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formation control

Formation Control Objective
Given a team of robots endowed with the ability to sense/ communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.
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formation constraints

- The desired formation is characterized by a set of M constraints, encoded in the
function F : Rnd → RM , and a configuration p⋆ satisfying the constraints.

- The set of all feasible formations is
F(p) = {p ∈ D̄ |F (p) = F (p⋆)}
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formation control problem

Formation Control Objective
For an ensemble of n agents with dynamics

ṗi = ui,

with pi(t) ∈ Rd, an information exchange graph G = (V, E), and formation constraint
function F : Rnd → RM , design a distributed control law for each agent i ∈ {1, . . . , n}
such that the set F(p) = {p ∈ D̄ |F (p) = F (p⋆)},

is asymptotically stable.
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rigidity theory and formation control

Theorem - Distance Constrained Formation Control [Krick 2009]

Consider the potential function

Ff (p) =
1

4

∑
ij∈E

(
∥pi(t)− pj(t)∥2 − d2

ij

)2
and assume the desired distances dij correspond to a feasible formation. Then the
gradient dynamical system

ui = −∇piFf (p) =
∑
ij∈E

(
∥pi − pj∥2 − d2

ij

)
(pj − pi)

asymptotically converges to the critical points of the potential function, i.e., ∂Ff (p)
∂p = 0.
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a note on formation potentials and rigidity theory

Ff (p) =
1

4

∑
ij∈E

(
∥pi(t)− pj(t)∥2 − d⋆ij)

2
)2

• formation potential can be written in terms of a rigidity function

Ff (p) =
1

2
∥rG(p)− rG(p)∥2

◦ rG : p 7→
[
· · · 1

2
∥pi − pj∥2 · · ·

]T
: distances between neighbors

◦ p : a configuration satisfying distance constraints (i.e., ∥pi − pj∥2 = d2
ij)

e1

e2

e3

e4

p1 = (0, 0) p2 = (2, 0)

p3 = (2,−3)p4 = (0,−3)

rG(p) =


∥p1 − p2∥2

∥p2 − p3∥2

∥p3 − p4∥2

∥p4 − p1∥2

 =


4

9

4
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• rigidity theory looks for distance-preserving infinitesimal motions

rG(p+ δp) = rG(p) +
∂rG(p)

∂p
δp+ h.o.t

◦ infinitesimal motions satisfy ∂rG(p)

∂p
δp = 0

◦ the Rigidity matrix : R(p) = ∂rG(p)

∂p
∈ R|E|×2|V|

◦ ”rigid body” rotations and translations are always distance preserving: trivial motions
◦ A framework (G, p) is infinitesimally rigid if the only infinitesimal motions are trivial
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rigidity theory and formation control

our formation control

ui = −∇piFf (p) =
∑
ij∈E

(
∥pi − pj∥2 − d2

ij

)
(pj − pi)

can be expressed with rigidity matrix

u = −RT (p)(R(p)p− d2)

a proof sketch

• define error dynamics for distance error: e = R(p)p− d2

ė = −R(p)RT (p)e

• Lyapunov argument V (e) = 1
2∥e∥

2

• when R(p)RT (p) > 0, we have (local) exponential convergence to desired formation
• good frameworks are i) infinitesimally rigid, and ii) full row-rank (isostatic farmeworks)
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rigidity theory and formation control

Rigidity theory helps us understand
• how many constraints are required to ensure

uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

• how the constraints should be distributed in the
network

A widely accepted architectural requirement for distance constrained formation con-
trol is that isostatic frameworks are required. Equivalent to:

rkR(p) = 2|V| − 3 and |E| = 2|V| − 3 (in R2)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)
A: Impose additional symmetry constraints without

requiring more information exchange (in fact, less!)
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graph symmetries and point groups

Graph Symmetries Point Groups

• graph automorphisms • isometries
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• identity: Id =

(
1 2 3 4

1 2 3 4

)

• 90◦ rotation: ψ1 =

(
1 2 3 4

2 3 4 1

)

