

Distributed Rigidity Maintenance with Range-only Sensing

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Tokyo Institute of Technology September 13, 2013

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Coordination in Multi-agent Systems

General Robotics, Automation, Sensing & Perception

System Requirements

- `low-level' control
- sensing and communication
- mission objectives
 - local
 - team
- distributed algorithms

What are the *architectural* requirements for a multi-agent system?

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Coordination in Harsh Environments

are very accurate and independent of any

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

"Connectedness" of the sensing and communication network

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

certain "team" objectives and specific sensing/communication capabilities might dictate additional architectural requirements

- formation keeping
- localization

formation specified by a set of inter-agent distances

agents can measure distance to neighbors

sensor limitations only allow a subset of available measurements

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Can the desired formation be maintained using only the available distance measurements?

No!

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A *minimum* number of distance measurements are required to *uniquely* determine the desired formation!

Graph Rigidity

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

♦ Motivation

- Graph Rigidity and the Rigidity Eigenvalue
- ♦ Distributed Rigidity Maintenance

♦ Outlook

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

bar-and-joint frameworks

$$\begin{cases} \mathcal{G} = (\mathcal{V}, \mathcal{E}) \\ p : \mathcal{V} \to \mathbb{R}^2 \end{cases}$$

maps every vertex to a point in the plane

Two frameworks are equivalent if

 $(\mathcal{G}, p_0) \ (\mathcal{G}, p_1)$

Two frameworks are congruent if

 $(\mathcal{G}, p_0) \ (\mathcal{G}, p_1)$

$$\|p_0(v_i) - p_0(v_j)\| = \|p_1(v_i) - p_1(v_j)\|$$
$$\forall \{v_i, v_j\} \in \mathcal{E}$$
$$\|p_0(v_i) - p_0(v_j)\| = \|p_1(v_i) - p_1(v_j)\|$$

 $\forall v_i, v_j \in \mathcal{V}$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A framework (\mathcal{G}, p_0) is globally rigid if every framework that is equivalent to (\mathcal{G}, p_0) is congruent to (\mathcal{G}, p_0) .

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

parameterizing frameworks by a variable representing "time" allows to consider "motions" of a framework (\mathcal{G}, p, t)

A trajectory is edge consistent if $\|p(v,t) - p(u,t)\|$ is constant for all $\{v,u\} \in \mathcal{E}$ and all t.

edge consistent trajectories generate a family of equivalent frameworks

$$\{p(u) \in \mathbb{R}^2 \mid \|p(u) - p(v)\|_2^2 = \ell_{uv}^2, \forall \{u, v\} \in \mathcal{E}\}$$
$$\Rightarrow \frac{d}{dt} \|x_u(t) - x_v(t)\| = 0, \forall \{u, v\} \in \mathcal{E}$$

$$\Rightarrow (\dot{x}_u(t) - \dot{x}_v(t))^T (x_u(t) - x_v(t)) = 0$$

infinitesimal motions

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

How can we check if a graph is generically or infinitesimally rigid?

The Rigidity Matrix

Lemma 1 (Tay1984) A framework (\mathcal{G}, p) is infinitesimally rigid if and only if $\mathbf{rk}[R] = 2|\mathcal{V}| - 3$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Symmetric Rigidity Matrix

The Symmetric Rigidity Matrix

 $\mathcal{R} = R(p)^T R(p)$

the Rigidity Eigenvalue

 $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{2|\mathcal{V}|}$

Theorem 1 A framework is infinitesimally rigid if and only if the rigidity eigenvalue is strictly positive; i.e. $\lambda_4 > 0$.

proof:
$$P\mathcal{R}P^T = (I_2 \otimes E(\mathcal{G})) \begin{bmatrix} W_x^2 & W_{xy} \\ W_{xy} & W_y^2 \end{bmatrix} (I_2 \otimes E(\mathcal{G})^T)$$

weights depend on *relative positions* $[W_x^2]_{kk} = (p_i^x - p_j^x)^2$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Frameworks for Dynamic Environments

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Weighted Frameworks

When is there a sensing link between agents?

Weighted Frameworks

$$R(p, \mathcal{W}) = W(\mathcal{G}, p)R(p)$$

 $\mathcal{R} = R(p, \mathcal{W})^T R(p, \mathcal{W})$

Corollary 1 A weighted framework $(\mathcal{G}, p, \mathcal{W})$ is infinitesimally rigid if and only if the weighted rigidity eigenvalue is strictly positive.

