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Multi-Agent Systems
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Network Faults in Multi-Agent Systems

Network faults can be detrimental to multi-agent systems:

Power networks - Blackouts

Water networks - Lack of clean
water, firefighting not operational

Sewage, oil and gas networks -
Pollution and health concerns
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Network Faults for Multi-Agent Systems

Network faults switch from G to a subgraph of G by removing edges.

Problem Formulation

Fix a graph G, agents Σi , and a desired output y?. Find networked
controllers and a decision algorithm such that:

i) The output of the faultless system converges to y?, and the algorithm
never declares a fault.

ii) The algorithm declares a fault if at least one edge disappears.

The algorithm is allowed to sample the agents’ inputs and/or outputs.

t = 0 t = t?1 t = t?2
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Diffusively Coupled Networks

Σi

Σ1

Σ2Σ3

Σj

Πij
Π1j

Π12
Π2jΠ3j

Σi are nonlinear dynamical systems representing the agents.

Πe are nonlinear dynamical system representing the edge controllers.

Can be used to model neural networks, vehicle networks, and
networks of oscillators, among others.
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Model Formulation and Analysis

We restrict to a multi-agent systems evolving over some graph G = (V,E)
of the form:

ẋi = fi(xi) + qi(xi)
∑
{i ,j}∈E

gij (hj (xj )− hi(xi))

Σi :

{
ẋi = fi(xi) + qi(xi)ui

yi = hi(xi)

Πij : µij = gij (ζij )
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Steady States of Diffusively-Coupled Networks

Under some passivity assumption on the agents and controllers, the
output of the network converges to some steady-state.

For the closed loop to reach a steady-state, each agent and controller
must reach steady-state.

Definition

The collection of all steady-state input-output pairs of a system is called a
steady-state input-output relation.

Let ki be the relations for Σi , and let k be the stacked relation.
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The Steady-State Equation

If k is the steady-state relation, u is a steady-state input, and y a
steady-state output, then:

k(u) = {y : (u, y) ∈ k}
k−1(y) = {u : (u, y) ∈ k}

For this talk - we assume that k−1 is a function.

Let u, y, ζ, µ be the steady-state of the closed-loop system. The
consistency of the steady-states yields the following equation:
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The Role of Maximal Monotonicity

Theorem

Suppose all the relations ki are maximally monotone, and all gij are
monotone. Then there is a vector y such that 0 = k−1(y) + EGg(ETG y).

We demand that ki are maximally monotone and gij are monotone.

Sharf and Zelazo (Technion) Network FDI CDC 2019 Workshop 9 / 36



MEIP

The discussion above motivates the following refinement of passivity1

Definition (MEIP)

A SISO system is called (output-strictly) maximal monotone
equilibrium-independent passive (MEIP) if:

i) The system is (output-strictly) passive with respect to any
steady-state input-output pair.

ii) The steady-state input-output relation is maximally-monotone.

Many SISO systems are MEIP:

Port-Hamiltonian systems;

Reaction-diffusion systems;

Gradient-descent systems;

Single integrators.
1
M. Bürger, D.Zelazo and F. Allgöwer, ”Duality and network theory in passivity-based cooperative control”, Automatica,

vol. 50, no. 8, pp, 2051–2061, 2014.
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Analysis Theorem of MEIP Multi-Agent Systems

Recall we are interested in the multi-agent system governed by the
following equation:

ẋi = fi(xi) + qi(xi)
∑
{i ,j}∈E

gij (hj (xj )− hi(xi))

Theorem (Bürger, Zelazo and Allgöwer, 2014)

Consider the closed loop system, and suppose all agents Σi are
output-strictly MEIP and gij are all monotone functions.

Then the signals u(t), y(t), ζ(t) and µ(t) converge to constants û, ŷ , ζ̂
and µ̂, and ŷ satisfies 0 = k−1(ŷ) + EGg(ETG ŷ).
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Network Faults for Multi-Agent Systems

Back to the synthesis problem.

Theorem [S. and Zelazo, 2019, TAC]

Given a desired output y?, there exists affine monotone functions gij such
that (G,Σ, g) converges to y?.

How to assure that (G,Σ, g) can be distinguished from (H,Σ, g)
using data, where H is a subgraph of G?

Idea: “Asymptotic” fault detection.

If the output of the systems converge to different outputs, we can
check the steady-state limit of the output of the network, and declare a
fault if it is different from y?.
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Forced equilibria and Asymptotic Differentiation - Intuition

Consider a network of nodes joined by damped springs.

Suppose the network is at an equilibrium, so that the total force
exerted on each node is zero, but each spring is not in its resting
position.

If we cut any spring, the associated end nodes will have a non-zero
force exerted on them. Thus, the new network is no longer at an
equilibrium, and will thus converge to some different steady-state.
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Forced equilibria and Asymptotic Differentiation

We try to find a controller forcing the system to converge to y?, so
that the controllers exert a non-zero force at equilibrium.

Suppose that gij are affine monotone functions such that (G,Σ, g)
converges to y?. Consider g̃ij (x ) = gij (x ) + wij for some constant
vector w defined on the edges of G.

Let H be a subgraph of G. The steady-state equation for the system
(H,Σ, g̃) reads as:

0 = k−1(y) + EHg(ETHy) + EHPHw.

where PH is a projection operator, nullifying all entries corresponding
to edges in G \ H.

Note that if w ∈ ker(EG), then (G,Σ, g̃) converges to y?.
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The Cycle Space ker(EG)

Any element of ker(EG) is a linear combination of vectors, each
corresponding to a cycle in G.

EG =


1 0 0 −1 −1
−1 1 0 0 0
0 −1 −1 0 1
0 0 −1 1 0



ker(EG) = span




1
1
0
0
1

 ,


0
0
1
1
−1



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Indication Vectors

0 = k−1(y) + EHg(ETHy) + EHPHw.

Let yH = yH(w) be the solution to the equation for the subgraph H.

Definition (Indication Vectors)

The vector w is a G-indication vector if yH 6= yG for all H ⊂ G.

Theorem (Constructing Indication Vectors)

Suppose that G is “connected enough”. The collection of vectors
w ∈ ker(EG) which are not G-indication vectors is a zero-measure set.

For a spring network, if the resting positions are chosen randomly, the
chance that a spring will be at its resting position in y? is zero.

What is “connected enough”?
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r -Connected Graphs

Definition (r -Connected Graph)

Let r ≥ 1. A graph G is r-connected if G is connected, and at least r
vertices must be removed from G before it becomes disconnected.

Cycles are 2-connected graphs on n nodes with n edges.

In general, there are r -connected graphs on n nodes with O(rn)
edges.
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2-Connected Graphs

Key Lemma

If the edges of a 2-connected graph G are colored in red and blue, then
there exists a simple cycle with edges of both colors.

Sharf and Zelazo (Technion) Network FDI CDC 2019 Workshop 18 / 36



Asymptotic Fault Detection

Theorem (Asymptotic Fault Detection)

Let G be a 2-connected graph, {Σi} be output-strictly MEIP agents, let
y? be any desired output. Suppose that g is an affine monotone (or any
other) non-linearity such that (G,Σ, g) converges to y?.
Let P be any absolutely continuous probability measure (e.g., Gaussian) on
ker(EG). Suppose that w is sampled according to P, and let
g̃ij (x ) = gij (x ) + wij .

i) If no network faults occur, the network (G,Σ, g̃) converges to y?.

ii) With probability 1, if faults do occur, the network with g̃ converges to
a limit different than y?.
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Proof Sketch

Any subgraph H ⊂ G induces a coloring of G:

G H ⊂ G Coloring induced by H.

By lemma, we have a simple cycle with edges from both H and G \H.

There’s a vector v ∈ ker(EG) corresponding to the simple cycle.

Consider the set M of vectors w such that yH(w) = y?.

If wT v 6= 0, then M is a submanifold of ker(EG) of smaller dimension
near w (implicit function theorem). Thus P(M ) = 0.
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Choosing Indication Vectors

How to choose a random vector in ker(EG)?

Take a basis v1, · · · , v` to ker(EG).

Take ` i.i.d. Gaussian random variables α1, · · · , α`.

Define w = α1v1 + · · ·+ α`v`.

How to choose a random vector in ker(EG) distributedly?

Assume all nodes know the graph G.

Each node randomly chooses some vector w(i) ∈ ker(EG). Run a
finite-time consensus protocol with these vectors as initial conditions.

The resulting consensus value is again a random vector in ker(EG),
and thus an indication vector.
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Toward Real-Time Fault Detection

We built an asymptotic fault detection scheme!

We take a solution to the synthesis problem for G, and add a random
vector in ker(EG).
Assures that for each subgraph H ⊆ G, (G,Σ, g) has a different limit
than (H,Σ, g).

How to adapt this asymptotic fault detection framework to a
real-time fault detection algorithm?

Idea - use passivity of agents and monotonicity of gij to get
convergence rate estimates.
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Toward Real-Time Fault Detection

Let (u?, y?, ζ?,µ?) be the closed-loop steady-state of (G,Σ, g).

By output-strict passivity, each agent has a storage function Si and
some positive number ρi such that:

d

dt
Si(xi) ≤ (ui − u?

i )(yi − y?
i )− ρi(yi − y?

i )2.

By monotonicity of gij :

0 ≤ (ζij − ζ?ij )(µij − µ?
ij ).
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Toward Real-Time Fault Detection

Recall that u = −EGµ, ζ = ETG y , and the same holds for equilibria.

By summing over all nodes and edges, we get:

d

dt
S (x ) ,

d

dt

(
n∑

i=1

Si(xi)

)
≤ −

n∑
i=1

ρi(yi − y?
i )2

If the inequality always holds, we must have y(t)→ y?, as Si ≥ 0.

We need to discretize the inequality in order to verify it from
samples.
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Discretizing - Option 1

By integrating from time T0 to T1 = T0 + ∆T , we get:

S (x (T1))− S (x (T0)) ≤ −
n∑

i=1

ρi(yi(T0)− y?
i )2∆T + M∆T 2.

where M∆T 2 is a term added to compensate for the error in∫ T1

T0

∑
i ρi(yi − y?

i )2dt ≈
∑

i ρi(yi(T0)− y?
i )2∆T . It must be added

to avoid declaring a nonexistent fault.

If ∆T is small enough, the quadratic term is very small, and faults
can be identified easily.

If the limit of the output of the system is not y?, the inequality will be
violated relatively quickly.

Verification can be distributed - enough to check that similar
inequalities hold at each node and on each edge separately.
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Discretizing - Option 2

We recall that yi is a function of the state xi . One can find some
monotone function Ω such that:

d

dt
S (x ) ≤ −

n∑
i=1

ρi(yi − y?
i )2 ≤ −Ω(S (x ))

By integrating from time T0 to T1 and using monotonicity, we get:

S (x (T1))− S (x (T0)) ≤ −Ω(S (x (T0)))(T1 − T0)

Does not require a high sampling frequency.

Verification cannot be distributed easily - Ω can be nonlinear.
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Discretizing - Option 2 (Example)

Consider the LTI agents ẋi = −xi + ui ; yi = xi with transfer function
Gi(s) = 1

s+1 . We focus on the equilibrium u = 0, y = 0.

These are output-strict passive with ρi = 1 and storage function
Si(xi) = 1

2x
2
i . Thus S (x ) = 1

2x
T x .

We want to find a positive monotone function Ω such that:

−
n∑

i=1

x 2
i = −

n∑
i=1

ρi(yi − y?
i )2 ≤ −Ω(S (x )) = −Ω

(
1

2
xT x

)

We can choose Ω(θ) = 2θ.

In general, if the agents are LTI, then Ω is linear.
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Example - Fault Detection in Vehicle Networks

Consider a network of 11 vehicles trying to coordinate their velocity.

The dynamics of the velocity xi of the i -th agent is given by

ẋi = κi(−xi + V i
0 + V i

1ui)

where κi > 0 is an internal gain, V i
0 is its preferred velocity, and V i

1

is the “sensitivity” to other vehicles.

We take g(ζe) = tanh(ζe), and add an indication vector w.

Agents y?

1, 4, 7, 10 60km/h

2, 5, 8, 11 70km/h

3, 6, 9 50km/h
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Example - Fault Detection in Vehicle Networks

In each run, we choose the parameters κi ,V
i
0 ,V

i
1 log-uniformly

within appropriate ranges.

We choose w ∼ N (0, 1) and x (0) ∼ N (70km/h, 20km/h).

The agents’ output is sampled at 10Hz, and use the second option for
the validation algorithm (using Ω).
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Example - Fault Detection in Vehicle Networks

No Faults:
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Example - Fault Detection in Vehicle Networks

The edge {1, 2} becomes faulty at time 20:
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Example - Fault Detection in Vehicle Networks

The edge {1, 2} becomes faulty at time 2:
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Example - Fault Detection in Vehicle Networks

The edge {3, 7} becomes faulty at time 2:
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Summary

Passivity theory is a powerful tool for studying nonlinear multi-agent
systems.

Indication vectors are easy to construct and allow one to
asymptotically differentiate between functioning and malfunctioning
networks.

Passivity allows to turn asymptotic differentiation to real-time fault
detection.
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Possible Extensions

Fault Isolation.

Can use a similar framework - if a graph is r -connected for r > 2, then
one can isolate up to r − 2 faults. Appears in preprint.

Data-Driven FDI algorithms.
Only step that requires a model is building g so that the output of the
faultless system converges to y?.

Framework for passive-short agents.
Use local feedback and/or network feedback to passivize the agents.

More delicate graph-theoretical properties.
Can we detect/isolate a bounded number of faults for non-2-connected
graphs?
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