• 180◦ rotation: ψ2 =

(
1 2 3 4

3 4 1 2

)

• 270◦ rotation: ψ3 =

(
1 2 3 4

4 1 2 3

)
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• reflection: ψ4 =

(
1 2 3 4

2 1 4 3

)

• reflection: ψ5 =

(
1 2 3 4

4 3 2 1

)

• reflection: ψ6 =

(
1 2 3 4

1 4 3 2

)

• reflection: ψ7 =

(
1 2 3 4

3 2 1 4

)

9



automorphism group

Definition
Let X be a set, and let Γ be a collection of invertible functions X → X . Then Γ is called
a group if the identity map, Id, belongs to Γ, and for any Γ ∋ f, g : X → X , both the
composite function f ◦ g and the inverse function f−1 belong to Γ.

Automorphisms of a graph form a group - Aut(G)

- Aut(G) = {Id, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, ψ1, ψ2, ψ3}
- {Id, ψ2, ψ4, ψ5}
- {Id, ψ2}
- {Id, ψ6}
- {Id, ψ7}
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Γ-symmetric frameworks

Definition
For a Γ-symmetric graph G = (V, E) and vertex i ∈ V , the set Γi = {γ(i) | γ ∈ Γ} is called
the vertex orbit of i. Similarly, for an edge e = ij ∈ E , the set Γe = {γ(i)γ(j) | γ ∈ Γ} is
termed the edge orbit of e.

e1

e2

e3

e4

s
1 2

4 3

e1

e2

e3

e4

s
2 1

3 4

consider Γ = {Id, ψ2} (reflection about mirror S)
• Vertex Orbit:
Γ1 = Γ2 = {1, 2}, Γ3 = Γ4 = {3, 4}

vertices inside a vertex orbit are equivalent
representative vertex set: V0 = {1, 4}

• Edge Orbit:
Γe1 = {e1}, Γe3 = {e3}, Γe2 = Γe4 = {e2, e4}

edges inside an edge orbit are equivalent
representative edge set: E0 = {e1, e3, e4}
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τ(Γ)-symmetric frameworks

Let Γ be represented as a point group.

- homomorphism τ : Γ → O(Rd)
- τ assigns an orthogonal matrix (describing an isometry of Rd) to each element of Γ

Definition
A framework (G, p) in Rd is called τ(Γ)-symmetric if

τ(γ)(pi) = pγ(i) for all γ ∈ Γ and all i ∈ V.

For example

y

p1 p2

p4 p3

(−a, b) (a, b)

(−c, d) (c, d)

• consider Γ = {Id, ψ2} ⊆ Aut(G)

• isometry τ(ψ2) =

[
−1 0

0 1

]
: τ(ψ2)

[
−a
b

]
=

[
a

b

]

• isometries of the desired configuration coincide
with symmetries of the automorphisms of G

• symmetries can lead to unexpected
infinitesimal flexibility/rigidity 12



symmetric rigidity

Definition
An infinitesimal motion u of a τ(Γ)-symmetric framework (G, p) is τ(Γ)-symmetric if

τ(γ)(ui) = uγ(i) for all γ ∈ Γ and all i ∈ V.

We say that (G, p) is τ(Γ)-symmetric infinitesimally rigid if every τ(Γ)-symmetric
infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix

R(p)δp = 0

- we can find a subspace of the kernel that is isomorphic to the space of
‘fully-symmetric’ infinitesimal motions

- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry
as the configuration p
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symmetric rigidity

p3 p4

p2p1

⟲

(a)

- C4v-symmetric (and
hence τ(Γ)-symmetric
for any subgroup τ(Γ) of
C4v)

- τ(Γ)-symmetric
infinitesimally rigid

p1 p2

p3 p4
σ

(b)

- Cs-symmetric (with
respect to the reflection
σ)

- τ(Γ)-symmetric
infinitesimally rigid

p4

p3 p2
p1

σ

(c)

- Cs-symmetric (with
respect to the reflection
σ) with a non-trivial
Cs-symmetric
infinitesimal motion

- τ(Γ)-symmetric
infinitesimally flexible
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symmetric configuration formation control

Symmetric Formation Control Objective
Consider a group of n integrator agents that interact over the Γ-symmetric sensing
graph G. Let p ∈ Rdn be a configuration such that (G,p) is τ(Γ)-symmetric for some
desired point group τ(Γ), and let V0 be a set of representatives of the vertex orbits of
G under Γ. Design a control ui(t) for each agent i such that

(i) lim
t→∞

∥pi(t)− pj(t)∥ = ∥pi − pj∥ = dij for all ij ∈ E ; (distance constraints)

(ii) lim
t→∞

∥pu(t)− τ(γvu)pv(t)∥ = 0 for all u, v ∈ Γi, i ∈ V0. (symmetry constraints)
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a gradient approach

• the formation potential

Ff (p(t)) =
1

4

∑
ij∈E

(
∥pi(t)− pj(t)∥2 − d2

ij

)2

• the symmetry potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
u,v∈Γi
uv∈E

∥pu(t)− τ(γvu)pv(t)∥2

Assumption 1
The sub-graph induced by each vertex orbit Γi is connected.

• the symmetric formation potential

F (p(t)) = Ff (p(t)) + Fs(p(t))
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a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− d2

)
−Qp(t)

where Q is symmetric and a block-diagonal matrix with

[Qi]uv =


dΓi

(u)I, u = v, u ∈ Γi

−τ(γuv), uv ∈ E , u, v ∈ Γi

0, o.w.
.

• Qi ∈ R|Γi|d×|Γi|d

• [Q]uv ∈ O(Rd) (orthogonal group)

• τ(γuv)−1 = τ(γuv)
T

◦ Qi has a decomposition Qi = E(Γi)E(Γi)
T

◦ Q = Ē(Γ)Ē(Γ)T

◦ any p in a symmetric position satisfies Qp = 0

16



a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics
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“nice” graphs

• symmetric formation potential makes no assumption on relation between the graph
G and the point group τ(Γ)

• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

1 2
3

45

6

σ
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• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

y

p1 p2

p4 p3

(−a, b) (a, b)

(−c, d) (c, d)

• Γ = {Id, ψ4} ⊆ Aut(G)
• Γ1 = Γ2 = {1, 2}, Γ3 = Γ4 = {3, 4}
• V0 = {1, 4}
• isometry τ(γ) : (a, b) 7→ (−a, b)

satisfies τ(γ)(pi) = pγ(i) for all i ∈ V and
for each i ∈ V0 and j ∈ Γi \ {i},
the edge ij is in E (i.e. G(Γi) is connected)
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a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− d2

)
−Qp(t)

• dynamics for each agent

ṗi(t) =
∑
ij∈E

(∥pi(t)− pj(t)∥2 − d2
ij)(pj(t)− pi(t)) +

∑
ij∈E
i,j∈Γu

(τ(γij)pj(t)− pi(t))
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main result 1

Theorem [Z, Shulze, Tanigawa ’23]
Consider a team of n integrator agents interacting over a Γ-symmetric graph G satisfying Assumption 1 that
can be drawn with maximum point group symmetry S in Rd, and let

Ff = {p ∈ Rdn | ∥pi − pj∥ = dij ij ∈ E}, and Fs = {p ∈ Rdn | τ(γ)(pi) = pγ(i) ∀γ ∈ Γ, i ∈ V}.

Then for initial conditions pi(0) satisfying∑
ij∈E

(∥pi(0)− pj(0)∥ − dij)
2 ≤ ϵ1, and ∥pi(0)− τ(γij)pj(0)∥2 ≤ ϵ2

for all i, j ∈ Γu and u ∈ V0, for a sufficiently small and positive constant ϵ1 and ϵ2, the control

u = −∇F (p(t)),

renders the set Ff ∩ Fs exponentially stable, i.e.

lim
t→∞

∥pi(t)− pj(t)∥ = dij and lim
t→∞

τ(γ)(pi(t)) = lim
t→∞

pγ(i)(t) for all γ ∈ Γ, i ∈ V.

19



example: the vic formation

• formation flight for aircraft originated in WWI
• Vic formation used by pilots to improve visual

communication and defensive advantages

1

2

4

6

3

5

7

Vic formation with symmetry
mirror

1

2

4

6

3

5

7

Flexible framework (9 edges;
satisfies Assumption 1)

1

2

4

6

3

5

7

Minimally Rigid framework
(11 edges)

20



example: the vic formation

• symmetry constraints force agents to
correct formation

• requires less agent communication
than standard formation control with
MIR requirement

• with flexible framework and only
formation potential can not guarantee
convergence to correct shape
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exploit more symmetry

• proposed strategy does not take advantage of the full power of symmetry

• can we find redundant information between the symmetry constraints and the
distance constraints?
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Γ-symmetric framework

Definition
An infinitesimal motion u of a τ(Γ)-symmetric framework (G, p) is τ(Γ)-symmetric if

τ(γ)(ui) = uγ(i) for all γ ∈ Γ and all i ∈ V. (1)

We say that (G, p) is τ(Γ)-symmetric infinitesimally rigid if every τ(Γ)-symmetric
infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

• τ(γ)(ui) = uγ(i)

• understanding symmetry structure means we only need to find infintesimal motion
for one representative vertex in each vertex orbit
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example

s

1

2 3

4

(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−c, d)T

• p4 = (−a, b)T

Rigidity matrix

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(2a 0) (0 0) (0 0) (−2a 0)

(0 0) (2c 0) (−2c 0) (0 0)

(0 0) (0 0) (a− c d− b) (c− a b− d)



• 4-dimensional kernel - flexible
framework

• 3 trivial motions

1-dimensional flex spanned by
(1 − 1 − 1

2(c−a)+b−d
d−b − 1 − 2(c−a)+b−d

d−b 1 1)T

flex is not symmetric with respect to s
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example

e1

e2

e3

e4

1

2

3

4
(G, p)
• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (−a,−b)T

• p4 = (−c,−d)T

R(p) =


(a− c b− d) (c− a d− b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

(0 0) (0 0) (c− a d− b) (a− c b− d)

(0 0) (a+ c b+ d) (−a− c − b− d) (0 0)


• 4-dimensional kernel - flexible

framework
• 3 trivial motions

1-dimensional flex spanned by
(−1 0 cd−ab

ad−bc
a2−c2

ad−bc 1 0 − cd−ab
ad−bc − a2−c2

ad−bc )
T

flex is symmetric with respect to 180◦ rotation
(C2)
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example
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e2

e3
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1

2

3

4
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• 180◦ rotation of points corresponds to ψ2 ∈ Aut(G)
• recall: vertex orbits : {1, 3}, {2, 4}, edge orbits: {e1, e3}, {e2, e4}
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example

e1

e2

e3

e4

1

2

3

4
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symmetries make certain rows and columns of the rigidity matrix redundant
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orbit rigidity matrix

symmetries make certain rows and columns of the rigidity matrix redundant

R(p) =


1 2 3 = ψ2(1) 4 = ψ2(2)

e1 (a− c b− d) (c− a d− b) (0 0) (0 0)

e4 (a+ c b+ d) (0 0) (0 0) (−a− c − b− d)

ψ2(e1) (0 0) (0 0) (c− a d− b) (a− c b− d)

ψ2(e4) (0 0) (a+ c b+ c) (−a− c − b− d) (0 0)



Orbit Rigidity Matrix

( 1 2

e1 (p1 − p2)
T (p2 − p1)

T

e4 (p1 − ψ2(p2))
T (p2 − ψ−1

2 (p1))
T

)
=

( 1 2

(a− c, b− d) (c− a, d− b)

(a+ c, b+ d)) (c+ a, d+ b)

)

• 2 rows - one for each representative of edge orbits under action of ψ2

• 4 columns - nodes p1, p2 each have two dof; nodes p3 = ψ2(p1) and p4 = ψ2(p2) are
uniquely determined by the symmetries
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quotient gain graphs

• relation between vertices within vertex orbits and between vertex orbits (through
edge orbits) captured by quotient gain graph of a Γ-symmetric graph

- node set is representative vertex set V0

- edge set is representative edge set E0: choose edge of form iγ(j) with i, j ∈ V0

it is ok for i = j

edges are directed with ‘edge gain’ being the group action γ ∈ Γ
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quotient gain graphs

p3 p4

p2p1

⟲

• Γ = {Id, ψ1} (rotation)
• Γi = {1, 2, 3, 4}
• V0 = {1}, E0 = {e1}

1
ψ1

p1 p2

p3 p4
σ

• Γ = {Id, ψ4} (reflection)
• Γ1,2 = {1, 2}, Γ3,4 = {3, 4}
• V0 = {1, 3},
E0 = {12, 13, 24}

1

3

ψ4

ψ4
id

p4

p3 p2
p1

σ

• Γ = {Id, ψ6} (reflection)
• Γ1 = {1}, Γ4 = {4},
Γ2,3 = {2, 3}

• V0 = {1, 3, 4}, E0 = {13, 14}

4

3

1id

id
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orbit rigidity matrix

Definition [Shulze 2011]

The orbit rigidity matrix O(G0, p̄) of (G, p) is the |E0| × d|V0| matrix defined as follows.
The row corresponding to an edge ((i, j); γ), where i ̸= j, has the form:(

0 · · · 0 (p̄i − τ(γ)p̄j)
T 0 · · · 0 (p̄j − τ(γ)−1p̄i)

T 0 · · · 0
)
,

with the d-dimensional entries (p̄i − τ(γ)p̄j)
T and (p̄j − τ(γ)−1p̄i)

T being in the
columns corresponding to vertex i and j, respectively. The row corresponding to a loop
((i, i); γ) has the form:(

0 · · · 0 (2p̄i − τ(γ)p̄i − τ(γ)−1p̄i)
T 0 · · · 0

)
,

with the d-dimensional entry (2p̄i − τ(γ)p̄i − τ(γ)−1p̄i)
T being in the columns

corresponding to vertex i.
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orbit rigidity matrix

Theorem [Shulze 2011]

Let (G, p) be a τ(Γ)-symmetric framework with orbit rigidity matrix O(G0, p̄). Then,

(i) the kernel of O(G0, p̄) is isomorphic to the space of τ(Γ)-symmetric infinitesimal
motions of (G, p), and

(ii) the cokernel of O(G0, p̄) is isomorphic to the space of τ(Γ)-symmetric self-stresses
of (G, p).

• Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
• full-rank O(G0, p̄) implies none exist
• size of O(G0, p̄) does not depend on p, but only the graph and symmetry constraints
• τ(Γ)-isostatic frameworks have orbit rigidity matrices with full row-rank
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orbit rigidity matrix

key point: quotient gain graph and orbit rigidity matrix suggests a further way to
exploit symmetry in formation control

• representative edges used to maintain distances
• symmetry within vertex orbits have no need for distance constraints
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a modified formation potential

• the representative edge formation potential

Fe(p(t)) =
1

4

∑
e=ij∈E0

(
∥pi − τ(γ)pj∥2 − d2

iγ(j)

)2
◦ γ is label of edge in quotient gain graph

• the symmetry potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
u,v∈Γi
uv∈E

∥pu(t)− τ(γvu)pv(t)∥2

Assumption 1
The sub-graph induced by each vertex orbit Γi is connected.

• the symmetric formation potential

F (p(t)) = Fe(p(t)) + Fs(p(t))
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a modified formation control

• node relabeling - representative vertices first

p̃ = Pp =
[
pTo pTf

]T
• propose the gradient control

u(t) = −∇F (p(t))
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a modified formation control

Then the control for each agent i ∈ V0 can be expressed as

ui(t) = u
(a)
i (t) + u

(b)
i (t) + u

(c)
i (t), (2)

where
u
(a)
i (t) =

∑
iγ(j)∈E0
j∈V0, i ̸=j

(
∥pi(t)− τ(γ)pj(t)∥2 − d2

ij

)
(τ(γ)pj(t)− pi(t))

u
(b)
i (t) = −

∑
iγ(i)∈E0

(∥(I − τ(γ))pi∥2 − d2
iγ(i))(2I − τ(γ)− τ(γ)−1)pi

u
(c)
i (t) =

∑
ij∈E(Γi)

(τ(γij)pj(t)− pi(t)).

The control for the agents in V \ V0 is simply

ui(t) =
∑

ij∈E(Γu)

(τ(γij)pj(t)− pi(t)), (3)

for each u ∈ V0.
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a modified formation control

in state-space form

[
ṗ0(t)

ṗf (t)

]
=

−OT (G0, p0(t))

(
O(G0, p0(t))p0(t)− d2

0

)
0

− PQPT

[
p0(t)

pf (t)

]

recall our earlier idea

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− d2

)
−Qp(t)
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main result

we can define an error system with

e =

[
σ

q

]
=

[
O(G0, p0(t))p0(t)− d2

0

Ē(Γ)TPT p(t)

]

orbit error dynamics

[
˙̄σ(t)
˙̄q(t)

]
= −

[
OOT OĒ0(Γ)

ĒT0 (Γ)OT ĒT (Γ)Ē(Γ)

][
σ̄(t)

q̄(t)

]

= −

[ [
O 0

]
ĒT (Γ)PT

][[
OT

0T

]
PĒ(Γ)

][
σ̄(t)

q̄(t)

]
.
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main result

Theorem
Let p be the target formation satisfying conditions (i) and (ii) of the Symmetry-Forced
Formation Control Problem, and assume that (G,p) is a τ(Γ)-symmetric isostatic
framework. Then the origin is a locally exponentially stable equilibrium of the orbit
error dynamics.

Theorem
The orbit rigidity control uses at most (1 + 1/|Γ|)|V| edges.

• can be significantly less than 2|V| − 3
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example

1

2

3

4

5

6

78

9

10

• graph has 15 edges
• at least 17 edges required for

infinitesimal rigidity
• flexible framework

1

2

3

4

5

6

78

9

10

• 2π/5 rotational symmetry
• can use only spanning tree

subgraph for each vertex orbit
• only 3 distances required

γ
γ

γ

1

6

• quotient
gain graph
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example

• nice...but symmetries are defined with respect to a global origin
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centroid consensus

idea: augment a virtual consensus dynamics[
ṗ0(t)

ṗf (t)

]
=

−OT (G0, c0(t))

(
O(G0, c0(t))c0(t)− d2

0

)
0

− PQPT

[
c0(t)

cf (t)

]

ṙ = −L(G)r

with c(t) = p(t)− r(t)

• cascade structure
• same analysis idea
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centroid consensus
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formation maneuvering

• translational maneuvering: virtual state with PI consensus filter{
˙̄r = −kP L̄(G)r̄ − kI L̄(G)ζ̄ + nB ⊗ v0(t)

˙̄ζ = L̄(G)r̄

33
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formation maneuvering

• rotational maneuvering: tranformation of τ(γ) by known rotation matrix

τ(γ, θ(t)) = R(θ(t))τ(γ)R(θ(t))−1

34
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concluding remarks

Summary

• τ(Γ)-symmetric graphs captures symmetry of configurations and graphs
• symmetric formation potential used to design distributed control law with less

edges compared to “traditional” formation control strategies
• opportunities for more sophisticated motion coordination

Zelazo, Tanigawa and Shulze, Forced Symmetric Formation Control, IEEE Transactions on
Control of Network Systems (early access).

Future Work

• formation maneuvering requires time-varying point group symmetries
• is it possible to distributedly decide on certain symmetries?
• can we eliminate need for requiring self-state in protocol?
• more?

Questions?
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