
 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Distributed Rigidity Maintenance
with Range-only Sensing

Daniel Zelazo
Faculty of Aerospace Engineering
Technion-Israel Institute of Technology

Tokyo Institute of Technology
September 13, 2013

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Coordination in Multi-agent Systems
System Requirements

• `low-level’ control
• sensing and communication
• mission objectives

- local
- team

• distributed algorithms

What are the architectural requirements
for a multi-agent system?

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

The ability to control and coordinate a
team of robots depends on the sensing
capabilities of each agent!

In many applications, global or relative
state information is not available

Sensors measuring distances, however,
are very accurate and independent of any
coordinate frame

What is the machinery required to do coordination
using only distance-based measurements?

Coordination in Harsh Environments

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Architectural Requirements
“Connectedness” of the sensing

and communication network

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Architectural Requirements

certain “team” objectives and specific
sensing/communication capabilities might
dictate additional architectural
requirements

• formation keeping
• localization

)connectedness might
not “be enough”

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Architectural Requirements

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

formation specified by a set of inter-agent distances

agents can measure distance to neighbors

sensor limitations only allow a subset of available measurements

Architectural Requirements

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Can the desired formation be maintained using
only the available distance measurements?

No!

Architectural Requirements

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

A minimum number of distance measurements are
required to uniquely determine the desired formation!

Graph Rigidity

Architectural Requirements

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

 Motivation

 Graph Rigidity and the Rigidity Eigenvalue

 Distributed Rigidity Maintenance

 Outlook

Outline

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Graph Rigidity

bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

p : V ! R2

example:
v1

v2

v3

v4

v1

v2

v3

v4

x1

x2

v1

v3 v4

v2

p1

p2

F1 = (G, p1)

F2 = (G, p2)

p1() p1()

p1()

p1()

p2() p2()

p2() p2()

maps every vertex to a
point in the plane

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Graph Rigidity

bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

(G, p0) (G, p1)
Two frameworks are equivalent if kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

Two frameworks are congruent if

8 {vi, vj} 2 E

(G, p0) (G, p1)
kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

8 vi, vj 2 V

p : V ! R2

maps every vertex to a
point in the plane

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Graph Rigidity

bar-and-joint frameworks

G = (V, E){
v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

p(v1)

p(v2) p(v3)

p(v4)

p(v1)

p(v2) p(v3)p(v4)

x1

x2

x1

x2

p : V ! R2

maps every vertex to a
point in the plane

1

2

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

A framework (G, p0) is globally rigid
if every framework that is equivalent to (G, p0)
is congruent to (G, p0).

Graph Rigidity

x1

x2

p(v1)

p(v2)

p(v3)

p(v4)

p(v1)

p(v2)
p(v3)

p(v4)

frameworks that are both equivalent and
congruent are related by only “trivial” motions

• translations
• rotations 1

1

1

2

2

2

minimally rigid

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Graph Rigidity

1 2 3

1

2

3

x

y

p(v1, t0)

p(v2, t0)

p(v3, t0)

p(v4, t0)

p(v4, t)

p(v3, t)

p(v2, t)
p(v1, t)

parameterizing frameworks by a variable
representing “time” allows to consider
“motions” of a framework
(G, p, t)

A trajectory is edge consistent if
kp(v, t)� p(u, t)k is constant for all
{v, u} 2 E and all t.

{p(u) 2 R2 | kp(u)� p(v)k22 = `2uv, 8{u, v} 2 E}

edge consistent trajectories generate a
family of equivalent frameworks

) d

dt
kxu(t)� xv(t)k = 0, 8{u, v} 2 E

(ẋu(t)� ẋv(t))
T (xu(t)� xv(t)) = 0) infinitesimal motions

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Graph Rigidity

1 2 3

1

2

3

x

y

p(v1, t0)

p(v2, t0)

p(v3, t0)

p(v4, t0)

p(v4, t)

p(v3, t)

p(v2, t)
p(v1, t)

A framework is infinitesimally rigid if
every infinitesimal motion is trivial

A graph is generically rigid if it has
an infinitesimally rigid framework
realization

generic rigidity is a property of the graph!

How can we check if a graph is
generically or infinitesimally rigid?

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

The Rigidity Matrix

R(p) 2 R|E|⇥2|V|

Lemma 1 (Tay1984) A framework (G, p) is infinitesimally rigid
if and only if rk[R] = 2|V|� 3

p(v1)

p(v2) p(v3)

x1

x2

R(p) =

2

4
px1 � px2 py1 � py2 px2 � px1 py2 � py1 0 0
px1 � px3 py1 � py3 0 0 px3 � px1 py3 � py1

0 0 px2 � px3 py2 � py3 px3 � px2 py3 � py2

3

5

p(vi) = (pxi , p
y
i)

(⇠(vi)� ⇠(vj))
T (p(vi)� p(vj)) = 0

The Rigidity Matrix
infinitesimal motions define a
system of equations...

Theorem 1 A framework is infinitesimally rigid if
and only if the rigidity eigenvalue is strictly positive; i.e. �4 > 0.

[W 2
x]kk = (pxi � pxj)

2

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

The Symmetric Rigidity Matrix

R = R(p)TR(p)
a symmetric positive semi-definite
matrix with eigenvalues �1  �2  . . .  �2|V|

proof:

�4 the Rigidity Eigenvalue

The Symmetric Rigidity Matrix

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�

weights depend on relative positions

2

2

(�7)

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Frameworks for Dynamic Environments

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan 20

D
sensing range

dmin

safety zone

When is there a sensing link between agents?

composite weight between
neighboring agents

no line-of-sight occlusion

Aij

Weighted Frameworks

W : (G, p) ! |E|

w1 w2

w3

R(p,W) = W (G, p)R(p) R = R(p,W)TR(p,W)

Corollary 1 A weighted framework (G, p,W)
is infinitesimally rigid if and only if the weighted
rigidity eigenvalue is strictly positive.

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Weighted Frameworks

weighted frameworks

G = (V, E){ v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

p : V ! R2

weighted rigidity matrix weighted rigidity matrix

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

 Motivation

 Graph Rigidity and the Rigidity Eigenvalue

 Distributed Rigidity Maintenance

 Outlook

Outline

)

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Rigidity Maintenance

When relative sensing is used, rigidity
becomes an important architectural
requirement for a multi-agent system

to achieve higher level objectives
(i.e. formation control, localization),
the rigidity property must be
maintained dynamically

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

The Rigidity Potential

Define a scalar potential function

grows unbounded as

vanishes as

�4 ! 0
�4 ! 1

⇠i = �@V�

@�4

✓
@�4

@pi

◆
velocity command

V�

How can rigidity be maintained with only local information?

yaw
�

thrust

centroid
position

pcentroid

treat like
integrator

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�

@�4

@pxi
= 2

X

i⇠j

Wij

�
(pxi � pxj)(v

x
i � vxj)

2

+(pyi � pyj)(v
x
i � vxj)(v

y
i � vyj)

�
+

@Wij

@pxi
(⇤)

@Wij

pi
= 0 , j /2 Ni

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Key observation: Gradient of rigidity eigenvalue
has a distributed structure!

�4 = vT4 PRPT v4

gradient is only a
function of relative

quantities!

can be computed
locally by each

agent*

How can rigidity be maintained with only local information?

The Rigidity Potential

requires a common
inertial reference frame

“global” quantity

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Distributed Rigidity Maintenance

Control

Robot i Position
EstimatorEnvironment

...
Rigidity

Estimator

...

...

λ̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik

k 2 Ni(t) p̂ci

p̂ck, k 2 Ni(t)

+
estimation of common
reference frame
requires rigidity!

*
estimation of rigidity
eigenvalue based on
Power Iteration Method

a distributed implementation requires
• estimation of a common inertial frame
• estimation of the rigidity eigenvalue and eigenvector

pi � pj kpi � pjk

pc

pi � pc

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Estimation of a Common Frame

• one agent endowed with special ability
• able to measure relative position w.r.t to two agents
• all other agents only measure distances

Agents do not have access to
relative positions, only distance

rigidity of formation can be used
for each agent to estimate relative
position to a common point

pc

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Estimation of a Common Frame

9

Control

Robot i Position
EstimatorEnvironment

...

Rigidity
Estimator

...

