

Control and Estimation of Multi-Agent Systems with Bearing-Only Sensing: Rigidity Theory for SE(2)

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Kolloquium Technische Kybernetik Stuttgart, Germany

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

<u>Sensing</u>

- GPS
- Relative Position
 Sensing
- Range Sensing
- Bearing Sensing

Communication

- Internet
- Radio
- Sonar
- MANet

selection criteria depends on mission requirements, cost, environment...

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$J_i w_i + S(w_i) J_i w_i = \gamma_i + \zeta_i$$

fully-actuated rotational dynamics

$$m_i \ddot{x}_i = -\lambda_i R_i e_3 + m_i g e_3 + \delta_i$$

under-actuated translational dynamics

$$J_i w_i + S(w_i) J_i w_i = \gamma_i + \zeta_i$$

fully-actuated rotational dynamics

$$m_i \ddot{x}_i = -\lambda_i R_i e_3 + m_i g e_3 + \delta_i$$

under-actuated translational dynamics

sensed information depends both on sensor type and how it is physically attached to the robot

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Outline

Introduction

- Rigidity Theory a short review
- Bearing-Only Sensing and Formation control
 - Parallel Rigidity
 - Stability of Bearing-Only Formation Control
- Bearing-Only Sensing with No Common Reference
 - Rigidity in SE(2)
 - Distributed Estimation of a Common Reference
 - Conclusions and Outlook

米

robots modeled as integrators

$$\dot{p}_i = u_i$$

agents can sense range to neighbors determined by a (fixed) sensing graph $\|p_i - p_j\|^2$

desired formation is specified by a vector of distances

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

robots modeled as integrators

$$\dot{p}_i = u_i$$

agents can sense range to neighbors determined by a (fixed) sensing graph $\|p_i - p_j\|^2$

desired formation is specified by a vector of distances

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

robots modeled as integrators

$$\dot{p}_i = u_i$$

 d_{ii}^{2}

agents can sense range to neighbors determined by a (fixed) sensing graph $\|p_i - p_j\|^2$

desired formation is specified by a vector of distances

$$\dot{p}_i = \sum_{j \sim i} \left(\|p_i - p_j\|^2 - d_{ij}^2 \right) \left(p_j - p_i \right)$$

[Krick2007, Anderson2008, Dimarogonas2008, Dörfler2010]

desired formation is (locally) asymptotically stable if the sensing graph is *infinitesimally rigid*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

ECC2014 Strasbourg, France

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

ECC2014 Strasbourg, France

bar-and-joint frameworks

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
$$p : \mathcal{V} \to \mathbb{R}^2$$

maps every vertex to a point in the plane

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

infinitesimal motions $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$

Rigidity Matrix

 $R(p)\xi = 0$

Parallel Rigidity

infinitesimal motions $((p(u) - p(v))^{\perp})^{T} (\xi(u) - \xi(v)) = 0$

Parallel Rigidity Matrix $R_{\parallel}(p)\xi=0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

infinitesimal motions $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$

Rigidity Matrix

 $R(p)\xi = 0$

Parallel Rigidity

infinitesimal motions $\left((p(u) - p(v) \bigoplus^T (\xi(u) - \xi(v)) = 0 \right)$

Parallel Rigidity Matrix $R_{\parallel}(p)\xi=0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

infinitesimal motions $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$

Rigidity Matrix

$$R(p)\xi = 0$$

Parallel Rigidity

infinitesimal motions $((p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$

Parallel Rigidity Matrix $R_{\parallel}(p)\xi=0$

Theorem

A framework is infinitesimally rigid if and only if the rank of the rigidity matrix is $2|\mathcal{V}|-3$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$(2^{2} - d_{ij}^{2})^{2}$$

 $-R(p)^{T}R(p)p + R(p)^{T}d$

Formation specified by desired *bearing* constraints

$$g_{12}^{*} = -g_{21}^{*} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad g_{13}^{*} = -g_{31}^{*} = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$$
$$g_{23}^{*} = -g_{32}^{*} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad g_{14}^{*} = -g_{41}^{*} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
$$g_{34}^{*} = -g_{43}^{*} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

