PASSIVITY, MONOTONICITY, AND NETWORK OPTIMIZATION: NEW PERSPECTIVES FOR NETWORK SYSTEMS ANALYSIS

Daniel Zelazo

Eindhoven University of Technology

August 23, 2022

NETWORKED DYNAMIC SYSTEMS

Networks of dynamical systems are one of the enabling technologies of the future.

NETWORKED DYNAMIC SYSTEMS

- how do we analyze these systems
- how do we design these systems

IN THIS TALK...

Explore the structure and mechanisms of networked systems to reveal deep connections between properties of dynamical systems and optimization theory.

- A general model of diffusively coupled networks
- Characterization of network equilibriums via Network Optimization
- Convergence properties of dynamic networks via passivity theory
- Passivation, monotonization, and equilibrium independent passive short systems

A PHYSICS WARM-UP

- A fixed network of (linear) springs
- ▶ springs connected to masses with position $p_i \in \mathbb{R}^2$ and mass m_i
- r masses have a fixed position (anchors)

- A fixed network of (linear) springs
- ▶ springs connected to masses with position $p_i \in \mathbb{R}^2$ and mass m_i
- r masses have a fixed position (anchors)

Determine the positions of the free masses that minimize the total potential energy of the mass-spring network.

Potential Energy due to gravity

 $m_i g^T p_i$

Elastic Potential Energy of springs

$$\frac{1}{2}k_{ij}(\|p_i - p_j\| - r_{ij})^2$$

an optimization problem (take 1)

$$\begin{split} \min_{p_i} \quad \sum_i m_i g^T p_i + \sum_{i \sim j} \frac{1}{2} k_{ij} (\|p_i - p_j\| - r_{ij}) \\ \text{s.t.} p_i = \mathbf{p}_i^*, \, i = 1, \dots, r \text{ (fixed nodes)} \end{split}$$

 Potential Energy due to gravity (nodes)

$$m_i g^T p_i, \ i=1,\ldots,n$$

 Elastic Potential Energy of springs (edges)

$$\frac{1}{2}k_e(\|\underbrace{p_i - p_j}_{\zeta_e}\| - r_e)^2, \ e = 1, \dots, m$$

an optimization problem (take 2)

$$\min_{p_i,\zeta_e} \sum_{i=1}^r (m_i g^T p_i + \mathbb{I}_{\mathbf{p}_i^*}(p_i)) + \sum_{i=r+1}^n m_i g^T p_i + \sum_e \frac{1}{2} k_e (\|\zeta_e\| - r_e)^2$$

s.t. $p_i - p_j = \zeta_e, \forall e = (i,j)$

A Convex Program!

an optimization problem (take 2)

$$\min_{p_i,\zeta_e} \sum_{i}^{r} (m_i g^T p_i + \mathbb{I}_{\mathbf{p}_i^*}(p_i)) + \sum_{i=r+1}^{n} m_i g^T p_i + \sum_e \frac{1}{2} k_{ij} (\|\zeta_e\| - r_e)^2$$

s.t. $p_i - p_j = \zeta_e, \forall e = (i,j)$

A MASS-SPRING NETWORK - THE DYNAMICS

dynamic model for the masses

springs couple masses together

$$\Sigma_i : \begin{cases} \begin{bmatrix} \dot{p}_i \\ \ddot{p}_i \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u_i + m_i g & \\ \Pi_e : \begin{cases} u_i &= \sum_{i \sim j} k_{ij} (\|p_i - p_j\| - r_{ij}) \frac{p_j - p_i}{\|p_j - p_i\|} + \\ & b_{ij} (\dot{p}_j - \dot{p}_i) \\ \\ y_i &= \begin{cases} \begin{bmatrix} p_i \\ 0 \\ \end{bmatrix}, \quad i = 1, \dots, r \text{ (anchors)} \\ \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix}, \quad i = r + 1, \dots, n \end{cases}$$

A MASS-SPRING NETWORK - THE DYNAMICS

dynamic model for the masses

springs couple masses together

$$\Sigma_i : \begin{cases} \begin{bmatrix} \dot{p}_i \\ \dot{p}_i \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u_i + m_i g \\ \Pi_e \\ y_i = \begin{cases} \begin{bmatrix} p_i \\ 0 \\ \end{bmatrix}, \quad i = 1, \dots, r \text{ (anchors)} \\ \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix}, \quad i = r+1, \dots, n \end{cases}$$

$$: \begin{cases} u_i &= \sum_{i \sim j} k_{ij} (\|p_i - p_j\| - r_{ij}) \frac{p_j - p_i}{\|p_j - p_i\|} + \\ & b_{ij} (\dot{p}_j - \dot{p}_i) \\ &= \sum_{i \sim j} \kappa_{ij} (y_i - y_j) \end{cases}$$

1

$$\begin{cases} 0 &= \dot{p}_i \\ 0 &= m_i g + \sum_{i \sim j} k_{ij} (\|p_i - p_j\| - r_{ij}) \frac{p_j - p_i}{\|p_j - p_i\|} \end{cases}$$

Minimum Total Potential Energy Principle (MTPE)

Equilibrium configurations extremize the total potential energy. Stable equilibriums correspond to minimizers of the total potential energy.