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

- ♦ Motivation
- ♦ Graph Rigidity and the Rigidity Eigenvalue
- Distributed Rigidity Maintenance
- ♦ Outlook

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Maintenance

When *relative sensing* is used, rigidity becomes an important *architectural requirement* for a multi-agent system

⇒ to achieve higher level objectives (i.e. formation control, localization), the rigidity property must be maintained dynamically

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Rigidity Potential

How can rigidity be maintained with only local information?

Faculty of Aerospace Engineering

The Rigidity Potential

How can rigidity be maintained with only local information?

Key observation: Gradient of rigidity eigenvalue has a distributed structure!

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Distributed Rigidity Maintenance

a distributed implementation requires

- estimation of a common inertial frame
- estimation of the rigidity eigenvalue and eigenvector

Estimation of a Common Frame

Agents do not have access to relative positions, only distance

rigidity of formation can be used for each agent to estimate relative position to a *common point*

- one agent endowed with *special ability*
- able to measure *relative position* w.r.t to two agents
- all other agents only measure distances

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Estimation of a Common Frame

 $\hat{p}_{i,c}$ is estimate of $p_i - p_c$

Properties of error function

- non-negative and convex function
- = 0 if and only if estimated distances equal measured distances

*based on approach of Calafiore et al., 2010.

 p_c

הפקולתה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

• "special" agent becomes the

(moving) point each agent is trying

to estimate the relative position of

Estimation of a Common Frame

First-Order Gradient Descent

$$\dot{\hat{p}} = -\frac{\partial e}{\partial \hat{p}} = -\mathcal{R}(\hat{p})\hat{p} + R(\hat{p})\ell + \Delta^c$$

Proposition If the framework is (infinitesimally) rigid then the vector of true values $p - (\mathbb{1} \otimes p_c) =$ $[(p_1 - p_c)^T \cdots (p_{|\mathcal{V}|} - p_c)^T]^T$ is an isolated local minimizer of $e(\hat{p})$. Therefore, there exists an $\epsilon > 0$ such that, for all initial conditions satisfying $\|\hat{p}(0) - p - (\mathbb{1} \otimes p_c)\| < \epsilon$, the estimation \hat{p} converges to $p - (\mathbb{1} \otimes p_c)$.

*proof based on Krick et al., 2009

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Estimation of Rigidity Eigenvalue

Estimation of Rigidity Eigenvalue

recall...

A framework is infinitesimally rigid if and only if the rigidity eigenvalue is positive

$$\xi_i = -\frac{\partial V_\lambda}{\partial \lambda_4} \left(\frac{\partial \lambda_4}{\partial p_i}\right)$$

requires all agents to have knowledge of rigidity eigenvalue and eigenvector

strategy

1 Power Iteration Method

algorithm for estimating the dominant eigenvalue of a matrix Ax_k

$$x_{k+1} = \frac{|Ax_k|}{||Ax_k||}$$

2 **Distributed Implementation** use of dynamic consensus filters

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Power Iteration Method

Rigidity eigenvalue is *not* the dominant eigenvalue of symmetric rigidity matrix

power iteration on "deflated" matrix $\tilde{\mathcal{R}} = I - TT^T - \alpha \mathcal{R}$ $IM[T] = span[\mathcal{N}(\mathcal{R})]$

recall...

$$P\mathcal{R}P^{T} = (I_{2} \otimes E(\mathcal{G})) \begin{bmatrix} W_{x} & W_{xy} \\ W_{xy} & W_{y} \end{bmatrix} (I_{2} \otimes E(\mathcal{G})^{T})$$

relative position
to a common point
$$\mathcal{N}(\mathcal{R}) = \operatorname{span} \left\{ \begin{bmatrix} \mathbb{1} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \mathbb{1} \end{bmatrix}, \begin{bmatrix} p^{y} - p^{y}_{c} \mathbb{1} \\ p^{x}_{c} \mathbb{1} - p^{x} \end{bmatrix} \right\}$$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Power Iteration Method

continuous-time centralized power iteration method

$$\dot{\hat{\mathbf{v}}}(t) = -\left(k_1 T T^T + k_2 \mathcal{R} + k_3 \left(\frac{\hat{\mathbf{v}}(t)^T \hat{\mathbf{v}}(t)}{3|\mathcal{V}|} - 1\right) I\right) \hat{\mathbf{v}}(t)$$

