

Control and Estimation of Multi-Agent Systems with Bearing-Only Sensing: Rigidity Theory for SE(2)

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Kolloquium Technische Kybernetik Stuttgart, Germany

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

- GPS
- Relative Position Sensing
- Range Sensing
- Bearing Sensing

Sensing Communication

- Internet
- Radio
- Sonar
- MANet

selection criteria depends on mission requirements, cost, environment…

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
J_i w_i + S(w_i) J_i w_i = \gamma_i + \zeta_i
$$

fully-actuated rotational dynamics

$$
m_i \ddot{x}_i = -\lambda_i R_i e_3 + m_i g e_3 + \delta_i
$$

under-actuated translational dynamics

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
J_i w_i + S(w_i) J_i w_i = \gamma_i + \zeta_i
$$

fully-actuated rotational dynamics

$$
m_i \ddot{x}_i = -\lambda_i R_i e_3 + m_i g e_3 + \delta_i
$$

under-actuated translational dynamics

sensed information depends *both* on sensor type and how it is physically attached to the robot

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Outline

Introduction 米

- Rigidity Theory a short review 米
- Bearing-Only Sensing and Formation control 米
	- Parallel Rigidity \bigcirc
	- Stability of Bearing-Only Formation Control \overline{O}
- Bearing-Only Sensing with No Common Reference 米
	- Rigidity in SE(2) \overline{O}
	- Distributed Estimation of a Common Reference Ω
	- Conclusions and Outlook

米

robots modeled as integrators

$$
\dot{p}_i=u_i
$$

agents can sense range to neighbors determined by a (fixed) sensing graph $||p_i - p_j||^2$

desired formation is specified by a vector of distances

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

robots modeled as integrators

$$
\dot{p}_i=u_i
$$

agents can sense range to neighbors determined by a (fixed) sensing graph $||p_i - p_j||^2$

desired formation is specified by a vector of distances

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

robots modeled as integrators

$$
\dot{p}_i=u_i
$$

 d_{ij}^2

agents can sense range to neighbors determined by a (fixed) sensing graph $||p_i - p_j||^2$

desired formation is specified by a vector of distances

$$
\dot{p}_i = \sum_{j \sim i} (||p_i - p_j||^2 - d_{ij}^2) (p_j - p_i)
$$

[Krick2007, Anderson2008, Dimarogonas2008, Dörfler2010]

desired formation is (locally) asymptotically stable if the sensing graph is *infinitesimally rigid*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

ECC2014 Strasbourg, France

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

ECC2014 Strasbourg, France

bar-and-joint frameworks

$$
\mathcal{G} = (\mathcal{V}, \mathcal{E})
$$

$$
p : \mathcal{V} \to \mathbb{R}^2
$$

maps every vertex to a point in the plane

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity Parallel Rigidity

 $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

 $((p(u) - p(v))^{\perp})^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

Rigidity Matrix Parallel Rigidity Matrix $R_{\parallel}(p)\xi = 0$ *R*_k(*p*) $\xi = 0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity Parallel Rigidity

 $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

 $((p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

Rigidity Matrix Parallel Rigidity Matrix $R_{\parallel}(p)\xi = 0$ *R*_k(*p*) $\xi = 0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity Parallel Rigidity

 $(p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

$$
R(p)\xi=0
$$

 $((p(u) - p(v))^T (\xi(u) - \xi(v)) = 0$ infinitesimal motions

Rigidity Matrix Parallel Rigidity Matrix $R_{\parallel}(p)\xi = 0$

Theorem

A framework is infinitesimally rigid if and only if the rank of the rigidity matrix is $2|\mathcal{V}| - 3$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control: Distance-Based Approaches \overline{r}

$$
\begin{bmatrix}\n\frac{2 - d_{ij}^2}{2}\n\end{bmatrix}^2 - R(p)^T R(p)p + R(p)^T d
$$

 $g_{34}^* = -g_{43}^* =$

Formation specified by desired *bearing* constraints $g_{12}^* = -g_{21}^* =$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 1 $\overline{}$ $g_{23}^* = -g_{32}^* =$ $\lceil 1$ $\overline{0}$ $\overline{}$ $g_{14}^* = -g_{41}^* =$ $\lceil -1 \rceil$ $g_{13}^* = -g_{31}^* =$ $\sqrt{2}/2$