 $g_{ij} = \frac{p_j - p_i}{\|p_i - p_j\|}$

Important Assumptions

- point masses
- bidirectional sensing
- bearing sensing
- common reference frame is implicit
- (i.e., a compass)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation specified by desired *bearing* constraints

$$g_{12}^{*} = -g_{21}^{*} = \begin{bmatrix} 0\\1 \end{bmatrix} \quad g_{13}^{*} = -g_{31}^{*} = \begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$
$$g_{23}^{*} = -g_{32}^{*} = \begin{bmatrix} 1\\0 \end{bmatrix} \quad g_{14}^{*} = -g_{41}^{*} = \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$g_{34}^{*} = -g_{43}^{*} = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

A Gradient Control Law?

$$J(g) = \sum_{i \sim j} ||g_{ij} - g_{ij}^*||^2$$

$$\dot{p}_i = -\sum_{j \sim i}^{i \sim j} \frac{1}{||p_i - p_j||} \left(I_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{||p_i - p_j||^2} \right) g_{ij}^*$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation specified by desired *bearing* constraints

$$g_{12}^{*} = -g_{21}^{*} = \begin{bmatrix} 0\\1 \end{bmatrix} \quad g_{13}^{*} = -g_{31}^{*} = \begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$
$$g_{23}^{*} = -g_{32}^{*} = \begin{bmatrix} 1\\0 \end{bmatrix} \quad g_{14}^{*} = -g_{41}^{*} = \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$g_{34}^{*} = -g_{43}^{*} = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

A Gradient Control Law?

 $J(g) = \sum \|g_{ij} - g_{ij}^*\|^2$

 $i \sim j$

not a bearing-only control law!

$$g_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{\|p_i - p_j\|^2} g_{ij}^*$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $\dot{p}_i =$

Parallel Rigidity in Arbitrary Dimension

bar-and-joint frameworks

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $p : \mathcal{V} \to \mathbb{R}^2$

Parallel Drawings

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

 x_i

 $-P_{ij}g_{ij}$

 g_{ij}^*

Parallel Rigidity in Arbitrary Dimension

bar-and-joint frameworks

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $p : \mathcal{V} \to \mathbb{R}^2$

Parallel Drawings

 x_i

 \mathbb{R}^{d}

ction

 \mathbb{R}^2

 $\left(\right)$

 $P_{ij}g_{ij}^{*}$ g_{ij}^{*} g_{ij}^{*} g_{ij}^{*} g_{ij}^{*}

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Parallel Rigidity in Arbitrary Dimension

bar-and-jo

Bearing-Edge Function

$$f(p) = \begin{bmatrix} \frac{p_j - p_i}{\|p_i - p_j\|} \\ \vdots \end{bmatrix}$$

Parallel Rigidity Matrix (arbitrary dimension)

$$\begin{aligned} R_{\parallel}(p) &= \frac{\partial f(p)}{\partial p} \in \mathbb{R}^{d|\mathcal{E}| \times d|\mathcal{V}|} \\ &= \mathbf{diag} \left(\frac{P_{e_k}}{\|e_k\|} \right) \left(E(\mathcal{G})^T \otimes I_d \right) \end{aligned}$$

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Formation specified by desired *bearing* constraints

$$g_{12}^{*} = -g_{21}^{*} = \begin{bmatrix} 0\\1 \end{bmatrix} \quad g_{13}^{*} = -g_{31}^{*} = \begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$
$$g_{23}^{*} = -g_{32}^{*} = \begin{bmatrix} 1\\0 \end{bmatrix} \quad g_{14}^{*} = -g_{41}^{*} = \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$g_{34}^{*} = -g_{43}^{*} = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

A Gradient Control Law?

$$J(g) = \sum_{i \sim j} \|g_{ij} - g_{ij}^*\|^2$$

not a bearing-only control law!

$$\dot{p} = -R_{\parallel}(p)^T g^*$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation specified by desired *bearing* constraints

$$g_{12}^{*} = -g_{21}^{*} = \begin{bmatrix} 0\\1 \end{bmatrix} \quad g_{13}^{*} = -g_{31}^{*} = \begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$$
$$g_{23}^{*} = -g_{32}^{*} = \begin{bmatrix} 1\\0 \end{bmatrix} \quad g_{14}^{*} = -g_{41}^{*} = \begin{bmatrix} -1\\0 \end{bmatrix}$$
$$g_{34}^{*} = -g_{43}^{*} = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