Dynamics

Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_{i} \|\dot{p}_{i}\|^{2} + \frac{1}{2} \sum_{i \sim j} k_{ij} \|p_{i} - p_{j}\|_{2}^{2}$$

LESSONS AND TOOLS

Dynamics

Diffusively Coupled Network

Optimization

Convex Optimization

 $\begin{array}{ll} \min_{p_i,\zeta_e} & J(p,\zeta) \\ \text{s.t.} p_i - p_j = \zeta_e, \forall \, e = (i,j) \end{array}$

Optimality Conditions

 $0\in \partial J(p,\zeta)$

Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_{i} \|\dot{p}_{i}\|^{2} + \frac{1}{2} \sum_{i \sim j} k_{ij} \|p_{i} - p_{j}\|_{2}^{2}$$

LESSONS AND TOOLS

Dynamics

Diffusively Coupled Network

Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_{i} \|\dot{p}_{i}\|^{2} + \frac{1}{2} \sum_{i \sim j} k_{ij} \|p_{i} - p_{j}\|_{2}^{2}$$

Optimization

Convex Optimization

 $\min_{p_i,\zeta_e} J(p,\zeta)$ s.t. $p_i - p_j = \zeta_e, \forall e = (i,j)$

OT(

Optimality Conditions

MTPE Principle ensures that the dynamics of the diffusively coupled network solve the optimization problem, and vice versa.

THE QUESTION

- What class of systems can be "solved" by examining a related optimization problem?
- What class of optimization problems can be be "solved" by a dynamical system?

DIFFUSIVELY COUPLED NETWORKS

A network system is comprised of dynamical systems that interact with eachother over an information exchange network (a graph).

Agent dynamics:

$$\xrightarrow{u_i} \Sigma_i \xrightarrow{y_i}$$

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

Agent dynamics:

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

Information Exchange Network:

$$\begin{aligned} \mathcal{G} &= (\mathbb{V}, \mathbb{E}) \\ [E]_{ij} &= \begin{cases} \pm 1 & (i, j) \in \mathbb{E} \\ 0 & \text{o.w.} \end{cases} \\ E^{\top} \mathbf{1} &= 0 \end{aligned}$$

Agent dynamics:

Information Exchange Network:

$$E = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

Controller dynamics:

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

$$\begin{split} \mathcal{G} &= (\mathbb{V}, \mathbb{E}) \\ [E]_{ij} &= \begin{cases} \pm 1 & (i, j) \in \mathbb{E} \\ 0 & \text{o.w.} \end{cases} \\ E^\top \mathbf{1} &= 0 \end{split}$$

$$\Pi_e : \begin{cases} \dot{\eta}_e = \phi_e(\eta_e, \zeta_e) \\ \mu_e = \psi_e(\eta_e, \zeta_e) \end{cases}$$

DIFFUSIVE COUPLING

 $(\Sigma, \Pi, \mathcal{G})$

 $\dot{x}_i = -\sum_{i \sim j} w_{ij}(x_j - x_i)$ Kumamoto Model $\dot{\theta}_i = -k \sum_{i \sim j} \sin(\theta_i - \theta_j)$

Traffic Dynamics

$$\dot{v}_i = \kappa_i \left(V_i^0 - v_i + V_i^1 \sum_{i \sim j} \tanh(p_j - p_i) \right)$$

Neural Network

$$\begin{split} C\dot{V}_i &= f(V_i,h_i) + \sum_{i\sim j} g_{ij}(V_j-V_i)\\ \dot{h}_i &= g(V_i,h_i) \end{split}$$
 14/56

STEADY-STATE NETWORK SOLUTIONS

What properties must the systems Σ_i and Π_e possess such that $(\Sigma, \Pi, \mathcal{G})$ admits and converges to a steady-state solution?

 $u(t) \to \mathbf{u}$ $y(t) \to \mathbf{y}$ $\zeta(t) \to \zeta$ $\mu(t) \to \mathbf{\mu}$

- Consensus: $y = \alpha \mathbf{1} (\zeta = 0)$
- Formation: $\zeta \neq 0$ constant

All signals converge to a constant steady-state

NETWORK OPTIMIZATION MEETS PASSIVITY THEORY

STEADY-STATE INPUT-OUTPUT MAPS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

STEADY-STATE INPUT-OUTPUT MAPS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Input-Output Maps

The steady-state input-output map $k: \mathcal{U} \to \mathcal{Y}$ associated with Σ is the set consisting of all steady-state input-output pairs (u, y) of the system.

16/56

SISO and stable linear system

The network system $(\Sigma, \Pi, \mathcal{G})$ admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

$$0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$$
$$0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu})$$

- When do solutions exist?
- How do we find them?

A Convex Program!

