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formation control

Formation Control Objective
Given a team of robots endowed with the ability to sense/ communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.
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formation constraints

- The desired formation is characterized by a set of M constraints, encoded in the
function F : Rnd → RM , and a configuration p? satisfying the constraints.

- The set of all feasible formations is
F(p) = {p ∈ D̄ |F (p) = F (p?)}

Formation Control Objective
For an ensemble of n agents with dynamics

ṗi = ui,

with pi(t) ∈ Rd, an information exchange graph G = (V, E), and formation constraint
function F : Rnd → RM , design a distributed control law for each agent i ∈ {1, . . . , n}
such that the set F(p) = {p ∈ D̄ |F (p) = F (p?)},

is asymptotically stable.
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rigidity theory and formation control

Theorem - Distance Constrained Formation Control [Krick 2009]

Consider the potential function

Ff (p) =
1

4

∑
ij∈E

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

and assume the desired distances d?ij correspond to a feasible formation. Then the
gradient dynamical system

ui = −∇piFf (p) =
∑
ij∈E

(
‖pi − pj‖2 − (d?ij)

2
)

(pj − pi)

ṗ = −∇pFf (p) = −RT (p)R(p)p+RT (p)(d?)2

asymptotically converges to the critical points
of the potential function, i.e., ∂Ff (p)

∂p = 0.

• R(p) is the rigidity matrix for the framework (G, p)
• rigidity theory used to understand more about the equilibrium sets 3



rigidity theory and formation control

Rigidity theory helps us understand
• how many constraints are required to ensure

uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

• how the constraints should be distributed in the
network

A widely accepted architectural requirement for distance constrained formation con-
trol is that minimally infinitesimally rigid frameworks are required. Equivalent to:

rkR(p) = 2|V| − 3 and |E| = 2|V| − 3 (in R2)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)
A: Impose additional symmetry constraints without

requiring more information exchange (in fact, less!)
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graph symmetries and point groups

Graph Symmetries Point Groups

• graph automorphisms • isometries
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• identity: Id =

(
1 2 3 4

1 2 3 4

)

• 90◦ rotation: ψ1 =

(
1 2 3 4

2 3 4 1

)

• 180◦ rotation: ψ2 =

(
1 2 3 4

3 4 1 2

)

• 270◦ rotation: ψ3 =

(
1 2 3 4

4 1 2 3

)
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• reflection: ψ4 =

(
1 2 3 4

2 1 4 3

)

• reflection: ψ5 =

(
1 2 3 4

4 3 2 1

)

• reflection: ψ6 =

(
1 2 3 4

1 4 3 2

)

• reflection: ψ7 =

(
1 2 3 4

3 2 1 4

)
6



automorphism group

Definition
Let X be a set, and let Γ be a collection of invertible functions X → X . Then Γ is called
a group if the identity map, Id, belongs to Γ, and for any Γ 3 f, g : X → X , both the
composite function f ◦ g and the inverse function f−1 belong to Γ.

Automorphisms of a graph form a group - Aut(G)

- Aut(G) = {Id, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, ψ1, ψ2, ψ3}
- {Id, ψ2, ψ4, ψ5}
- {Id, ψ2}
- {Id, ψ6}
- {Id, ψ7}
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Γ-symmetric graphs

• Subgroups of Aut(G) define specific symmetries in G
• for any subgroup Γ ⊆ Aut(G), we say that G is Γ-symmetric

Definition
For a Γ-symmetric graph G = (V, E) and vertex i ∈ V , the set Γi = {γ(i) | γ ∈ Γ} is called
the vertex orbit of i. Similarly, for an edge e = ij ∈ E , the set Γe = {γ(i)γ(j) | γ ∈ Γ} is
termed the edge orbit of e.

e1

e2

e3

e4

1 2

4 3

Consider Γ = {Id, ψ2} (ψ2 is the 180◦ rotation)

• Vertex Orbit:
Γ1 = Γ3 = {1, 3}, Γ2 = Γ4 = {2, 4}

vertices inside a vertex orbit are equivalent
representative vertex set: V0 = {1, 2}