A Bearing-Only Control Law

$$\dot{p} = -\sum_{j \sim i} P_{g_{ij}} g_{ij}^*$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The bearing

oquium Technische Kybernetik Stuttgart, Germany

(2)

A Bearing-Only Control Law

$$\dot{p} = -\sum_{j \sim i} P_{g_{ij}} g_{ij}^*$$

Theorem

If the desired bearing formation is feasible and infinitesimally parallel rigid, then the bearing-only control law converges exponentially to the desired formation.

Lyapunov function:
$$V(p) = \frac{1}{2}(p - p^*)^T(p - p^*)$$

centroid of formation is invariant

$$\overline{p} = \frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} p_i$$

scale of formation is invariant

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{|\mathcal{V}|} \|p_i - p\|^2}$$

collision avoidance guaranteed (under assumptions of theorem)

Faculty of Aerospace Engineering

A Bearing-Only Control Law

$$\dot{p} = -\sum_{j \sim i} P_{g_{ij}} g_{ij}^*$$

Important Assumptions

- point masses
- bidirectional sensing
- bearing sensing
- common reference frame is implicit
- (i.e., a compass)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A more "practical" approach...

- agents represented by points in SE(2) (position and orientation)
- bearing measurements with respect to *body-frame*
- unidirectional sensing

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a directed edge indicates availability of relative bearing measurement

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering stacked vector of entire framework

$$\chi_p = p(\mathcal{V}) \in \mathbb{R}^{2|\mathcal{V}|}$$
$$\chi_{\psi} = \psi(\mathcal{V}) \in \mathcal{S}^{1^{|\mathcal{V}|}}$$

bar-and-joint frameworks in SE(2)

 (\mathcal{G}, p, ψ)

directed bearing rigidity function

$$b_{\mathcal{G}}: SE(2)^{|\mathcal{V}|} \to \mathcal{S}^{1|\mathcal{E}}$$

$$b_{\mathcal{G}}(\chi(\mathcal{V})) = \begin{bmatrix} \beta_{e_1} & \cdots & \beta_{e_{|\mathcal{E}|}} \end{bmatrix}$$

bearing can be expressed as a unit vector

$$r_{vu}(p,\psi) = \begin{bmatrix} r_{vu}^{x} \\ r_{vu}^{y} \end{bmatrix} = \begin{bmatrix} \cos(\beta_{vu}) \\ \sin(\beta_{vu}) \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} \cos(\psi(v)) & \sin(\psi(v)) \\ -\sin(\psi(v)) & \cos(\psi(v)) \end{bmatrix}}_{T(\psi(v))} \underbrace{\frac{(p(u) - p(v))}{\|p(v) - p(u)\|}}_{T(\psi(v))}$$

T

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

 β_{vu}

 $r_{vu}(p,\psi)$

Definition (Rigidity in SE(2))

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed graph and $K_{|\mathcal{V}|}$ be the complete directed graph on $|\mathcal{V}|$ nodes. The SE(2) framework (\mathcal{G}, p, ψ) is *rigid* in SE(2) if there exists a neighborhood S of $\chi(\mathcal{V}) \in SE(2)^{|\mathcal{V}|}$ such that

$$b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))) \cap S = b_{\mathcal{G}}^{-1}(b_{\mathcal{G}}(\chi(\mathcal{V}))) \cap S,$$

where $b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))) \subset SE(2)$ denotes the pre-image of the point $b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))$ under the directed bearing rigidity map. The SE(2) framework (\mathcal{G}, p, ψ) is *roto-flexible* in SE(2) if there exists an analytic

path $\eta: [0, 1] \to SE(2)^{|\mathcal{V}|}$ such that $\eta(0) = \chi(\mathcal{V})$ and

$$\eta(t) \in b_{\mathcal{G}}^{-1}(b_{\mathcal{G}}(\chi(\mathcal{V}))) - b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V})))$$

for all $t \in (0, 1]$.