 \sum_{i} $\binom{p}{i}$ example to ideal formation: the bearings constraints. In the set of th collinear one in gray; final formation: the square one in black. The square one in black. The bearing structure ²³ = *g*⇤ Important Assumptions ³¹ = [p2*/*2*,* $g_{ij} =$ $p_j - p_i$ $||p_i - p_j||$

- point masses
	- bidirectional sensing

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 -1

 $\overline{}$

- external and potential and potential applications of the bearing sensing
- *• common reference frame is implicit*

3 / 21

definition of the measurements but has measured to obtain the measurements. The measurements of the measurements of the measurements of the measurements. The measured structure of the measured structure of the measured str

²¹ = [0*,* 1]^T

¹³ = *g*⇤

pi

¹⁴ = [1*,* 0]T, and *^g*⇤

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

 $\overline{0}$

 $\overline{}$

 $\overline{}$

 $\sqrt{2}/2$

Formation specified by desired *bearing* constraints

$$
g_{12}^* = -g_{21}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad g_{13}^* = -g_{31}^* = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}
$$

$$
g_{23}^* = -g_{32}^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad g_{14}^* = -g_{41}^* = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
$$

$$
g_{34}^* = -g_{43}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$

A Gradient Control Law? ¹⁴ = [1*,* 0]T, and *^g*⇤

$$
J(g) = \sum_{i \sim j} \|g_{ij} - g_{ij}^*\|^2
$$

$$
\dot{p}_i = -\sum_{j \sim i} \frac{1}{\|p_i - p_j\|} \left(I_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{\|p_i - p_j\|^2} \right) g_{ij}^*
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

3 / 21

Formation specified by desired *bearing* constraints

$$
g_{12}^* = -g_{21}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad g_{13}^* = -g_{31}^* = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}
$$

$$
g_{23}^* = -g_{32}^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad g_{14}^* = -g_{41}^* = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
$$

$$
g_{34}^* = -g_{43}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$

A Gradient Control Law? ¹⁴ = [1*,* 0]T, and *^g*⇤ $\frac{1}{2}$

 $J(g) = \sum$

 $i \sim j$

 \sum

 j ∼ i

 $||g_{ij} - g_{ij}^*||^2$

1

⁴³ = [0*,* 1]^T **not a bearing-only control law!**

3 / 21

$$
\dot{p}_i = -\sum_{j \sim i}^{i \sim j} \frac{1}{\|p_i - p_j\|} \left(I_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{\|p_i - p_j\|^2}\right) g_{ij}^*
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $\dot{p}_i =$

Parallel Rigidity in Arbitrary Dimension A framework *G*(*x*) is *globally parallel rigid* if all frameworks that are parallel equivalent to *G*(*x*) are also parallel congruent to *G*(*x*). \cdot in \cdot which, there is a bearing constraint. G_j in the formation $\frac{1}{j}$ $G_{\rm eff}$ (V), we are interested in parallel drawings $F_{\rm eff}$ (s) we are interested in parallel drawings $F_{\rm eff}$ p are a formation \bullet . A formation \bullet constraints is called parallel rigid if all parallel point \ldots . \ldots Otherwise it is called flexible. For example, $\frac{1}{\sqrt{2}}$

¹² = *g*⇤

21 = 21 = 22
21 = 22
21 = 22

bar-and-joint frameworks

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $p\,:\,\mathcal{V}\rightarrow\mathbb{R}^2$

Parallel Drawings

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering constraints, which are satisfied by the final formation, and α ²³ = *g*⇤ ³² = [1*,* 0]T, *g*⇤ ³⁴ = *g*⇤ ⁴³ = [0*,* 1]T, *^g*⇤

Kolloquium Technische Kybernetik S tuttgart, Germany

 $-P_{ij}g_{ij}^*$

xi

Parallel Rigidity in Arbitrary Dimension A framework *G*(*x*) is *globally parallel rigid* if all frameworks that are parallel equivalent to *G*(*x*) are also parallel congruent to *G*(*x*). \cdot in \cdot which, there is a bearing constraint. G_j in the formation $\frac{1}{j}$ $G_{\rm eff}$ (V), we are interested in parallel drawings $F_{\rm eff}$ (s) we are interested in parallel drawings $F_{\rm eff}$ p are a formation \bullet . A formation \bullet constraints is called parallel rigid if all parallel point \ldots . \ldots Otherwise it is called flexible. For example, $\frac{1}{\sqrt{2}}$

bar-and-joint frameworks

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $p\,:\,\mathcal{V}\rightarrow\mathbb{R}^2$

Parallel Drawings

21 = 21 = 22
21 = 22
21 = 22

¹² = *g*⇤

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering constraints, which are satisfied by the final formation, and α ²³ = *g*⇤ ³² = [1*,* 0]T, *g*⇤ ³⁴ = *g*⇤ ⁴³ = [0*,* 1]T, *^g*⇤

Parallel Rigidity in Arbitrary Dimension

 $bar-and-jo$

constraints, which are satisfied by the final formation, are *g*⇤

following rank condition for infinitesimal parallel rigidity.