...

�̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik

k 2 Ni(t) p̂c
i

p̂c
k, k 2 Ni(t)

Fig. 4. Control architecture for distributed rigidity maintenance.

As a preview of the next sections in this work, Figure 4
depicts the general architecture needed by each agent to
implement the rigidity maintenance control action (10):

1) exploiting measured distances with respect to its 1-hop
neighbors, and owing to the formation rigidity, each
agent distributely estimates relative positions in a com-
mon reference frame, labeled as the position estimator

in the figure. This block is fully explained in section IV;
2) the output of the position estimator is then used by each

agent to perform a distributed estimation of the rigidity
eigenvalue (�̂7) and of the relative components of the
eigenvector (v̂), labeled as the rigidity estimator in the
figure. This procedure is explained in section V;

3) thanks to these estimated quantities (relative positions,
�̂7 and v̂), each agent can finally implement the control
action (10) in a distributed way for maintaining infinites-
imal rigidity of the formation during the group motion
(while also coping with the various constraints and
requirements embedded into weights W). Maintaining
infinitesimal rigidity guarantees in turn convergence of
the position estimator from measured distances of step
1), and thus closes the ‘estimation-control loop.’

IV. DECENTRALIZED ESTIMATION OF POSITIONS
IN A COMMON FRAME

As explained, evaluation of the gradient control (13) re-
quires that each agent has access to the relative positions of
its neighboring agents. A main focus of this work, however,
is to achieve rigidity maintenance using only relative distance

measurements. In this section, we leverage the infinitesimal
rigidity of the formation to estimate the relative position with
respect to a common reference point, pc, shared by all agents.
In particular, each agent i, with i = 1 . . . |V|, will be able to
compute an estimate p̂i,c of its relative position pi,c = pi � pc

to this common point. By exchanging their estimates over 1-
hop communication channels, two neighboring agents i and j
can then build an estimate p̂j,c � p̂i,c of their actual relative
position pj � pj in a common reference frame. Notice that
both the graph (i.e., neighbor sets, edges, etc.) and the robot
positions are time-varying quantities. However, in this section
we omit dependency upon the time for the sake of conciseness.

We also note that this common reference point does not need
to be stationary, i.e., it can move over time. In the following,
we choose the point pc to be attached to a special agent in the
group, determined a priori. This agent will be denoted with
the index ic and, in the remainder of this section, we set pc =
pic . We now proceed to describe a distributed scheme able to
recover an estimation of the relative position pi,c = pi � pic

for any agent in the group by exploiting the measured relative
distances and the rigidity property of the formation.

To achieve this estimation, we first introduce additional
assumptions on the capabilities of the special agent ic. While
all agents other than ic are able to measure only the relative

distance to their neighbors, the special agent ic is required to
be endowed with an additional sensor able to also measure,
at any time t, the relative position (i.e., distance and bearing
angles) of at least 2 non-collinear neighbors5; these two sensed
neighbors will be denoted with the indexes (◆(t), (t)) 2
Nic(t).

Remark IV.1. We stress that the agent indexes ◆(t) and (t)
are time-varying; indeed, contrarily to the special agent ic,

◆(t) and (t) are not preassigned to any particular agent in

the multi-robot team. Therefore the special agent ic only needs

to measure its relative positions p◆(t)�pic and p(t)�pic with

respect to any two agents within its neighborhood (◆ and  are

effectively arbitrary), with the points pic , p◆(t) and p(t) being

non-collinear 8t � t0. We believe this assumption is not too

restrictive in practice, as it only require the presence of at least

one robot equipped with a range plus bearing sensor while all

the remaining ones can be equipped with simple range-only

sensors.

In the following we omit for brevity the dependency upon
the time t of the quantities ◆ and .

In order to perform the distributed estimation of pi,c =
pi � pc, 8i 2 {1, . . . , |V|} we follow the approach presented
in [24], with some slight modifications dictated by the nature
of our problem. Consistently with our notation, we define

p̂ =
h

p̂T
1,c . . . p̂T

|V|,c

iT
2 R3|V|. For compactness, we

also denote by `ij the measured distance kpj � pik, as
introduced in Definition III.1. We then consider the following
least squares estimation error:

e(p̂) =
1

4

X

{i,j}2E

�
kp̂j,c � p̂i,ck2 � `2ij

�2
+

1

2
kp̂ic,ck2+

+
1

2
kp̂◆,c � (p◆ � pic)k2 +

1

2
kp̂,c � (p � pic)k2.

(14)

Notice that the quantities `ij , p◆ � pic , and p � pic are mea-
sured while all the other quantities represent local estimates
of the robots.

The nonnegative error function e(p̂) is zero if and only if:
• kp̂j,c � p̂i,ck is equal to the measured distance `ij for all

the pairs {i, j} 2 E ;
• kp̂ic,ck = 0;

5Formation rigidity implies presence of at least 2 non-collinear neighbors
for each agent [16].

+
measured distancep̂i,c pi � pcis estimate of

*based on approach of Calafiore et al., 2010.

measured by
“special” agent

• “special” agent becomes the
(moving) point each agent is trying
to estimate the relative position of

Properties of error function
• non-negative and convex function
• = 0 if and only if estimated distances
 equal measured distances

˙̂p = �@e

@p̂
= �R(p̂)p̂+R(p̂)`+�c

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Estimation of a Common Frame

pc

*proof based on Krick et al., 2009

First-Order Gradient Descent

10

• p̂◆,c and p̂,c are equal to the measured relative positions
p◆ � pic and p � pic , respectively.

Note that the estimates p̂ic,c, p̂◆,c and p̂,c could be directly
set to 0, (p◆ � pic), and (p◆ � pic), respectively, since the first
quantity is known and the last two are measured. Nevertheless,
we prefer to let the estimator obtaining these values via a
‘filtering action’ for the following reasons: first, the estimator
provides a relatively simple way to filter out noise that might
affect the relative position measurements; secondly, implemen-
tation of the rigidity maintenance controller only requires that
(p̂j,c� p̂i,c) ! (pj �pi), which is achieved if p̂j,c ! pj � p̂ic,c

and p̂i,c ! pi�p̂ic,c for any common value of p̂ic,c. Therefore
any additional hard constraint on p̂ic,c (e.g., p̂ic,c ⌘ 0) might
unnecessarily over-constrain the estimator.

Applying a first-order gradient descent method to e(p̂), we
finally obtain the following decentralized update rule for the
i-th agent (i 6= ic):

˙̂pi,c = � @e
@p̂i,c

=
X

j2Ni

(kp̂j,c � p̂i,ck2 � `2ij)(p̂j,c � p̂i,c)�

�iic p̂i,c � �i◆ (p̂◆,c � (p◆ � pic))� �i (p̂,c � (p � pic)) ,
(15)

where �ij is the well known Kronecker’s delta6. The estima-
tor (15) is clearly decentralized since:

• `ij is locally measured by agent i;
• p̂i,c is locally available to agent i;
• p̂j,c can be transmitted using one-hop communication

from agent j to agent i, for every j 2 Ni;
• (p◆�pic) and (p�pic) are measured by agent ic and can

be transmitted using one-hop communication to agents ◆
and  respectively.

In order to show the relation between the proposed decentral-
ized position estimator scheme and the infinitesimal rigidity
property, one can restate (15) in matrix form as

˙̂p = �R(p̂)p̂ + R(p̂)` + �c (16)

where R(p̂) and R(p̂) are the symmetric rigidity matrix and
the rigidity matrix computed with the estimated positions,
` 2 R|E| is a vector whose entries are `2ij , 8{i, j} 2 E , and
�c 2 R|E| contains the remaining terms of the right-hand-side
of (15).

Proposition IV.2. If the framework is (infinitesimally)

rigid then the vector of true values p � (⌦ pc) =⇥
(p1 � pc)T · · · (p|V| � pc)T

⇤T
is an isolated local

minimizer of e(p̂). Therefore, there exists an ✏ > 0 such that,

for all initial conditions satisfying kp̂(0) � p � (⌦ pc)k < ✏,

the estimation p̂ converges to p � (⌦ pc).

We point out that the estimator in the form (16) is identical
to the formation controller proposed in [15]. Consequently, we
refer the reader to this work for a discussion on the stability
and convergence properties of this model. A similar estimation
scheme is also proposed in [24]. We briefly emphasize that
the property of having the true value of relative positions
p � (⌦ pc) as an isolated local minimizer of (14) is a

6�ij = 0 if i 6= j and �ij = 1 otherwise.

consequence of the definition of infinitesimal rigidity and of
the non-collinearity assumption of the agents ic, ◆, and .

We finally note that, in general, the rate of convergence of
a gradient descent method is known to be slower than other
estimation methods. However, we opted for this method since
is its directly amenable to a distributed implementation and
requires only first-order derivative information.

Remark IV.3. In principle, it could be possible to drop the

assumption of a special agent ic able to measure the bearings

of two neighboring agents. In fact, we conjecture that it would

suffice to define the estimation problem so as to force p̂c
◆ to

belong to a certain line passing through pc, and p̂c
 to lie on

a plane containing this line. Nevertheless, investigating the

validity of these considerations will be addressed in future

works.

V. DISTRIBUTED ESTIMATION OF THE
RIGIDITY EIGENVALUE AND EIGENVECTOR

As seen in section IV, when the multi-robot team possesses
the infinitesimal rigidity property, it is possible to distributedly
estimate the relative positions in a common reference frame
for each agent. However, the proposed distributed rigidity
maintenance control action (10) requires knowledge of some
additional global quantities that are explicitly expressed in
the expressions (13) and (10). In particular, each agent must
know also the current value of the rigidity eigenvalue and
certain components of the rigidity eigenvector. In this section
we propose a distributed estimation scheme inspired by the
distributed connectivity maintenance solution proposed in [28]
for obtaining the rigidity eigenvalue and eigenvector.

For the reader’s convenience, we first provide a brief
summary of the power iteration method for estimating the
eigenvalues and eigenvectors of a matrix. We then proceed
to show how this estimation process can be distributed by
employing PI consensus filters and by suitably exploiting the
structure of the symmetric rigidity matrix.

A. Power Iteration Method

The power iteration method is one of a suite of iterative
algorithms for estimating the dominant eigenvalue and eigen-
vector of a matrix. Following the same procedure as in [28],
we employ a continuous-time variation of the algorithm that
will compute the smallest non-zero eigenvalue and eigenvector
of the symmetric rigidity matrix.

The discrete-time power iteration algorithm is based on the
following iteration,

x(k+1) =
Ax(k)

kAx(k)k
=

Akx(0)

kAkx(0)k
.

Under certain assumptions for the matrix A (i.e., no repeated
eigenvalues), the iteration converges to the largest eigenvector
of the matrix.

To adapt the power iteration to compute the rigidity eigen-
vector and eigenvalue, we leverage the results of Theorem
II.16 and consider the iteration on a deflated version of the
rigidity matrix, i.e. R̃ = I � TTT � ↵R for some small
enough ↵ > 0. The columns of the matrix T 2 R3|V|⇥6

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Estimation of Rigidity Eigenvalue

Control

Robot i Position
EstimatorEnvironment

...

Rigidity
Estimator

...

...

λ̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik

k 2 Ni(t) p̂ci

p̂ck, k 2 Ni(t)

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Estimation of Rigidity Eigenvalue
recall...

A framework is infinitesimally
rigid if and only if the rigidity

eigenvalue is positive

*

requires all agents to have
knowledge of rigidity

eigenvalue and eigenvector

⇠i = �@V�

@�4

✓
@�4

@pi

◆

1 Power Iteration Method

algorithm for estimating the
dominant eigenvalue of a matrix

xk+1 =
Axk

kAxkk

2 Distributed Implementation use of dynamic consensus filters

strategy

relative position
to a common point

N (R) = span

⇢

0

�
,


0

�
,


py � pyc
pxc � px

��

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Power Iteration Method
Rigidity eigenvalue is not the dominant
eigenvalue of symmetric rigidity matrix

IM[T] = span[N (R)]

10

• p̂◆,c and p̂,c are equal to the measured relative positions
p◆ � pic and p � pic , respectively.

Note that the estimates p̂ic,c, p̂◆,c and p̂,c could be directly
set to 0, (p◆ � pic), and (p◆ � pic), respectively, since the first
quantity is known and the last two are measured. Nevertheless,
we prefer to let the estimator obtaining these values via a
‘filtering action’ for the following reasons: first, the estimator
provides a relatively simple way to filter out noise that might
affect the relative position measurements; secondly, implemen-
tation of the rigidity maintenance controller only requires that
(p̂j,c� p̂i,c) ! (pj �pi), which is achieved if p̂j,c ! pj � p̂ic,c

and p̂i,c ! pi�p̂ic,c for any common value of p̂ic,c. Therefore
any additional hard constraint on p̂ic,c (e.g., p̂ic,c ⌘ 0) might
unnecessarily over-constrain the estimator.

Applying a first-order gradient descent method to e(p̂), we
finally obtain the following decentralized update rule for the
i-th agent (i 6= ic):

˙̂pi,c = � @e
@p̂i,c

=
X

j2Ni

(kp̂j,c � p̂i,ck2 � `2ij)(p̂j,c � p̂i,c)�

�iic p̂i,c � �i◆ (p̂◆,c � (p◆ � pic))� �i (p̂,c � (p � pic)) ,
(15)

where �ij is the well known Kronecker’s delta6. The estima-
tor (15) is clearly decentralized since:

• `ij is locally measured by agent i;
• p̂i,c is locally available to agent i;
• p̂j,c can be transmitted using one-hop communication

from agent j to agent i, for every j 2 Ni;
• (p◆�pic) and (p�pic) are measured by agent ic and can

be transmitted using one-hop communication to agents ◆
and  respectively.

In order to show the relation between the proposed decentral-
ized position estimator scheme and the infinitesimal rigidity
property, one can restate (15) in matrix form as

˙̂p = �R(p̂)p̂ + R(p̂)` + �c (16)

where R(p̂) and R(p̂) are the symmetric rigidity matrix and
the rigidity matrix computed with the estimated positions,
` 2 R|E| is a vector whose entries are `2ij , 8{i, j} 2 E , and
�c 2 R|E| contains the remaining terms of the right-hand-side
of (15).

Proposition IV.2. If the framework is (infinitesimally)

rigid then the vector of true values p � (⌦ pc) =⇥
(p1 � pc)T · · · (p|V| � pc)T

⇤T
is an isolated local

minimizer of e(p̂). Therefore, there exists an ✏ > 0 such that,

for all initial conditions satisfying kp̂(0) � p � (⌦ pc)k < ✏,

the estimation p̂ converges to p � (⌦ pc).

We point out that the estimator in the form (16) is identical
to the formation controller proposed in [15]. Consequently, we
refer the reader to this work for a discussion on the stability
and convergence properties of this model. A similar estimation
scheme is also proposed in [24]. We briefly emphasize that
the property of having the true value of relative positions
p � (⌦ pc) as an isolated local minimizer of (14) is a

6�ij = 0 if i 6= j and �ij = 1 otherwise.

consequence of the definition of infinitesimal rigidity and of
the non-collinearity assumption of the agents ic, ◆, and .

We finally note that, in general, the rate of convergence of
a gradient descent method is known to be slower than other
estimation methods. However, we opted for this method since
is its directly amenable to a distributed implementation and
requires only first-order derivative information.

Remark IV.3. In principle, it could be possible to drop the

assumption of a special agent ic able to measure the bearings

of two neighboring agents. In fact, we conjecture that it would

suffice to define the estimation problem so as to force p̂c
◆ to

belong to a certain line passing through pc, and p̂c
 to lie on

a plane containing this line. Nevertheless, investigating the

validity of these considerations will be addressed in future

works.

V. DISTRIBUTED ESTIMATION OF THE
RIGIDITY EIGENVALUE AND EIGENVECTOR

As seen in section IV, when the multi-robot team possesses
the infinitesimal rigidity property, it is possible to distributedly
estimate the relative positions in a common reference frame
for each agent. However, the proposed distributed rigidity
maintenance control action (10) requires knowledge of some
additional global quantities that are explicitly expressed in
the expressions (13) and (10). In particular, each agent must
know also the current value of the rigidity eigenvalue and
certain components of the rigidity eigenvector. In this section
we propose a distributed estimation scheme inspired by the
distributed connectivity maintenance solution proposed in [28]
for obtaining the rigidity eigenvalue and eigenvector.

