SWARM 2017

SENSOR MODALITIES IN MULTI-ROBOT COORDINATION: CONSTRAINT AND SOLUTIONS

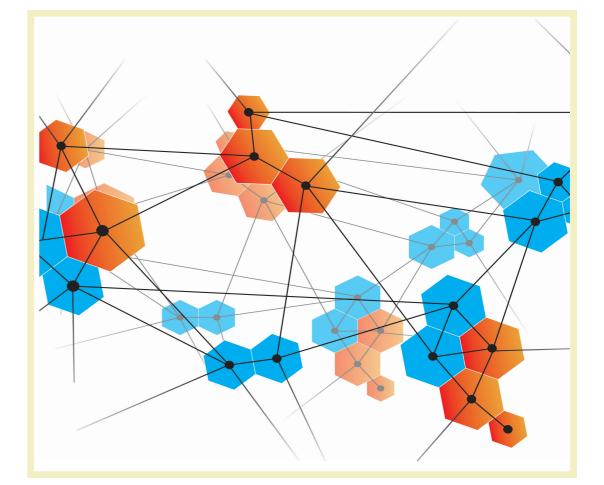
Daniel Zelazo Faculty of Aerospace Engineering

Cooperative Networks and Controls Lab

WHAT IS MULTI-ROBOT COORDINATION?

WHAT IS MULTI-ROBOT COORDINATION? (AGENT)



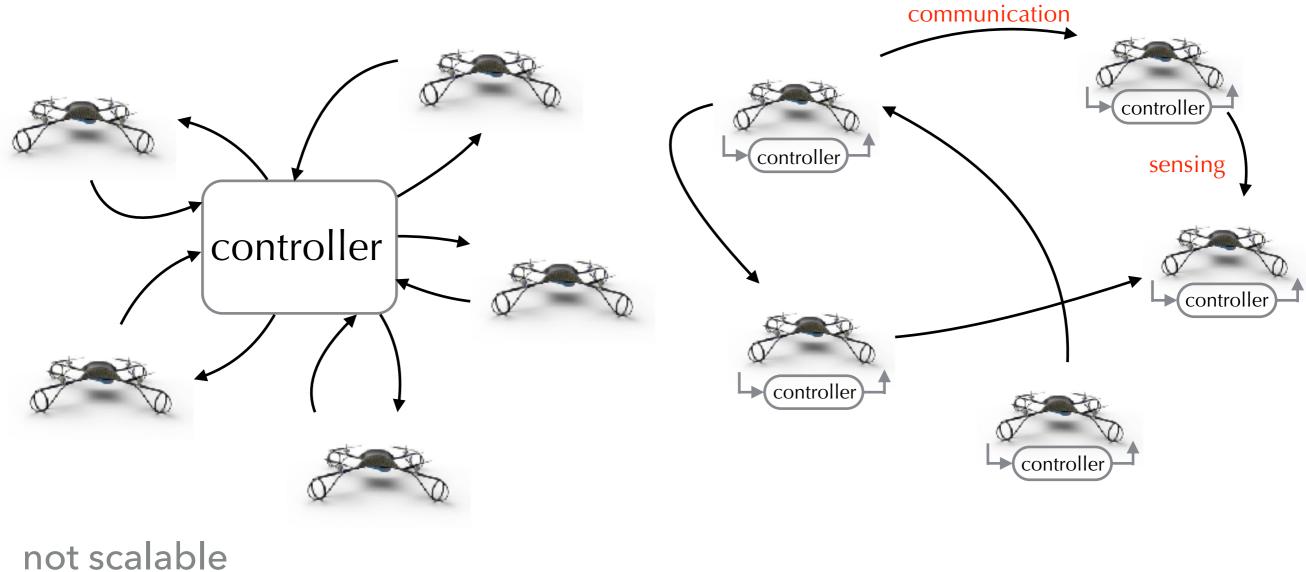


NETWORKS OF DYNAMICAL SYSTEMS ARE ONE OF THE ENABLING TECHNOLOGIES OF THE FUTURE

HOW DO WE CONTROL MULTI-ROBOT SYSTEMS?

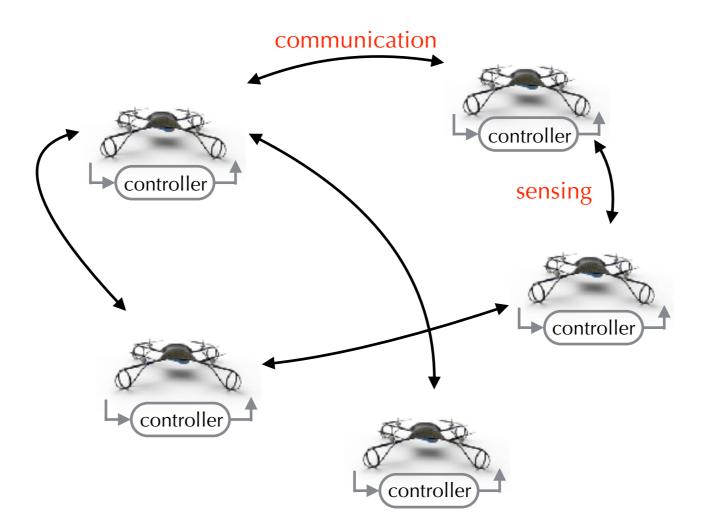
centralized approach

decentralized/distributed approach



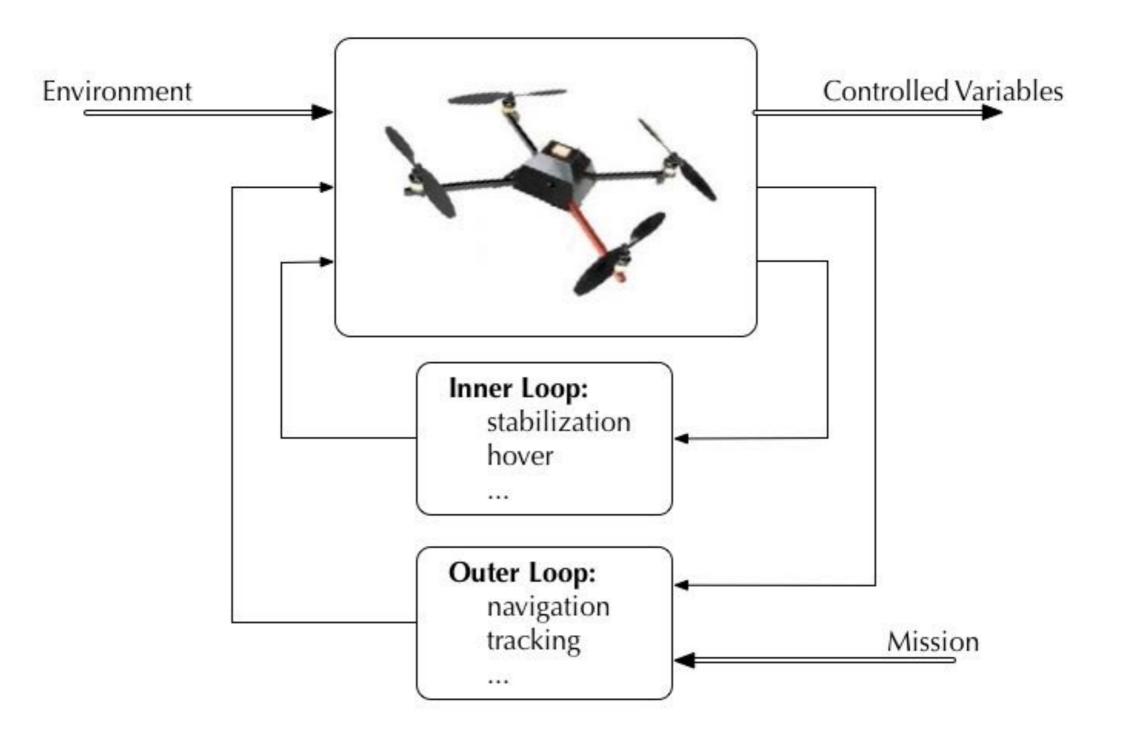
not robust

HOW DO WE CONTROL MULTI-ROBOT SYSTEMS?

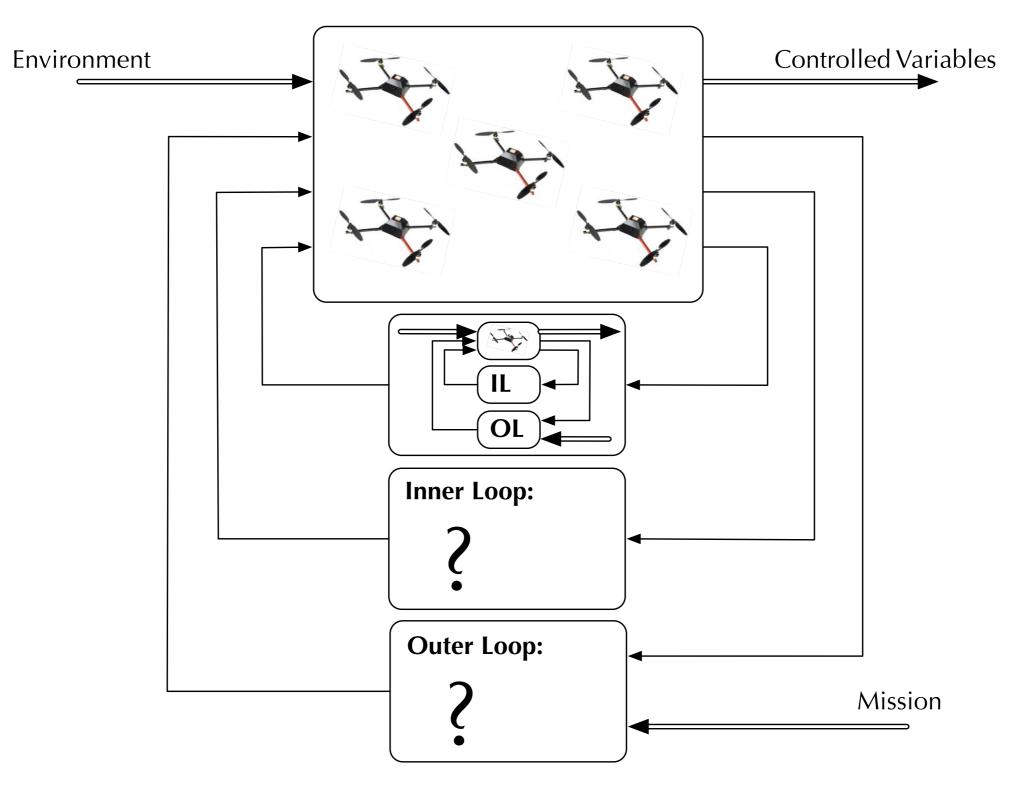


What is the control architecture?

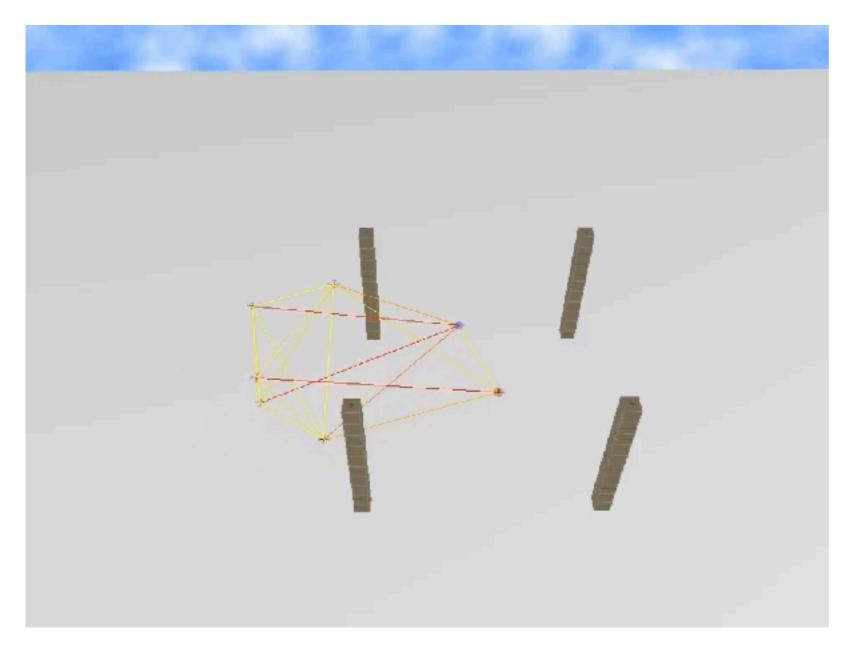
1 ROBOT



MULTI-ROBOT SYSTEM

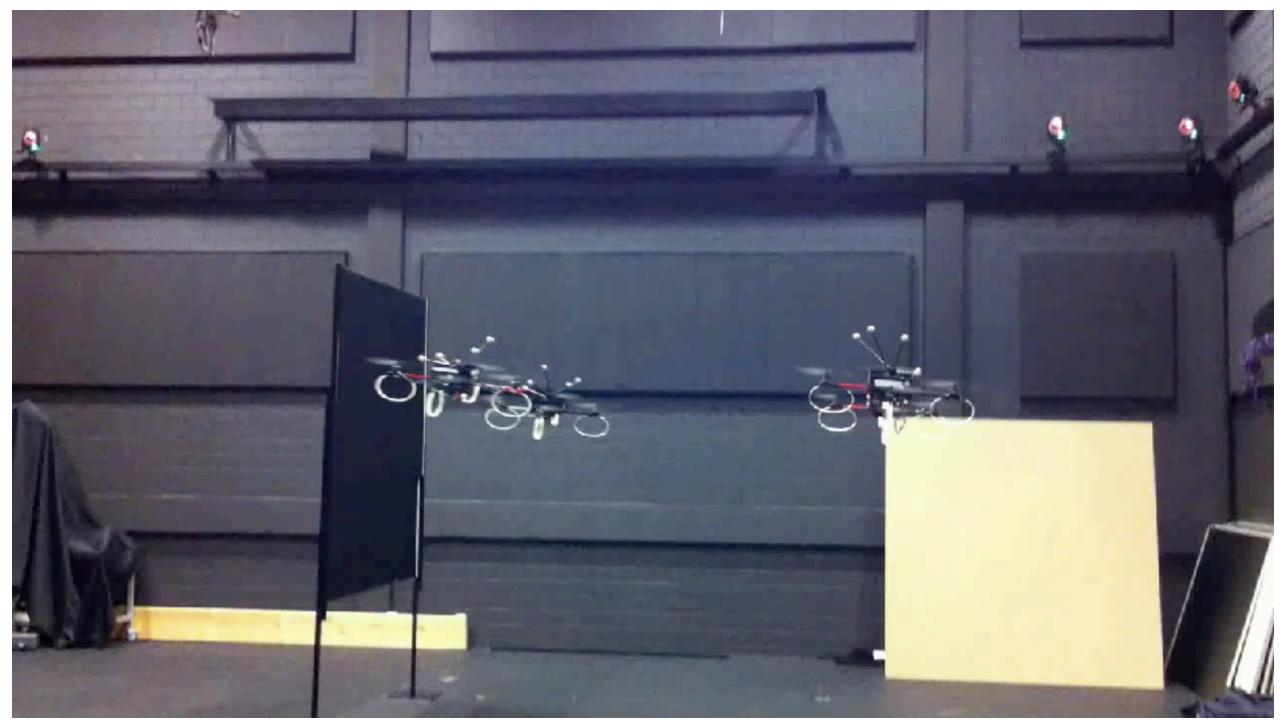


WHAT IS THE ARCHITECTURE OF A MULTI-ROBOT SYSTEM?



CONNECTIVITY

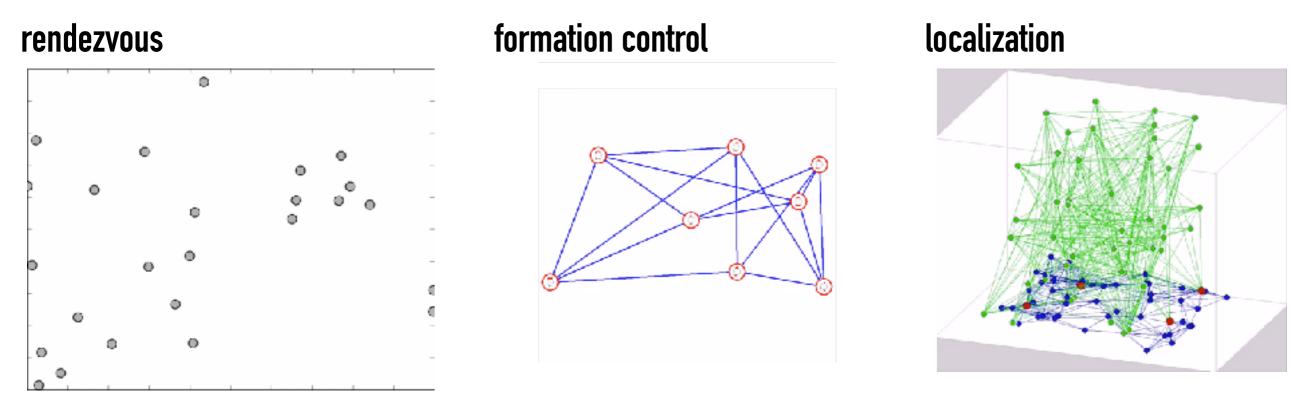
Ji and Egerstedt, 2007 Dimarogonas and Kyriakopoulos, 2008 Yang *et al.*, 2010 Robuffo Giordano *et al.*, 2013



Courtesy of P. Robuffo Giordano and A. Franchi

Solutions to coordination problems in multi-robot systems are highly dependent on the sensing and communication mediums available!

COORDINATION OBJECTIVES

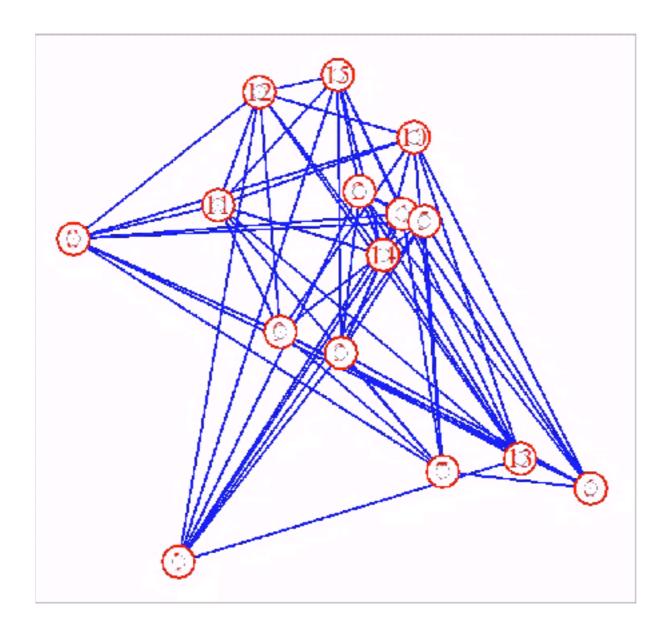


Does the control strategy need to change with different sensing/communication?

Are there common architectural requirements that do not depend on the choice of sensing?

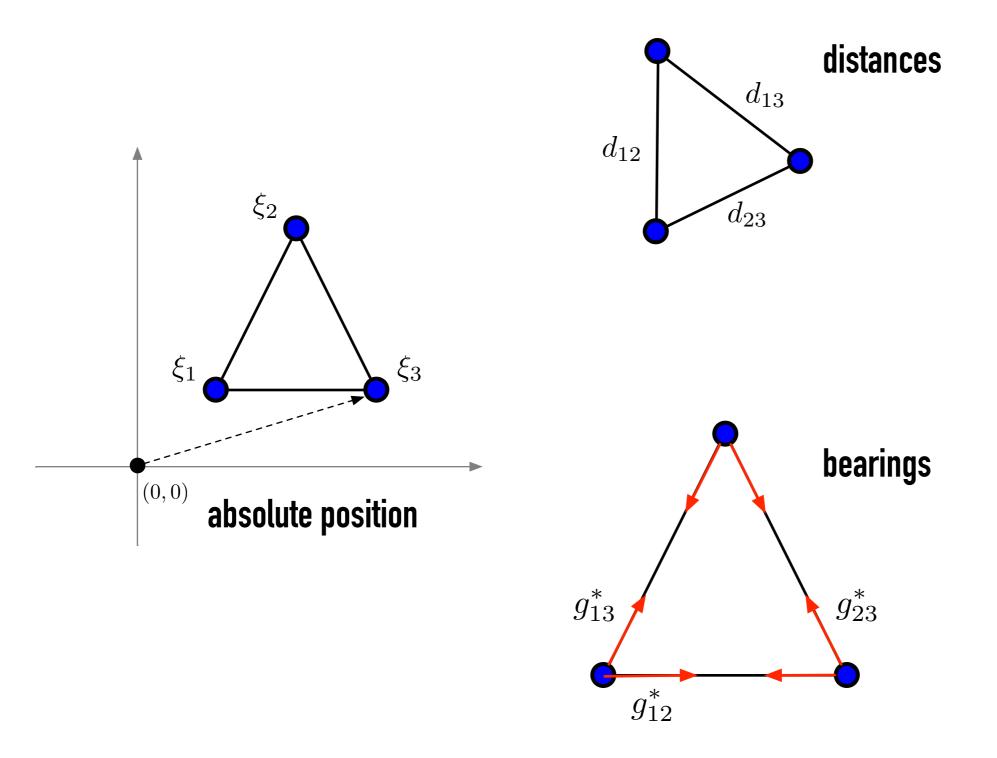
FORMATION CONTROL

Given a team of robots endowed with the ability to sense/ communicate with neighboring robots, design a control for each robot using only *local information* that moves the team into a desired formation shape.



FORMATION DETERMINATION = SENSOR SELECTION

HOW TO DEFINE A SHAPE



"robots" - modeled as kinematic point mass

 $\dot{x}_i = u_i$

Assumptions

- GLOBAL COORDINATE FRAME
- RELATIVE POSITION MEASUREMENTS

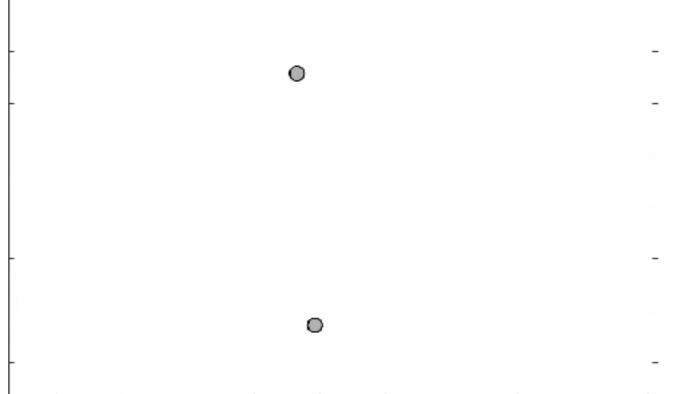
0

- NO SENSING CONSTRAINTS (360°)
- SENSING AND COMMUNICATION

Formation

• SPECIFIED BY (ABSOLUTE) TARGET POSITIONS

$$\xi_i \in \mathbb{R}^2$$



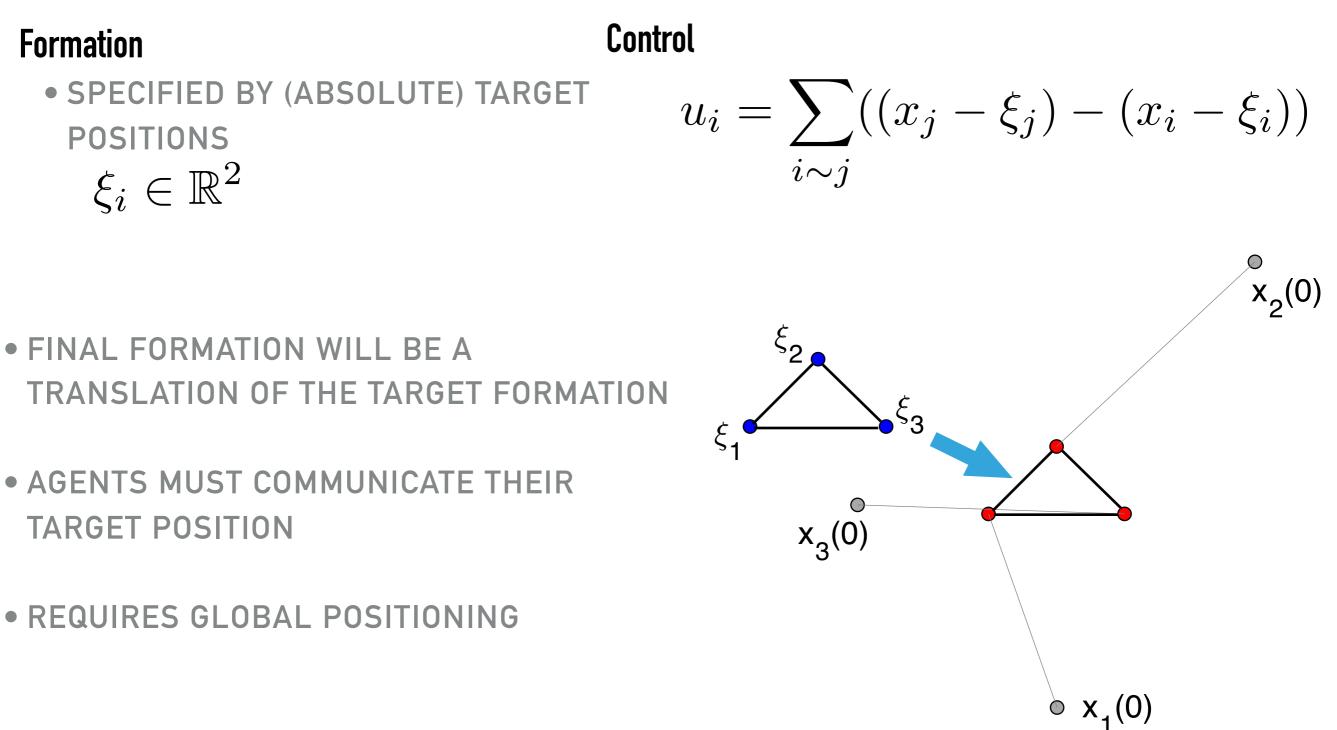
Control

$$u_{i} = \sum_{i \sim j} ((x_{j} - \xi_{j}) - (x_{i} - \xi_{i}))$$

THE "CONSENSUS" PROTOCOL

EXAMPLE: FORMATION CONTROL

CONSENSUS



"robots" - modeled as kinematic point mass

$$\dot{x}_i = u_i$$

Assumptions

- GLOBAL COORDINATE FRAME
- RELATIVE POSITION MEASUREMENTS
- DISTANCE MEASUREMENTS
- NO SENSING CONSTRAINTS (360°)
- SENSING

Formation

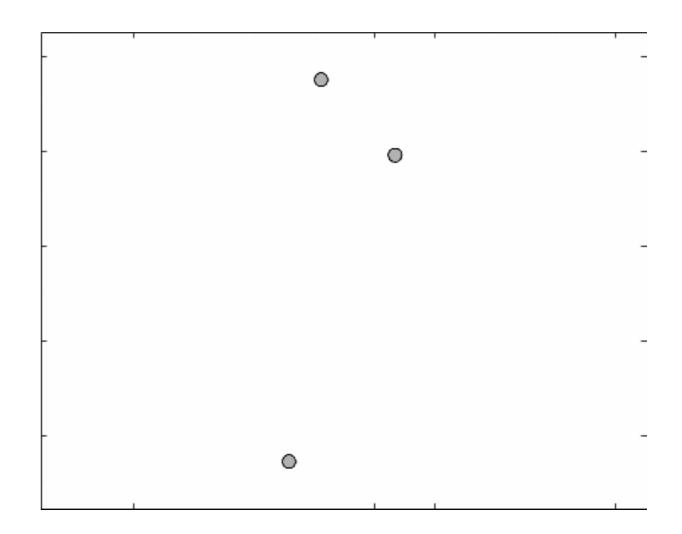
• SPECIFIED BY DISTANCES BETWEEN PAIRS OF ROBOTS

$$d_{ij} \in \mathbb{R}$$

Control

$$u_{i} = \sum_{i \sim j} (\|x_{i} - x_{j}\|^{2} - d_{ij}^{2})(x_{j} - x_{i})$$

[Krick2009]
[Krick2009]
THE "DISTANCE CONSTRAINED"
FORMATION CONTROL PROBLEM



EXAMPLE: FORMATION CONTROL

DISTANCE CONSTRAINED

Formation

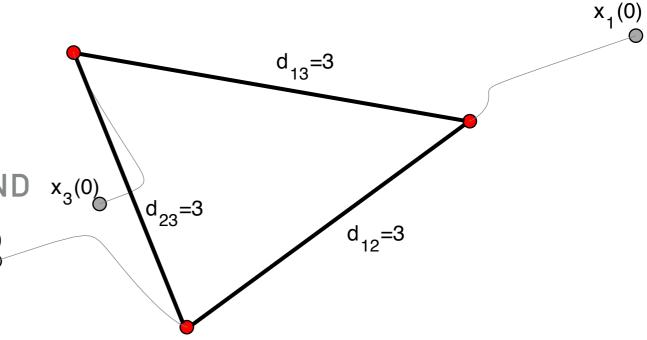
• SPECIFIED BY DISTANCES BETWEEN PAIRS OF ROBOTS

Control

$$u_i = \sum_{i \sim j} (\|x_i - x_j\|^2 - d_{ij}^2)(x_j - x_i)$$

 $d_{ij} \in \mathbb{R}$

- FINAL FORMATION WILL BE A TRANSLATION OR ROTATION OF SHAPE SATISFYING DISTANCE CONSTRAINTS
- AGENTS REQUIRE RELATIVE POSITION AND x₃(0) DISTANCES x₂(0)



"robots" – modeled as kinematic point mass

 $\dot{x}_i = u_i$

Assumptions

- GLOBAL COORDINATE FRAME
- BEARING MEASUREMENTS
- NO SENSING CONSTRAINTS (360°)
- SENSING

Formation

• SPECIFIED BY BEARING VECTORS

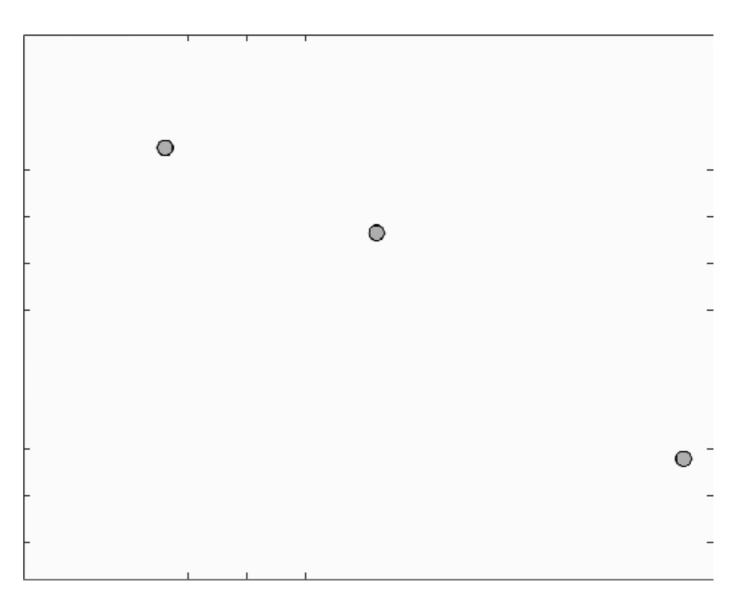
$$g_{ij}^* \in \mathbb{R}^2, \ \|g_{ij}^*\| = 1$$

Control

$$u_i = -\sum_{i \sim j} (I - g_{ij}g_{ij}^T)g_{ij}^*$$

THE "BEARING ONLY" Formation control problem

[Zhao,Zelazo2016]



EXAMPLE: FORMATION CONTROL

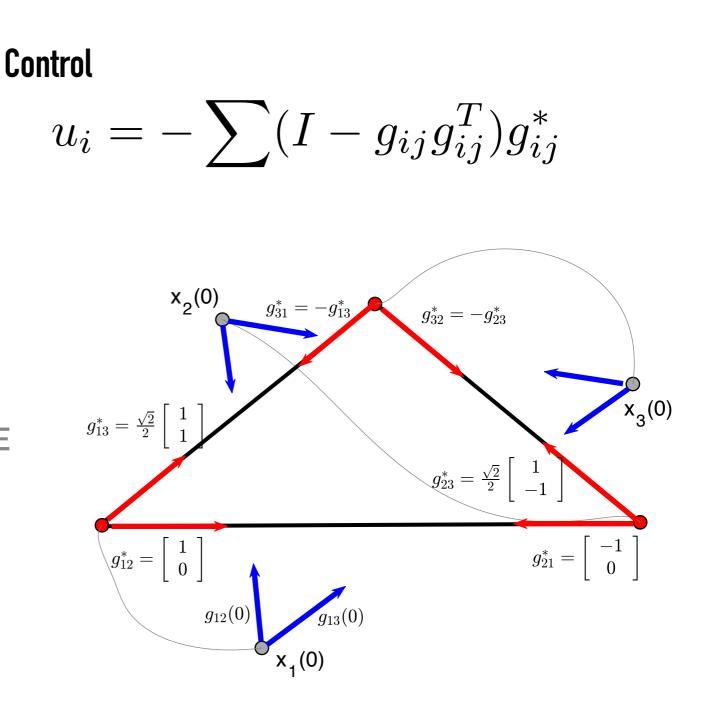
BEARING ONLY

Formation

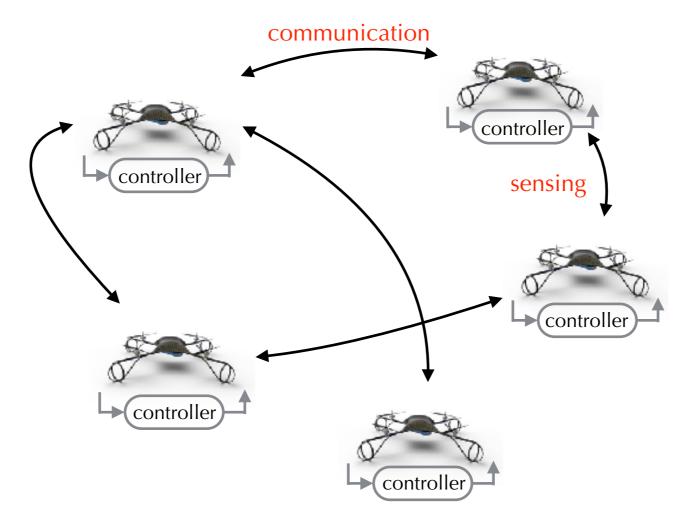
• SPECIFIED BY BEARING VECTORS

$$g_{ij}^* \in \mathbb{R}^2, \ \|g_{ij}^*\| = 1$$

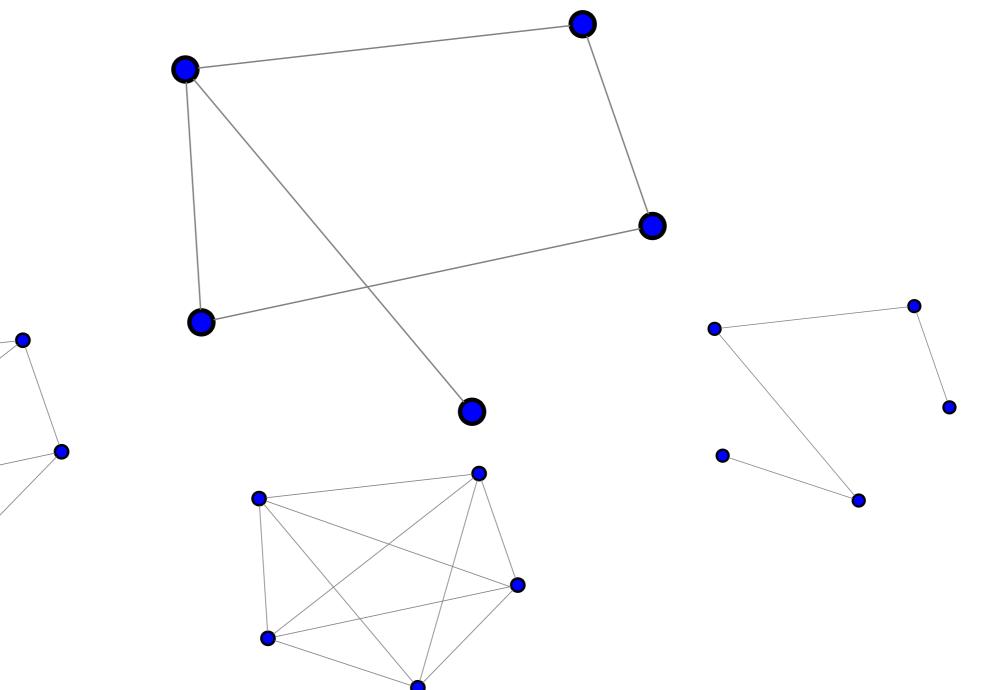
- FINAL FORMATION WILL BE A TRANSLATION OR SCALING OF SHAPE SATISFYING BEARING CONSTRAINTS
- AGENTS REQUIRE BEARING MEASUREMENTS

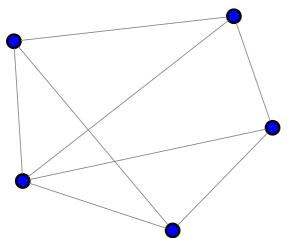


INFORMATION EXCHANGE NETWORK AND FORMATION DETERMINATION



INFORMATION EXCHANGE NETWORK AND FORMATION DETERMINATION

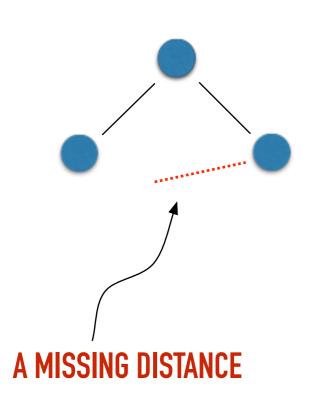


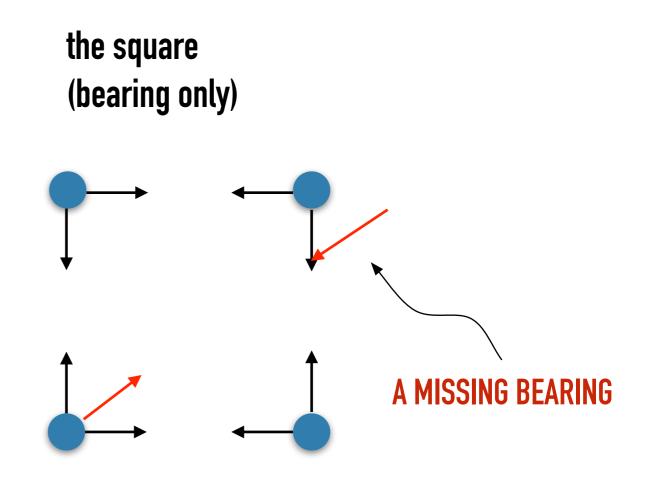


SENSORS, GRAPHS, AND SHAPES

Given a desired formation shape, a sensing modality and its corresponding formation controller, will all information exchange networks (graphs) solve the formation control problem?

The triangle revisited (distance constrained)



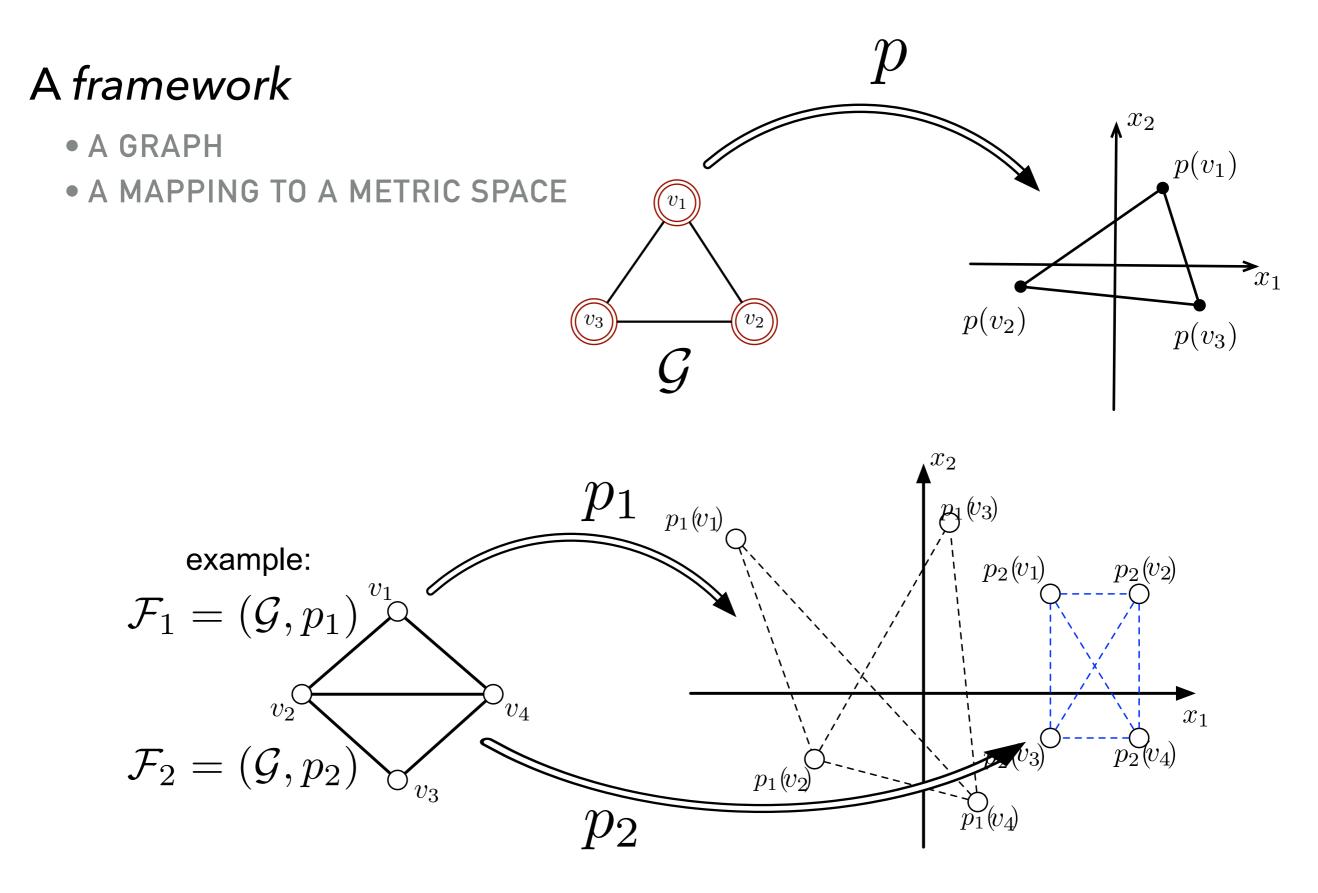


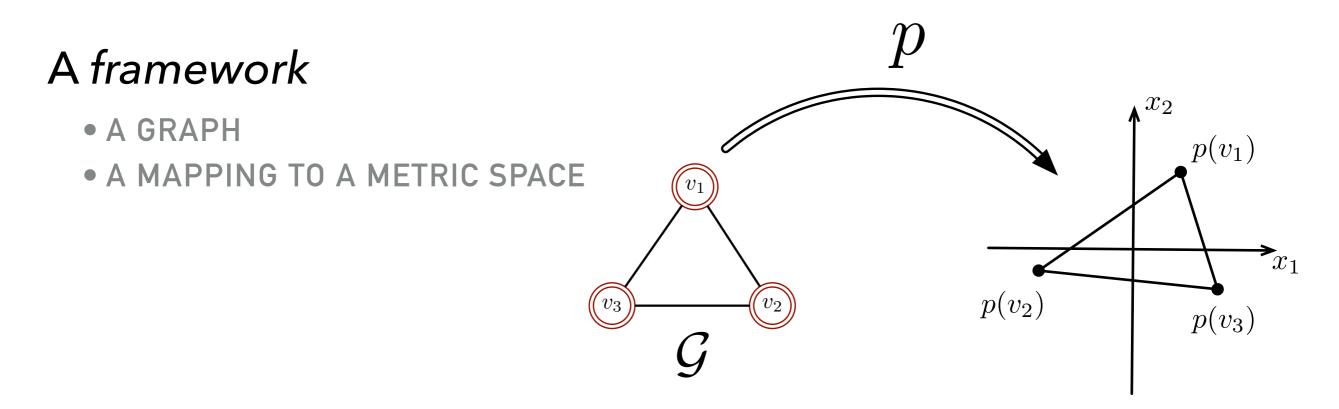
SENSORS, GRAPHS, AND SHAPES

For a given sensing modality, what kind of information exchange networks can (uniquely) determine a formation shape?

RIGIDITY THEORY

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

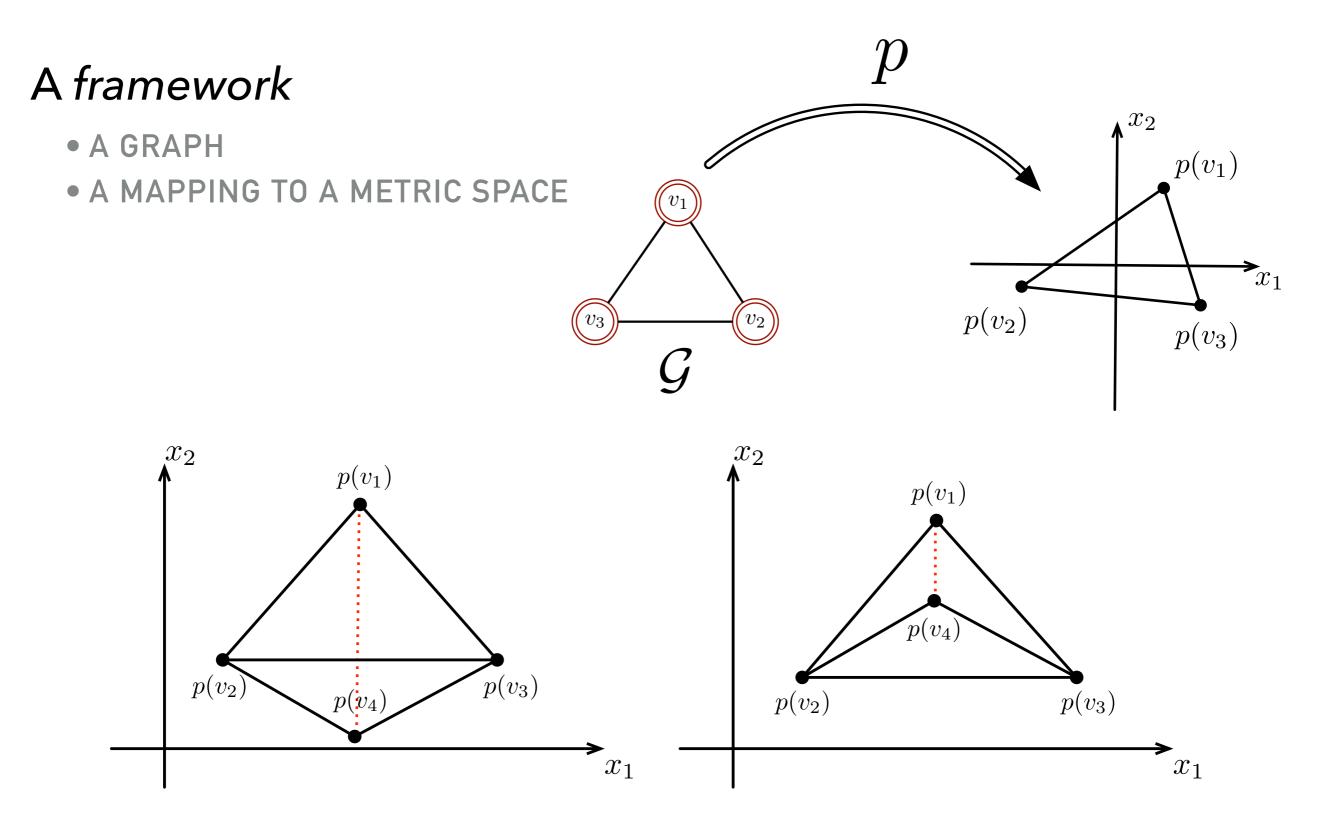




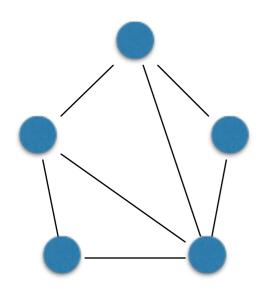
Two frameworks are equivalent if
$$\|p_0(v_i) - p_0(v_j)\| = \|p_1(v_i) - p_1(v_j)\|$$

 $(\mathcal{G}, p_0) \quad (\mathcal{G}, p_1) \qquad \qquad \forall \{v_i, v_j\} \in \mathcal{E} \text{ all edges}$

Two frameworks are *congruent* if $\|p_0(v_i) - p_0(v_j)\| = \|p_1(v_i) - p_1(v_j)\|$ $(\mathcal{G}, p_0) \quad (\mathcal{G}, p_1) \quad \forall v_i, v_j \in \mathcal{V}$ all pairs of nodes



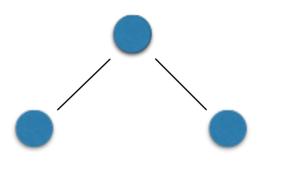
A framework is **globally rigid** if every framework that is equivalent to it is also congruent.



A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial*

A framework is **globally rigid** if every framework that is equivalent to it is also congruent.



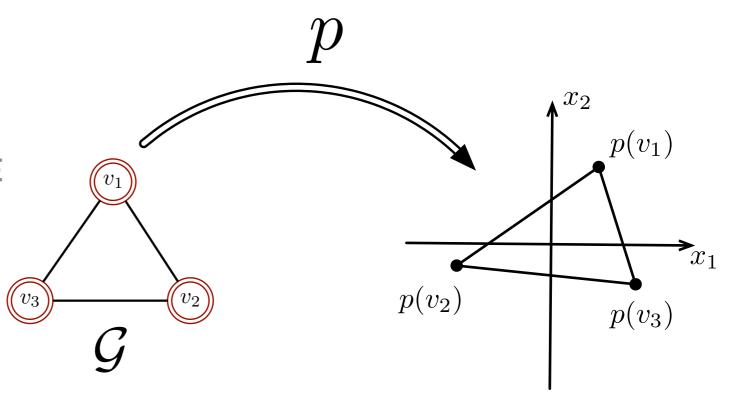
A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial*

BEARING RIGIDITY THEORY

A framework

- A GRAPH
- A MAPPING TO A METRIC SPACE



Two frameworks are equivalent if (\mathcal{G}, p_0) (\mathcal{G}, p_1)

$$\frac{p_0(v_j) - p_0(v_i)}{\|p_0(v_j) - p_0(v_i)\|} = \frac{p_1(v_j) - p_1(v_i)}{\|p_1(v_j) - p_1(v_i)\|}$$
$$\frac{p_0(v_j) - p_0(v_i)}{\|p_0(v_j) - p_0(v_i)\|} = \frac{p_1(v_j) - p_1(v_i)}{\|p_1(v_j) - p_1(v_i)\|}$$

Two frameworks are *congruent* if

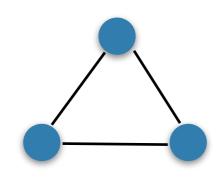
$$(\mathcal{G}, p_0)$$
 (\mathcal{G}, p_1)

[Zhao,Zelazo2016]

$$\frac{1}{\|p_0(v_j) - p_0(v_i)\|} = \frac{1}{\|p_1(v_j) - v_j\|}$$
$$(\forall v_i, v_j \in \mathcal{V})$$

BEARING RIGIDITY THEORY

A framework is **globally rigid** if every framework that is equivalent to it is also congruent.



A bearing *rigid* graph can only *scale* and *translate* to ensure all bearings between all nodes are preserved (i.e., preserve the shape)!

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial* [Zhao,Zelazo2016]

A framework is *infinitesimally rigid* if every infinitesimal motion is trivial

Distance Function

$$F_D(p) = \frac{1}{2} \begin{bmatrix} \vdots \\ \|p(v_i) - p(v_j)\|^2 \\ \vdots \end{bmatrix}$$

Distance Rigidity Matrix

$$R_D(p) = \frac{\partial F_D(p)}{\partial p}$$

$$F_B(p) = \begin{bmatrix} \vdots \\ \frac{p(v_j) - p(v_i)}{\|p(v_i) - p(v_j)\|} \\ \vdots \end{bmatrix}$$

Bearing Rigidity Matrix ()

$$R_B(p) = \frac{\partial F_B(p)}{\partial p}$$

Rigidity matrix is the linear term in the Taylor series expansion of the Distance/Bearing functions

$$F(p+\delta_p) = F(p) + \frac{\partial F(p)}{\partial p} \delta_p + h.o.t.$$

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial*

Distance Function

$$F_D(p) = \frac{1}{2} \begin{bmatrix} \vdots \\ \|p(v_i) - p(v_j)\|^2 \\ \vdots \end{bmatrix}$$

Distance Rigidity Matrix

$$R_D(p) = \frac{\partial F_D(p)}{\partial p}$$

Bearing Function

$$F_B(p) = \begin{bmatrix} \vdots \\ \frac{p(v_j) - p(v_i)}{\|p(v_i) - p(v_j)\|} \\ \vdots \end{bmatrix}$$

Bearing Rigidity Matrix

$$R_B(p) = \frac{\partial F_B(p)}{\partial p}$$

infinitesimal motions are precisely the motions that satisfy

$$R(p)\delta_p = \frac{\partial F(p)}{\partial p}\delta_p = 0$$

Distance Function

$$F_D(p) = \frac{1}{2} \begin{bmatrix} \vdots \\ \|p(v_i) - p(v_j)\|^2 \\ \vdots \end{bmatrix}$$

Distance Rigidity Matrix

$$R_D(p) = \frac{\partial F_D(p)}{\partial p}$$

Bearing Function

$$F_B(p) = \begin{bmatrix} \vdots \\ \frac{p(v_j) - p(v_i)}{\|p(v_i) - p(v_j)\|} \\ \vdots \end{bmatrix}$$

Bearing Rigidity Matrix

$$R_B(p) = \frac{\partial F_B(p)}{\partial p}$$

THEOREM

A framework is infinitesimally (distance, bearing) rigid if and only if the rank of the rigidity matrix is 2n-3.

3 trivial motions in the plane

SENSORS, GRAPHS, AND SHAPES

For a given sensing modality, what kind of information exchange networks can (uniquely) determine a formation shape?

"robots" - modeled as kinematic point mass

$$\dot{x}_i = u_i$$

Distance Control

$$u_i = \sum_{i \sim j} (\|x_i - x_j\|^2 - d_{ij}^2)(x_j - x_i)$$

$$\dot{x} = -R_D(p)^T R_D(p) - R_D(p)^T d^2$$

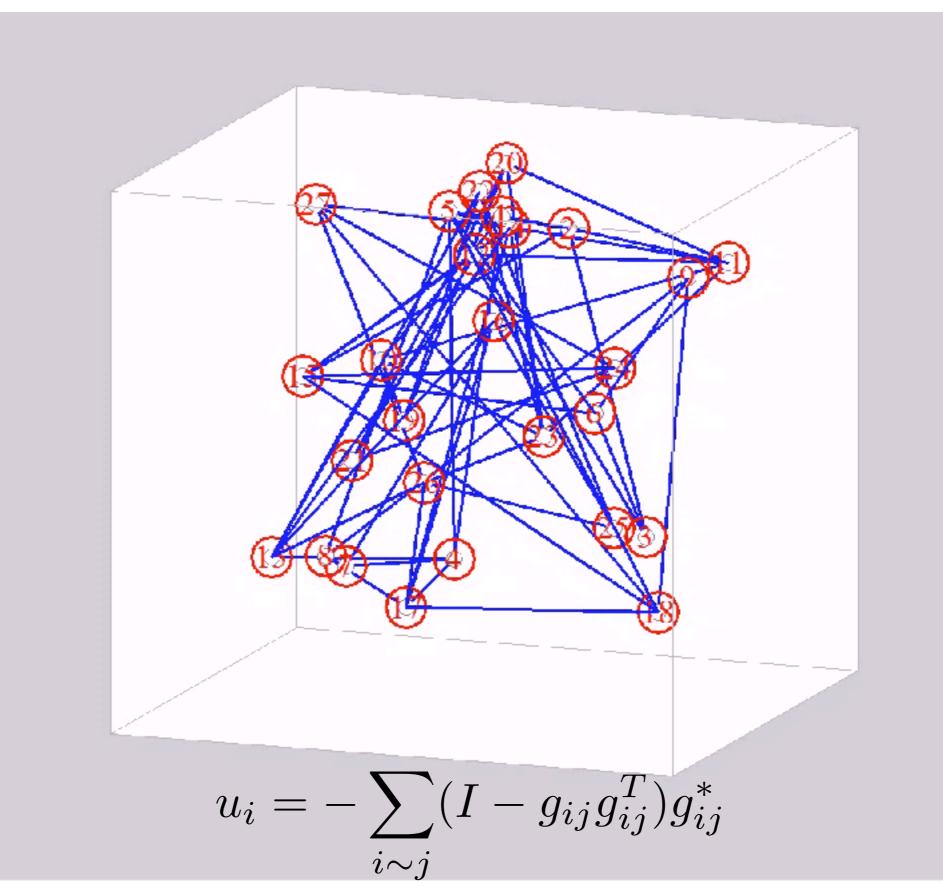
locally exponentially stable undesirable equilibriums

Bearing Control

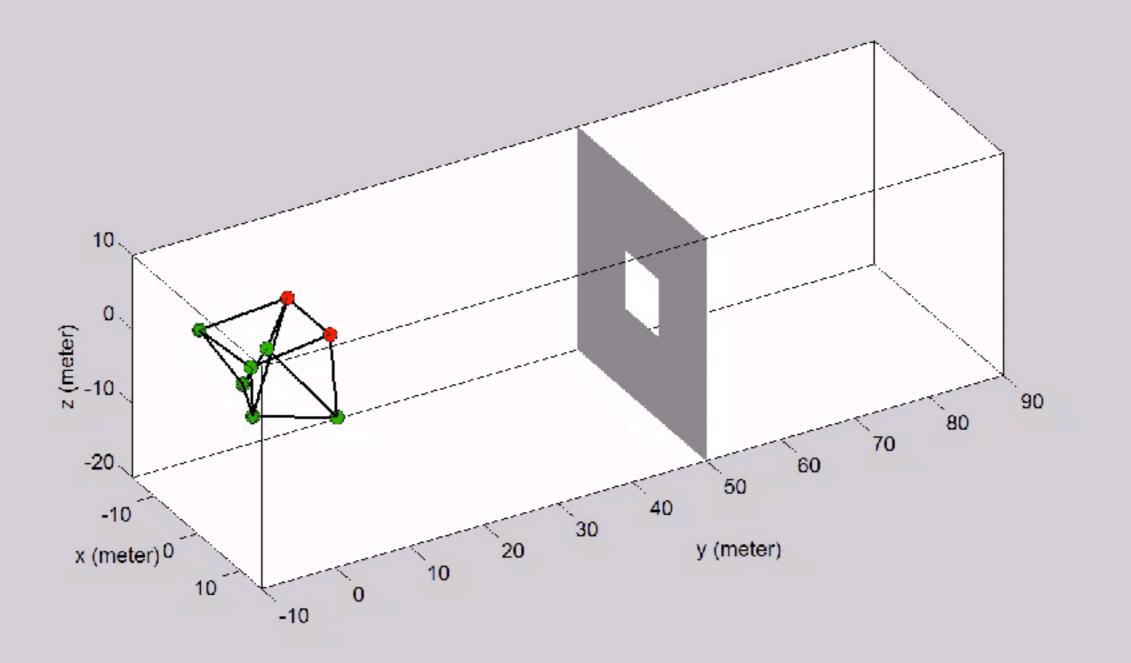
$$u_i = -\sum_{i \sim j} (I - g_{ij}g_{ij}^T)g_{ij}^*$$
$$\dot{x} = -R_B(p)^T g^*$$

almost global stability 1 undesirable equilibriums

BEARING RIGIDITY THEORY

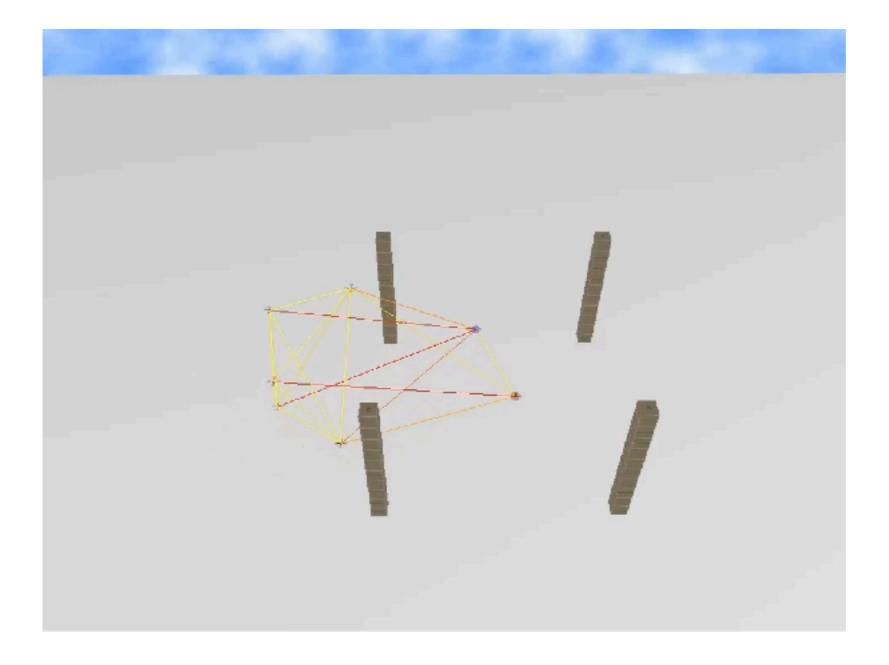


BEARING RIGIDITY THEORY



[Zhao,Zelazo2017]

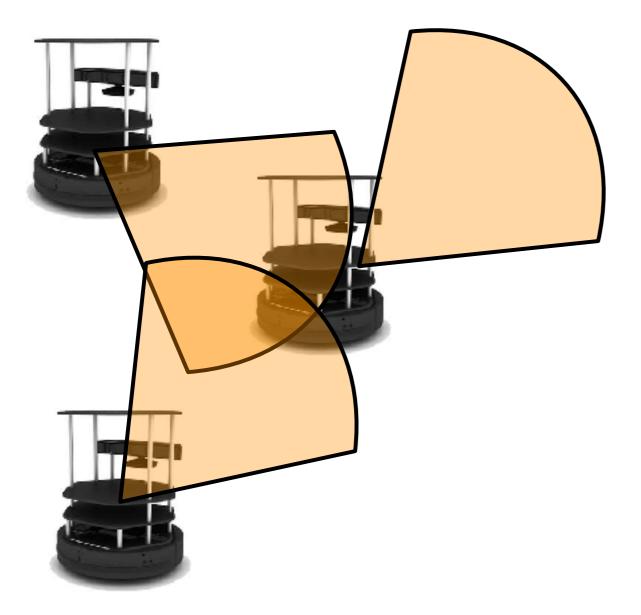
WHAT IS THE ARCHITECTURE OF A MULTI-ROBOT SYSTEM?



CONNECTIVITY

RIGIDITY

FORMATION CONTROL WITHOUT A COMMON FRAME



- sensing is typically physically attached to the body frame of the robot
- sensing is inherently directed
- knowledge of common inertial frame is *not* a realistic assumption

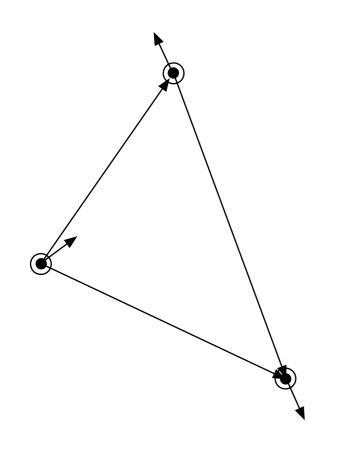
rigidity theory extensions for directed sensing graphs and local (body-frame) measurements

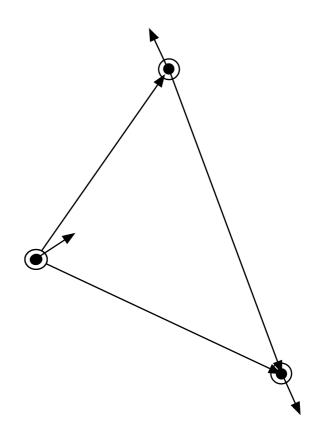
SE(2) RIGIDITY THEORY

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial*

- maintain bearings in *local* frame

rigid body rotations and translations +
 coordinated rotations





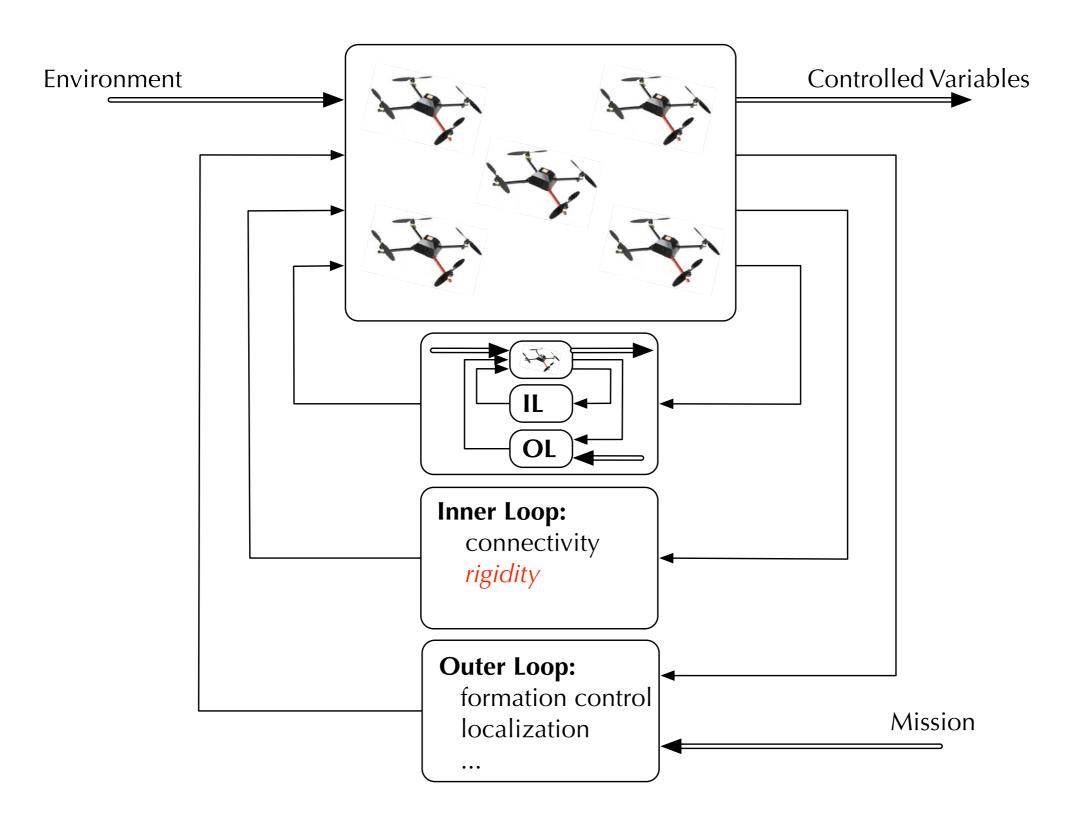
[Zelazo, Giordano, Franchi2015]

A Rigidity-Based Decentralized Bearing Formation Controller for Groups of Quadrotor UAVs

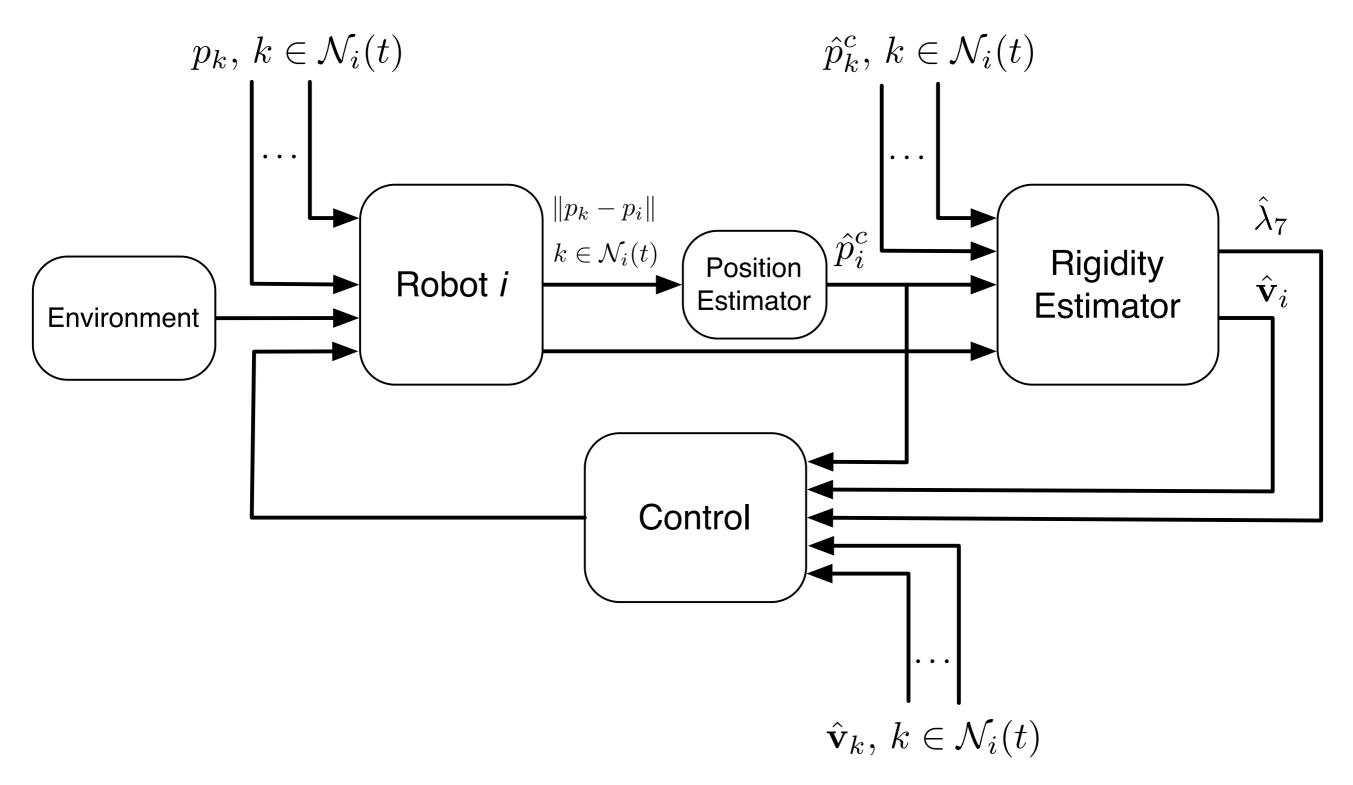
F. Schiano, A. Franchi, D. Zelazo and P. Robuffo Giordano

[Schiano, Franchi, Zelazo, Giordano2016]

RIGIDITY AS AN ARCHITECTURAL REQUIREMENT

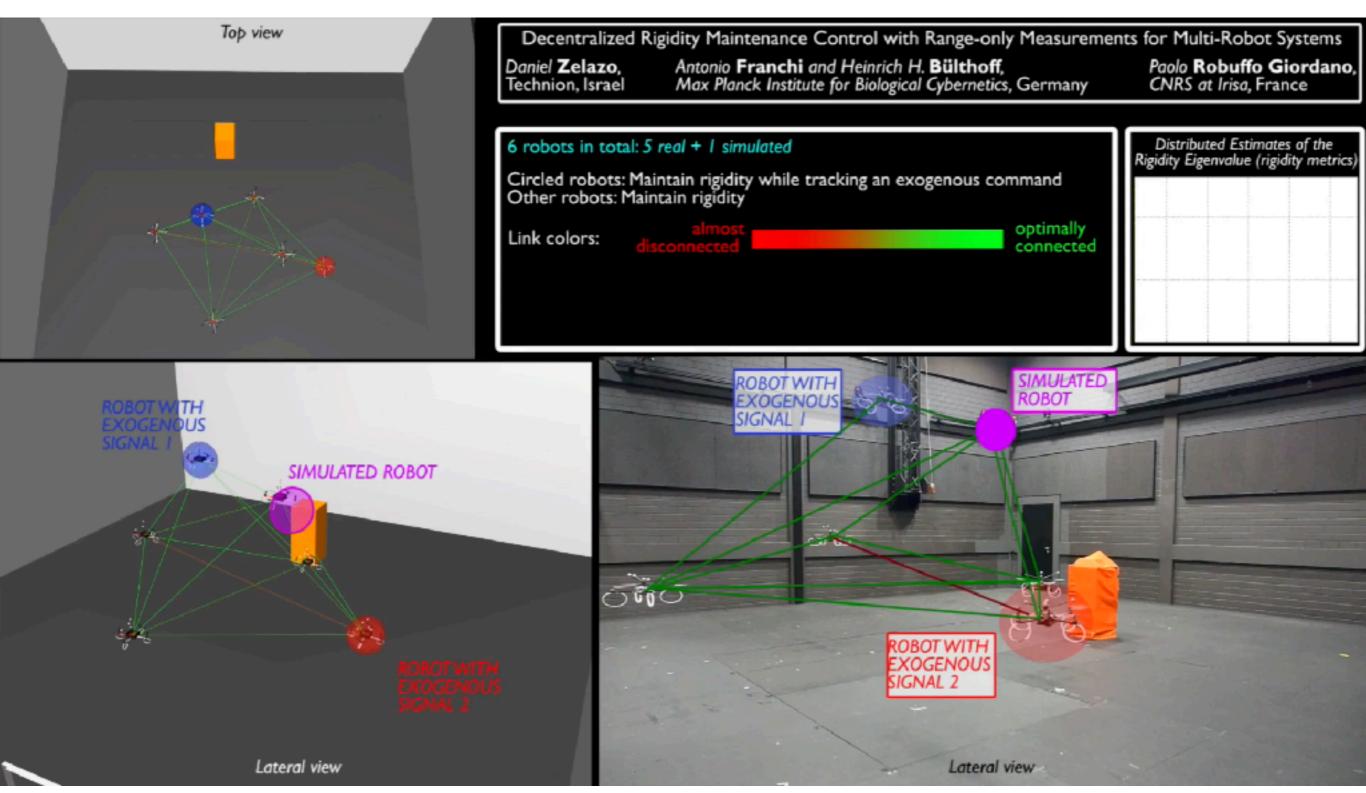


RIGIDITY MAINTENANCE



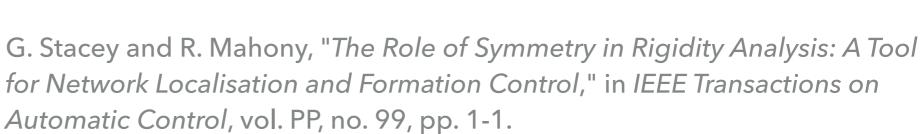
[Zelazo, Giordano, Franchi2015]

RIGIDITY MAINTENANCE



[Zelazo, Giordano, Franchi2015]

OUTLOOKS

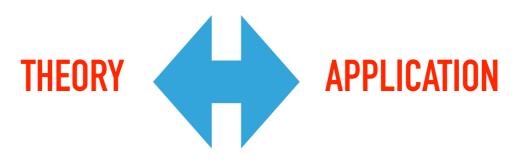


Do we need to develop rigidity theory

extensions for every kind of sensor?

Extensions for directed sensing network

control and estimation algorithms



REFERENCES

J. M. Montenbruck, D. Zelazo, and F. Allgöwer, "Fekete Points, Formation Control, and the Balancing Problem," IEEE Transactions on Automatic Control, 62(10):5069-5081, 2017.

S. Zhao and D. Zelazo, "Translational and Scaling Formation Maneuver Control via a Bearing-Based Approach," IEEE Transactions on the Control of Network Systems, 4(3):429-438, 2017.

M. H. Trinh, D. Mukherjee, D. Zelazo, H-S. Ahn, "Formations on Directed Cycles with Bearing-Only Measurements," International Journal of Robust and Nonlinear Control, 2017 (early access online).

S. Zhao and D. Zelazo, "Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization," IEEE Transactions on Automatic Control, 61(5): 1255-1268, 2016.

S. Zhao and D. Zelazo, "Bearing-Only Network Localization: Localizability, Sensitivity, and Distributed Protocols," Automatica, 69:334-341, 2016.

D. Zelazo, A. Franchi, and P. Robuffo Giordano, "Distributed Rigidity Maintenance Control with Range-only Measurements for Multi-robot Systems," International Journal of Robotics Research, 34(1):105-128, 2015.

S. Zhao, Z. Sun, D. Zelazo, M. H. Trinh, H-S. Ahn, "Laman Graphs are Generically Bearing Rigid in Arbitrary Dimensions," IEEE Conference on Decision and Control, Melbourne, Australia, 2017.

M. H. Trinh, D. Mukherjee, D. Zelazo, H-S. Ahn, "Finite-time Bearing-only Formation Control," IEEE Conference on Decision and Control, Melbourne, Australia, 2017.

F. Schiano, A. Franchi, D. Zelazo, and P Robuffo Giordano, "A Rigidity-Based Decentralized Bearing Formation Controller for Groups of Quadrotor UAVs," IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 2016.

D. Zelazo, A. Franchi, and P. Robuffo Giordano, "Formation Control Using a SE(2) Rigidity Theory," 53rd IEEE Conference on Decision and Control, Osaka, Japan, 2015.

S. Zhao and D. Zelazo, "*Bearing-Constrained Formation Shape Stabilization with Directed Sensing Graphs*," 53rd IEEE Conference on Decision and Control, Osaka, Japan, 2015.

ACKNOWLEDGEMENTS

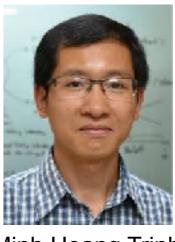
Gwangju Institute of Science and Technology

Dr. Shiyu Zhao

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

Prof. Hyo-Sung Ahn



Minh Hoang Trinh

Dr. Dwaipayan

Oshri Rozenheck

Fabrizio Schiano