[1*,* 0]T, and *^g*⇤ ¹³ = *g*⇤ ³¹ = [p2*/*2*,* **formation g**¹ $g - Edge$ Function **a**

$$
f(p) = \left[\begin{array}{c} \vdots \\ \frac{p_j - p_i}{\|p_i - p_j\|} \\ \vdots \end{array}\right] \qquad R_{\|}(p) =
$$

 P_3 rallel Ri *Parallel RI* Fig. 2: The geometric interpretation of control law (4). The control item *Pgij g*⇤ *ij* is perpendicular to the bearing *gij* . **Parallel Rigidity Matrix (arbitrary dimension)**

In fact, 1*ⁿ* ⌦*I^d* corresponds to rigid-body translation and *x* corresponds to the scaling variation. As a result, we have the *Definition 6:* The bearing constraints *{g*⇤ *ij}*(*i,j*)2*^E* are *feasible* if there exists a formation *x* such that *gij* = *g*⇤ *ij* for all (*i, j*) 2 *E*. *Problem 1:* Given feasible constant bearing constraints *ij}*(*i,j*)2*^E* and an initial formation *x*(0), design *uⁱ* (*i* 2 *V*) that relies only on the bearings measured by agent *i* such that the bearing *gij* ! *g*⇤ *ij* for all (*i, j*) 2 *E*. *^R*k(*p*) = @*f*(*p*) @*p* ² *^d|E|*⇥*d|V|* ⁼ diag ✓ *^P^e^k* k*ek*k ◆ (*E*(*G*) *^T* ⌦ *^Id*)

B. Proposed Control Law

הפקולטה להנדסת אוירונוטיקה וחלל *Theorem 1:* A framework *^G*(*x*) in ^R*^d* (*^d* ²) is infinitesi-**Faculty** of Aerospace Engineering *I***dry** or extraspace *Engineering*

Kolloquium Technische Kybernetik Stuttgart, Germany $\sum_{i=1}^{\infty}$ *ij .* (4)

Formation specified by desired *bearing* constraints

$$
g_{12}^* = -g_{21}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad g_{13}^* = -g_{31}^* = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}
$$

$$
g_{23}^* = -g_{32}^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad g_{14}^* = -g_{41}^* = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
$$

$$
g_{34}^* = -g_{43}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$

A Gradient Control Law? ¹⁴ = [1*,* 0]T, and *^g*⇤

$$
J(g) = \sum_{i \sim j} ||g_{ij} - g_{ij}^*||^2
$$
 not a be

⁴³ = [0*,* 1]^T $\int_{i,j}^{*}$ $||^{2}$ **not** a **bearing-only control law!**

3 / 21

$$
\dot{p} = -R_{\parallel}(p)^T g^*
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation specified by desired *bearing* constraints

$$
g_{12}^* = -g_{21}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad g_{13}^* = -g_{31}^* = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}
$$

$$
g_{23}^* = -g_{32}^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad g_{14}^* = -g_{41}^* = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
$$

$$
g_{34}^* = -g_{43}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$

A Bearing-Only Control Law ¹⁴ = [1*,* 0]T, and *^g*⇤ **10** $\frac{1}{2}$ **A Bearing-Only Control Law**

$$
\dot{p} = -\sum_{j \sim i} P_{g_{ij}} g_{ij}^*
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

3 / 21

Formation Control: Bearing-Constrained Formations

1

1

2

Formation Control: Bearing-Constrained Formations

A Bearing-Only Control Law

$$
\dot{p} = -\sum_{j\sim i} P_{g_{ij}} g_{ij}^*
$$

Theorem

feasible and infinitesimally parallel If the desired bearing formation is rigid, then the bearing-only control law converges exponentially to the desired formation.