For the reader’s convenience, we first provide a brief
summary of the power iteration method for estimating the
eigenvalues and eigenvectors of a matrix. We then proceed
to show how this estimation process can be distributed by
employing PI consensus filters and by suitably exploiting the
structure of the symmetric rigidity matrix.

A. Power Iteration Method

The power iteration method is one of a suite of iterative
algorithms for estimating the dominant eigenvalue and eigen-
vector of a matrix. Following the same procedure as in [28],
we employ a continuous-time variation of the algorithm that
will compute the smallest non-zero eigenvalue and eigenvector
of the symmetric rigidity matrix.

The discrete-time power iteration algorithm is based on the
following iteration,

x(k+1) =
Ax(k)

kAx(k)k
=

Akx(0)

kAkx(0)k
.

Under certain assumptions for the matrix A (i.e., no repeated
eigenvalues), the iteration converges to the largest eigenvector
of the matrix.

To adapt the power iteration to compute the rigidity eigen-
vector and eigenvalue, we leverage the results of Theorem
II.16 and consider the iteration on a deflated version of the
rigidity matrix, i.e. R̃ = I � TTT � ↵R for some small
enough ↵ > 0. The columns of the matrix T 2 R3|V|⇥6

power iteration on “deflated” matrix

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�
recall...

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

11

contain the eigenvectors corresponding to the zero eigenvalues
of R, for example, as characterized in Theorem II.16. Note
that the power iteration applied to the matrix R̃ will compute
the eigenvector associated with the rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form [28]

˙̂v(t) = �
⇣
k1TTT +k2R+k3

⇣
v̂(t)T v̂(t)

3|V| �1
⌘

I
⌘
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector. We present here the main
result and refer the reader to [28] for details of the proof,
noting that the proof methodologies are the same for the
system (17) as that proposed in [28].

Theorem V.1. Assume that the symmetric rigidity matrix R
has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) 2 R3|V|

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt!1 v̂(t) = �v for � 2 R, if and only if the gains k1, k2

and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2�7,

3) k3 > k2�7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

kv̂(t)k  max
n

kv̂(t0)k,
p

3|V|
o

, 8 t � t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t!1

kv̂(t)k =

s

3|V|
✓

1 � k2

k3

◆
�7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system,

and both the symmetric rigidity matrix and the expression

of its null space are inherently time-varying. While the proof

provided in [28] does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique. When

the rigidity eigenvalue is not unique, the associated eigenvec-

tor can belong to (at least) a two-dimensional subspace L,

so that (17) can not be expected to converge to a unique

eigenvector but rather to an equilibrium point in L (see,

e.g., [28]). This can pose difficulties in real-world conditions

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

since non-idealities such as noise in measuring the agent states

(used in evaluating the symmetric rigidity matrix R), and

discretization when numerically integrating (17), can make the

equilibrium point for (17) in L to abruptly vary over time, thus

preventing a successful convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16
and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the
same spirit as the solution proposed in [28], we make use of
the PI average consensus filter [33] to distributedly compute
the necessary quantities of interest, and strongly exploit the
particular structure of the symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
⇥

px
c py

c pz
c

⇤
2 R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

2

4
0 0 py � py

c pz � pz
c 0

0 0 px
c � px 0 pz � pz

c

0 0 0 px
c � px py

c � py

3

5

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for
example, py,c = py � py

c , and pi,c = pi � pc.
Following our earlier notation, we also partition the vector

v̂ into each coordinate, v̂x, v̂y , and v̂z . Let Avg(r) denote
the average value of the elements in the vector r 2 Rn, i.e.
Avg(r) = 1

n
T r. Then it is straightforward to verify that

T v̂k(t) = |V|Avg(v̂k(t)) , k 2 {x, y, z} (19)
pi,c(pj,c)

T v̂k(t) = |V|Avg(pj,c � v̂k)pi,c, i, j, k 2 {x, y, z},
(20)

Power Iteration Method
continuous-time centralized power iteration method

11

contain the eigenvectors corresponding to the zero eigenvalues
of R, for example, as characterized in Theorem II.16. Note
that the power iteration applied to the matrix R̃ will compute
the eigenvector associated with the rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form [28]

˙̂v(t) = �
⇣
k1TTT +k2R+k3

⇣
v̂(t)T v̂(t)

3|V| �1
⌘

I
⌘
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector. We present here the main
result and refer the reader to [28] for details of the proof,
noting that the proof methodologies are the same for the
system (17) as that proposed in [28].

Theorem V.1. Assume that the symmetric rigidity matrix R
has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) 2 R3|V|

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt!1 v̂(t) = �v for � 2 R, if and only if the gains k1, k2

and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2�7,

3) k3 > k2�7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

kv̂(t)k  max
n

kv̂(t0)k,
p

3|V|
o

, 8 t � t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t!1

kv̂(t)k =

s

3|V|
✓

1 � k2

k3

◆
�7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system,

and both the symmetric rigidity matrix and the expression

of its null space are inherently time-varying. While the proof

provided in [28] does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique. When

the rigidity eigenvalue is not unique, the associated eigenvec-

tor can belong to (at least) a two-dimensional subspace L,

so that (17) can not be expected to converge to a unique

eigenvector but rather to an equilibrium point in L (see,

e.g., [28]). This can pose difficulties in real-world conditions

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

since non-idealities such as noise in measuring the agent states

(used in evaluating the symmetric rigidity matrix R), and

discretization when numerically integrating (17), can make the

equilibrium point for (17) in L to abruptly vary over time, thus

preventing a successful convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16
and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the
same spirit as the solution proposed in [28], we make use of
the PI average consensus filter [33] to distributedly compute
the necessary quantities of interest, and strongly exploit the
particular structure of the symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
⇥

px
c py

c pz
c

⇤
2 R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

2

4
0 0 py � py

c pz � pz
c 0

0 0 px
c � px 0 pz � pz

c

0 0 0 px
c � px py

c � py

3

5

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for
example, py,c = py � py

c , and pi,c = pi � pc.
Following our earlier notation, we also partition the vector

v̂ into each coordinate, v̂x, v̂y , and v̂z . Let Avg(r) denote
the average value of the elements in the vector r 2 Rn, i.e.
Avg(r) = 1

n
T r. Then it is straightforward to verify that

T v̂k(t) = |V|Avg(v̂k(t)) , k 2 {x, y, z} (19)
pi,c(pj,c)

T v̂k(t) = |V|Avg(pj,c � v̂k)pi,c, i, j, k 2 {x, y, z},
(20)

*adapted from Yang et al., 2010

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Distributed Power Iteration

1 symmetric rigidity matrix is a
“naturally” distributed operator

PRPT = (I2 ⌦ E(G))


Wx Wxy

Wxy Wy

� �
I2 ⌦ E(G)T

�

2

12

TTT =

2

4
T + py,c(py,c)T + pz,c(pz,c)T �py,c(px,c)T �pz,c(px,c)T

�px,c(py,c)T T + px,c(px,c)T + pz,c(pz,c)T �pz,c(py,c)T

�px,c(pz,c)T �py,c(pz,c)T T + px,c(px,c)T + py,c(py,c)T

3

5 (18)

where ‘�’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that
the consensus protocol can be used to distributedly compute
the average of a set of numbers [5]. The speed at which the
consensus protocol can compute this value is a function the
connectivity of the underlying graph and the weights used in
the protocol. In this framework, however, a direct application
of the consensus protocol will not be sufficient. Indeed, it is
expected that each agent will be physically moving, leading
to a time-varying description of the matrix TTT (see Remark
V.2). Additionally, the underlying network is also dynamic as
sensing links between agents are inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
[33],


ż(t)
ẇ(t)

�
=


��I � KP L(G(t)) KIL(G(t))

�KIL(G(t)) 0

� 
z(t)
w(t)

�

+


�I
0

�
u(t) (21)

y(t) =
⇥

I 0
⇤ 

z(t)
w(t)

�
. (22)

The parameters KP , KI 2 R and � 2 R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in [33]. Figure 5 provides a block diagram
representation of how the PI consensus filters are embedded
into the calculation of TTT v̂(t) (in only the x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive
the eigenvector estimate to the surface of a sphere of radiusp

3|V|. Using the same analysis as above, it can be verified
that
✓

v̂(t)T v̂(t)

3|V| � 1

◆
v̂(t) = (Avg(v̂(t) � v̂(t)) � 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

X

X

X

|V|

|V|

|V|

⇥
I 0 0

⇤
TTT

2

4
vx(t)
vy(t)
vz(t)

3

5

vx(t)

vy(t)

vz(t)

py,c(t)

px,c(t)

pz,c(t)

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity Avg(v̂(t) � v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, �̂i

7, can be

obtained as

�̂i
7 =

k3

k2

�
1 � v2

i (t)
�
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y� and
z�coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in the appendix in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

average of a vector can be distributedly
computed using consensus algorithm*

11

contain the eigenvectors corresponding to the zero eigenvalues
of R, for example, as characterized in Theorem II.16. Note
that the power iteration applied to the matrix R̃ will compute
the eigenvector associated with the rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form [28]

˙̂v(t) = �
⇣
k1TTT +k2R+k3

⇣
v̂(t)T v̂(t)

3|V| �1
⌘

I
⌘
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector. We present here the main
result and refer the reader to [28] for details of the proof,
noting that the proof methodologies are the same for the
system (17) as that proposed in [28].

Theorem V.1. Assume that the symmetric rigidity matrix R
has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) 2 R3|V|

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt!1 v̂(t) = �v for � 2 R, if and only if the gains k1, k2

and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2�7,

3) k3 > k2�7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

kv̂(t)k  max
n

kv̂(t0)k,
p

3|V|
o

, 8 t � t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t!1

kv̂(t)k =

s

3|V|
✓

1 � k2

k3

◆
�7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system,

and both the symmetric rigidity matrix and the expression

of its null space are inherently time-varying. While the proof

provided in [28] does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique. When

the rigidity eigenvalue is not unique, the associated eigenvec-

tor can belong to (at least) a two-dimensional subspace L,

so that (17) can not be expected to converge to a unique

eigenvector but rather to an equilibrium point in L (see,

e.g., [28]). This can pose difficulties in real-world conditions

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

since non-idealities such as noise in measuring the agent states

(used in evaluating the symmetric rigidity matrix R), and

discretization when numerically integrating (17), can make the

equilibrium point for (17) in L to abruptly vary over time, thus

preventing a successful convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16
and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the
same spirit as the solution proposed in [28], we make use of
the PI average consensus filter [33] to distributedly compute
the necessary quantities of interest, and strongly exploit the
particular structure of the symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
⇥

px
c py

c pz
c

⇤
2 R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

2

4
0 0 py � py

c pz � pz
c 0

0 0 px
c � px 0 pz � pz

c

0 0 0 px
c � px py

c � py

3

5

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for
example, py,c = py � py

c , and pi,c = pi � pc.
Following our earlier notation, we also partition the vector

v̂ into each coordinate, v̂x, v̂y , and v̂z . Let Avg(r) denote
the average value of the elements in the vector r 2 Rn, i.e.
Avg(r) = 1

n
T r. Then it is straightforward to verify that

T v̂k(t) = |V|Avg(v̂k(t)) , k 2 {x, y, z} (19)
pi,c(pj,c)

T v̂k(t) = |V|Avg(pj,c � v̂k)pi,c, i, j, k 2 {x, y, z},
(20)

12

TTT =

2

4
T + py,c(py,c)T + pz,c(pz,c)T �py,c(px,c)T �pz,c(px,c)T

�px,c(py,c)T T + px,c(px,c)T + pz,c(pz,c)T �pz,c(py,c)T

�px,c(pz,c)T �py,c(pz,c)T T + px,c(px,c)T + py,c(py,c)T

3

5 (18)

where ‘�’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that
the consensus protocol can be used to distributedly compute
the average of a set of numbers [5]. The speed at which the
consensus protocol can compute this value is a function the
connectivity of the underlying graph and the weights used in
the protocol. In this framework, however, a direct application
of the consensus protocol will not be sufficient. Indeed, it is
expected that each agent will be physically moving, leading
to a time-varying description of the matrix TTT (see Remark
V.2). Additionally, the underlying network is also dynamic as
sensing links between agents are inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
[33],


ż(t)
ẇ(t)

�
=


��I � KP L(G(t)) KIL(G(t))

�KIL(G(t)) 0

� 
z(t)
w(t)

�

+


�I
0

�
u(t) (21)

y(t) =
⇥

I 0
⇤ 

z(t)
w(t)

�
. (22)

The parameters KP , KI 2 R and � 2 R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in [33]. Figure 5 provides a block diagram
representation of how the PI consensus filters are embedded
into the calculation of TTT v̂(t) (in only the x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive
the eigenvector estimate to the surface of a sphere of radiusp

3|V|. Using the same analysis as above, it can be verified
that
✓

v̂(t)T v̂(t)

3|V| � 1

◆
v̂(t) = (Avg(v̂(t) � v̂(t)) � 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

X

X

X

|V|

|V|

|V|

⇥
I 0 0

⇤
TTT

2

4
vx(t)
vy(t)
vz(t)

3

5

vx(t)

vy(t)

vz(t)

py,c(t)

px,c(t)

pz,c(t)

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity Avg(v̂(t) � v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, �̂i

7, can be

obtained as

�̂i
7 =

k3

k2

�
1 � v2

i (t)
�
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y� and
z�coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in the appendix in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

PI-Consensus Filter [Freeman et al. 2006]

• dynamic consensus filter
• tunable gains
• tracks average of time-
varying signal

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

3

12

TTT =

2

4
T + py,c(py,c)T + pz,c(pz,c)T �py,c(px,c)T �pz,c(px,c)T

�px,c(py,c)T T + px,c(px,c)T + pz,c(pz,c)T �pz,c(py,c)T

�px,c(pz,c)T �py,c(pz,c)T T + px,c(px,c)T + py,c(py,c)T

3

5 (18)

where ‘�’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that
the consensus protocol can be used to distributedly compute
the average of a set of numbers [5]. The speed at which the
consensus protocol can compute this value is a function the
connectivity of the underlying graph and the weights used in
the protocol. In this framework, however, a direct application
of the consensus protocol will not be sufficient. Indeed, it is
expected that each agent will be physically moving, leading
to a time-varying description of the matrix TTT (see Remark
V.2). Additionally, the underlying network is also dynamic as
sensing links between agents are inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
[33],


ż(t)
ẇ(t)

�
=


��I � KP L(G(t)) KIL(G(t))

�KIL(G(t)) 0

� 
z(t)
w(t)

�

+


�I
0

�
u(t) (21)

y(t) =
⇥

I 0
⇤ 

z(t)
w(t)

�
. (22)

The parameters KP , KI 2 R and � 2 R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in [33]. Figure 5 provides a block diagram
representation of how the PI consensus filters are embedded
into the calculation of TTT v̂(t) (in only the x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive
the eigenvector estimate to the surface of a sphere of radiusp

3|V|. Using the same analysis as above, it can be verified
that
✓

v̂(t)T v̂(t)

3|V| � 1

◆
v̂(t) = (Avg(v̂(t) � v̂(t)) � 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

X

X

X

|V|

|V|

|V|

⇥
I 0 0

⇤
TTT

2

4
vx(t)
vy(t)
vz(t)

3

5

vx(t)

vy(t)

vz(t)

py,c(t)

px,c(t)

pz,c(t)

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity Avg(v̂(t) � v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, �̂i

7, can be

obtained as

�̂i
7 =

k3

k2

�
1 � v2

i (t)
�
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y� and
z�coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in the appendix in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

12

TTT =

2

4
T + py,c(py,c)T + pz,c(pz,c)T �py,c(px,c)T �pz,c(px,c)T

�px,c(py,c)T T + px,c(px,c)T + pz,c(pz,c)T �pz,c(py,c)T

�px,c(pz,c)T �py,c(pz,c)T T + px,c(px,c)T + py,c(py,c)T

3

5 (18)

where ‘�’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that
the consensus protocol can be used to distributedly compute
the average of a set of numbers [5]. The speed at which the
consensus protocol can compute this value is a function the
connectivity of the underlying graph and the weights used in
the protocol. In this framework, however, a direct application
of the consensus protocol will not be sufficient. Indeed, it is
expected that each agent will be physically moving, leading
to a time-varying description of the matrix TTT (see Remark
V.2). Additionally, the underlying network is also dynamic as
sensing links between agents are inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
[33],


ż(t)
ẇ(t)

�
=


��I � KP L(G(t)) KIL(G(t))

�KIL(G(t)) 0

� 
z(t)
w(t)

�

+


�I
0

�
u(t) (21)

y(t) =
⇥

I 0
⇤ 

z(t)
w(t)

�
. (22)

The parameters KP , KI 2 R and � 2 R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in [33]. Figure 5 provides a block diagram
representation of how the PI consensus filters are embedded
into the calculation of TTT v̂(t) (in only the x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive
the eigenvector estimate to the surface of a sphere of radiusp

3|V|. Using the same analysis as above, it can be verified
that
✓

v̂(t)T v̂(t)

3|V| � 1

◆
v̂(t) = (Avg(v̂(t) � v̂(t)) � 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

X

X

X

|V|

|V|

|V|

⇥
I 0 0

⇤
TTT

2

4
vx(t)
vy(t)
vz(t)

3

5

vx(t)

vy(t)

vz(t)

py,c(t)

px,c(t)

pz,c(t)

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity Avg(v̂(t) � v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, �̂i

7, can be

obtained as

�̂i
7 =

k3

k2

�
1 � v2

i (t)
�
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y� and
z�coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in the appendix in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

11

contain the eigenvectors corresponding to the zero eigenvalues
of R, for example, as characterized in Theorem II.16. Note
that the power iteration applied to the matrix R̃ will compute
the eigenvector associated with the rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form [28]

˙̂v(t) = �
⇣
k1TTT +k2R+k3

⇣
v̂(t)T v̂(t)

3|V| �1
⌘

I
⌘
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector. We present here the main
result and refer the reader to [28] for details of the proof,
noting that the proof methodologies are the same for the
system (17) as that proposed in [28].

Theorem V.1. Assume that the symmetric rigidity matrix R
has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) 2 R3|V|

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt!1 v̂(t) = �v for � 2 R, if and only if the gains k1, k2

and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2�7,

3) k3 > k2�7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

kv̂(t)k  max
n

kv̂(t0)k,
p

3|V|
o

, 8 t � t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t!1

kv̂(t)k =

s

3|V|
✓

1 � k2

k3

◆
�7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system,

and both the symmetric rigidity matrix and the expression

of its null space are inherently time-varying. While the proof

provided in [28] does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique. When

the rigidity eigenvalue is not unique, the associated eigenvec-

tor can belong to (at least) a two-dimensional subspace L,

so that (17) can not be expected to converge to a unique

eigenvector but rather to an equilibrium point in L (see,

e.g., [28]). This can pose difficulties in real-world conditions

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

since non-idealities such as noise in measuring the agent states

(used in evaluating the symmetric rigidity matrix R), and

discretization when numerically integrating (17), can make the

equilibrium point for (17) in L to abruptly vary over time, thus

preventing a successful convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16
and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the
same spirit as the solution proposed in [28], we make use of
the PI average consensus filter [33] to distributedly compute
the necessary quantities of interest, and strongly exploit the
particular structure of the symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
⇥

px
c py

c pz
c

⇤
2 R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

2

4
0 0 py � py

c pz � pz
c 0

0 0 px
c � px 0 pz � pz

c

0 0 0 px
c � px py

c � py

3

5

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for
example, py,c = py � py

c , and pi,c = pi � pc.
Following our earlier notation, we also partition the vector

v̂ into each coordinate, v̂x, v̂y , and v̂z . Let Avg(r) denote
the average value of the elements in the vector r 2 Rn, i.e.
Avg(r) = 1

n
T r. Then it is straightforward to verify that

T v̂k(t) = |V|Avg(v̂k(t)) , k 2 {x, y, z} (19)
pi,c(pj,c)

T v̂k(t) = |V|Avg(pj,c � v̂k)pi,c, i, j, k 2 {x, y, z},
(20)

Distributed Power Iteration

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

11

contain the eigenvectors corresponding to the zero eigenvalues
of R, for example, as characterized in Theorem II.16. Note
that the power iteration applied to the matrix R̃ will compute
the eigenvector associated with the rigidity eigenvalue.7

The continuous-time counterpart of the power iteration
algorithm now takes the form [28]

˙̂v(t) = �
⇣
k1TTT +k2R+k3

⇣
v̂(t)T v̂(t)

3|V| �1
⌘

I
⌘
v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the
constants k1, k2, k3 > 0 are chosen to ensure the trajectories
converge to the rigidity eigenvector. We present here the main
result and refer the reader to [28] for details of the proof,
noting that the proof methodologies are the same for the
system (17) as that proposed in [28].

Theorem V.1. Assume that the symmetric rigidity matrix R
has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) 2 R3|V|

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt!1 v̂(t) = �v for � 2 R, if and only if the gains k1, k2

and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2�7,

3) k3 > k2�7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

kv̂(t)k  max
n

kv̂(t0)k,
p

3|V|
o

, 8 t � t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t!1

kv̂(t)k =

s

3|V|
✓

1 � k2

k3

◆
�7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system,

and both the symmetric rigidity matrix and the expression

of its null space are inherently time-varying. While the proof

provided in [28] does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique. When

the rigidity eigenvalue is not unique, the associated eigenvec-

tor can belong to (at least) a two-dimensional subspace L,

so that (17) can not be expected to converge to a unique

eigenvector but rather to an equilibrium point in L (see,

e.g., [28]). This can pose difficulties in real-world conditions

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

since non-idealities such as noise in measuring the agent states

(used in evaluating the symmetric rigidity matrix R), and

discretization when numerically integrating (17), can make the

equilibrium point for (17) in L to abruptly vary over time, thus

preventing a successful convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-
mator for estimating the rigidity eigenvalue and eigenvector
of the symmetric rigidity matrix. The estimator given in
(17), however, is a centralized implementation. Moreover,
certain parameters used in (17) are expressed using a common
reference frame (i.e., the quantity TTT , see Theorem II.16
and Remark II.17) or require each robot to know the entire
estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We
propose in this sub-section a distributed implementation for
the rigidity estimator that overcomes these difficulties, in
particular by leveraging the results of Section IV. In the
same spirit as the solution proposed in [28], we make use of
the PI average consensus filter [33] to distributedly compute
the necessary quantities of interest, and strongly exploit the
particular structure of the symmetric rigidity matrix.

Our approach to the distribution of (17) is to exploit both the
built-in distributed structure (i.e., the symmetric rigidity matrix
R) and the reduction of the other parameters to values that all
agents can obtain via a distributed algorithm. In this direction,
we now proceed to analyze each term in (17) and discuss
the appropriate strategies for implementing the estimator in a
distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an
analytic characterization of the eigenvectors associated with
the zero eigenvalues of the symmetric rigidity matrix (assum-
ing the graph is infinitesimally rigid). To begin the analysis,
we explicitly write out the matrix T and examine the elements
of the matrix TTT . Following the comments of Remark
II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
⇥

px
c py

c pz
c

⇤
2 R3; in

particular, the point pc will be the special agent ic described
in Section IV.

T =

2

4
0 0 py � py

c pz � pz
c 0

0 0 px
c � px 0 pz � pz

c

0 0 0 px
c � px py

c � py

3

5

For the remainder of this discussion, we assume that all agents
have access to their state in an estimated coordinate frame
relative to the point pic , the details of which were described
in Section IV.

To simplify notations, we write as in Section IV, for
example, py,c = py � py

c , and pi,c = pi � pc.
Following our earlier notation, we also partition the vector

v̂ into each coordinate, v̂x, v̂y , and v̂z . Let Avg(r) denote
the average value of the elements in the vector r 2 Rn, i.e.
Avg(r) = 1

n
T r. Then it is straightforward to verify that

T v̂k(t) = |V|Avg(v̂k(t)) , k 2 {x, y, z} (19)
pi,c(pj,c)

T v̂k(t) = |V|Avg(pj,c � v̂k)pi,c, i, j, k 2 {x, y, z},
(20)

Distributed Power Iteration

12

TTT =

2

4
T + py,c(py,c)T + pz,c(pz,c)T �py,c(px,c)T �pz,c(px,c)T

�px,c(py,c)T T + px,c(px,c)T + pz,c(pz,c)T �pz,c(py,c)T

�px,c(pz,c)T �py,c(pz,c)T T + px,c(px,c)T + py,c(py,c)T

3

5 (18)

where ‘�’ denotes the element-wise multiplication of two
vectors.

This characterization highlights that, in order to evaluate the
term TTT v̂, each agent must compute the average amongst all
agents of a certain value that is a function of the current state of
the estimator and of the positions in some common reference
frame whose origin is the point pc. It is well known that
the consensus protocol can be used to distributedly compute
the average of a set of numbers [5]. The speed at which the
consensus protocol can compute this value is a function the
connectivity of the underlying graph and the weights used in
the protocol. In this framework, however, a direct application
of the consensus protocol will not be sufficient. Indeed, it is
expected that each agent will be physically moving, leading
to a time-varying description of the matrix TTT (see Remark
V.2). Additionally, the underlying network is also dynamic as
sensing links between agents are inherently state dependent.

The use of a dynamic consensus protocol introduces ad-
ditional tuning parameters that can be used to ensure that
the distributed average calculation converges faster than the
underlying dynamics of each agent in the system, as well as
the ability to track the average of a time-varying signal. We
employ the following PI average consensus filter proposed in
[33],


ż(t)
ẇ(t)

�
=


��I � KP L(G(t)) KIL(G(t))

�KIL(G(t)) 0

� 
z(t)
w(t)

�

+


�I
0

�
u(t) (21)

y(t) =
⇥

I 0
⇤ 

z(t)
w(t)

�
. (22)

The parameters KP , KI 2 R and � 2 R are used to ensure
stability and tune the speed of the filter. An analysis of the
stability and performance of this scheme with time-varying
graphs is given in [33]. Figure 5 provides a block diagram
representation of how the PI consensus filters are embedded
into the calculation of TTT v̂(t) (in only the x-coordinate).

As for the second term in (17), as shown in §II-C the sym-
metric rigidity matrix is by construction a distributed operator.
The term Rv̂(t) can be computed using only information
exchanged between neighboring agents, as determined by the
sensing graph.

The final term in (17) is a normalization used to drive
the eigenvector estimate to the surface of a sphere of radiusp

3|V|. Using the same analysis as above, it can be verified
that
✓

v̂(t)T v̂(t)

3|V| � 1

◆
v̂(t) = (Avg(v̂(t) � v̂(t)) � 1) v̂(t). (23)

This quantity can therefore be distributedly computed using
an additional PI consensus filter.

PI
Consensus

Filter

PI
Consensus

Filter

PI
Consensus

Filter

G(t)

X

X

X

|V|

|V|

|V|

⇥
I 0 0

⇤
TTT

2

4
vx(t)
vy(t)
vz(t)

3

5

vx(t)

vy(t)

vz(t)

py,c(t)

px,c(t)

pz,c(t)

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT v̂(t).

Using the result of Theorem V.1 and the PI consensus filters,
each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity Avg(v̂(t) � v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, �̂i

7, can be

obtained as

�̂i
7 =

k3

k2

�
1 � v2

i (t)
�
.

In summary, each agent implements the following filters:
• Estimation of a common reference frame using (15).
• Estimation of the rigidity eigenvector using (17).
• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).
• A PI-Consensus filter for tracking the quantity described

in (20).
• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).
For completeness, we now present the full set of filters that
each robot executes in (24)-(33). These equations are written
only for the x-coordinate associated with all the quantities.
Observe, however, that the filters needed for the y� and
z�coordinates do not require additional integrators, as similar
filters can be vectorized (for example, the PI filters can be
combined as in (21)). For the readers convenience, a summary
of the notations and variable definitions used in (24)-(33) is
provided in the appendix in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

13

˙̂vx
i = �k1|V|

�
vx

i + zxy
i (t)p̂y

i,c + zxz
i p̂z

i,c(t)
�

� k2

X

j2Ni(t)

Wij

�
v̂x

i (t) � v̂x
j

�
� k3 (vx

i � 1) v̂x
i (24)

˙̂pi,c =
X

j2Ni(t)

(kp̂j,c � p̂i,ck2 � `2ij)(p̂j,c � p̂i,c) � �iic p̂i,c � �i◆ (p̂◆,c � (p◆ � pic)) � �i (p̂,c � (p � pic)) (25)

v̇
x
i = � (v̂x

i � vx
i) � KP

X

j2Ni

�
vx

i � vx
j (t)

�
+ KI

X

j2Ni(t)

�
wx

i � wx
j

�
(26)

ẇ
x
i = �KI

X

j2Ni(t)

�
vx

i � vx
j

�
(27)

v̇
2x
i = �

�
(v̂x

i)2 � v2x
i

�
� KP

X

j2Ni(t)

�
v2x

i � v2x
j

�
+ KI

X

j2Ni(t)

�
w2x

i � w2x
j

�
(28)

ẇ
2x
i = �KI

X

j2Ni(t)

�
v2x

i � v2x
j

�
(29)

żxy
i = � ((p̂y � v̂x � p̂x � v̂y) � zxy

i) � KP

X

j2Ni(t)

�
zxy
i � zxy

j

�
+ KI

X

j2Ni(t)

�
wxy

i (t) � wxy
j

�
(30)

ẇxy
i = �KI

X

j2Ni(t)

�
zxy
i � zxy

j

�
(31)

żxz
i = � ((p̂z � v̂x � p̂x � v̂z) � zxz

i) � KP

X

j2Ni(t)

�
zxy
i � zxy

j

�
+ KI

X

j2Ni(t)

�
wxy

i � wxy
j

�
(32)

ẇxz
i = �KI

X

j2Ni(t)

�
zxz
i � zxz

j

�
(33)

VI. THE RIGIDITY MAINTENANCE CONTROLLER

The primary focus of this work until now was a detailed
description of how the rigidity of a multi-robot formation can
be maintained in a distributed fashion. The basic idea was
to follow the gradient of an appropriately defined potential
function of the rigidity eigenvalue; this control strategy was
presented in (13). The fundamental challenge for the imple-
mentation of this control strategy was twofold: on the one
hand, rigidity of a formation is an inherently global property of
the network, and on the other hand, the control law depended
on relative position measurements in a common reference
fame.

A truly distributed solution based on this control strategy,
requires each agent to estimate a common inertial reference
frame and also estimate the rigidity eigenvalue and eigenvector
of the formation. The solution to these estimation problems
were presented in Sections IV and V, with the complete set
of filter equations summarized in (24)-(33). Note that both
estimation strategies implicitly require that the underlying
formation is infinitesimally rigid. The final step for imple-
mentation of the rigidity maintenance controller is then to
replace all the state-variables given in (13) with the appropriate
estimated states computed by the relative position estimators
and rigidity eigenvalue estimators. The local controller for

each agent is thus given as,8

⇠x
i = �

@V (�̂i
7)

@�7

X

j2Ni

Wij

⇣
2(p̂x

i,c � p̂x
j,c)(v̂

x
i � v̂x

j)2+

2(p̂y
i,c � p̂y

j,c)(v̂
x
i � v̂x

j)(v̂y
i � v̂y

j) + 2(p̂z
i,c � p̂z

j,c)(v̂
x
i � v̂x

j)(v̂z
i � v̂z

j)
⌘

+

@Wij

@px
i

Ŝij ,

(34)
in conjunction with all the estimation filters of (24)-(33)

VII. EXPERIMENTAL RESULTS PRG+AF
In this section we report some experimental results aimed

at illustrating the machinery proposed so far for distributed
rigidity maintenance. The experiments involved a total of
N = 6 quadorotor UAVs (5 real and 1 simulated) flying the
environment shown in Fig. 6. All the quadrotor UAVs were
implementing the rigidity maintenance action (34) in addition
to the estimation filters presented in (24)-(33). Additionally,
for two of the quadrotor UAVs (namely, quadrotors 1 and 2)
an exogenous bounded velocity term ⇠⇤i 2 R3 was also added
to (34); this allows for two human operators to independently
control the motion of quadrotors 1 and 2 during the experi-
ment, so as to steer the whole formation and trigger the various
behaviors embedded in the weights Wuv (formation control,
obstacle avoidance, sensing limitations).9

add picture of the experimental setup (from the video)

8The control is shown in the x-coordinate; a similar expression can be
obtained for the y- and z- coordinates.

9We note that, being ⇠⇤i bounded, its effect does not threaten rigidity
maintenance since the control action ⇠i in (10) always results dominant as
V�(�7) ! 1 if �7(t) ! �min

7 .

Putting it all together...
power iteration

frame estimation

PI-consensus I

PI-consensus II

PI-consensus III

PI-consensus IV

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

13

˙̂vx
i = �k1|V|

�
vx

i + zxy
i (t)p̂y

i,c + zxz
i p̂z

i,c(t)
�

� k2

X

j2Ni(t)

Wij

�
v̂x

i (t) � v̂x
j

�
� k3 (vx

i � 1) v̂x
i (24)

˙̂pi,c =
X

j2Ni(t)

(kp̂j,c � p̂i,ck2 � `2ij)(p̂j,c � p̂i,c) � �iic p̂i,c � �i◆ (p̂◆,c � (p◆ � pic)) � �i (p̂,c � (p � pic)) (25)

v̇
x
i = � (v̂x

i � vx
i) � KP

X

j2Ni

�
vx

i � vx
j (t)

�
+ KI

X

j2Ni(t)

�
wx

i � wx
j

�
(26)

ẇ
x
i = �KI

X

j2Ni(t)

�
vx

i � vx
j

�
(27)

v̇
2x
i = �

�
(v̂x

i)2 � v2x
i

�
� KP

X

j2Ni(t)

�
v2x

i � v2x
j

�
+ KI

X

j2Ni(t)

�
w2x

i � w2x
j

�
(28)

ẇ
2x
i = �KI

X

j2Ni(t)

�
v2x

i � v2x
j

�
(29)

żxy
i = � ((p̂y � v̂x � p̂x � v̂y) � zxy

i) � KP

X

j2Ni(t)

�
zxy
i � zxy

j

�
+ KI

X

j2Ni(t)

�
wxy

i (t) � wxy
j

�
(30)

ẇxy
i = �KI

X

j2Ni(t)

�
zxy
i � zxy

j

�
(31)

żxz
i = � ((p̂z � v̂x � p̂x � v̂z) � zxz

i) � KP

X

j2Ni(t)

�
zxy
i � zxy

j

�
+ KI

X

j2Ni(t)

�
wxy

i � wxy
j

�
(32)

ẇxz
i = �KI

X

j2Ni(t)

�
zxz
i � zxz

j

�
(33)

VI. THE RIGIDITY MAINTENANCE CONTROLLER

The primary focus of this work until now was a detailed
description of how the rigidity of a multi-robot formation can
be maintained in a distributed fashion. The basic idea was
to follow the gradient of an appropriately defined potential
function of the rigidity eigenvalue; this control strategy was
presented in (13). The fundamental challenge for the imple-
mentation of this control strategy was twofold: on the one
hand, rigidity of a formation is an inherently global property of
the network, and on the other hand, the control law depended
on relative position measurements in a common reference
fame.

A truly distributed solution based on this control strategy,
requires each agent to estimate a common inertial reference
frame and also estimate the rigidity eigenvalue and eigenvector
of the formation. The solution to these estimation problems
were presented in Sections IV and V, with the complete set
of filter equations summarized in (24)-(33). Note that both
estimation strategies implicitly require that the underlying
formation is infinitesimally rigid. The final step for imple-
mentation of the rigidity maintenance controller is then to
replace all the state-variables given in (13) with the appropriate
estimated states computed by the relative position estimators
and rigidity eigenvalue estimators. The local controller for

each agent is thus given as,8

⇠x
i = �

@V (�̂i
7)

@�7

X

j2Ni

Wij

⇣
2(p̂x

i,c � p̂x
j,c)(v̂

x
i � v̂x

j)2+

2(p̂y
i,c � p̂y

j,c)(v̂
x
i � v̂x

j)(v̂y
i � v̂y

j) + 2(p̂z
i,c � p̂z

j,c)(v̂
x
i � v̂x

j)(v̂z
i � v̂z

j)
⌘

+

@Wij

@px
i

Ŝij ,

(34)
in conjunction with all the estimation filters of (24)-(33)

VII. EXPERIMENTAL RESULTS PRG+AF
In this section we report some experimental results aimed

at illustrating the machinery proposed so far for distributed
rigidity maintenance. The experiments involved a total of
N = 6 quadorotor UAVs (5 real and 1 simulated) flying the
environment shown in Fig. 6. All the quadrotor UAVs were
implementing the rigidity maintenance action (34) in addition
to the estimation filters presented in (24)-(33). Additionally,
for two of the quadrotor UAVs (namely, quadrotors 1 and 2)
an exogenous bounded velocity term ⇠⇤i 2 R3 was also added
to (34); this allows for two human operators to independently
control the motion of quadrotors 1 and 2 during the experi-
ment, so as to steer the whole formation and trigger the various
behaviors embedded in the weights Wuv (formation control,
obstacle avoidance, sensing limitations).9

add picture of the experimental setup (from the video)

8The control is shown in the x-coordinate; a similar expression can be
obtained for the y- and z- coordinates.

9We note that, being ⇠⇤i bounded, its effect does not threaten rigidity
maintenance since the control action ⇠i in (10) always results dominant as
V�(�7) ! 1 if �7(t) ! �min

7 .

Rigidity Maintenance Controller

Control

Robot i Position
EstimatorEnvironment

...

Rigidity
Estimator

...

...

λ̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik

k 2 Ni(t) p̂ci

p̂ck, k 2 Ni(t)

use output of rigidity estimator
in control

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Experiment

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Some unresolved points....

• Power Iteration method assumes distinct eigenvalues
- proposed scheme can not guarantee that rigidity eigenvalue is unique
- can lead to undesirable behaviors

• Formal stability proof for interconnection of all filters is
missing

- ad hoc implementation
- engineering art to ensure each filter converges fast enough
- alternative to power iteration method

• Need to relax requirement for “special agent”

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Proposition 3. Let G = (V, E) be a graph with two distinct vertices vi and vj ,
and let G∗ = (V∗, E∗) be the graph obtained by connecting a new vertex vk /∈ V
with edges (vi, vk) and (vj , vk) to the graph G. The G is infinitesimally rigid if and
only if G∗ is infinitesimally rigid (see Figure 4(a)).

j

i
k

(a) Adding a vertex.

j

i
k

r

(b) Selecting the optimal attachment point.

Figure 4: Henneberg constructions for adding a vertex to a rigid framework.

Proposition 3 represents an essential procedure for constructing rigid frame-
works. This is a key feature for joining graphs in a rigid way, and is discussed
in much of the literature related to formation keeping and rigidity (get citations).
While very simple, this procedure does not indicate which nodes, if there are many
possible nodes to attach to, to connect to. We now proceed how this can be ac-
complished to ensure the resulting formation has its performance minimized. This
is visualized in Figure 4(b), where node vk can select between 5 nodes within its
sensing range to establish a connection with.

In all settings, we wish to add a vertex to the existing graph G such that the
newly obtained graph G∗, and its associated dynamic representation Σ(G∗), has
best performance; that is, add the new vertex such that ∥Σ(G∗)∥p is minimized for
p ∈ {2,∞}. In addition, we also allow for both homogeneous and heterogeneous
dynamic agent configurations. Based on the results summarized in Table 1, we
have the following propositions.

Proposition 4 (Homogeneous H2 Vertex Addition). Given a graph G = (V, E)
with dynamic representation Σ(G) that is minimally infinitesimally rigid, and a
node vk /∈ V with identical dynamics as each agent in G, then establishing an

10

• “bearing” rigidity
• full distributed implementations
• formation specification and trajectory tracking
• optimality
• rigidity matroids
• sub-modular optimization
• sensor fusion and localization
• ...

Outlook
Rigidity is an important architectural
requirement for multi-agent systems!

 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Tokyo Tech, September 13, 2013,
Tokyo, Japan

Acknowledgements

Questions?
Dr. Paolo Robuffo Giordano Dr. Antonio Franchi

どもありがとうございます！