Theorem Assume that the symmetric rigidity matrix \mathcal{R} has distinct non-zero eigenvalues, and let \mathbf{v} denote the rigidity eigenvector. Then for any initial condition $\hat{\mathbf{v}}(t_0) \in \mathbb{R}^{3|\mathcal{V}|}$ such that $\mathbf{v}^T \hat{\mathbf{v}}(t_0) \neq 0$, the trajectories of (17) converge to the subspace spanned by the rigidity eigenvector, i.e., $\lim_{t\to\infty} \hat{\mathbf{v}}(t) = \gamma \mathbf{v}$ for $\gamma \in \mathbb{R}$, if and only if the gains k_1, k_2 and k_3 satisfy the following conditions:

1)
$$k_1, k_2, k_3 > 0$$
,
2) $k_1 > k_2 \lambda_7$.

3) $k_3 > k_2 \lambda_7$.

*adapted from Yang et al., 2010

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Distributed Power Iterat

$$\dot{\hat{\mathbf{v}}}(t) = -\left(k_1 T T^T + k_2 \mathcal{R} + k_3 \left(\frac{\hat{\mathbf{v}}(t)^T \hat{\mathbf{v}}}{3|\mathcal{V}|}\right)\right)$$

(1) symmetric rigidity matrix is a
$$P\mathcal{R}P^T = (I_2 \otimes E(\mathcal{G} \cap I_2))$$

"naturally" distributed operator

$$(2) \left(\frac{\hat{\mathbf{v}}(t)^T \hat{\mathbf{v}}(t)}{3|\mathcal{V}|} - 1 \right) \hat{\mathbf{v}}(t) = (Avg(\hat{\mathbf{v}}(t) \circ \hat{\mathbf{v}}(t)) - 1) \hat{\mathbf{v}}(t)$$
 average of a vector can be distributedly computed using consensus algorithm*

PI-Consensus Filter [Freeman et al. 2006]

$$\begin{bmatrix} \dot{z}(t) \\ \dot{w}(t) \end{bmatrix} = \begin{bmatrix} -\gamma I - K_P L(\mathcal{G}(t)) & K_I L(\mathcal{G}(t)) \\ -K_I L(\mathcal{G}(t)) & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ w(t) \end{bmatrix} + \begin{bmatrix} \gamma I \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} z(t) \\ w(t) \end{bmatrix}.$$

- dynamic consensus filter
- tunable gains
- tracks average of timevarying signal

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Distributed Power Iteration

$$\dot{\hat{\mathbf{v}}}(t) = -\left(\!\left(\!k_1 T T^T\!\right) \!+\! \left(\!k_2 \mathcal{R}\!\right) \!+\! \left(\!k_3 \left(\frac{\hat{\mathbf{v}}(t)^T \hat{\mathbf{v}}(t)}{3|\mathcal{V}|} \!-\! 1\right)\!\right) I\right) \hat{\mathbf{v}}(t)$$

V

הפקולתה להנדסת אוירונוטיקה וחלל

Faculty of Aerospace Engineering

Di

Corollary V.4. Let $\overline{\mathbf{v}}_i^2(t)$ denote the output of the PI consensus filter for estimating the quantity $Avg(\hat{\mathbf{v}}(t) \circ \hat{\mathbf{v}}(t))$ for agent *i*. Then agent *i*'s estimate of the rigidity eigenvalue, $\hat{\lambda}_7^i$, can be obtained as

$$\hat{\lambda}_7^i = \frac{k_3}{k_2} \left(1 - \overline{\mathbf{v}}_i^2(t) \right).$$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Putting it all together...