Definition (Equivalent and Congruent SE(2) Frameworks)

Frameworks (\mathcal{G}, p, ψ) and (\mathcal{G}, q, ϕ) are *bearing equivalent* if

 $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv},$

for all $(u, v) \in \mathcal{E}$ and are *bearing congruent* if

$$T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv} \text{ and}$$

$$T(\psi(v))^T \overline{p}_{vu} = T(\phi(v))^T \overline{q}_{vu},$$

for all $u, v \in \mathcal{V}$.

Definition (Global Rigidity of SE(2) Frameworks)

A framework (\mathcal{G}, p, ψ) is globally rigid in SE(2) if every framework which is bearing equivalent to (\mathcal{G}, p, ψ) is also bearing congruent to (\mathcal{G}, p, ψ) .

Definition (Equivalent and Congruent SE(2) Frameworks) Frameworks (\mathcal{G}, p, ψ) and (\mathcal{G}, q, ϕ) are bearing equivalent if $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv},$ for all $(u, v) \in \mathcal{E}$ and are *bearing congruent* if $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv}$ and $T(\psi(v))^T \overline{p}_{vu} = T(\phi(v))^T \overline{q}_{vu},$ for all $u, v \in \mathcal{V}$.

Definition (Global Rigidity of SE(2) Frameworks)

A framework (\mathcal{G}, p, ψ) is globally rigid in SE(2) if every framework which is bearing equivalent to (\mathcal{G}, p, ψ) is also bearing congruent to (\mathcal{G}, p, ψ) .

Rigidity Theory in SE(2)

both frameworks are *parallel rigid* (i.e., internal angles are fixed)

agent 3 maintains no bearing angles and is free to "spin" —> framework is *not* globally rigid in SE(2)!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory in SE(2)

a "linearized" version of bearing rigidity

 $b_{\mathcal{G}}(\chi(\mathcal{V}) + \delta\chi) = b_{\mathcal{G}}(\chi(\mathcal{V})) + (\nabla_{\chi}b_{\mathcal{G}}(\chi(\mathcal{V})))\delta\chi + h.o.t.$

Directed Bearing Rigidity Matrix $\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V})) := \nabla_{\chi} b_{\mathcal{G}}(\chi(\mathcal{V})) \in \mathbb{R}^{|\mathcal{E}| \times 3|\mathcal{V}|}$

Theorem

An SE(2) framework is infinitesimally rigid if and only if $\mathbf{rk}[\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))] = 3|\mathcal{V}| - 4$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory in SE(2)

a "linearized" version of bearing rigidity

 $b_{\mathcal{G}}(\chi(\mathcal{V}) + \delta\chi) = b_{\mathcal{G}}(\chi(\mathcal{V})) + (\nabla_{\chi}b_{\mathcal{G}}(\chi(\mathcal{V})))\delta\chi + h.o.t.$

Directed Bearing Rigidity Matrix $\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V})) := \nabla_{\chi} b_{\mathcal{G}}(\chi(\mathcal{V})) \in \mathbb{R}^{|\mathcal{E}| \times 3|\mathcal{V}|}$ $\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V})) = \begin{bmatrix} D_{\mathcal{G}}^{-1}(\chi_p) R_{\parallel}(\chi_p) & \overline{E}(\mathcal{G})^T \end{bmatrix}$

$$D_{\mathcal{G}}(\chi_p) = \operatorname{diag}\{\dots, \|p(u) - p(v)\|^2, \dots\}$$
$$[\overline{E}(\mathcal{G})]_{ik} = \begin{cases} 1, & \text{if } e_k = (v_i, v_j) \in \mathcal{E} \\ 0, & \text{o.w.} \end{cases}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

recall...

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

$$R(p)\xi = 0$$

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

$$R_{\parallel}(p)\xi = 0$$

Theorem

Every infinitesimal motion $\delta \chi \in \mathcal{N} [\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))]$ satisfies $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

recall...

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

$$R(p)\xi = 0$$

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

$$R_{\parallel}(p)\xi = 0$$

What are the infinitesimal motions in SE(2)?