Minimum Total Potential Energy Problem

$$\min_{p_i,\zeta_e} \sum_{i}^{r} (m_i g^T p_i + \mathbb{I}_{\mathbf{p}_i^*}(p_i)) + \sum_{i=r+1}^{n} m_i g^T p_i + \sum_e \frac{1}{2} k_{ij} (\|\zeta_e\| - r_e)^2$$

s.t. $p_i - p_j = \zeta_e, \forall e = (i,j)$
A MASS-SPRING NETWORK

A Convex Program!

Minimum Total Potential Energy Problem

$$\min_{p_i,\zeta_e} \sum_i J_i(p_i) + \sum_e \Gamma_e(\zeta_e)$$
s.t. $E^T p = \zeta$

A MASS-SPRING NETWORK

A Convex Program!

Minimum Total Potential Energy Problem

$$\min_{p} \quad J(p) + \Gamma(E^{T}p)$$

First-order Optimality Condition:

 $0 \in \partial J(p) + E \partial \Gamma(E^T p)$

The network system (Σ, Π, G) admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

$$0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$$
$$0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu})$$

RECALL First-order Optimality Condition:

 $0 \in \partial J(p) + E \partial \Gamma(E^T p)$

Network equations are the first-order optimality conditions of a corresponding optimization problem!

The network system (Σ, Π, G) admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

 $0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$ $0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu})$

RECALL First-order Optimality Condition:

 $0 \in \partial J(p) + E \partial \Gamma(E^T p)$

Network equations are the first-order optimality conditions of a corresponding optimization problem!

What is it?

Definition

Let k_i be the input-output relation for system Σ_i . Define the function $K_i : \mathbb{R} \to \mathbb{R}$ such that $\partial K_i(\mathbf{u}_i) = k_i(\mathbf{u}_i)$ and $K = \sum_i K_i$. The function K is called the *cost function* associated with the system Σ_i .

Similarly,

$$\partial K_i^{\star}(\mathbf{y}_i) = k_i^{-1}(\mathbf{y}_i), \ K^{\star} = \sum_i K_i^{\star}$$
$$\partial \Gamma_e(\zeta_e) = \gamma_e(\zeta_e), \ \Gamma = \sum_e \Gamma_e$$
$$\partial \Gamma_e^{\star}(\mathbf{\mu}_e) = \gamma_e^{-1}(\mathbf{\mu}_e) \ \Gamma^{\star} = \sum_e \Gamma_e^{\star}$$

INTEGRAL FUNCTIONS

22/56

NETWORKS AND OPTIMIZATION

$\min_{y,\zeta}$	$\sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\zeta_{e})$	$\min_{\mathrm{u},\mu}$	$\sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\boldsymbol{\mu}_{e})$
s.t.	$E^T \mathbf{y} = \zeta.$	s.t.	$\mathbf{u} = -E\boldsymbol{\mu}.$
First-order Optimality Condition		First-order Optimality Condition	
$0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$		$0 \in \gamma^{-1}(\mu) - E^T k(-E\mu)$	

MONOTONE MAPS AND CONVEXITY

if they are non-decreasing curves in \mathbb{R}^2

MONOTONE MAPS AND CONVEXITY

Theorem

The subdifferentials of convex functions on $\mathbb R$ are maximally monotone relations from $\mathbb R$ to $\mathbb R.^a$

^a[R. T. Rockafellar, Convex Analysis. Princeton University Press, 1997]

NETWORKS AND OPTIMIZATION

Theorem¹

If the input-output maps k_i and γ_e are maximally monotone, then the steady-state values u, y, ζ and μ are the solutions of the following pair of convex dual optimization problems:

Optimal Flow Problem (OFP)		Optimal Potential Problem (OPP)	
$\min_{y,\zeta}$	$\sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\zeta_{e})$	min u,µ	$\sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\boldsymbol{\mu}_{e})$
$s.\iota.$	$E y = \zeta.$	S.L.	$\mathbf{u} = -E \boldsymbol{\mu}.$

¹[Bürger, Z, Allgower, 2014]

NETWORK OPTIMIZATION

	Optimal Flow Problem 1	Ор	timal Potential Problem 1
$\min_{\substack{\mathrm{u},\mu}} s.t.$	$\sum_{n=1}^{ \mathcal{V} } C_n^{div}(\mathbf{u}_n) + \sum_{e=1}^{ \mathcal{E} } C_e^{flux}(\mathbf{\mu}_e)$ $u + E\mu = 0.$	$\min_{\substack{\mathrm{y},\zeta\\s.t.}}$	$\sum_{n=1}^{ \mathcal{V} } C_n^{pot}(\mathbf{y}_n) + \sum_{e=1}^{ \mathcal{E} } C_e^{ten}(\zeta_e)$ $E^T \mathbf{y} = \zeta.$

¹[R. T. Rockafellar, Network Flows and Monotropic Optmizations. John Wiley and Sons, Inc., 1984]

STEADY-STATE NETWORK SOLUTIONS

Monotone steady-state maps \Leftrightarrow Network Duality

MONOTONE DIFFUSIVE NETWORKS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Assumption 2

The input-output maps of each agent, k_i , and controller, γ_e , are maximally monotone.

Under what conditions does the network actually *converge* to these steady states?

PASSIVITY FOR DYNAMICAL SYSTEMS

Definition [Khalil 2002]

A system is passive if there exists a C^1 storage function S(x) such that

$$u^T y \ge \dot{S} = \frac{\partial S}{\partial x} f(x, u), \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^p$$

Moreover, it is said to be

- Input-strictly passive if $\dot{S} \leq u^T y u^T \phi(u)$ and $u^T \phi(u) > 0, \forall u \neq 0$
- Output-strictly passive if $\dot{S} \leq u^T y y^T \rho(y)$ and $y^T \rho(y) > 0, \forall y \neq 0$

Definition

Let Σ be a SISO system with a constant input-output steady-state pair (u, y). The system is said to be *input-output* (ρ, ν) -passive wrt (u, y) if there exists a storage function S(x) and numbers $\rho, \nu \in \mathbb{R}$, such that $\rho\nu < 1/4$ and

$$\dot{S} = \frac{\partial S}{\partial x} f(x, u) \le (y - y)(u - u) - \rho(y - y)^2 - \nu(u - u)^2,$$

for any trajectory u, y.

Definition

Let Σ be a SISO system with a constant input-output steady-state pair (u, y). The system is said to be *input-output* (ρ, ν) -passive wrt (u, y) if there exists a storage function S(x) and numbers $\rho, \nu \in \mathbb{R}$, such that $\rho\nu < 1/4$ and

$$\dot{S} = \frac{\partial S}{\partial x} f(x, u) \le (y - y)(u - u) - \rho(y - y)^2 - \nu(u - u)^2,$$

for any trajectory u, y.

- $\rho = \nu = 0 \Rightarrow$ passivity
- $\rho, \nu > 0 \Rightarrow$ strict input/output passivity
- ▶ $\rho, \nu < 0 \Rightarrow$ passive short

INTERCONNECTION OF PASSIVE SYSTEMS

- Parallel Interconnection
- ► Negative Feedback Interconnection
- ► Symmetric Interconnection

Theorem¹

Consider the network system $(\Sigma, \Pi, \mathcal{G})$ comprised of SISO agents and controllers. Suppose that there are vectors u_i, y_i, ζ_e and μ_e such that

- i) the systems Σ_i are output strictly-passive with respect to u_i and y_i ;
- ii) the systems Π_e are passive with respect to ζ_e and μ_e ;
- iii) the vectors u, y, ζ and μ satisfy $u = -\mathcal{E}\mu$ and $\zeta = \mathcal{E}^T y$.

Then the output vector y(t) converges to y as $t \to \infty$.

¹[Arcak, 2007], [Bürger, Z, Allgower, 2014]

Theorem¹

Consider the network system $(\Sigma, \Pi, \mathcal{G})$ comprised of SISO agents and controllers. Suppose that there are vectors u_i, y_i, ζ_e and μ_e such that

- i) the systems Σ_i are output strictly-passive with respect to u_i and y_i ;
- ii) the systems Π_e are passive with respect to ζ_e and μ_e ;
- iii) the vectors u, y, ζ and μ satisfy $u = -\mathcal{E}\mu$ and $\zeta = \mathcal{E}^T y$.

Then the output vector y(t) converges to y as $t \to \infty$.

requires passivity w.r.t. to specific equilibrium configuration

¹[Arcak, 2007], [Bürger, Z, Allgower, 2014]

EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

\mathbf{EIP}^1

A SISO system $\Sigma : u \mapsto y$ is said to be *equilibrium-independent input-output* (ρ, ν) -*passive* if it is input-output (ρ, ν) -passive with respect to any equilibrium (u, k(u)).

EIP systems ($\rho, \nu \ge 0$) have monotone steady-state input-output maps!

 $\dot{S} \leq (y - y)^T (u - u) \implies k$ monotonically increasing function

¹[G.H. Hines et al., 2011], [M. Sharf, A. Jain, Z., 2020]

EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

\mathbf{EIP}^1

A SISO system $\Sigma : u \mapsto y$ is said to be *equilibrium-independent input-output* (ρ, ν) -*passive* if it is input-output (ρ, ν) -passive with respect to any equilibrium (u, k(u)).

EIP systems ($\rho, \nu \ge 0$) have monotone steady-state input-output maps!

 $\dot{S} \leq (y - y)^T (u - u) \implies k \text{ monotonically increasing function}$

- ▶ Passive with respect to $U = \{0\}$ and any output value $y \in \mathbb{R}$ with storage function $S(x) = \frac{1}{2}(x - y)^2$.
- ► The equilibrium input-output map k = {(0, y) : y ∈ ℝ} is not a single valued function and hence the integrator is NOT EIP.

\mathbf{MEIP}^1

A dynamical SISO system Σ is maximal equilibrium independent passive if the following conditions hold:

- ▶ The system Σ is passive with respect to any steady-state $(u, y) \in k$.
- The relation k is maximally monotone.

MEIP NETWORKS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Assumption 2

The agent dynamics Σ_i are output-strictly MEIP and the controllers are MEIP.

Theorem¹

Assume Assumptions 1 and 2 hold. Then the signals $u(t), y(t), \zeta(t), \mu(t)$ converge to the solutions of the following pair of convex dual optimization problems:

Optimal Flow Problem (OFP)	Optimal Potential Problem (OPP)	
$ \min_{\mathbf{y},\boldsymbol{\zeta}} \qquad \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\boldsymbol{\zeta}_{e}) $ s.t. $E^{T}\mathbf{y} = \boldsymbol{\zeta}. $	$ \min_{\mathbf{u},\mu} \sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\mu_{e}) $ $s.t. \mathbf{u} = -E\mu. $	

NEW PERSPECTIVES ON PASSIVATION

What else can we say about MEIP systems?

In practice, systems are usually passivity-short (or non-passive)!

- ► Generator (always generates energy) [R. Harvey , 2016]
- Oscillating systems with small or nonexistent damping [R. Harvey, 2017]
- Dynamics of robot system from torque to position [D. Babu, 2018]
- Power-system network (turbine-governor dynamics) [S. Trip, 2018]
- Electrical circuits with nonlinear components
- More general as include non-minimum phase systems and systems with relative degree greater than 1 [Z. Qu, 2014]

PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy the developed network optimization framework!

System Type	Relations	Integral Function
MEIP	k, k^{-1} max. monotone	$K(\mathbf{u}), K^{\star}(\mathbf{y})$ are convex
Input PS	k is not monotone	$K(\mathbf{u})$ is non-convex
Output PS	k^{-1} is not monotone	$K^{\star}(\mathbf{y})$ is non-convex
Input-output PS	k, k^{-1} are not monotone	May not exist

Optimal Flow Problem (OFP)		Optimal Potential Problem (OPP)	
$ \min_{y,\zeta} $ s.t.	$\sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\zeta_{e})$ $E^{T}\mathbf{y} = \zeta.$	$\min_{\mathrm{u},\mu} s.t.$	$\sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\boldsymbol{\mu}_{e})$ $\mathbf{u} = -E\boldsymbol{\mu}.$

FEEDBACK PASSIVATION

For a passive-short system $\Sigma : u \mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.

FEEDBACK PASSIVATION

For a passive-short system $\Sigma : u \mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.

how does feedback passivation affect the steady-state input/output maps?

an example

$$\dot{x} = -x + \sqrt[3]{x} + u$$
$$y = \sqrt[3]{x}$$
$$\overline{u} = k^{-1}(\overline{y}) = \overline{y}^3 - \overline{y}$$

not a monotone input-output relation!

System is output passivity-short $S(x) = \frac{3}{4}x^{4/3} - \overline{y}x + \frac{1}{4}\overline{y}$ $\dot{S} \le (y - \overline{y})(u - \overline{u}) + (y - \overline{y})^2$ (passivity index $\rho = -1$)

equilibrium input-output map

what is the system interpretation of a "convexified" integral function?

$$K^{\star}(\overline{\mathbf{y}}) = \frac{1}{4}\overline{\mathbf{y}}^4 - \frac{1}{2}\overline{\mathbf{y}}^2$$
$$\tilde{K}^{\star}(\overline{\mathbf{y}}) = K^{\star}(\overline{\mathbf{y}}) + \frac{1}{2}\overline{\mathbf{y}}^2$$

(Tikhonov regularization term)

what is the system interpretation of a "convexified" integral function?

$$K^{\star}(\overline{\mathbf{y}}) = \frac{1}{4}\overline{\mathbf{y}}^4 - \frac{1}{2}\overline{\mathbf{y}}^2$$
$$\tilde{K}^{\star}(\overline{\mathbf{y}}) = K^{\star}(\overline{\mathbf{y}}) + \frac{1}{2}\overline{\mathbf{y}}^2$$

(Tikhonov regularization term)

$$\begin{split} \partial \tilde{K}^{\star}(\overline{\mathbf{y}}) &= \partial K^{\star}(\overline{\mathbf{y}}) + \overline{\mathbf{y}} \\ \tilde{k}^{-1}(\overline{\mathbf{y}}) &= k^{-1}(\overline{\mathbf{y}}) + \overline{\mathbf{y}} \\ &= \overline{\mathbf{y}}^3 - \overline{\mathbf{y}} + \overline{\mathbf{y}} = \overline{\mathbf{y}}^3 \end{split}$$

a monotone function!

what system yields this steady-state I/O map?

$$\dot{x} = -x + \sqrt[3]{x} - \underbrace{\sqrt[3]{y}}_{u} + v = -x + v$$
$$y = \sqrt[3]{x}$$

41/56

regularization is realized by output feedback!

$$u = v - y$$

$$\Rightarrow \dot{x} = -x + v$$

$$\Rightarrow \overline{v} = \tilde{k}^{-1}(\overline{y}) = \overline{y}^{3}$$
(maximally monotone!)