$$
\text{Lyapunov function: } V(p) = \frac{1}{2}(p - p^*)^T (p - p^*)
$$

centroid of formation is invariant

$$
\overline{p} = \frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} p_i
$$

scale of formation is invariant

$$
s = \sqrt{\frac{1}{n} \sum_{i=1}^{|\mathcal{V}|} ||p_i - p||^2}
$$

collision avoidance guaranteed (under assumptions of theorem)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control: Bearing-Constrained Formations

Faculty of Aerospace Engineering

A Bearing-Only Control Law

$$
\dot{p} = -\sum_{j\sim i} P_{g_{ij}} g_{ij}^*
$$

Important Assumptions

- point masses
- bidirectional sensing
-
- *• • common reference frame is implicit*

3 / 21

bearing measurements but has measured i.e., a compass)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A more "practical" approach…

- agents represented by points in SE(2) (position and orientation)
- bearing measurements with respect to *body-frame*
- unidirectional sensing

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a directed edge indicates availability of relative bearing measurement

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

stacked vector of entire framework

$$
\chi_p = p(\mathcal{V}) \in \mathbb{R}^{2|\mathcal{V}|}
$$

$$
\chi_{\psi} = \psi(\mathcal{V}) \in \mathcal{S}^{1|\mathcal{V}|}
$$

bar-and-joint frameworks in SE(2)

 (\mathcal{G}, p, ψ)

directed bearing rigidity function

$$
b_{\mathcal{G}}: SE(2)^{|\mathcal{V}|} \to \mathcal{S}^{1^{|\mathcal{E}|}}
$$

$$
b_{\mathcal{G}}(\chi(\mathcal{V})) = \begin{bmatrix} \beta_{e_1} & \cdots & \beta_{e_{|\mathcal{E}|}} \end{bmatrix}^T
$$

bearing can be expressed as a unit vector

$$
r_{vu}(p,\psi) = \begin{bmatrix} r_{vu}^x \\ r_{vu}^y \end{bmatrix} = \begin{bmatrix} \cos(\beta_{vu}) \\ \sin(\beta_{vu}) \end{bmatrix}
$$

$$
= \underbrace{\begin{bmatrix} \cos(\psi(v)) & \sin(\psi(v)) \\ -\sin(\psi(v)) & \cos(\psi(v)) \end{bmatrix}}_{T(\psi(v))} \underbrace{\begin{bmatrix} p(u) - p(v) \end{bmatrix}}_{T(\psi(v))}
$$

 p_v

 ψ_v

 $r_{vu}(p,\psi)$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Kolloquium Technische Kybernetik Stuttgart, Germany

 β_{vu}

 ψ_u

 p_u

Definition (Rigidity in SE(2))

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed graph and $K_{|\mathcal{V}|}$ be the complete directed graph on $|V|$ nodes. The *SE*(2) framework (\mathcal{G}, p, ψ) is *rigid* in *SE*(2) if there exists a neighborhood *S* of $\chi(\mathcal{V}) \in SE(2)^{|\mathcal{V}|}$ such that

$$
b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))) \cap S = b_{\mathcal{G}}^{-1}(b_{\mathcal{G}}(\chi(\mathcal{V}))) \cap S,
$$

 $\text{where } b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))) \subset SE(2) \text{ denotes the pre-image of the point } b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V}))$ under the directed bearing rigidity map.

The $SE(2)$ framework (\mathcal{G}, p, ψ) is *roto-flexible* in $SE(2)$ if there exists an analytic path $\eta : [0, 1] \to SE(2)^{|\mathcal{V}|}$ such that $\eta(0) = \chi(\mathcal{V})$ and

$$
\eta(t) \in b_{\mathcal{G}}^{-1}(b_{\mathcal{G}}(\chi(\mathcal{V}))) - b_{K_{|\mathcal{V}|}}^{-1}(b_{K_{|\mathcal{V}|}}(\chi(\mathcal{V})))
$$

for all $t \in (0, 1]$.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition (Equivalent and Congruent SE(2) Frameworks)

Frameworks (\mathcal{G}, p, ψ) and (\mathcal{G}, q, ϕ) are *bearing equivalent* if

 $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv},$

for all $(u, v) \in \mathcal{E}$ and are *bearing congruent* if

$$
T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv} \text{ and}
$$

$$
T(\psi(v))^T \overline{p}_{vu} = T(\phi(v))^T \overline{q}_{vu},
$$

for all $u, v \in V$.

Definition (Global Rigidity of SE(2) Frameworks)

A framework (\mathcal{G}, p, ψ) is *globally rigid* in $SE(2)$ if every framework which is bearing equivalent to (\mathcal{G}, p, ψ) is also bearing congruent to (\mathcal{G}, p, ψ) .