Theorem

Every infinitesimal motion $\delta \chi \in \mathcal{N} [\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))]$ satisfies $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$$

if all agents maintain attitude, infinitesimal motions are the *translations* and *dilations* of the framework

reduces to parallel rigidity

$$R_{\parallel}(\chi_p)\delta\chi_p=0$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$$

if all agents maintain attitude, infinitesimal motions are the *translations* and *dilations* of the framework

reduces to parallel rigidity

$$R_{\parallel}(\chi_p)\delta\chi_p=0$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$

if angular velocities are non-zero, the infinitesimal motions are the *coordinated rotations* of the framework

> coordinated rotation subspace $\mathcal{R}_{\circlearrowright}(\mathcal{G}) = \mathrm{IM}\left\{R_{\parallel,\mathcal{G}}(\chi_p)\right\} \cap \mathrm{IM}\left\{-D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\right\}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_{\psi}$

if angular velocities are non-zero, the infinitesimal motions are the *coordinated rotations* of the framework

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

The coordinated rotation subspace is non-trivial. $\dim \mathcal{R}_{\circlearrowright}(\mathcal{G}) \ge 1$ For the complete directed graph, one has $\dim \mathcal{R}_{\circlearrowright}(\mathcal{G}) = 1$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

The coordinated rotation subspace is non-trivial. $\dim \mathcal{R}_{\circlearrowright}(\mathcal{G}) \ge 1$ For the complete directed graph, one has $\dim \mathcal{R}_{\circlearrowright}(\mathcal{G}) = 1$

Corollary

An SE(2) framework is infinitesimally rigid in SE(2) if and only if

1. $\operatorname{rk}[R_{\parallel,\mathcal{G}}(\chi_p)] = 2|\mathcal{V}| - 3$ and

2. dim
$$\{\mathcal{R}_{\circlearrowright}(\mathcal{G})\}=1$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

A distributed gradient descent estimator

Bearing Error:

$$e(\hat{\xi}, \hat{\vartheta}, p, \psi) = b_{\mathcal{G}}(\chi(\mathcal{V})) - \hat{b}_{\mathcal{G}}(\hat{\xi}, \hat{\vartheta})$$

Cost Function:

$$J(e) = \frac{1}{2} \left(k_e \| e(\hat{\xi}, \hat{\vartheta}, p, \psi) \|^2 + k_1 \| \hat{\xi}_{\iota\iota} \|^2 + k_2 (\| \hat{\xi}_{\iota\kappa} \|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

A distributed gradient descent estimator

Bearing Error:

$$e(\hat{\xi}, \hat{\vartheta}, p, \psi) = b_{\mathcal{G}}(\chi(\mathcal{V})) - \hat{b}_{\mathcal{G}}(\hat{\xi}, \hat{\vartheta})$$

Cost Function:

$$J(e) = \frac{1}{2} \left(k_e \| e(\hat{\xi}, \hat{\vartheta}, p, \psi) \|^2 + k_1 \| \hat{\xi}_{\iota\iota} \|^2 + k_2 (\| \hat{\xi}_{\iota\kappa} \|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

$$J(e) = \frac{1}{2} \left(k_e \| e(\hat{\xi}, \hat{\vartheta}, p, \psi) \|^2 + k_1 \| \hat{\xi}_{\iota\iota} \|^2 + k_2 (\| \hat{\xi}_{\iota\kappa} \|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)$$

Theorem

If the framework is infinitesimally rigid in SE(2) then the estimator

$$\begin{vmatrix} \hat{\hat{\chi}} \\ \hat{\hat{\vartheta}} \end{vmatrix} = -\nabla J(e)$$

converges to a local minimum of the bearing error function.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with bearing only sensing is a practical solution for many multi-agent systems

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with *bearing* only sensing is a practical solution for many multi-agent systems
- parallel rigidity in arbitrary dimension
- bearing-only control law (with common reference)

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with *bearing* only sensing is a practical solution for many multi-agent systems
- parallel rigidity in arbitrary dimension
- bearing-only control law (with common reference)
- extension of rigidity to concepts to frameworks in SE(2)
- SE(2) rigidity used to distributedly estimate relative positions from only bearing measurements

- deeper results for bearing rigidity
- extensions to SE(3)
- estimation filter combined with higher-level tasks (formation keeping)
- control and estimation with field-of-view constraints

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Acknowledgements

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Dr. Shiyu Zhao

Oshri Rozenheck

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Acknowledgements

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Dr. Shiyu Zhao

Oshri Rozenheck

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

Questions?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering