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WHAT IS MULTI-ROBOT COORDINATION?



WHAT IS MULTI-ROBOT COORDINATION?
(AGENT)

Cooperative Control

All these examples represent networks of dynamical systems!

Common Theme: Control objectives are related to agreement!
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NETWORKS OF DYNAMICAL SYSTEMS 
ARE ONE OF THE ENABLING 

TECHNOLOGIES OF THE FUTURE



HOW DO WE CONTROL MULTI-ROBOT SYSTEMS?
centralized approach decentralized/distributed approach

controller

communication

sensingcontroller

controller

controller

controller

controller

not scalable 
not robust



HOW DO WE CONTROL MULTI-ROBOT SYSTEMS?

What is the control architecture?

communication

sensingcontroller

controller

controller

controller

controller



CONTROL ARCHITECTURES

1 ROBOT



CONTROL ARCHITECTURES

MULTI-ROBOT SYSTEM

IL

OL

Environment Controlled Variables

Inner Loop: 

     ?   

Outer Loop: 

     ?   
Mission



TOWARDS A MULTI-ROBOT CONTROL ARCHITECTURE

WHAT IS THE ARCHITECTURE OF A MULTI-ROBOT SYSTEM?

Ji and Egerstedt, 2007 
Dimarogonas and Kyriakopoulos, 2008 
Yang et al., 2010  
Robuffo Giordano et al., 2013

CONNECTIVITY



Solutions to coordination problems in multi-robot systems are highly dependent on 
the sensing and communication mediums available!

Courtesy of P. Robuffo Giordano and A. Franchi 



COORDINATION OBJECTIVES
formation control localizationrendezvous

Does the control strategy need to change with different 
sensing/communication? 

Are there common architectural requirements that do not 
depend on the choice of sensing?



Given a team of robots endowed with the ability to sense/
communicate with neighboring robots, design a control for 
each robot using only local information that moves the team 
into a desired formation shape. 

FORMATION CONTROL



FORMATION DETERMINATION = SENSOR SELECTION
HOW TO DEFINE A SHAPE
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EXAMPLE:  FORMATION CONTROL

ẋi = ui

Assumptions
• GLOBAL COORDINATE FRAME 
• RELATIVE POSITION MEASUREMENTS 
• NO SENSING CONSTRAINTS (360◦) 
• SENSING AND COMMUNICATION 

“robots” - modeled as kinematic point mass

Control

THE “CONSENSUS” PROTOCOL

Formation
• SPECIFIED BY (ABSOLUTE) TARGET 

POSITIONS 
⇠i 2 R2

ui =
X

i⇠j

((xj � ⇠j)� (xi � ⇠i))



EXAMPLE:  FORMATION CONTROL

Control
CONSENSUS
Formation

• SPECIFIED BY (ABSOLUTE) TARGET 
POSITIONS 
⇠i 2 R2

ui =
X

i⇠j

((xj � ⇠j)� (xi � ⇠i))

• FINAL FORMATION WILL BE A  
TRANSLATION OF THE TARGET FORMATION  

• AGENTS MUST COMMUNICATE THEIR 
TARGET POSITION  

• REQUIRES GLOBAL POSITIONING
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EXAMPLE:  FORMATION CONTROL

ẋi = ui

Assumptions
• GLOBAL COORDINATE FRAME 
• RELATIVE POSITION MEASUREMENTS 
• DISTANCE MEASUREMENTS 
• NO SENSING CONSTRAINTS (360◦) 
• SENSING

“robots” - modeled as kinematic point mass

Control

THE “DISTANCE CONSTRAINED” 
FORMATION CONTROL PROBLEM

Formation
• SPECIFIED BY DISTANCES BETWEEN  

PAIRS OF ROBOTS

dij 2 R

[Krick2009] 

ui =
X

i⇠j

(kxi � xjk2 � d2ij)(xj � xi)



EXAMPLE:  FORMATION CONTROL

DISTANCE CONSTRAINED

• SPECIFIED BY DISTANCES BETWEEN  
PAIRS OF ROBOTS

dij 2 R

ui =
X

i⇠j

(kxi � xjk2 � d2ij)(xj � xi)
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ControlFormation

• FINAL FORMATION WILL BE A  
TRANSLATION OR ROTATION OF SHAPE 
SATISFYING DISTANCE CONSTRAINTS  

• AGENTS REQUIRE RELATIVE POSITION AND  
DISTANCES  



EXAMPLE:  FORMATION CONTROL

ẋi = ui

Assumptions
• GLOBAL COORDINATE FRAME 
• BEARING MEASUREMENTS 
• NO SENSING CONSTRAINTS (360◦) 
• SENSING 

“robots” - modeled as kinematic point mass

Control

THE “BEARING ONLY” 
FORMATION CONTROL PROBLEM

Formation
• SPECIFIED BY BEARING VECTORS

g⇤ij 2 R2, kg⇤ijk = 1

[Zhao,Zelazo2016] 

ui = �
X

i⇠j

(I � gijg
T
ij)g

⇤
ij



EXAMPLE:  FORMATION CONTROL

BEARING ONLY
ControlFormation

• FINAL FORMATION WILL BE A  
TRANSLATION OR SCALING OF SHAPE 
SATISFYING BEARING CONSTRAINTS  

• AGENTS REQUIRE BEARING 
MEASUREMENTS 

• SPECIFIED BY BEARING VECTORS ui = �
X

i⇠j

(I � gijg
T
ij)g

⇤
ij
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communication

sensingcontroller

controller

controller

controller

controller

INFORMATION EXCHANGE NETWORK AND 
FORMATION DETERMINATION



INFORMATION EXCHANGE NETWORK AND 
FORMATION DETERMINATION



SENSORS, GRAPHS, AND SHAPES
Given a desired formation shape, a sensing modality and its 
corresponding formation controller, will all information 
exchange networks (graphs) solve the formation control 
problem?

The triangle revisited 
(distance constrained)

A MISSING DISTANCE

the square 
(bearing only)

A MISSING BEARING



SENSORS, GRAPHS, AND SHAPES
For a given sensing modality, what kind of information 
exchange networks can (uniquely) determine a formation 
shape?

RIGIDITY THEORY
Rigidity is a combinatorial theory for characterizing the 
“stiffness” or “flexibility” of structures formed by rigid 
bodies connected by flexible linkages or hinges.
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 A framework
• A GRAPH 
• A MAPPING TO A METRIC SPACE

(DISTANCE) RIGIDITY THEORY

G
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v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

 A framework
• A GRAPH 
• A MAPPING TO A METRIC SPACE

(DISTANCE) RIGIDITY THEORY

G

(G, p0) (G, p1)
Two frameworks are equivalent if kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

Two frameworks are congruent if

8 {vi, vj} 2 E

(G, p0) (G, p1)
kp0(vi)� p0(vj)k = kp1(vi)� p1(vj)k

8 vi, vj 2 V

all edges 

all pairs of nodes
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 A framework
• A GRAPH 
• A MAPPING TO A METRIC SPACE

(DISTANCE) RIGIDITY THEORY
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(DISTANCE) RIGIDITY THEORY

A rigid graph can only rotate and translate to ensure 
all distances between all nodes are preserved (i.e., 
preserve the shape)!

A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

A framework is globally rigid if every framework that 
is equivalent to it is also congruent.



(DISTANCE) RIGIDITY THEORY

A rigid graph can only rotate and translate to ensure 
all distances between all nodes are preserved (i.e., 
preserve the shape)!

A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

A framework is globally rigid if every framework that 
is equivalent to it is also congruent.



BEARING RIGIDITY THEORY

v2v3

v1

p

p(v1)

p(v2) p(v3)

x1

x2

 A framework
• A GRAPH 
• A MAPPING TO A METRIC SPACE

G

[Zhao,Zelazo2016] 

(G, p0) (G, p1)
Two frameworks are equivalent if

Two frameworks are congruent if

(G, p0) (G, p1)

p0(vj)� p0(vi)

kp0(vj)� p0(vi)k
=

p1(vj)� p1(vi)

kp1(vj)� p1(vi)k
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=

p1(vj)� p1(vi)
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BEARING RIGIDITY THEORY

A bearing rigid graph can only scale and translate to 
ensure all bearings between all nodes are preserved 
(i.e., preserve the shape)!

A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

A framework is globally rigid if every framework that 
is equivalent to it is also congruent.

[Zhao,Zelazo2016] 



INFINITESIMAL RIGIDITY
A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

FD(p) =
1

2

2

664

...
kp(vi)� p(vj)k2

...

3

775 FB(p) =

2

6664

...
p(vj)�p(vi)

kp(vi)�p(vj)k
...

3

7775

Distance Function Bearing Function

RB(p) =
@FB(p)

@p
RD(p) =

@FD(p)

@p

Distance Rigidity Matrix Bearing Rigidity Matrix

Rigidity matrix is the linear term in the Taylor series  
expansion of the Distance/Bearing functions

F (p+ �p) = F (p) +
@F (p)

@p
�p + h.o.t.



INFINITESIMAL RIGIDITY
A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

FD(p) =
1

2

2

664

...
kp(vi)� p(vj)k2

...

3

775 FB(p) =

2

6664

...
p(vj)�p(vi)

kp(vi)�p(vj)k
...

3

7775

Distance Function Bearing Function

RB(p) =
@FB(p)

@p
RD(p) =

@FD(p)

@p

Distance Rigidity Matrix Bearing Rigidity Matrix

infinitesimal motions are precisely the motions that  
satisfy

R(p)�p =
@F (p)

@p
�p = 0



INFINITESIMAL RIGIDITY

FD(p) =
1

2

2

664

...
kp(vi)� p(vj)k2

...

3

775 FB(p) =

2

6664

...
p(vj)�p(vi)

kp(vi)�p(vj)k
...

3

7775

Distance Function Bearing Function

RB(p) =
@FB(p)

@p
RD(p) =

@FD(p)

@p

Distance Rigidity Matrix Bearing Rigidity Matrix

THEOREM
A framework is infinitesimally (distance, bearing) rigid 
if and only if the rank of the rigidity matrix is 2n-3.

3 trivial motions in the plane



SENSORS, GRAPHS, AND SHAPES
For a given sensing modality, what kind of information 
exchange networks can (uniquely) determine a formation 
shape?

INFINITESIMALLY RIGID 



EXAMPLE:  FORMATION CONTROL* 

ẋi = ui

“robots” - modeled as kinematic point mass

Bearing Control

ui = �
X

i⇠j

(I � gijg
T
ij)g

⇤
ij

Distance Control

ui =
X

i⇠j

(kxi � xjk2 � d2ij)(xj � xi)

ẋ = �RD(p)TRD(p)�RD(p)T d2

ẋ = �RB(p)
T g⇤

locally exponentially stable 
undesirable equilibriums

(HIDDEN NUANCES)

almost global stability 
1 undesirable equilibriums



ui = �
X

i⇠j

(I � gijg
T
ij)g

⇤
ij

BEARING RIGIDITY THEORY



BEARING RIGIDITY THEORY

[Zhao,Zelazo2017] 



TOWARDS A MULTI-ROBOT CONTROL ARCHITECTURE

WHAT IS THE ARCHITECTURE OF A MULTI-ROBOT SYSTEM?

CONNECTIVITY

RIGIDITY



FORMATION CONTROL WITHOUT A COMMON FRAME

- sensing is typically physically 
attached to the body frame of the 
robot 

- sensing is inherently directed 

- knowledge of common inertial 
frame is not a realistic assumption

rigidity theory extensions for directed 
sensing graphs and local (body-frame) 
measurements

SE(2) RIGIDITY THEORY
[Zelazo, Giordano, Franchi2015] 



INFINITESIMAL RIGIDITY
A framework is infinitesimally rigid if every 
infinitesimal motion is trivial

- maintain bearings in local frame 

- rigid body rotations and translations + 
coordinated rotations

[Zelazo, Giordano, Franchi2015] 



SE(2) FORMATION CONTROL

[Schiano, Franchi, Zelazo, Giordano2016] 



RIGIDITY AS AN ARCHITECTURAL REQUIREMENT

IL

OL

Environment Controlled Variables

Inner Loop: 
    connectivity
    rigidity   

Outer Loop: 
   formation control
   localization
   ...   

Mission



RIGIDITY MAINTENANCE 

Control

Robot i Position 
EstimatorEnvironment

...

Rigidity 
Estimator

...

...

λ̂7

v̂k, k 2 Ni(t)

v̂i

pk, k 2 Ni(t)

kpk � pik

k 2 Ni(t) p̂ci

p̂ck, k 2 Ni(t)

[Zelazo, Giordano, Franchi2015] 



RIGIDITY MAINTENANCE 

[Zelazo, Giordano, Franchi2015] 



OUTLOOKS

Do we need to develop rigidity theory 
extensions for every kind of sensor?

G. Stacey and R. Mahony, "The Role of Symmetry in Rigidity Analysis: A Tool 
for Network Localisation and Formation Control," in IEEE Transactions on 
Automatic Control, vol. PP, no. 99, pp. 1-1.

Extensions for directed sensing network

control and estimation algorithms

THEORY APPLICATION
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