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition (Equivalent and Congruent SE(2) Frameworks) Frameworks (\mathcal{G}, p, ψ) and (\mathcal{G}, q, ϕ) are *bearing equivalent* if $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv},$ for all $(u, v) \in \mathcal{E}$ and are *bearing congruent* if $T(\psi(u))^T \overline{p}_{uv} = T(\phi(u))^T \overline{q}_{uv}$ and $T(\psi(v))^T\overline{p}_{vu}$ = $T(\phi(v))^T\overline{q}_{vu}$, for all $u, v \in \mathcal{V}$.

Definition (Global Rigidity of SE(2) Frameworks)

A framework (\mathcal{G}, p, ψ) is *globally rigid* in $SE(2)$ if every framework which is bearing equivalent to (\mathcal{G}, p, ψ) is also bearing congruent to (\mathcal{G}, p, ψ) .

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

both frameworks are *parallel rigid* (i.e., internal angles are fixed)

agent 3 maintains no bearing angles and is free to "spin" —> framework is *not* globally rigid in SE(2)!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a "linearized" version of bearing rigidity

 $b_G(\chi(\mathcal{V}) + \delta \chi) = b_G(\chi(\mathcal{V})) + (\nabla_{\chi} b_G(\chi(\mathcal{V}))) \delta \chi + h.o.t.$

$B_{\mathcal{G}}(\chi(\mathcal{V})) := \nabla_{\chi} b_{\mathcal{G}}(\chi(\mathcal{V})) \in \mathbb{R}^{|\mathcal{E}| \times 3|\mathcal{V}|}$ **Directed Bearing Rigidity Matrix**

Theorem

An *SE*(2) framework is infinitesimally rigid if and only if $\mathbf{rk}[\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))]=3|\mathcal{V}|-4$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a "linearized" version of bearing rigidity

 $b_{\mathcal{G}}(\chi(\mathcal{V}) + \delta \chi) = b_{\mathcal{G}}(\chi(\mathcal{V})) + (\nabla_{\chi} b_{\mathcal{G}}(\chi(\mathcal{V}))) \delta \chi + h.o.t.$

$B_{\mathcal{G}}(\chi(\mathcal{V})) := \nabla_{\chi} b_{\mathcal{G}}(\chi(\mathcal{V})) \in \mathbb{R}^{|\mathcal{E}| \times 3|\mathcal{V}|}$ **Directed Bearing Rigidity Matrix** $B_{\mathcal{G}}(\chi(\mathcal{V})) = [D_{\mathcal{G}}^{-1}(\chi_p)R_{\parallel}(\chi_p) \quad \overline{E}(\mathcal{G})^T]$

$$
D_{\mathcal{G}}(\chi_p) = \mathbf{diag}\{\ldots, \|p(u) - p(v)\|^2, \ldots\}
$$

$$
[\overline{E}(\mathcal{G})]_{ik} = \begin{cases} 1, & \text{if } e_k = (v_i, v_j) \in \mathcal{E} \\ 0, & \text{o.w.} \end{cases}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

recall…

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

$$
R(p)\xi=0
$$

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

$$
R(p)\xi = 0 \qquad R_{\parallel}(p)\xi = 0
$$

Theorem

Every infinitesimal motion $\delta \chi \in \mathcal{N}$ $|\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))|$ satisfies $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

recall…

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

$$
R(p)\xi=0
$$

Parallel Rigidity

- maintain angles (shape)
- rigid body translations and dilations

$$
R(p)\xi = 0 \qquad R_{\parallel}(p)\xi = 0
$$

What are the infinitesimal motions in SE(2)?

Theorem

Every infinitesimal motion $\delta \chi \in \mathcal{N}[\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))]$ satisfies $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi
$$

if all agents maintain attitude, infinitesimal motions are the *translations* and *dilations* of the framework

reduces to parallel rigidity

$$
R_{\parallel}(\chi_p)\delta\chi_p=0
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$
R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi
$$

if all agents maintain attitude, infinitesimal motions are the *translations* and *dilations* of the framework

reduces to parallel rigidity

$$
R_{\parallel}(\chi_p)\delta\chi_p=0
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi$

if angular velocities are non-zero, the infinitesimal motions are the *coordinated rotations* of the framework

> $\mathcal{R}_{\circlearrowright}(\mathcal{G}) = \mathrm{IM} \left\{ R_{\parallel, \mathcal{G}}(\chi_p) \right\}$ $\bigcap \textrm{IM} \left\{ -D_{\mathcal{G}}(\chi_p) \overline{E}^T(\mathcal{G}) \right\}$ $\overline{\mathcal{L}}$ *coordinated rotation subspace*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $R_{\parallel}(\chi_p)\delta\chi_p = -D_{\mathcal{G}}(\chi_p)\overline{E}^T(\mathcal{G})\delta\chi_\psi$

if angular velocities are non-zero, the infinitesimal motions are the *coordinated rotations* of the framework

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

The coordinated rotation subspace is non-trivial. $\dim \mathcal{R}_{\infty}(\mathcal{G}) \geq 1$ For the complete directed graph, one has $\dim \mathcal{R}_{\ell}(\mathcal{G})=1$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

The coordinated rotation subspace is non-trivial. $\dim \mathcal{R}_{\zeta}(\mathcal{G}) \geq 1$ For the complete directed graph, one has $\dim \mathcal{R}_{\infty}(\mathcal{G})=1$

Corollary

An *SE*(2) framework is infinitesimally rigid in *SE*(2) if and only if

1. $rk[R_{\parallel,G}(\chi_p)] = 2|\mathcal{V}| - 3$ and

$$
2. \dim \{ \mathcal{R}_{\circlearrowright}(\mathcal{G}) \} = 1.
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

A distributed gradient descent estimator

Bearing Error:

$$
e(\hat{\xi},\hat{\vartheta},p,\psi)=b_{\mathcal{G}}(\chi(\mathcal{V}))-\hat{b}_{\mathcal{G}}(\hat{\xi},\hat{\vartheta})
$$

Cost Function:

$$
J(e) = \frac{1}{2} \left(k_e \|e(\hat{\xi}, \hat{\vartheta}, p, \psi)\|^2 + k_1 \|\hat{\xi}_{\iota\iota}\|^2 + k_2 (\|\hat{\xi}_{\iota\kappa}\|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

A distributed gradient descent estimator

Bearing Error:

$$
e(\hat{\xi},\hat{\vartheta},p,\psi)=b_{\mathcal{G}}(\chi(\mathcal{V}))-\hat{b}_{\mathcal{G}}(\hat{\xi},\hat{\vartheta})
$$

Cost Function:

$$
J(e) = \frac{1}{2} \left(k_e \|e(\hat{\xi}, \hat{\vartheta}, p, \psi)\|^2 + k_1 \|\hat{\xi}_{\iota\iota}\|^2 + k_2 (\|\hat{\xi}_{\iota\kappa}\|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)
$$

$$
''unscaled''
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

high level coordination objectives (formation keeping, localization, sensor fusion) require robots to know the transformation between local body frames - **relative positions** and **relative orientation**

$$
J(e) = \frac{1}{2} \left(k_e \|e(\hat{\xi}, \hat{\vartheta}, p, \psi)\|^2 + k_1 \|\hat{\xi}_{\iota\iota}\|^2 + k_2 (\|\hat{\xi}_{\iota\kappa}\|^2 - 1)^2 + k_3 (1 - \cos \hat{\vartheta}(\iota)) \right)
$$

Theorem

If the framework is infinitesimally rigid in SE(2) then the estimator

$$
\begin{bmatrix} \dot{\hat{\chi}} \\ \dot{\hat{\vartheta}} \end{bmatrix} = -\nabla J(e)
$$

converges to a local minimum of the bearing error function.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with *bearing* only sensing is a practical solution for many multi-agent systems

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with *bearing* only sensing is a practical solution for many multi-agent systems
- parallel rigidity in arbitrary dimension
- bearing-only control law (with common reference)

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- systems with *bearing* only sensing is a practical solution for many multi-agent systems
- parallel rigidity in arbitrary dimension
- bearing-only control law (with common reference)
- extension of rigidity to concepts to frameworks in SE(2)
- SE(2) rigidity used to distributedly estimate relative positions from only bearing measurements

- deeper results for bearing rigidity
- extensions to $SE(3)$
- estimation filter combined with higher-level tasks (formation keeping)
- control and estimation with field-of-view constraints

Acknowledgements

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Oshri Rozenheck

Dr. Shiyu Zhao **Dr. Paolo Robuffo Giordano** Dr. Antonio Franchi

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Acknowledgements

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Oshri Rozenheck

Dr. Shiyu Zhao **Dr. Paolo Robuffo Giordano** Dr. Antonio Franchi

Questions?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering