Network Feedback Passivation of Passivity-Short Multi-Agent Systems

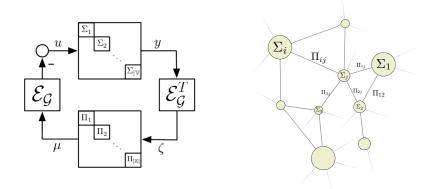
Miel Sharf Daniel Zelazo

Faculty of Aerospace Engineering Technion - Israel Institute of Technology

58th IEEE Conference on Decision and Control, December 2019

Multi-Agent Systems

Diffusively Coupled Networks



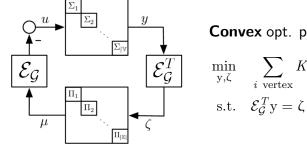
- Σ_i are nonlinear dynamical systems representing the agents.
- Π_e are nonlinear dynamical system representing the edge controllers.
- Can be used to model neural networks, vehicle networks, and networks of oscillators, among others.

Sharf and Zelazo (Technion)

Network Passivation

Diffusively Coupled Networks

The output of a network with passive agents and controllers converges.



Convex opt. problem defined on \mathcal{G} $\min_{\mathbf{y}, \zeta} \quad \sum_{i \text{ vertex}} K_i^{\star}(\mathbf{y}_i) + \sum_{e \text{ edge}} \Gamma_e(\zeta_e)$

Many systems in practice are not passive:

- Generators (always generate energy) [Harvey, 2016];
- Dynamics of robot systems from tourge to position [Babu, 2018];
- Power-system network (turbine-governor dynamics) [Trip, 2018];

How to extend the network optimization framework when passivity does not hold?

Sharf and Zelazo (Technion)

Steady-State Relations

For the closed loop to reach a steady-state, each agent and controller must reach a steady-state.

Definition (Bürger et al., 2014)

The collection of all steady-state input-output pairs of system is called the *steady-state input-output relation*.

• A steady-state relation can be seen as a set-valued function. Given a steady-state input \boldsymbol{u} and a steady-state output $\boldsymbol{y},$ define:

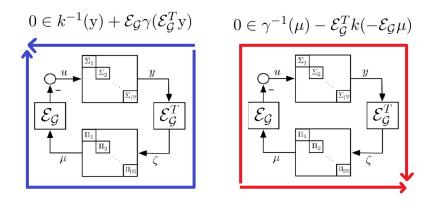
$$k(\mathbf{u}) = \{\mathbf{y} : (\mathbf{u}, \mathbf{y}) \in k\}$$

 $k^{-1}(\mathbf{y}) = \{\mathbf{u} : (\mathbf{u}, \mathbf{y}) \in k\}$

• Let k_i be the relations for the agents Σ_i , γ_e be the relations for the controllers Π_e , and let k, γ be the stacked relations.

Steady-State Equations

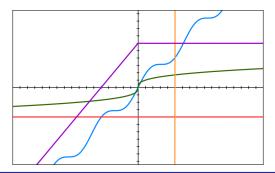
• Let u, y, ζ, μ be a steady-state of the closed-loop system. The consistency of the steady-states yields the following "equations":



How to ensure the existence of a solution to the consistency equations?

Sharf and Zelazo (Technion)

The Role of Maximal Monotonicity



Theorem

Suppose all the relations k_i, γ_e are maximally monotone. Then both consistency "equations" have a solution. In other words, there is a vector y such that $0 \in k^{-1}(y) + \mathcal{E}_{\mathcal{G}}\gamma(\mathcal{E}_{\mathcal{G}}^T y)$, and a vector μ such that $0 \in \gamma^{-1}(\mu) - \mathcal{E}_{\mathcal{G}}^T k(-\mathcal{E}_{\mathcal{G}}\mu)$.

• Thus, we demand that k_i and γ_e are maximally monotone.

Integral Functions of Maximal Monotonic Relations

Rockafellar's Theorem (Rockafellar, 1969)

A relation is maximally monotone if and only if it is the subgradient of some convex function.

- Let $K_i, K_i^{\star}, \Gamma_e, \Gamma_e^{\star}$ be integral functions of $k_i, k_i^{-1}, \gamma_e, \gamma_e^{-1}$.
- Subgraident is a generalized form of the gradient. If k_i is smooth then $\nabla K_i = k_i$
- Let $K = \sum_i K_i$ and $\Gamma = \sum_e \Gamma_e$.
- In calculus, minimizing a function F can be done by solving the equation $\nabla F = 0$. We do the opposite.

$$\begin{array}{c|c} 0 \in k^{-1}(\mathbf{y}) + \mathcal{E}_{\mathcal{G}}\gamma(\mathcal{E}_{\mathcal{G}}^{T}\mathbf{y}) & 0 \in \gamma^{-1}(\mu) - \mathcal{E}_{\mathcal{G}}^{T}k(-\mathcal{E}_{\mathcal{G}}\mu) \\ \min_{\mathbf{y},\zeta} & \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\zeta_{e}) & \min_{\mathbf{u},\mu} & \sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\mu_{e}) \\ s.t. & \mathcal{E}_{\mathcal{G}}^{T}\mathbf{y} = \zeta & s.t. & \mathbf{u} + \mathcal{E}_{\mathcal{G}}\mu = 0. \end{array}$$

MEIP

The discussion above motivates the following refinement of passivity¹

Definition (MEIP)

A SISO system is called *(output-strictly) maximal monotone equilibrium-independent passive* (MEIP) if:

The system is (output-strictly) passive with respect to any steady-state input-output pair.

One steady-state input-output relation is maximally-monotone.

Many SISO systems are MEIP:

- Port-Hamiltonian systems;
- Reaction-diffusion systems;
- Gradient-descent systems;
- Single integrators.

¹M. Burger, D.Zelazo and F. Allgower, "Duality and network theory in passivity-based cooperative control", Automatica, vol. 50, no. 8, pp, 2051–2061, 2014.

Analysis Theorem of MEIP Multi-Agent Systems

Theorem (Bürger, Zelazo and Allgöwer, 2014)

Consider the closed loop system, and suppose all agents Σ_i are output-strictly MEIP and all edge controllers Π_e are MEIP. Then the signals $u(t), y(t), \zeta(t)$ and $\mu(t)$ converge to constants $\hat{u}, \hat{y}, \hat{\zeta}$ and $\hat{\mu}$ which are optimal solutions to the problems (OFP) and (OPP):

(OPP)	(OFP)
$\min_{\mathbf{y},\boldsymbol{\zeta}} \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{e}(\boldsymbol{\zeta}_{e})$	$\min_{\mathbf{u},\mathbf{\mu}} \sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\mathbf{\mu}_{e})$
s.t. $\mathcal{E}_{\mathcal{G}}^T \mathbf{y} = \zeta$	s.t. $\mathbf{u} + \mathcal{E}_{\mathcal{G}}\mathbf{\mu} = 0.$

Network Signal	Optimization Variable
Agents' Output $y_i(t)$	y_i
Network Controllers Input $\zeta_e(t)$	ζ_e
Network Controllers Output $\mu_e(t)$	μ_e
Agents' Input $u_i(t)$	u_i

Passive-Short Systems

We focus on output passive-short systems:

Definition

Let Υ be a SISO dynamical system with steady-state pair (u_0, y_0) . We say that Υ is *output passive-short* w.r.t. (u_0, y_0) if there's a storage function S and $\rho < 0$, so that for any input u(t) we have:

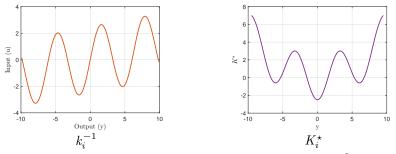
$$\frac{d}{dt}S(x(t)) \le (y(t) - y_0)(u(t) - u_0) - \rho(y(t) - y_0)^2.$$

Definition

Let Υ be a SISO dynamical system. We say that Υ is equilibrium-independent output passive-short (EI-OPS) if there is some $\rho < 0$ such that the system is output-passive short with parameter ρ with respect to all equilibria.

Failure of the Network Optimization Framework for Passive-Short Systems

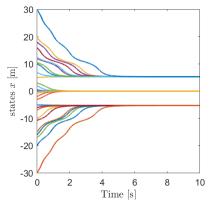
- Consider a network of agents of the form $\dot{x}_i = -\nabla U(x_i) + u_i, y_i = x_i$.
- Take $U(x_i) = 2.5(1 \cos(x_i)) + 0.1x_i^2$. The agents are not MEIP, but rather EI-OPS with $\rho = -2.4$



- Take controllers as static gains of size 1, so $\Gamma(\zeta) = 0.5\zeta^2$.
- The minimum of (OPP) is achieved at $y = \zeta = 0$.

Failure of the Network Optimization Framework for Passive-Short Systems

• The closed-loop system was run. The trajectory can be seen below.



- The closed-loop system converges to a value other than the minimizer of (OPP)
- This happens due to the nonconvexity of the function K.

Sharf and Zelazo (Technion)

Network Passivation

Agent-Based Convexification and Passivation

- Idea Try to convexify (OPP) by adding a Tikhonov term $\sum_i \frac{1}{2}\beta_i y_i^2$ for some $\beta_i > 0$.
- The problem (OPP) transforms into:

$$\min_{\mathbf{y},\zeta} \sum_{i} (K_{i}^{\star}(\mathbf{y}_{i}) + \frac{1}{2}\beta_{i}\mathbf{y}_{i}^{2}) + \sum_{e} \Gamma_{e}(\zeta_{e})$$
(ROPP)
s.t. $\mathcal{E}_{\mathcal{G}}^{T}\mathbf{y} = \zeta$

- We denote the agents' regularized integral functions $\Lambda_i^\star(\mathbf{y}_i) = K_i^\star(\mathbf{y}_i) + \frac{1}{2}\beta_i\mathbf{y}_i^2$
- How can we interpret Λ_i^{\star} ?

Theorem (Jain, S., Zelazo, LCSS 2018)

Consider the augmented agent $\tilde{\Sigma}_i$ achieved by considering an output-feedback $u_i = v_i - \beta_i y_i$ for the *i*-th agent Σ_i . Then $\tilde{\Sigma}_i$ has an integral function, and it equal to $\Lambda_i^*(y_i)$

Sharf and Zelazo (Technion)

Theorem (Jain, S., Zelazo, LCSS 2018)

Consider a diffusively-coupled network with EI-OPS agents and MEIP controllers. Let ρ_1, \dots, ρ_n be the agent's shortage-of-passivity parameters. If $\beta_i > |\rho_i|$ for $i = 1, \dots, n$, then (ROPP) is convex. Moreover, the augmented closed-loop system, with the augmented agents and original controllers, globally asymptotically converges, and its steady-state is the minimizer of (ROPP)

$$\min_{\mathbf{y},\zeta} \sum_{i} (K_{i}^{\star}(\mathbf{y}_{i}) + \frac{1}{2}\beta_{i}\mathbf{y}_{i}^{2}) + \sum_{e} \Gamma_{e}(\zeta_{e})$$
(ROPP)
s.t. $\mathcal{E}_{\mathcal{G}}^{T}\mathbf{y} = \zeta$

Agent-Based Convexification and Passivation

- The Tikhonov regularization term $\sum_i \beta_i y_i^2$ for (OPP) resulted in the classical output-feedback passivizing term $u_i = v_i \beta_i y_i$.
- This regularization term can't always be applied
 - Some agents might not be able to sense their output y_i in a global framework, but only relative outputs $y_i y_j$.
 - Some agents might not be amenable, and will not implement said feedback (e.g. in open networks).

Can we find another regularization term that yields a network-based feedback term?

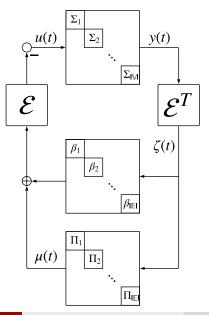
- Idea Try to convexify (OPP) by adding a *network* Tikhonov term $\sum_{e} \frac{1}{2} \beta_e \zeta_e^2$ for some $\beta_i > 0$.
- The problem (OPP) transforms into:

$$\min_{\mathbf{y},\zeta} \quad \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \frac{1}{2} \beta_{e} \zeta_{e}^{2} + \sum_{e} \Gamma_{e}(\zeta_{e})$$
(NROPP)
s.t. $\mathcal{E}_{\mathcal{G}}^{T} \mathbf{y} = \zeta$

- We consider the function $\Lambda_N^{\star}(\mathbf{y}) = \sum_i K_i^{\star}(\mathbf{y}_i) + \sum_e \frac{1}{2} \beta_e (\mathcal{E}_{\mathcal{G}}^T \mathbf{y})_e^2$.
- How can we interpret Λ_N^* ?

Theorem

Consider the augmented agents $\tilde{\Sigma}$ achieved by considering a networkfeedback $u = v - \mathcal{E}_{\mathcal{G}} \operatorname{diag}(\beta) \mathcal{E}_{\mathcal{G}}^T y$. $\tilde{\Sigma}$ is a MIMO system with input-output steady-state relation λ_N , and Λ_N^* is the integral function of λ_N^{-1} .



Sharf and Zelazo (Technion)

Network Passivation

• Can we choose the gains β_e -s so that Λ_N^* is convex?

Theorem

Suppose the graph \mathcal{G} is connected. Let $\bar{\rho}$ be the average of the output-passivity indices ρ_1, \dots, ρ_N of the agents $\Sigma_1, \dots, \Sigma_N$. If $\bar{\rho} > 0$, then there exists gains β_e so that Λ_N^* is strictly convex. In that case the system $\tilde{\Sigma}$ is passive with respect to all equilibria.

• Actually, we can choose equal gains of size $\mathbf{b} + \epsilon$, where

$$\mathbf{b} = \frac{\lambda_{max}(\bar{\rho}^{-1}\mathcal{E}_{\mathcal{G}}^T \operatorname{diag}(\rho)^2 \mathcal{E}_{\mathcal{G}} - \mathcal{E}_{\mathcal{G}}^T \operatorname{diag}(\rho) \mathcal{E}_{\mathcal{G}})}{\lambda_2(\mathcal{G})^2}$$

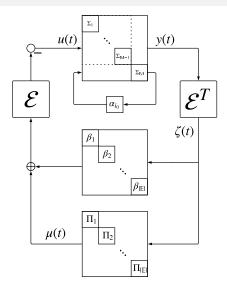
Theorem

Consider a diffusively-coupled network with EI-OPS agents and MEIP controllers. Let ρ_1, \dots, ρ_n be the agent's shortage-of-passivity parameters, and let $\bar{\rho}$ be their average. If $\bar{\rho} > 0$ and for all edges $e, \beta_e > \mathbf{b}$, then (NROPP) is convex.

Moreover, the augmented closed-loop system, with the augmented agents and original controllers, globally asymptotically converges, and its steady-state is the minimizer of (NROPP)

$$\min_{\mathbf{y},\zeta} \quad \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} (\Gamma_{e}(\zeta_{e}) + \frac{1}{2}\beta_{e}\zeta_{e}^{2})$$
(NROPP)
s.t. $\mathcal{E}_{\mathcal{G}}^{T}\mathbf{y} = \zeta$

Hybrid Convexification and Passivation



What to do when $\bar{\rho} \leq 0$? Add another Tikhonov term $\sum_{i=1}^{n} \alpha_i y_i^2$.

Only a small subset of the nodes need to sense their own output and be amenable to the network designer.

Example: Vehicle Network

- Consider a network of 100 vehicles trying to coordinate their velocity
- The dynamics of the velocity x_i of the *i*-th agent evolves as

$$\dot{x}_i = \kappa_i (-x_i + V_0^i + V_1^i u_i)$$

where $u_i = \sum_{j \sim i} \tanh(p_j - p_i)$

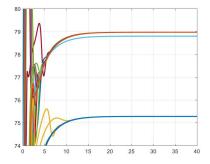
- The system is EI-OPS with $\rho_i = \kappa_i$. $\kappa_i < 0$ corresponds to drowsy driving.
- (OPP) is written as:

$$\min_{\mathbf{y},\zeta} \quad \sum_{i} \frac{1}{2V_{i}^{1}} (\mathbf{y}_{i} - V_{i}^{0})^{2} + \sum_{e} \frac{1}{2} |\zeta_{e}|$$

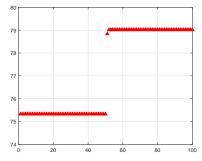
s.t. $\mathcal{E}_{\mathcal{G}}^{T} \mathbf{y} = \zeta$

We implement the network-only regularization technique with $\beta_e = \mathbf{b} + \epsilon$.

Example: Vehicle Network



(a) Vehicles' trajectories under network-only regularization.



(b) Asymptotic behaviour predicted by (NROPP).

Conclusions

- Network optimization is a powerful tool that appears naturally in multi-agent systems.
- For non-passive agents, the network optimization framework might fail to predict the true steady-state limit.
- For EI-OPS agents, regularizing (OPP) results in a passivizing feedback, validating the network optimization framework.
- One can use network-based regularization terms to help get network-based passivation.
- How to choose the self-regulating nodes to get small gains?

Acknowledgements

Sharf and Zelazo (Technion)

Network Passivation

IEEE CDC 2019 25 / 25