power iteration

$$\begin{split} \dot{\mathbf{v}}_{i}^{x} &= -k_{1}|\mathcal{V}|\left(\overline{\mathbf{v}}_{i}^{x} + z_{i}^{xy}(t)\hat{p}_{i,c}^{y} + z_{i}^{xz}\hat{p}_{i,c}^{z}(t)\right) - k_{2}\sum_{j\in\mathcal{N}_{i}(t)}W_{ij}\left(\dot{\mathbf{v}}_{i}^{x}(t) - \dot{\mathbf{v}}_{j}^{x}\right) - k_{3}\left(\overline{\mathbf{v}}_{i}^{x} - 1\right)\dot{\mathbf{v}}_{i}^{x} \\ & \text{frame estimation} \\ \dot{p}_{i,c} &= \sum_{j\in\mathcal{N}_{i}(t)}\left(\|\hat{p}_{j,c} - \hat{p}_{i,c}\|^{2} - \ell_{ij}^{2}\right)(\hat{p}_{j,c} - \hat{p}_{i,c}) - \delta_{iic}\hat{p}_{i,c} - \delta_{ii}\left(\hat{p}_{i,c} - (p_{i} - p_{i_{c}})\right) - \delta_{i\kappa}\left(\hat{p}_{\kappa,c} - (p_{\kappa} - p_{i_{c}})\right) \\ & \left\{\dot{\overline{\mathbf{v}}}_{i}^{x} &= \gamma\left(\dot{\mathbf{v}}_{i}^{x} - \overline{\mathbf{v}}_{i}^{x}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}}\left(\overline{\mathbf{v}}_{i}^{x} - \overline{\mathbf{v}}_{j}^{2x}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{w}}_{i}^{x} - \overline{\mathbf{w}}_{j}^{2x}\right) \\ & \mathbf{v}_{i}^{x} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{v}}_{i}^{x} - \overline{\mathbf{v}}_{j}^{2x}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{v}}_{i}^{2x} - \overline{\mathbf{v}}_{j}^{2x}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{w}}_{i}^{2x} - \overline{\mathbf{w}}_{j}^{2x}\right) \\ & \mathbf{v}_{i}^{xy} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{v}}_{i}^{2x} - \overline{\mathbf{v}}_{j}^{2x}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy}(t) - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xy} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(\overline{\mathbf{v}}_{i}^{xy} - z_{j}^{xy}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy}(t) - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xy} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy} - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xz} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xx} - z_{j}^{xz}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy} - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xz} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xz} - z_{j}^{xz}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy} - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xz} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xz} - z_{j}^{xz}\right) - K_{P}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xy} - z_{j}^{xy}\right) + K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(w_{i}^{xy} - w_{j}^{xy}\right) \\ & \left\{\dot{\overline{w}}_{i}^{xz} &= -K_{I}\sum_{j\in\mathcal{N}_{i}(t)}\left(z_{i}^{xz} - z_{j}^$$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Maintenance Controller

use output of rigidity estimator in control

$$\begin{split} \xi_{i}^{x} &= -\frac{\partial V(\hat{\lambda}_{7}^{i})}{\partial \lambda_{7}} \sum_{j \in \mathcal{N}_{i}} W_{ij} \left(2(\hat{p}_{i,c}^{x} - \hat{p}_{j,c}^{x})(\hat{\mathbf{v}}_{i}^{x} - \hat{\mathbf{v}}_{j}^{x})^{2} + \\ 2(\hat{p}_{i,c}^{y} - \hat{p}_{j,c}^{y})(\hat{\mathbf{v}}_{i}^{x} - \hat{\mathbf{v}}_{j}^{x})(\hat{\mathbf{v}}_{i}^{y} - \hat{\mathbf{v}}_{j}^{y}) + 2(\hat{p}_{i,c}^{z} - \hat{p}_{j,c}^{z})(\hat{\mathbf{v}}_{i}^{x} - \hat{\mathbf{v}}_{j}^{x})(\hat{\mathbf{v}}_{i}^{z} - \hat{\mathbf{v}}_{j}^{z}) \right) + \\ \frac{\partial W_{ij}}{\partial p_{i}^{x}} \hat{S}_{ij}, \end{split}$$

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Decentralized Rigidity Maintenance Control with Range-only Measurements for Multi-Robot Systems

Daniel **Zelazo**, Technion, Israel

Antonio **Franchi** and Heinrich H. **Bülthoff**, Max Planck Institute for Biological Cybernetics, Germany

Paolo Robuffo Giordano, CNRS at Irisa, France

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Some unresolved points....

- Power Iteration method assumes *distinct eigenvalues*
 - proposed scheme can not guarantee that rigidity eigenvalue is unique
 - can lead to undesirable behaviors
- Formal stability proof for interconnection of all filters is missing
 - ad hoc implementation
 - engineering art to ensure each filter converges fast enough
 - alternative to power iteration method
- Need to relax requirement for "special agent"

Outlook

Rigidity is an important architectural requirement for multi-agent systems!

- "bearing" rigidity
- full distributed implementations
- formation specification and trajectory tracking
- optimality
- rigidity matroids
- sub-modular optimization
- sensor fusion and localization

$$f(X\cup\{x\})-f(X)\geq f(Y\cup\{x\})-f(Y)$$

i

j

k

•

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Acknowledgements

どもありがとうございます!

Questions?

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

הפקולתה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering