_6\}$ (reflection)
- $\Gamma_1 = \{1\}$, $\Gamma_4 = \{4\}$, $\Gamma_{2,3} = \{2,3\}$

•
$$
V_0 = \{1, 3, 4\}
$$
, $\mathcal{E}_0 = \{13, 14\}$

Definition [Shulze 2011]

For a Γ-symmetric framework (G, p) with quotient gain Γ-gain graph (G_0, w) , the orbit rigidity matrix, $\mathcal{O}(\mathcal{G}_0, w, p)$, is the $|\mathcal{E}_0| \times d|\mathcal{V}_0|$ matrix defined as follows. Choose a representative vertex \tilde{i} for each vertex Γ_i in $\mathcal{V}_0.$ The row corresponding to the edge $\tilde{e} = (\tilde{i}, \tilde{j})$ with gain $w(\tilde{e})$ in \mathcal{E}_0 is given by

$$
(0 \cdots 0 \underbrace{p(\tilde{i}) - \tau(w(\tilde{e}))p(\tilde{j})}_{\tilde{i}} 0 \cdots 0 \underbrace{p(\tilde{j}) - \tau(w(\tilde{e}))^{-1}p(\tilde{j})}_{\tilde{i}} 0 \cdots 0).
$$

If $\tilde{e} = (\tilde{i}, \tilde{i})$ is a loop at \tilde{i} , then the row corresponding to \tilde{e} is given by

$$
(0 \cdots 0 \underbrace{2p(\tilde{i}) - \tau(w(\tilde{e}))p(\tilde{i}) - \tau(w(\tilde{e}))^{-1}p(\tilde{i})}_{\tilde{i}} 0 \cdots 0 0 0 \cdots 0).
$$

Theorem [Shulze 2011]

The kernel of the orbit rigidity matrix $\mathcal{O}(\mathcal{G}_0, w, p)$ is the space of (w, Γ) -symmetric infinitesimal motions of (G, p) restricted to the set of vertex orbits Γ_i of \mathcal{G} .

- Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
- full-rank $\mathcal{O}(\mathcal{G}_0, w, p)$ implies none exist
- size of $\mathcal{O}(G_0, w, p)$ does not depend on p, but only the graph and symmetry constraints

Theorem [Shulze 2011]

The kernel of the orbit rigidity matrix $\mathcal{O}(G_0, w, p)$ is the space of (w, Γ) -symmetric infinitesimal motions of (G, p) restricted to the set of vertex orbits Γ_i of \mathcal{G} .

- Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
- full-rank $\mathcal{O}(\mathcal{G}_0, w, p)$ implies none exist
- size of $\mathcal{O}(G_0, w, p)$ does not depend on p, but only the graph and symmetry constraints

key point: quotient gain graph and orbit rigidity matrix suggests a further way to exploit symmetry in formation control

- representative edges used to maintain distances
- symmetry within vertex orbits have no need for distance constraints

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} (||p_i - \tau(\gamma_{ij})p_j||^2 - (d_{ij}^{\star})^2)^2.
$$

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} (||p_i - \tau(\gamma_{ij})p_j||^2 - (d_{ij}^{\star})^2)^2.
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

a modified formation potential

• the representative edge formation potential

$$
F_e(p(t)) = \frac{1}{4} \sum_{e = ij \in \mathcal{E}_0} (||p_i - \tau(\gamma_{ij})p_j||^2 - (d_{ij}^{\star})^2)^2.
$$

• the symmetry potential

$$
F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} ||p_u(t) - \tau(\gamma_{vu}) p_v(t)||^2
$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

$$
F(p(t)) = F_e(p(t)) + F_s(p(t))
$$

• propose the gradient control

$$
u(t) = -\nabla F(p(t))
$$

• closed-loop dynamics

$$
\dot{p}(t) = -\mathcal{O}^{T} \left(\mathcal{O}p(t)_{|v_0} - (d_{|_{\mathcal{E}_0}}^{\star})^2 \right) - Qp(t)
$$

- structure idea
	- representative vertices in V_0 take care of distances
	- other vertices just maintain symmetry constraints

• $V_0 = \{1, 6\}$ • $\mathcal{E}_0 = \{16, 17, 12\}$

- strategy requires only 3 distance constraints and 8 symmetry constraints
- compared to 17 distance constraint for MIR classic approach

centroid consensus

• symmetry relies on a fixed inertial frame

• can add consensus term to agree on arbitrary centroid

Symmetry preserving motion coordination aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body and preserving symmetry of configuration.

Symmetry preserving motion coordination aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body and preserving symmetry of configuration.

- can we maneuver a symmetric formation in space?
- if we relax rigidity requirement, can you introduce symmetry-preserving motions?

Theorem - Distance Constrained Formation Control

Consider the potential function

$$
V(p) = \frac{1}{4} \sum_{i \sim j} (||p_i(t) - p_j(t)||^2 - (d_{ij}^{\star})^2)^2
$$

and assume the desired distances d_{ij}^\star correspond to a feasible formation. Then the gradient dynamical system

$$
\dot{p} = -\nabla_p V(p) = -R^T(p)R(p)p + R^T(p)(d^{\star})^2
$$

asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial V(p)}{\partial p}=0.$

- $R(p)$ is the *rigidity matrix* for the framework (G, p)
- rigidity theory used here to understand more about the equilibrium sets

proof sketch

(following De Queiroz '18)

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^\star$
- intermediate variable: $z_{ij} = \|\tilde{p}_{ij}\|^2 (d_{ij}^{\star})^2 = e_{ij} (e_{ij} + 2d_{ij}^{\star})$

proof sketch

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^\star$
- intermediate variable: $z_{ij} = \|\tilde{p}_{ij}\|^2 (d_{ij}^\star)^2 = e_{ij} (e_{ij} + 2d_{ij}^\star)$

introduce Lyapunov candidate:

$$
V(e) = \frac{1}{4} \sum_{i \sim j} z_{ij}^2 = z^T z
$$

proof sketch

Define some notations...

- relative positions: $\tilde{p}_{ij} = p_i p_j$
- distance error: $e_{ij} = \|\tilde{p}_{ij}\| d_{ij}^\star$
- intermediate variable: $z_{ij} = \|\tilde{p}_{ij}\|^2 (d_{ij}^\star)^2 = e_{ij} (e_{ij} + 2d_{ij}^\star)$

introduce Lyapunov candidate:

$$
V(e) = \frac{1}{4} \sum_{i \sim j} z_{ij}^2 = z^T z
$$

time-derivative of Lyapunov function along trajectories

$$
\dot{V} = z^T R(p) u
$$

IDEA: Design control u to ensure Lyapunov function is decreasing!

• Formation acquisition: $u=-R(p)^Tz$ ensures stable formation dynamics

"classic" distance-constrained formation controller ³²

Formation maneuvering aims to satisfy the formation control objective while simultaneously moving the formation through space as a rigid body.

...recall our earlier Lyapunov function

$$
\dot{V} = z^T R(p) u
$$

choose $u = u_a + u_m$

\n- \n
$$
u_a = -R(p)^T z
$$
: used to attain desired formation\n
\n- \n $u_m = \mathbb{1} \otimes v_0 + \begin{bmatrix} \vdots \\ \omega_0 \times \tilde{q}_i \\ \vdots \end{bmatrix}$: rigid body translation (*v*₀) and rotation about a point\n
\n- \n $(\omega_0 \times \tilde{q}_i)$ \n
\n

Main Idea: rigid body rotations and translations are in the Kernel of the rigidity matrix!

...recall our earlier Lyapunov function

 $\dot{W} = z^T R(p) u$

choose $u = u_a + u_m + u_s$

\n- \n
$$
u_a = -R(p)^T z
$$
: used to attain desired formation\n
\n- \n $u_m = \mathbb{1} \otimes v_0 + \begin{bmatrix} \vdots \\ \omega_0 \times \tilde{q}_i \\ \vdots \end{bmatrix}$: rigid body translation (*v*₀) and rotation about a point\n
\n- \n $(\omega_0 \times \tilde{q}_i)$ \n
\n

 $\cdot u_s$ obtained from kernel of Orbit rigidity matrix

Summary

- exploit notions of symmetry in formation control
- $\tau(\Gamma)$ -symmetric graphs captures symmetry of configurations and graphs
- symmetric formation potential used to design distributed control law with less edges compared to "traditional" formation control strategies
- opportunities for more sophisticated motion coordination

Future Work

- formation maneuvering requires time-varying point group symmetries
- is it possible to distributedly decide on certain symmetries?
- can we eliminate need for requiring self-state in protocol?
- more?

Questions?