Theorem¹

Consider the passive-short SISO dynamical system $\Sigma: u \mapsto y$ with I/O steady-state map k and output passivity index $\rho < 0$. Then for any $\beta > |\rho|$, the feedback

$$u = v - \beta y$$

renders the system $\tilde{\Sigma}: v \mapsto y$ output-strictly maximally monotone EIP with steady-state input map \tilde{k} satisfying

$$\tilde{k}^{-1}(\overline{\mathbf{y}}) = k^{-1}(\overline{\mathbf{y}}) + \beta \overline{\mathbf{y}}.$$

¹[Jain, Sharf, Z, 2018]

MONOTONIZATION AND CONVEXIFICATION

A "better" convexification leads to different feedback passivation!

the feedback

$$\kappa(y) = \begin{cases} 0, & |x| = |y^3| > 1\\ y^3 - y, & |x| = |y^3| \le 1 \end{cases}$$

the closed-loop

$$\begin{split} \dot{x} &= \begin{cases} -x + \sqrt[3]{x} + v, & |x| > 1 \\ v, & |x| \le 1 \\ y &= \sqrt[3]{x}. \end{cases} \end{split}$$

Is it possible to find a linear transformation $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$ for a non-monotone I/O map $k : u \mapsto y$ such that $\tilde{k} : \tilde{u} \mapsto \tilde{y}$ is monotone?

Is it possible to find a linear transformation $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$ for a non-monotone I/O map $k : u \mapsto y$ such that $\tilde{k} : \tilde{u} \mapsto \tilde{y}$ is monotone?

For a passive-short system $\Sigma : u \mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.
Is it possible to find a linear transformation $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$ for a non-monotone I/O map $k : u \mapsto y$ such that $\tilde{k} : \tilde{u} \mapsto \tilde{y}$ is monotone?

For a passive-short system $\Sigma : u \mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.

Are these *T* maps the same?

For an EI-IOP(ρ, ν) system, for any two points $(u_1, y_1), (u_2, y_2) \in k$, the following inequality holds:

 $0 \leq -\rho(y_1 - y_2)^2 + (u_1 - u_2)(y_1 - y_2) - \nu(u_1 - u_2)^2.$

Projective Quadratic Inequalities and EI-IOP

A projective quadratic inequality (PQI) is an inequality with variables $\xi, \chi \in \mathbb{R}$ of the form

$$0 \le a\xi^2 + b\xi\chi + c\chi^2 = F(\xi, \chi),$$

for some numbers a, b, c, not all zero. The inequality is called *non-trivial* if $b^2 - 4ac > 0$. The associated solution set \mathcal{A} of the PQI is the set of all points $(\xi, \chi) \in \mathbb{R}^2$ satisfying the inequality.

- passivity inequality is a PQI: $\xi = u_1 u_2$, $\chi = y_1 y_2$
- monotonicity is a PQI: $0 \le (u_1 u_2)(y_1 y_2)$ with a = c = 0 and b = 1

A GEOMETRIC APPROACH

$$0 \le a\xi^2 + b\xi\chi + c\chi^2 = F(\xi, \chi)$$

A Recap:

•
$$F(u_1 - u_2, y_1 - y_2) \ge 0$$
 is a PQI for a EI-IOP(ρ, ν) system

$$0 \le a\xi^2 + b\xi\chi + c\chi^2 = F(\xi, \chi)$$

A Recap:

- $F(u_1 u_2, y_1 y_2) \ge 0$ is a PQI for a EI-IOP(ρ, ν) system
- For the linear map $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$,

$$F(\tilde{\mathbf{u}}_1 - \tilde{\mathbf{u}}_2, \tilde{\mathbf{y}}_1 - \tilde{\mathbf{y}}_2) \ge 0$$

is also a PQI for a EI-IOP($\tilde{\rho}, \tilde{\nu}$) system

$$0 \le a\xi^2 + b\xi\chi + c\chi^2 = F(\xi, \chi)$$

A Recap:

- $F(u_1 u_2, y_1 y_2) \ge 0$ is a PQI for a EI-IOP(ρ, ν) system
- For the linear map $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$,

$$F(\tilde{\mathbf{u}}_1 - \tilde{\mathbf{u}}_2, \tilde{\mathbf{y}}_1 - \tilde{\mathbf{y}}_2) \ge 0$$

is also a PQI for a EI-IOP($\tilde{\rho}, \tilde{\nu}$) system

• $F(\tilde{u}_1 - \tilde{u}_2, \tilde{y}_1 - \tilde{y}_2) = (\tilde{u}_1 - \tilde{u}_2)(\tilde{y}_1 - \tilde{y}_2)$ corresponds to monotonicity

$$0 \le a\xi^2 + b\xi\chi + c\chi^2 = F(\xi, \chi)$$

A Recap:

- $F(u_1 u_2, y_1 y_2) \ge 0$ is a PQI for a EI-IOP(ρ, ν) system
- For the linear map $T : (u, y) \mapsto (\tilde{u}, \tilde{y})$,

$$F(\tilde{\mathbf{u}}_1 - \tilde{\mathbf{u}}_2, \tilde{\mathbf{y}}_1 - \tilde{\mathbf{y}}_2) \ge 0$$

is also a PQI for a EI-IOP($\tilde{\rho}, \tilde{\nu}$) system

• $F(\tilde{u}_1 - \tilde{u}_2, \tilde{y}_1 - \tilde{y}_2) = (\tilde{u}_1 - \tilde{u}_2)(\tilde{y}_1 - \tilde{y}_2)$ corresponds to monotonicity

Study the effect of the map T on the solution sets of the PQIs, T(A)

A GEOMETRIC APPROACH

The solution set of any nontrivial PQI is a symmetric double-cone. Moreover, any symmetric double-cone is the solution set of some non-trivial PQI.

Theorem¹

Let (ξ_1, χ_1) , (ξ_2, χ_2) be non-colinear solutions of $a_1\xi^2 + \xi\chi + c_1\chi^2 = 0$, and $(\tilde{\xi}_1, \tilde{\chi}_1)$, $(\tilde{\xi}_2, \tilde{\chi}_2)$ be non-colinear solutions of $a_2\xi^2 + \xi\chi + c_2\chi^2 = 0$. Define $\begin{bmatrix} \tilde{\xi}_1 & \tilde{\xi}_2 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2 \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\xi}_1 & -\tilde{\xi}_2 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2 \end{bmatrix}^{-1}$

$$T_1 = \begin{bmatrix} \tilde{\chi}_1 & \tilde{\chi}_2 \end{bmatrix} \begin{bmatrix} \chi_1 & \chi_2 \end{bmatrix}, T_2 = \begin{bmatrix} \tilde{\chi}_1 & -\tilde{\chi}_2 \end{bmatrix} \begin{bmatrix} \chi_1 & \chi_2 \end{bmatrix}$$

Then one of T_1, T_2 transforms the PQI $a_1\xi^2 + \xi\chi + c_1\chi^2 \ge 0$ to the PQI $\tau a_2\xi^2 + \tau\xi\chi + \tau c_2\chi^2 \ge 0$ for some $\tau > 0$.

¹[Sharf, Jain, Z, 2021]

Consider the system

$$\Sigma : \dot{x} = -\sqrt[3]{x} + .5x + .5u, \ y = .5x - .5u$$

Using $S(x) = \frac{1}{6}(x - x)^2$ we have

$$\dot{S}(x) \le (u-u)(y-y) + \frac{1}{3}(u-u)^2 + \frac{2}{3}(y-y)^2$$

System is EI-IOP(ρ, ν) with $\rho = -2/3, \nu = -1/3$

Passive-short system with non-monotone input-output relations (not even a function!)

Consider the system

$$\Sigma : \dot{x} = -\sqrt[3]{x} + .5x + .5u, \ y = .5x - .5u$$

Using $S(x) = \frac{1}{6}(x - x)^2$ we have

$$\dot{S}(x) \le (u - u)(y - y) + \frac{1}{3}(u - u)^2 + \frac{2}{3}(y - y)^2$$

System is EI-IOP(ρ, ν) with $\rho = -2/3, \nu = -1/3$

Corresponding PQI:

$$0 \le \frac{1}{3}\xi^2 + \xi\chi + \frac{2}{3}\chi^2$$

Find a linear map ${\cal T}$ that monotonizes the input-output relations, i.e., leads to the PQI

$$\tilde{\xi}\tilde{\chi} \ge 0$$

non-colinear solutions to PQI

$$\tilde{\xi}\tilde{\chi}=0$$

non-colinear solutions to original PQI

$$0 = \frac{1}{3}\xi^2 + \xi\chi + \frac{2}{3}\chi^2$$

$$\begin{bmatrix} \tilde{\xi}_1\\ \tilde{\chi}_1 \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} \tilde{\xi}_2\\ \tilde{\chi}_2 \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix} \qquad \begin{bmatrix} \xi_1\\ \chi_1 \end{bmatrix} = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} \xi_2\\ \chi_2 \end{bmatrix} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$$

The map

$$T_1 = \begin{bmatrix} \tilde{\xi}_1 & \tilde{\xi}_2\\ \tilde{\chi}_1 & \tilde{\chi}_2 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2\\ \chi_1 & \chi_2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}$$

can be used to monotonize the relation! Indeed, for $(\xi,\chi)=T^{-1}(\tilde{\xi},\tilde{\chi})$

$$0 \leq \frac{1}{3}\xi^{2} + \xi\chi + \frac{2}{3}\chi^{2}$$

= $\frac{1}{3}(2\tilde{\xi} - \tilde{\chi})^{2} + (2\tilde{\xi} - \tilde{\chi})(-\tilde{\xi} + \tilde{\chi}) + \frac{2}{3}(-\tilde{\xi} + \tilde{\chi})^{2} = \frac{1}{3}\tilde{\xi}\tilde{\chi}$

Steady-state input-output maps under T_1 ,

$$\begin{bmatrix} \tilde{u} \\ \tilde{y} \end{bmatrix} = T_1 \begin{bmatrix} u \\ y \end{bmatrix}$$

MONOTONIZATION TO PASSIVATIION

Theorem¹

Let Σ be EI-IOP(ρ, ν). If the map T monotizes the input-output relation k, then it passivizes the system Σ .

¹[Sharf, Jain, Z, 2020]

Elementary Transformation	Relation between I/O of Σ and $\tilde{\Sigma}$	Effect on Steady-State Relations	Realization	Effect on Integral Functions
$L_A = \begin{bmatrix} 1 & \delta_A \\ 0 & 1 \end{bmatrix}$	$egin{array}{c} ilde{u} = u + \delta_A y \ ilde{y} = y \end{array}$	$\lambda_A^{-1}(\tilde{\mathbf{y}}) = k^{-1}(\tilde{\mathbf{y}}) + \delta_A \tilde{\mathbf{y}}$	output- feedback	$\Lambda^{\star}(\mathbf{y}) = K^{\star}(\mathbf{y}) + \frac{1}{2}\delta_{A}\mathbf{y}^{2}$
$L_B = \begin{bmatrix} 1 & 0\\ 0 & \delta_B \end{bmatrix}$	$egin{array}{c} ilde{u} = u \ ilde{y} = \delta_B y \end{array}$	$\lambda_B(\mathbf{u}) = \delta_B k(\mathbf{u}) \text{ or } \\ \lambda_B^{-1}(\tilde{\mathbf{y}}) = k^{-1} (\frac{1}{\delta_B} \tilde{\mathbf{y}})$	post-gain	$ \begin{aligned} \Lambda^{\star}(\mathbf{y}) &= \frac{1}{\delta_B} K^{\star}(\frac{1}{\delta_B} \mathbf{y}) \text{ or } \\ \Lambda(\mathbf{u}) &= \delta_B K(\mathbf{u}) \end{aligned} $
$L_C = \begin{bmatrix} 1 & 0\\ \delta_C & 1 \end{bmatrix}$	$egin{array}{c} ilde{u} = u \ ilde{y} = y + \delta_C u \end{array}$	$\lambda_C(\tilde{\mathbf{u}}) = k(\tilde{\mathbf{u}}) + \delta_C \tilde{\mathbf{u}}$	input- feedthrough	$\Lambda(\mathbf{u}) = K(\mathbf{u}) + \frac{1}{2}\delta_C \mathbf{u}^2$
$L_D = \begin{bmatrix} \delta_D & 0\\ 0 & 1 \end{bmatrix}$	$egin{array}{c} ilde{u} = \delta_D u \ ilde{y} = y \end{array}$	$\begin{split} \lambda_D^{-1}(\mathbf{y}) &= \delta_D k^{-1}(\mathbf{y}) \text{ or } \\ \lambda_D(\tilde{\mathbf{u}}) &= k(\frac{1}{\delta_D}\tilde{\mathbf{u}}) \end{split}$	pre-gain	$ \begin{aligned} \Lambda^{\star}(\mathbf{y}) &= \delta_D K^{\star}(\mathbf{y}) \text{ or } \\ \Lambda(\mathbf{u}) &= \frac{1}{\delta_D} K(\frac{1}{\delta_D} \mathbf{u}) \end{aligned} $

PASSIVATION, MONOTONIZATION AND CONVEXIFICATION

PASSIVATION OF DIFFUSIVELY-COUPLED NETWORKS OF EIPS SYSTEMS

- Without loss of generality assume that the systems at nodes are EIPS (applicable if some of the systems are EIPS)
- Loop Transformation results in a pair of regularized network optimization problems

$$\mathcal{J} = \operatorname{diag}(T_i)$$

CONCLUDING REMARKS

New perspectives on networks and passivity

- networks of EIP agents can be understood through solutions of a pair of static dual optimization problems
- passivity and monotonicity of input-output maps are essential
- passivation means monotonization monotonization means convexification

ACKNOWLEDGEMENTS

Dr. Anoop Jain

Dr. Miel Sharf

Dr. Mathias Bürger

er Prof. Dr.-Ing. Frank Allgöwer

SELECTED PUBLICATIONS

- M. Bürger, D. Zelazo and F. Allgower, "Duality and network theory in passivity-based cooperative control,", Automatica, 50(8): 2051-2061, 2014.
- M. Sharf and D. Zelazo, "Analysis and Synthesis of MIMO Multi-Agent Systems Using Network Optimization," IEEE Transactions on Automatic Control, 64(11):1558-2523, 2019.
- M. Sharf and D. Zelazo, "A Network Optimization Approach to Cooperative Control Synthesis," IEEE Control Systems Letters, 1(1):86-91, 2017.
- A. Jain, M. Sharf and D. Zelazo, "Regularization and Feedback Passivation in Cooperative Control of Passivity-Short Systems : A Network Optimization Perspective", IEEE Control Systems Letters, (2):4:731-736, 2018.
- M. Sharf, A. Jain and D. Zelazo, "A Geometric Method for Passivation and Cooperative Control of Equilibrium-Independent Passivity-Short Systems", IEEE Transactions on Automatic Control, 66(12):5877-5892, 2021.
- M. Sharf and D. Zelazo, "Passivity-Based Network Identification Algorithm with Minimal Time Complexity," arXiv preprint, 2019.
- M. Sharf and D. Zelazo, "A Characterization of All Passivizing Input-Output Transformations of a Passive-Short System," arXiv preprint, 2020.