• Edge Orbit:
Γe1 = Γe3 = {e1, e3},
Γe2 = Γe4 = {e2, e4}
representative edge set: E0 = {e1, e2}
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τ(Γ)-symmetric framework

combine notions of graph symmetries with point groups

• let G be a Γ-symmetric graph
• Γ also represented as a point group

- a set of isometries that preserve symmetries
- homomorphism τ : Γ→ O(Rd)
- τ assigns an orthogonal matrix (describing an isometry of Rd such as a rotation or

reflection) to each element of Γ

Definition
A framework (G, p) in Rd is called τ(Γ)-symmetric if

τ(γ)(pi) = pγ(i) for all γ ∈ Γ and all i ∈ V.
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τ(Γ)-symmetric framework

example...
e1

e2

e3

e4

s
1 2

4 3

• consider Γ = {Id, ψ4} ⊆ Aut(G)

• γ = ψ4 ∈ Γ (reflection about mirror S)
• isometry τ(γ) : (a, b) 7→ (−a, b)

satisfies τ(γ)(pi) = pγ(i) for all i ∈ V.
• note: for a τ(Γ)-symmetric framework (G, p) and for

every j ∈ Γi, there is a γj ∈ Γ such that τ(γj)pj = pi
for all j ∈ Γi

isometries of configuration p coincide with symmetries of the automorphisms of G

• in τ(Γ)-symmetric frameworks, the configurations p are in a special geometric
position (not necessarily generic)

• symmetry can lead to unexpected infinitesimal flexibility/rigidity
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symmetric rigidity

Definition
An infinitesimal motion u of a τ(Γ)-symmetric framework (G, p) is τ(Γ)-symmetric if

τ(γ)(ui) = uγ(i) for all γ ∈ Γ and all i ∈ V. (1)

We say that (G, p) is τ(Γ)-symmetric infinitesimally rigid if every τ(Γ)-symmetric
infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix
- we can find a subspace of the kernel that is isomorphic to the space of

‘fully-symmetric’ infinitesimal motions
- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry

as the configuration p
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symmetric rigidity

p3 p4

p2p1

	

(a)

- C4v-symmetric (and
hence τ(Γ)-symmetric
for any subgroup τ(Γ) of
C4v)

- τ(Γ)-symmetric
infinitesimally rigid

p1 p2

p3 p4
σ

(b)

- Cs-symmetric (with
respect to the reflection
σ)

- τ(Γ)-symmetric
infinitesimally rigid

p4

p3 p2

p1

σ

(c)

- Cs-symmetric (with
respect to the reflection
σ) with a non-trivial
Cs-symmetric
infinitesimal motion

- τ(Γ)-symmetric
infinitesimally flexible 12



symmetric configuration formation control

Symmetric Formation Control Objective
Consider a group of n integrator agents that interact over the Γ-symmetric sensing
graph G. Let p? ∈ Rdn be a configuration such that (G, p?) is τ(Γ)-symmetric for some
desired point group τ(Γ), and let V0 be a set of representatives of the vertex orbits of
G under Γ. Design a control ui(t) for each agent i such that

(i) lim
t→∞
‖pi(t)− pj(t)‖ = ‖p?i − p?j‖ = d?ij for all ij ∈ E ; (distance constraints)

(ii) lim
t→∞
‖pu(t)− τ(γvu)pv(t)‖ = 0 for all u, v ∈ Γi, i ∈ V0. (symmetry constraints)
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a gradient approach

• the formation potential

Ff (p(t)) =
1

4

∑
ij∈E

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

• the symmetry potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
u,v∈Γi
uv∈E

‖pu(t)− τ(γvu)pv(t)‖2

Assumption 1
The sub-graph induced by each vertex orbit Γi is connected.

• the symmetric formation potential

F (p(t)) = Ff (p(t)) + Fs(p(t))
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a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− (d?)2

)
−Qp(t)

where Q is symmetric and a block-diagonal matrix with

[Qi]uv =


dΓi

(u)I, u = v, u ∈ Γi

−τ(γuv), uv ∈ E , u, v ∈ Γi

0, o.w.
.

• Qi ∈ R|Γi|d×|Γi|d

• [Q]uv ∈ O(Rd) (orthogonal group)

• τ(γuv)−1 = τ(γuv)T
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“nice” graphs

• symmetric formation potential makes no assumption on relation between the graph
G and the point group τ(Γ)

• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

e1

e2

e3

e4

s
1 2

4 3

• Γ = {Id, ψ4} ⊆ Aut(G)

• Γ1 = Γ2 = {1, 2}, Γ3 = Γ4 = {3, 4}
• V0 = {1, 4}
• isometry τ(γ) : (a, b) 7→ (−a, b)

satisfies τ(γ)(pi) = pγ(i) for all i ∈ V and
for each i ∈ V0 and j ∈ Γi \ {i},
the edge ij is in E (i.e. G(Γi) is connected)
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a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− (d?)2

)
−Qp(t)

• dynamics at for each agent

ṗi(t) =
∑
ij∈E

(‖pi(t)− pj(t)‖2 − (d?ij)
2)(pj(t)− pi(t)) +

∑
ij∈E
i,j∈Γu

(τ(γij)pj(t)− pi(t)).
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main result 1

Theorem
Consider a team of n integrator agents interacting over a Γ-symmetric graph G satisfying Assumption 1 that
can be drawn with maximum point group symmetry S in Rd, and let

Ff = {p ∈ Rdn | ‖pi − pj‖ = d?ij ij ∈ E}, and Fs = {p ∈ Rdn | τ(γ)(pi) = pγ(i) ∀γ ∈ Γ, i ∈ V}.

Then for initial conditions pi(0) satisfying∑
ij∈E

(‖pi(0)− pj(0)‖ − d?ij)2 ≤ ε1, and ‖pi(0)− τ(γij)pj(0)‖2 ≤ ε2

for all i, j ∈ Γu and u ∈ V0, for a su�ciently small and positive constant ε1 and ε2, the control

u = −∇F (p(t)),

renders the set Ff ∩ Fs exponentially stable, i.e.

lim
t→∞

‖pi(t)− pj(t)‖ = d?ij and lim
t→∞

τ(γ)(pi(t)) = lim
t→∞

pγ(i)(t) for all γ ∈ Γ, i ∈ V.
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main result 1

Proof Sketch

• observe the invariant quantity (group average)

z(t) =
∑
v∈V

∑
γ∈Γ

τ(γ)pv(t)

• combine with stability properties of gradient dynamical systems
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example: the vic formation

• formation flight for aircraft originated in WWI
• Vic formation used by pilots to improve visual

communication and defensive advantages

1

2

4

6

3

5

7

Vic formation with symmetry
mirror

1

2

4

6

3

5

7

Flexible framework (9 edges;
satisfies Assumption 1)

1

2

4

6

3

5

7

Minimally Rigid framework
(11 edges)

18



example: the vic formation

• symmetry constraints force agents to
correct formation

• requires less agent communication
than standard formation control with
MIR requirement

• with flexible framework and only
formation potential can not guarantee
convergence to correct shape
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exploit more symmetry

• proposed strategy does not take advantage of the full power of symmetry

• can we find redundant information between the symmetry constraints and the
distance constraints?
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exploit more symmetry

• proposed strategy does not take advantage of the full power of symmetry
• can we find redundant information between the symmetry constraints and the

distance constraints?
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Γ-symmetric framework

Definition
An infinitesimal motion u of a τ(Γ)-symmetric framework (G, p) is τ(Γ)-symmetric if

τ(γ)(ui) = uγ(i) for all γ ∈ Γ and all i ∈ V. (2)

We say that (G, p) is τ(Γ)-symmetric infinitesimally rigid if every τ(Γ)-symmetric
infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

• τ(γ)(ui) = uθ(γ)(i)

• understanding symmetry structure means we only need to find infintesimal motion
for one representative vertex in each vertex orbit

20



example

s

1

2

3

4

(G, p)

• p1 = (a, b)T

• p2 = (0, c)T

• p3 = (−a, b)T

• p4 = (0, d)T

R(p) =


(a b− c) (−a c− b) (0 0) (0 0)

(a b− d) (0 0) (0 0) (−a d− b)
(0 0) (a c− b) (−a b− c) (0 0)

(0 0) (0 0) (−a b− d) (a d− b)



• 4-dimensional kernel - flexible
framework

• 3 trivial motions

1-dimensional flex spanned by
(−1 0 0 a

c−b 1 0 0 a
d−b )

T

flex is symmetric! with respect to s
( τ(γ) : (a, b) 7→ (−a, b))
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example

s

1

2 3

4

(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−c, d)T

• p4 = (−a, b)T

Rigidity matrix

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(2a 0) (0 0) (0 0) (−2a 0)

(0 0) (2c 0) (−2c 0) (0 0)

(0 0) (0 0) (a− c d− b) (c− a b− d)


• 4-dimensional kernel - flexible

framework
• 3 trivial motions

1-dimensional flex spanned by
(−1 − 1 − 1

2(c−a)+b−d
d−b − 1 − 2(c−a)+b−d

d−b 1 1)T

flex is not symmetric with respect to s
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example

e1

e2

e3

e4

1

2

3

4

(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)


• 4-dimensional kernel - flexible

framework
• 3 trivial motions

1-dimensional flex spanned by
(−1 0 cd−ab

ad−bc
a2−c2

ad−bc 1 0 − cd−ab
ad−bc −

a2−c2

ad−bc )T

flex is symmetric with respect to 180◦ rotation
(C2)
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example

e1

e2

e3

e4

1

2

3

4

(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)


• 180◦ rotation of points corresponds to ψ2 ∈ Aut(G)

• recall: vertex orbits : {1, 3}, {2, 4}, edge orbits: {e1, e3}, {e2, e4}
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example

e1

e2

e3

e4

1

2

3

4

(G, p)
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• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)



symmetries make certain rows and columns of the rigidity matrix redundant
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orbit rigidity matrix

symmetries make certain rows and columns of the rigidity matrix redundant

R(p) =


1 2 3 = C2(1) 4 = C2(2)

e1 (a− c b− d) (c− a d− b) (0 0) (0 0)

e4 (a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

C2(e1) (0 0) (0 0) (c− a d− b) (a− c b− d)

C2(e4) (0 0) (a+ c b+ c) (−a− c − b− d) (0 0)



Orbit Rigidity Matrix

( 1 2

e1 (p1 − p2)T (p2 − p1)T

e4 (p1 − C2(p2))T (p2 − C−1
2 (p1))T

)
=

( 1 2

(a− c, b− d) (c− a, d− b)
(a+ c, b+ d)) (c+ a, d+ b)

)

• 2 rows - one for each representative of edge orbits under action of C2
• 4 columns - nodes p1, p2 each have two dof; nodes p3 = C2(p1) and p4 = C2(p2) are

uniquely determined by the symmetries
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quotient gain graphs

• relation between vertices within vertex orbits and between vertex orbits (through
edge orbits) captured by quotient gain graph of a Γ-symmetric graph

- node set is representative vertex set V0

- edge set is representative edge set E0: choose edge of form iγ(j) with i, j ∈ V0

it is ok for i = j

edges are directed with ‘edge gain’ being the group action γ ∈ Γ
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quotient gain graphs

p3 p4

p2p1

	

• Γ = {Id, ψ1} (rotation)
• Γi = {1, 2, 3, 4}
• V0 = {1}, E0 = {e1}

1
ψ1

p1 p2

p3 p4
σ

• Γ = {Id, ψ4} (reflection)
• Γ1,2 = {1, 2}, Γ3,4 = {3, 4}
• V0 = {1, 3},
E0 = {12, 13, 24}

1

3

ψ4

ψ4
id

p4

p3 p2

p1

σ

• Γ = {Id, ψ6} (reflection)
• Γ1 = {1}, Γ4 = {4},

Γ2,3 = {2, 3}
• V0 = {1, 3, 4}, E0 = {13, 14}

4

3

1id

id

24



orbit rigidity matrix

Definition [Shulze 2011]

For a Γ-symmetric framework (G, p) with quotient gain Γ-gain graph (G0, w), the orbit
rigidity matrix, O(G0, w, p), is the |E0| × d|V0| matrix defined as follows. Choose a
representative vertex ĩ for each vertex Γi in V0. The row corresponding to the edge
ẽ = (̃i, j̃) with gain w(ẽ) in E0 is given by

(0 · · · 0 p(̃i)− τ(w(ẽ))p(j̃)︸ ︷︷ ︸
ĩ

0 · · · 0 p(j̃)− τ(w(ẽ))−1p(j̃)︸ ︷︷ ︸
ĩ

0 · · · 0).

If ẽ = (̃i, ĩ) is a loop at ĩ, then the row corresponding to ẽ is given by

(0 · · · 0 2p(̃i)− τ(w(ẽ))p(̃i)− τ(w(ẽ))−1p(̃i)︸ ︷︷ ︸
ĩ

0 · · · 0 0 0 · · · 0).

key point: quotient gain graph and orbit rigidity matrix suggests a further way to
exploit symmetry in formation control

• representative edges used to maintain distances
• symmetry within vertex orbits have no need for distance constraints
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orbit rigidity matrix

Theorem [Shulze 2011]

The kernel of the orbit rigidity matrix O(G0, w, p) is the space of (w,Γ)-symmetric
infinitesimal motions of (G, p) restricted to the set of vertex orbits Γi of G.

• Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
• full-rank O(G0, w, p) implies none exist
• size of O(G0, w, p) does not depend on p, but only the graph and symmetry

constraints
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a modified formation potential

• the representative edge formation potential

Fe(p(t)) =
1

4

∑
e=ij∈E0

(
‖pi − τ(γij)pj‖2 − (d?ij)

2
)2
.

• the symmetry potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
u,v∈Γi
uv∈E

‖pu(t)− τ(γvu)pv(t)‖2

Assumption 1
The sub-graph induced by each vertex orbit Γi is connected.

• the symmetric formation potential

F (p(t)) = Fe(p(t)) + Fs(p(t))
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a modified formation control

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −OT
(
Op(t)|V0 − (d?|E0

)2
)
−Qp(t)

• structure idea
• representative vertices in V0 take care of distances
• other vertices just maintain symmetry constraints
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example

• V0 = {1, 6}
• E0 = {16, 17, 12}

1

2

3

4

5

6

7

8

9

10

• strategy requires only 3 distance
constraints and 8 symmetry constraints

• compared to 17 distance constraint for
MIR classic approach
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centroid consensus

• symmetry relies on a fixed inertial
frame

• can add consensus term to agree on
arbitrary centroid
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back to motion coordination

Symmetry preserving motion coordination aims to satisfy the formation control
objective while simultaneously moving the formation through space as a rigid body and
preserving symmetry of configuration.

• can we maneuver a symmetric formation in space?
• if we relax rigidity requirement, can you introduce symmetry-preserving motions?
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rigidity theory and formation control

Theorem - Distance Constrained Formation Control
Consider the potential function

V (p) =
1

4

∑
i∼j

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

and assume the desired distances d?ij correspond to a feasible formation. Then the
gradient dynamical system

ṗ = −∇pV (p) = −RT (p)R(p)p+RT (p)(d?)2

asymptotically converges to the critical points of the potential function, i.e., ∂V (p)
∂p = 0.

• R(p) is the rigidity matrix for the framework (G, p)
• rigidity theory used here to understand more about the equilibrium sets
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proof sketch

(following De Queiroz ’18)

Define some notations...

• relative positions: p̃ij = pi − pj
• distance error: eij = ‖p̃ij‖ − d?ij
• intermediate variable: zij = ‖p̃ij‖2 − (d?ij)

2 = eij(eij + 2d?ij)

introduce Lyapunov candidate:

V (e) =
1

4

∑
i∼j

z2
ij = zT z

time-derivative of Lyapunov function along trajectories

V̇ = zTR(p)u

IDEA: Design control u to ensure Lyapunov function is decreasing!

• Formation acquisition: u = −R(p)T z

ensures stable formation dynamics
“classic” distance-constrained formation controller
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formation maneuvering

Formation maneuvering aims to satisfy the formation control objective while
simultaneously moving the formation through space as a rigid body.
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formation maneuvering
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formation maneuvering

...recall our earlier Lyapunov function

V̇ = zTR(p)u

choose u = ua + um

• ua = −R(p)T z : used to attain desired formation

• um = 1⊗ v0 +


...

ω0 × q̃i
...

 : rigid body translation (v0) and rotation about a point

(ω0 × q̃i)

Main Idea: rigid body rotations and translations are in the Kernel of the rigidity ma-
trix!
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back to motion coordination

...recall our earlier Lyapunov function

Ẇ = zTR(p)u

choose u = ua + um + us

• ua = −R(p)T z : used to attain desired formation

• um = 1⊗ v0 +


...

ω0 × q̃i
...

 : rigid body translation (v0) and rotation about a point

(ω0 × q̃i)
• us obtained from kernel of Orbit rigidity matrix

34



symmetry preserving motion coordination
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concluding remarks

Summary

• exploit notions of symmetry in formation control
• τ(Γ)-symmetric graphs captures symmetry of configurations and graphs
• symmetric formation potential used to design distributed control law with less

edges compared to “traditional” formation control strategies
• opportunities for more sophisticated motion coordination

Future Work

• formation maneuvering requires time-varying point group symmetries
• is it possible to distributedly decide on certain symmetries?
• can we eliminate need for requiring self-state in protocol?
• more?

Questions?
36
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