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Multi-Agent Systems
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Diffusively Coupled Networks
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Σi are nonlinear dynamical systems representing the agents.

Πe are nonlinear dynamical system representing the edge controllers.

Can be used to model neural networks, vehicle networks, and
networks of oscillators, among others.
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Diffusively Coupled Networks

The output of a network with passive agents and controllers converges.

Convex opt. problem defined on G

min
y,ζ

∑
i vertex

K ?
i (yi) +

∑
e edge

Γe(ζe)

s.t. ETG y = ζ

Many systems in practice are not passive:

Generators (always generate energy) [Harvey, 2016];

Dynamics of robot systems from tourqe to position [Babu, 2018];

Power-system network (turbine-governor dynamics) [Trip, 2018];

How to extend the network optimization framework when passivity does
not hold?
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Steady-State Relations

For the closed loop to reach a steady-state, each agent and controller
must reach a steady-state.

Definition (Bürger et al.,2014)

The collection of all steady-state input-output pairs of system is called the
steady-state input-output relation.

A steady-state relation can be seen as a set-valued function. Given a
steady-state input u and a steady-state output y, define:

k(u) ={y : (u, y) ∈ k}
k−1(y) ={u : (u, y) ∈ k}

Let ki be the relations for the agents Σi , γe be the relations for the
controllers Πe , and let k , γ be the stacked relations.
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Steady-State Equations

Let u, y, ζ,µ be a steady-state of the closed-loop system. The
consistency of the steady-states yields the following “equations”:

How to ensure the existence of a solution to the consistency equations?
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The Role of Maximal Monotonicity

Theorem

Suppose all the relations ki , γe are maximally monotone. Then both
consistency “equations” have a solution. In other words, there is a vector y
such that 0 ∈ k−1(y) + EGγ(ETG y), and a vector µ such that
0 ∈ γ−1(µ)− ETG k(−EGµ).

Thus, we demand that ki and γe are maximally monotone.
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Integral Functions of Maximal Monotonic Relations

Rockafellar’s Theorem (Rockafellar,1969)

A relation is maximally monotone if and only if it is the subgradient of
some convex function.

Let Ki ,K
?
i ,Γe ,Γ

?
e be integral functions of ki , k

−1
i , γe , γ

−1
e .

Subgraident is a generalized form of the gradient. If ki is smooth then
∇Ki = ki

Let K =
∑

i Ki and Γ =
∑

e Γe .

In calculus, minimizing a function F can be done by solving the
equation ∇F = 0. We do the opposite.

0 ∈ k−1(y) + EGγ(ETG y) 0 ∈ γ−1(µ)− ETG k(−EGµ)

min
y,ζ

∑
i K

?
i (yi) +

∑
e Γe(ζe)

s.t . ETG y = ζ

min
u,µ

∑
i Ki(ui) +

∑
e Γ?e(µe)

s.t . u + EGµ = 0.
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MEIP

The discussion above motivates the following refinement of passivity1

Definition (MEIP)

A SISO system is called (output-strictly) maximal monotone
equilibrium-independent passive (MEIP) if:

1 The system is (output-strictly) passive with respect to any
steady-state input-output pair.

2 The steady-state input-output relation is maximally-monotone.

Many SISO systems are MEIP:

Port-Hamiltonian systems;

Reaction-diffusion systems;

Gradient-descent systems;

Single integrators.
1
M. Burger, D.Zelazo and F. Allgower, ”Duality and network theory in passivity-based cooperative control”, Automatica,

vol. 50, no. 8, pp, 2051–2061, 2014.
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Analysis Theorem of MEIP Multi-Agent Systems

Theorem (Bürger, Zelazo and Allgöwer, 2014)

Consider the closed loop system, and suppose all agents Σi are
output-strictly MEIP and all edge controllers Πe are MEIP.
Then the signals u(t), y(t), ζ(t) and µ(t) converge to constants û, ŷ , ζ̂
and µ̂ which are optimal solutions to the problems (OFP) and (OPP):

(OPP) (OFP)
min
y,ζ

∑
i K

?
i (yi) +

∑
e Γe(ζe)

s.t . ETG y = ζ

min
u,µ

∑
i Ki(ui) +

∑
e Γ?e(µe)

s.t . u + EGµ = 0.

Network Signal Optimization Variable

Agents’ Output yi(t) yi

Network Controllers Input ζe(t) ζe
Network Controllers Output µe(t) µe

Agents’ Input ui(t) ui
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Passive-Short Systems

We focus on output passive-short systems:

Definition

Let Υ be a SISO dynamical system with steady-state pair (u0, y0). We say
that Υ is output passive-short w.r.t. (u0, y0) if there’s a storage function
S and ρ < 0, so that for any input u(t) we have:

d

dt
S (x (t)) ≤ (y(t)− y0)(u(t)− u0)− ρ(y(t)− y0)

2.

Definition

Let Υ be a SISO dynamical system. We say that Υ is
equilibrium-independent output passive-short (EI-OPS) if there is some
ρ < 0 such that the system is output-passive short with parameter ρ with
respect to all equilibria.
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Failure of the Network Optimization Framework for
Passive-Short Systems

Consider a network of agents of the form ẋi = −∇U (xi) + ui , yi = xi .

Take U (xi) = 2.5(1− cos(xi)) + 0.1x 2
i . The agents are not MEIP,

but rather EI-OPS with ρ = −2.4
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Take controllers as static gains of size 1, so Γ(ζ) = 0.5ζ2.

The minimum of (OPP) is achieved at y = ζ = 0.
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Failure of the Network Optimization Framework for
Passive-Short Systems

The closed-loop system was run. The trajectory can be seen below.

The closed-loop system converges to a value other than the
minimizer of (OPP)

This happens due to the nonconvexity of the function K .
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Agent-Based Convexification and Passivation

Idea - Try to convexify (OPP) by adding a Tikhonov term
∑

i
1
2βiy

2
i

for some βi > 0.

The problem (OPP) transforms into:

min
y,ζ

∑
i

(K ?
i (yi) +

1

2
βiy

2
i ) +

∑
e

Γe(ζe) (ROPP)

s.t. ETG y = ζ

We denote the agents’ regularized integral functions
Λ?i (yi) = K ?

i (yi) + 1
2βiy

2
i

How can we interpret Λ?i ?

Theorem (Jain, S., Zelazo, LCSS 2018)

Consider the augmented agent Σ̃i achieved by considering an
output-feedback ui = vi − βiyi for the i -th agent Σi . Then Σ̃i has an
integral function, and it equal to Λ?i (yi)
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Agent-Based Convexification and Passivation

Theorem (Jain, S., Zelazo, LCSS 2018)

Consider a diffusively-coupled network with EI-OPS agents and MEIP
controllers. Let ρ1, · · · , ρn be the agent’s shortage-of-passivity parameters.
If βi > |ρi | for i = 1, · · · ,n, then (ROPP) is convex.
Moreover, the augmented closed-loop system, with the augmented agents
and original controllers, globally asymptotically converges, and its
steady-state is the minimizer of (ROPP)

min
y,ζ

∑
i

(K ?
i (yi) +

1

2
βiy

2
i ) +

∑
e

Γe(ζe) (ROPP)

s.t. ETG y = ζ
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Agent-Based Convexification and Passivation

The Tikhonov regularization term
∑

i βiy
2
i for (OPP) resulted in the

classical output-feedback passivizing term ui = vi − βiyi .
This regularization term can’t always be applied

Some agents might not be able to sense their output yi in a global
framework, but only relative outputs yi − yj .
Some agents might not be amenable, and will not implement said
feedback (e.g. in open networks).

Can we find another regularization term that
yields a network-based feedback term?
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Network Convexification and Passivation

Idea - Try to convexify (OPP) by adding a network Tikhonov term∑
e

1
2βeζ

2
e for some βi > 0.

The problem (OPP) transforms into:

min
y,ζ

∑
i

K ?
i (yi) +

∑
e

1

2
βeζ

2
e +

∑
e

Γe(ζe) (NROPP)

s.t. ETG y = ζ

We consider the function Λ?N (y) =
∑

i K
?
i (yi) +

∑
e

1
2βe(ETG y)2e .

How can we interpret Λ?N ?

Theorem

Consider the augmented agents Σ̃ achieved by considering a network-
feedback u = v − EGdiag(β)ETG y . Σ̃ is a MIMO system with input-output

steady-state relation λN , and Λ?N is the integral function of λ−1N .
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Network Convexification and Passivation
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Network Convexification and Passivation

Can we choose the gains βe-s so that Λ?N is convex?

Theorem

Suppose the graph G is connected. Let ρ̄ be the average of the
output-passivity indices ρ1, · · · , ρN of the agents Σ1, · · · ,ΣN . If ρ̄ > 0,
then there exists gains βe so that Λ?N is strictly convex. In that case the
system Σ̃ is passive with respect to all equilibria.

Actually, we can choose equal gains of size b + ε, where

b =
λmax (ρ̄−1ETG diag(ρ)2EG − ETG diag(ρ)EG)

λ2(G)2
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Network Convexification and Passivation

Theorem

Consider a diffusively-coupled network with EI-OPS agents and MEIP
controllers. Let ρ1, · · · , ρn be the agent’s shortage-of-passivity parameters,
and let ρ̄ be their average. If ρ̄ > 0 and for all edges e, βe > b, then
(NROPP) is convex.
Moreover, the augmented closed-loop system, with the augmented agents
and original controllers, globally asymptotically converges, and its
steady-state is the minimizer of (NROPP)

min
y,ζ

∑
i

K ?
i (yi) +

∑
e

(Γe(ζe) +
1

2
βeζ

2
e ) (NROPP)

s.t. ETG y = ζ
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Hybrid Convexification and Passivation
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What to do when ρ̄ ≤ 0?
Add another Tikhonov term∑n

i=1 αiy
2
i .

Only a small subset of the
nodes need to sense their
own output and be amenable
to the network designer.



Example: Vehicle Network

Consider a network of 100 vehicles trying to coordinate their velocity

The dynamics of the velocity xi of the i -th agent evolves as

ẋi = κi(−xi + V i
0 + V i

1ui)

where ui =
∑

j∼i tanh(pj − pi)

The system is EI-OPS with ρi = κi . κi < 0 corresponds to drowsy
driving.

(OPP) is written as:

min
y,ζ

∑
i

1

2V 1
i

(yi −V 0
i )2 +

∑
e

1

2
|ζe |

s.t. ETG y = ζ

We implement the network-only regularization technique with βe = b + ε.
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Example: Vehicle Network

(a) Vehicles’ trajectories under network-only
regularization.
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(b) Asymptotic behaviour predicted
by (NROPP).
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Conclusions

Network optimization is a powerful tool that appears naturally in
multi-agent systems.

For non-passive agents, the network optimization framework might
fail to predict the true steady-state limit.

For EI-OPS agents, regularizing (OPP) results in a passivizing
feedback, validating the network optimization framework.

One can use network-based regularization terms to help get
network-based passivation.

How to choose the self-regulating nodes to get small gains?
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