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NETWORKED DYNAMIC SYSTEMS

Networks of
dynamical systems are
one of the enabling
technologies of the
future.




SOME IMMEDIATE OBSERVATIONS

- networked systems are coupled through information exchange

- inter-agent information exchange is through sensing and

communication

the collective dynamics is a function of "agent” dynamics and

the information-induced coupling

+ we can synthesize collective behavior by making the control
action on each agent a function of the information available to
the agent (sense, communicated, etc.)

a powerful abstraction for encoding “interactions” in a network is
that of a graph
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Basic Graph Theory



THE GRAPH ABSTRACTION

- a finite, undirected, simple graph, or a graph for short, is built

upon a finite set of nodes, or the vertex set V = {vy,va,...,v,}
- the edge set is a subset of the two-element subsets of V), i.e,,
ECp?

« the graph is then specified by G = (V, &)
for example, we can have G = (V, &) where
Vv ={1,2,3} and & ={{1,2},{2,3}}
1
a simpler

representation 5
however would be

3
Some natural constructs based on the correspondence between set
theoretic and graph-theoretic representation can now be defined -
examples: paths, walks, cycles, etc. 5



SIMPLE CONSTRUCTS ON GRAPHS

a path a cycle a walk

graphs can be used in general to encode relations between objects,
e.g., existence of communication or sensing links, routes, etc.



BIRTH OF GRAPH THEORY

bridges of Konigsberg and Euler’s abstraction:

Abstract away all particular details related to the Konigsberg
bridges that are not relevant to the problem! This leads to a graph!
We want to find out if there is a closed walk traversing all edges of
the graph exactly once - a Eulerian Graph.

Theorem
A connected graph G is Eulerian if and if only every vertex has an
even degree.



GRAPHS AND MATRICES

As we aim to embed graph/networks in dynamic systems, it is
natural to work with linear algebraic representation. For example, a
graph can be represented as,

Vg
” 7. A 0100
1011
v A9 =191 01
01 10

Vg

the adjacency matrix for the n-node graph G = (V, &) isthen x n
matrix:

1 if vv; € E,

0 otherwise.

[A(G))i; = {



DEGREE MATRIX AND THE LAPLACIAN

note that the adjacency for the graph is symmetric by construction

there are other matrices associated with the graph, for example, let
d(v) be the number of neighbors of vertex v (its degree) and define

the degree matrix as,

d(’Ul) 0 0
0 d(vg) 0
A(9) =
00 dw)

note that the adjacency and the degree matrices are both square,
say, n x n, where n is the number of nodes

Another useful matrix representation is the Laplacian:
L(G) = A(9) — A(G)

graph Laplacian has been very popular in multiagent networks! 9



INCIDENCE MATRIX

Yet another matrix representation can in fact capture the
orientation of the edge as well: suppose the graph has n nodes and
m edges: the n x m incidence matrix E(G) is defined as

—1 if v; is the tail of ¢,
E(G) = [Ei], where E;; = 1 if v; is the head of ¢;,
0 otherwise.

1 -1 0
0 1 0
E@=1 1, ¢ |
0 0 -1

note that for different orientations on the edges we get a different
incidence matrix (of same dimension)!

Let us see what happens when we consider E(G)E(G)T for some
arbitrary orientation. First notice that the resulting matrix will be

n X n.

10



INCIDENCE AND LAPLACIAN

A compact formula for matrix multiplication is of course:

[AB);; = ZAMB,W

[E(G ZE Y E(G

which is —1 when i and j are incident on the same edge %, that is if
they are neighbors! Moreover,

[E(G ZE )i E(G

counts the number of edges incident on node i, i.e., its degree!
Therefore,

is independent of the orientation!

1"



SPECTRA OF THE GRAPH LAPLACIAN

This also shows that L(G) is positive semi-definite, since for all
zeR™

2T L(G)z = 2" E(G)B(G) z = | B(G) z|* > 0

i.e., the eigenvalues of the Laplacian are real numbers (as the
Laplacian is symmetric) and non-negative. We can order the
eigenvalues as follows,

0 < A(G) < X2 (9) <. \(9);

in this case, )\, refers to the kth smallest eigenvalue of the (graph)
Laplacian ...

« By construction, L(G)1 = 0 for any graph (why?). So \{(G) = 0.

+ A natural question (with many consequences) is whether
A2(G) > 07?

1"



NULL SPACE OF THE LAPLACIAN

We need to characterize the null space of L(G):
N(L(G))={z e R"|L(G)z =0}
In order to answer this question, notice that if = € N(L(G)), then
L(G)z = B(G)E(G)"z=0
that is,
ZEG)EG)T2=0

or |E(G)T2||> =00r E(G)T2z =0 or 2T E(G) = 0. This means that if
ij € E, then z; = z;; so if the graph is connected,

21 =22 =" = 2Zn
that is z = a1 for some a! And in fact, if we think of z as
z:V(G) —-R"

then z is constant on each (connected) component of G. For each
component we get one extra dimension for the null space of L(G). -



RANK, \>, AND CONNECTIVITY

Lemma

Let G have c connected components (when ¢ = 1 the graph is
connected). Then rank L(G) is n — c.

and in fact, rank L(G) = n — 1 if and only if G is connected! this is
our first encounter with how the “linear algebra” of the Laplacian
tells us something about the structure of the graph.

Corollary
G is connected if and only if A\2(G) > 0

a natural question now is whether a more positive A\, captures some
qualitative notion of "more” connectivity?

13



STRUCTURE VS. SPECTRA

For example, we can define the node connectivity of G, denoted by
k0(G) as the minimum number of nodes that needs to be removed
from the graph before the graph becomes disconnected.

Courant-Fisher

_ g T
A2 (G) = S e L(G)x

So this means that
Ao(G) <x"L(G)x forallz L1, ||z| =1
Let us consider removing S C V (subset of nodes) from the graph

G = (V,€); we denote the Laplacian of this new graph as L(G\S).
Let y be the normalized eigenvector corresponding to A2(G\S):

L(G\S)y = X2(G\S)y; |yl =1,y L1

13



SPECTRA VS. STRUCTURE

Now define the vector
_ Y.
= )

note that ||z|| = 1 and z L 1; as such X\»(G) < 2T L(G)=z. That is,

A2 (G) < Z (Yu _yv)2 + Z (20 — Zv)2+z Z (\zl/t_/_zv>2

uveE(G\S) uwv€E(S) ueSveg\s o

0
S0,

22(G) < X2(G\S) + D 1= Aa(G\S) + 9]

ues

Okay! Now suppose that S is chosen as the cutset corresponding to
k0(G). Then X\2(G\S) =0 and

X2(G) < ko(9)

Upshot: )\, (G) is a lower bound for node connectivity! "



SPECTRA VS. STRUCTURE

The bound is actually tight, for example Ao (Cy) = ko(Cy) = 2
summary so far:

)=E(G)EG)" =A(G) — A9)
G) is positive semidefinite

G) > 0iff G is connected
G) is a measure of connectivity

L(G
. L(
<\

(
* Ao

Oh ... one last thing: trace of any matrix is the sum of its
eigenvalues, so

trace L(G) = Y d(v;) = 2|£(G)]

15



SPECTRA OF SOME CLASSES OF GRAPHS

It would be good to develop some intuition for spectra of graphs,
and in particular their dependencies on n, if any.

n-1 -1 - -1 -1
-1 n-1 -1 -1

L(K,) = =nl —17T
-1 -1 -1 -1 n-1

as always, A\;(K,,) = 0 and u; = 1/y/n. The other eigenvectors,
generically denoted by x for now, can be chosen to be orthogonal to
1

LK)z = (nI — 1)z = Az
Hence for all these eigenvectors
nr = A\r
The spectrum of L(K,) is thus
0,n,n,...n; checkthat trace{L(K,)}=n(n—-1) 16



SPECTRA OF SOME OTHER CLASSES OF GRAPHS

2(1—cos2kmr/n), k=0,1,...n—1

o\o/o\o/o 2(1 —coskr/n), k=0,1,...n—1

n — 2 eigenvalues of 1, one
eigenvalue of zero (as always) and
lastoneis2(n—1)—(n—2)=n
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Protocols on Graphs



DYNAMICS ON GRAPHS

We now what to see how this machinery (graphs and linear algebra,
spectra vs. structure) helps us understand dynamics on networks

we start with a baseline dynamics/distributed algorithm called
consensus

we relate consensus behavior to structure of the graph

We then move on to show that this distributed algorithm can be
used in many different context to do very useful distributed tasks.

However, it is important to note that the same line of research
could have been pursued with a different baseline/distributed
protocol or viewed completely from the perspective of patterned
matrices independent of particular protocol!

19



NETWORK IN THE DYNAMICS - GENERAL SETUP

 Graph G is composed of physical nodes V and coupling edges &£
+ Node i acquires information from the set of its neighbors N (4)

o

+ Node i has a state z;(¢) and neighbor information
Ii(t) = {z;(t)]j € N(i)}
* Provides a naturally distributed dynamics over ¢
@i (t) = fi(wi(t), Li(t))

« some of the earlier works in distributed decision-making
include: DeGroot ('74), Borkar and Varaiya ('82), Tsitsiklis ('8) ...

20



AGREEMENT/CONSENSUS PROTOCOL

Consensus Model
Bi(t) == Y wy (wi(t) — z4(t)
JEN ()

~ &(t) = =L (G) z(t)

©) t=04

where L(G) is the (weighted) % ‘
Laplacian matrix.

« appears in: flocking, formation control, opinion dynamics,
energy systems, synchronization, distributed estimation,
distributed optimization, among many others!

Let us examine the convergence of the algorithm a bit more ... in
terms of the graph structure. We will assume that w;; = 1 for this
purpose, although our observations generalize seamlessly to
weighted graphs

21



CONSENSUS AND )\,

Let us consider consensus on undirected networks ... spectral
factorization of the Laplacian is of the form

L(G) =UAUT
where
AN 0 - 0
0 Ao 0
U=|u u - wu, } and A= .
0 0 An
as such,
z(t) = e F9Dg(0) = Ue M UT2(0)

= ul 2(0)uy + e 2uy 2(0)ug + ... + e ) 2(0) u,

so if the graph is connected (noting that u; = 1/,/n)

172(0 .
z(t) — # 1 ata rate proportional to X\2(G)!
m 22



MORE ON CONSENSUS AND )\,

T
=)
=
N~—
|
-
~
“}%
—~
(e}
S~—
I
NgE
m\
b
Z
S
_‘
H
=y
(e}
S~—
S

I
ml

ke

‘bh

al<(n—1) B et
-

max; ||
. T,
so if we want ||z (t) — %H < ¢ for some ¢ > 0, then we need

ez 2= 00) x s

higher algebraic connectivity directly translates to faster
convergence (in a linear way)!

23



WHAT INSIGHTS GRAPH THEORY PROVIDES FOR CONSENSUS

some observations:
+ Recall that \2(P,) = 2(1 — coskm/n), A2(Cy) = 2(1 — cos 2kw/n),
A2(Sy) =1,and Ao (K,,) =n

+ what this means is that as n — oo, the rate of convergence for
P, and C,, goes to zero!

+ in the meantime, the rate of convergence for K,, grows linearly
with n

 however, the number of edges for P, C,, grow linearly with n
but for K,, the number of edges is O(n?)!

this thread of thought leads to the area of graph synthesis

24



HOW BASELINE CONSENSUS CAN BE USED FOR MORE ELABORATE DIS-

TRIBUTED ALGORITHMS

- as a distributed subroutine for mixing

« including the right inputs to consensus (not just driven by
initial conditions)

+ consensus with nonlinear and/or state-dependent weights
(used in preserving connectivity in distributed robotics)

+ consensus with negative, complex-valued, and matrix weights
* consensus across scales

- consensus with security and privacy considerations

25
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Structural Stability of Linear Time-Invariant Systems

26



WHICH STRUCTURED LTI SYSTEMS CAN SUSTAIN STABLE DYNAMICS?

x ayp 0 0 aws| |7 b1
d |z 0 0 a3 az| |x2 0
_ = + u
dt T3 a3 0 asz2 0 T3 b3

Ty 0 CL420 0 Q44 T4 0

+ Does there exist values of the a;;'s that yield asymptotically
stable dynamics? If so, we call the system structurally stable.

27
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+ Does there exist values of the a;;'s that yield asymptotically
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controllable dynamics? If so, we call the system structurally
controllable.
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WHICH STRUCTURED LTI SYSTEMS CAN SUSTAIN STABLE DYNAMICS?

x ayp 0 0 aws| |7 b1
d |z 0 0 a3 az| |x2 0
_ = + u
dt T3 a3 0 asz2 0 T3 b3

Ty 0 CL420 0 Q44 T4 0

+ Does there exist values of the a;;'s that yield asymptotically
stable dynamics? If so, we call the system structurally stable.

+ Does there exist values of the a;;'s and b;’s that yield
controllable dynamics? If so, we call the system structurally
controllable.

+ Recall: LTI dynamics are asymptotically stable iff the eigevalues
of the system matrix have strictly negative real parts.

« Graph theory is the natural framework to study structural
stability. 27



REFORMULATING THE STRUCTURAL STABILITY PROBLEM

0 « x 0 =

ok 0k * entries are arbitrary real
A=10 = 0 % 0

0 * 0 x =% 0 entries are fixed to zero

* 0 0 % 0

Definition (Zero-pattern (zP))

Set E;; to be the n x n matrix with all entries 0 except for the i;th
one, which is 1. We call a zero pattern a vector space Z of matrices

A= Z aijEij.
(i,5)EN
- Does the ZP contain stable (Hurwitz) matrices?

« We call a ZP that contains Hurwitz matrices stable

28



HURWITZ DIGRAPHS AND ZERO-PATTERNS

« Think of a ZP as an adjacency matrix with
0— 0

*— 1

29



HURWITZ DIGRAPHS AND ZERO-PATTERNS

« Think of a ZP as an adjacency matrix with
0— 0

*— 1

* There is a bijection between zero patterns Z and digraphs
G=(V,E)withV ={vy,...,v,}and E = N.

29



HURWITZ DIGRAPHS AND ZERO-PATTERNS

« Think of a ZP as an adjacency matrix with
0— 0

*— 1

* There is a bijection between zero patterns Z and digraphs
G=(V,E)withV ={vy,...,v,}and E = N.

as1 ags
as5g)

a1 (@01 >(%)
a1 aq3
32 :

*

* O O *

O O ¥ O O
O ¥ O O O
* O O O *
O ¥ O O O

29



HURWITZ DIGRAPHS AND ZERO-PATTERNS

« Think of a ZP as an adjacency matrix with
0— 0

*— 1

* There is a bijection between zero patterns Z and digraphs
G=(V,E)withV ={vy,...,v,}and E = N.

as1 ags
as5g)

a1 aq3
32 :

+ We call a graph Hurwitz or stable if the corresponding ZP is
stable.

*

* O O *

O O ¥ O O
O ¥ O O O
* O O O *
O ¥ O O O

29



HURWITZ DIGRAPHS AND ZERO-PATTERNS

« Think of a ZP as an adjacency matrix with
0— 0
*— 1

* There is a bijection between zero patterns Z and digraphs
G=(V,E)withV ={vy,...,v,}and E = N.

$ 00 % 0 /@\
£« 000 0
0« 0 0 0 n @) (@)
00*0* a2lé aq3
£ 0 0 % 0 —®

+ We call a graph Hurwitz or stable if the corresponding ZP is
stable.

How to determine if a graph is Hurwitz? How to create
Hurwitz graphs? 29



[
l
-
g
-
(7]
=
==
3
(&)
==
=
==
=

}

*
0
0
*
0

* 0 0

|

Which graph is stable?

0 0
0 0 0 O

0

0 0

0 0

0 0 0O

*

30



KEY IDEA: NEED ENOUGH MIXING OF INFORMATION

Lemma
A digraph G is stable only if every strongly connected component

has a node with a self-loop

Not stable: the strongly connected component
{2, 3} has no nodes with a self-loop.

@Q—/——0

31



KEY IDEA: NEED ENOUGH MIXING OF INFORMATION

Lemma
A digraph G is stable only if every strongly connected component

has a node with a self-loop

Not stable: the strongly connected component
{2, 3} has no nodes with a self-loop.

@Q—/——0

This is not the end of the story...

ﬁ The graph is strongly connected and has a
self-loop, vet not stable.
@— —

— need to find the graphical structure that enables stability

31



K-DECOMPOSITIONS

« k-cycle in G: a sequence of k distinct nodes
connected by edges.

1-cycle = (1)

2-cycle: (23)

3-cycle: (456)
3-decomp.: (1)(23) or
(456)

4-decomp.: (1)(456)
5-decomp.: (23)(456)

32



K-DECOMPOSITIONS

« k-cycle in G: a sequence of k distinct nodes
connected by edges.

 Two cycles are disjoint if they have no nodes
in common.
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K-DECOMPOSITIONS

« k-cycle in G: a sequence of k distinct nodes
connected by edges.

 Two cycles are disjoint if they have no nodes
in common.

+ k-decomposition in G: union of disjoint
cycles covering k nodes.

A k-decomposition is given by cycles 1-cycle = (1)

S1,...,5; if the S; are disjoint and 2-cycle: (23)

IS+ -+ S| = k. 3-cycle: (456)
3-decomp.: (1)(23) or
(456)

4-decomp.: (1)(456)
5-decomp.: (23)(456)
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K-DECOMPOSITIONS

« k-cycle in G: a sequence of k distinct nodes
connected by edges.

 Two cycles are disjoint if they have no nodes
in common.

+ k-decomposition in G: union of disjoint
cycles covering k nodes.

A k-decomposition is given by cycles 1-cycle = (1)
S1,...,5; if the S; are disjoint and 2-cycle: (23)
IS+ -+ S| = k. 3-cycle: (456)
3-decomp.: (1)(23) or
+ Hamiltonian cycle (resp. decomposition): (456)
n-cycle (resp. decomposition). 4-decomp.: (1)(456)

)
5-decomp.: (23)(456)

32



A NECESSARY CONDITION FOR STABILITY

Theorem’

A digraph G is stable only if it contains a k-decomposition for each
=12 ....m

* x 0 0 =
0 0 « 0 O
* 0 0 % 0
0 0 0 0 x
* 0 0 % 0

1-decomp.: (1), 2-decomp.: (15), 3-decomp.:(1)(45) but no
4-decomp. — not stable.

1B. “Sparse Stable Systems”, Systems and Control Letters, 2013

33



A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF

« Sy symmetric group on k characters.

34



A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF

« Sy symmetric group on k characters.
« For o € Sy, let o(i) be the position of the ith in the permutation.

eg o:{1,2,3,4} - {2,1,4,3} then (1) = 2 and o(3) = 4.
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A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF

« Sy symmetric group on k characters.
« For o € Sy, let o(i) be the position of the ith in the permutation.
e.g o:{1,2,3,4} - {2,1,4,3} theno(1) = 2 and o(3) = 4.

« Itis known that A is Hurwitz only if all coefficients of its
characteristic polynomial are non-zero.

+ Characteristic polynomial of A is given by

n—1 n—Fk

det(IA - 4) = Y (- 3™ (<17 [] a0

k=0 oESH_k i=1

34



A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF (II)

- Eachterm []"_, a, .., corresponds to a
k-decomposition.

p(s) =
S§7 — a1152 +0s — a12a230371.

3
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A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF (II)

- Eachterm []"_, a, .., corresponds to a
k-decomposition.

+ Said otherwise: each permutation in Sy
corresponds to a k-decomposition:
e.g. permutation in S3 that sends
{4,5,6} to {5,6,4} is depicted in red.
permutation in S3 that sends {1, 2,3} to
{1, 3,2} is depicted in blue+green.

p(s) =
S§7 — a1152 +0s — a12a230371.

3
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A NECESSARY CONDITION FOR STABILITY: SKETCH OF PROOF (II)

- Eachterm []"_, a, .., corresponds to a
k-decomposition.

+ Said otherwise: each permutation in Sy
corresponds to a k-decomposition:
e.g. permutation in S3 that sends
{4,5,6} to {5,6,4} is depicted in red.
permutation in S3 that sends {1, 2,3} to
{1, 3,2} is depicted in blue+green.

« Conclusion: no k-decompositions =
degree n — L term in characteristic
polynomial of any matrix in Z is zero
= graph and ZP are not stable 3

p(s) =
S§7 — a1132 +0s — a12a230371.

35



A SUFFICIENT CONDITION FOR STABILITY

Theorem?

A digraph G is stable if it contains a sequence of nested
k-decomposition for each k = 1,2,...,n.

We say that a k-decomposition K is nested in K, if the node set of
K isincluded in the one of K,

v\@ * x 0 0 0
*x 0 % 0 0

* 0 0 % 0

0 % 0 =x

00 0 0

1-decomp.: (1), 2-decomp.: (12), 3-decomp.:(123),
4-decomp.:(12(34), 5-decomp.:(12345).

2B. “Sparse Stable Systems”, Systems and Control Letters, 2013 36



ARE THE NECESSARY AND SUFFICIENT CONDITIONS CLOSE?

- There are many graphs that are stable, but do not pass the
sufficient condition.

37



ARE THE NECESSARY AND SUFFICIENT CONDITIONS CLOSE?

- There are many graphs that are stable, but do not pass the
sufficient condition.

« From our simulations, we observe that the necessary condition
is close to being sufficient: the number of graphs that pass the
necessary condition and are not stable is relatively small.
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ARE THE NECESSARY AND SUFFICIENT CONDITIONS CLOSE?

- There are many graphs that are stable, but do not pass the
sufficient condition.

« From our simulations, we observe that the necessary condition
is close to being sufficient: the number of graphs that pass the
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ARE THE NECESSARY AND SUFFICIENT CONDITIONS CLOSE?

- There are many graphs that are stable, but do not pass the
sufficient condition.

« From our simulations, we observe that the necessary condition
is close to being sufficient: the number of graphs that pass the
necessary condition and are not stable is relatively small.

« Stability is not generic. The proportion of stable matrices in a
ZP can be very small.

« Hence simulations studies are “hard”: one needs to sample
many matrices in a SMS to conclude non-stability. Very unlike
structural controllability: almost all systems in a zero-pattern
are controllable. Sample one system: with probability one, it is
controllable if the zero pattern is.
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MINIMAL STABLE GRAPHS AND NOTIONS OF ROBUSTNESS

Observation: adding an edge to a stable graph yields another stable
graph.

Graph stability is monotone with respect to edge addition.

stable S —>
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MINIMAL STABLE GRAPHS AND NOTIONS OF ROBUSTNESS

Observation: adding an edge to a stable graph yields another stable
graph.

Graph stability is monotone with respect to edge addition.

* x 0
[* 0 *:|

£ 0] Lx 0 ]Sy Ly

0 * P

[vou} [*1,.]

- * * 0 c

|:r'r (’) (Wl:|

stable >

« Minimal stable graphs: stable graphs for which removing any
edge yields an unstable graph. All stable graphs are
“descendants” of minimal stable graphs. We can think of them
as “prime” graphs.

« Robustly stable graphs: stable graphs for which removing any
edge yields a stable graph. 38



THE TREE OF THREE-GRAPHS

~— o
o o

Unstable \ — | C‘\\,\
— , o Box — graph on three
" | IS nodes
IR Same # edges — same row

I\‘m 000000000000 0nnnonnonnt Edge between box denotes

D D [ D ] D D D D D ] D C D : \Dﬁ indusmﬂ?stable ancestors
BERRD THIRERE TN Shade: == 4 Sncestors

2N

L= Minimal stable: lightest
I I I I I I I I shade. There are 7.

I I Resilience Index
(B

"
ﬂk\i —’I Fragile Robust
o4
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RECIPROCAL OR SYMMETRIC GRAPHS

« It is often the case that information exchange is bilateral: i + ;.

« We call a graph reciprocal or symmetric of to every edge
(i,7) € E there is an edge (j,1) € E.

+ The corresponding ZP is symmetric:

* ok ox 0 %

‘\_/@\ * % x 0 0
‘\—g A=1]x * 0 * 0
0 0 x 0 =

* 0 0 % 0

- Two cases: either the matrices in the ZP are symmetric (strongly
symmetric ZP) or not necessarily symmetric (weakly symmetric
ZP).
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STABILITY OF SYMMETRIC GRAPHS

Definition3

A ZP is weakly symmetric if to a free variable in position i
corresponds a free variable in position ji. A ZP is strongly
symmetric if it only contains symmetric matrices.

3A. Kirkoryan and B. “Symmetric Sparse Systems”, CDC 2014.
A



STABILITY OF SYMMETRIC GRAPHS

Definition3

A ZP is weakly symmetric if to a free variable in position i
corresponds a free variable in position ji. A ZP is strongly
symmetric if it only contains symmetric matrices.

Theorem?
A strongly symmetric ZP is stable if and only if all its diagonal
elements are free.

3A. Kirkoryan and B. “Symmetric Sparse Systems”, CDC 2014.
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STABILITY OF SYMMETRIC GRAPHS

A ZP is weakly symmetric if to a free variable in position i
corresponds a free variable in position ji. A ZP is strongly
symmetric if it only contains symmetric matrices.

A strongly symmetric ZP is stable if and only if all its diagonal
elements are free.

A weakly symmetric ZP is stable if and only if its graph is so that

Every node is strongly connected to a self-loop
The graph contains a Hamiltonian decomposition.

3A. Kirkoryan and B. “Symmetric Sparse Systems”, CDC 2014.

A



KEY NOTION: FAT TREES

The proof of the last theorem is graphical in nature.
A tree graph is a graph without cycles.

©) @@/@ gﬁ’% @
S R

1 o1,
e

« Tree graph — Nodes can be cycles — Edges are symmetric —
fat tree



STABILITY OF SYMMETRIC GRAPHS

« Proof idea: Given a symmetric graph G, show that if

— then there exists a sequence of nested k-decompositions,
k=1,...,n.
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« Proof idea: Given a symmetric graph G, show that if
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STABILITY OF SYMMETRIC GRAPHS

« Proof idea: Given a symmetric graph G, show that if

1. Every node in G is connected to a self-loop
2. G contains a Hamiltonian decomposition

— then there exists a sequence of nested k-decompositions,
k=1,...,n.

+ The conclusion above says that we satisfy the sufficient
condition presented earlier.
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STABILITY OF SYMMETRIC GRAPHS

« Proof idea: Given a symmetric graph G, show that if
1. Every node in G is connected to a self-loop
2. G contains a Hamiltonian decomposition
— then there exists a sequence of nested k-decompositions,
k=1,...,n.

+ The conclusion above says that we satisfy the sufficient
condition presented earlier.

+ Proof technique: find a fat tree in G. Fat trees provide a natural
ordering of nodes. Use the ordering to exhibit nested
k-decompositions:

We label (order) the nodes so that
{1},{1,2},{1,2,3},...,{1,...,n} all have k-decompositions. By
construction, they are nested.

43



STABILITY OF SYMMETRIC GRAPHS (I1)

a e

| M\ﬁm
D A

g\i O —©

o—=0 de_ o

Draw the cycles of a Hamiltonian
decomposition of G. This is a
subgraph of G.

ozi\o\j:i

i/i o
WT_,MM/?

- b

O?:’/O"‘C{:_/O

Connect every cycle to the cycle
with the self-loop. We can do so
by assumption 1.



STABILITY OF SYMMETRIC GRAPHS (I11)

4 N

O=—=0<=>C<=—=0

Ordering: Set vy at 1. Order nodes
counter-clockwise. Skip already
numbered nodes. By construction, no
node lies inside — complete ordering.
Call this graph P.

Add reciprocal edges. The
resulting graph is a planar

subgraph of G by construction.
45



STABILITY OF SYMMETRIC GRAPHS: (IV)

The last graph shown is a subgraph of G. We show that is satisfies
the hypothesis of Theorem 2.

e 9
* There is a unique path from an
G 60 e p v

node % to 1 using the plain edges of

@)/8 o P only.

O + Key observation: by construction,

@’*Q? (_@ @) the subgraph induced by the node

set {1,2,...,k} is the union of the
() (O  pathjoining 1to k and I-cycles.

@

@
=0 @@
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STABILITY OF SYMMETRIC GRAPHS: (V)

+ The subgraph induced by nodes
{1,...,k} admits a Hamiltonian

E?,\@ é)@ decompositi@,which isthus a

k-decomposition of G.
%>  Depending on whether the path
O O joining 1 to k£ has an even or odd

@A@ @ @®<@ (O nhumberof nodes, the

decomposition is in 2-cycles (even)

&3)@ ./,'/@D (O  orself=loop+2 cycles (odd).
(18

+ Repeating the procedure for each

node k = 1,...,n, we obtain nested

A n = 22-decomposition k-decompositions.

47



3.36pt

Graphs and Input-Output Properties of Network Systems

48



Symmetry and Controllability

49



CONTROL OF NETWORKS

A9)
+ Model u(r) PV N ()
Zi(t) = —wiszi(t) + Z wipxp(t)+ui(t) Wi T
i~ P e E—.~ e
—
that in general assumes the O J
form:

&(t) = A(G)x(t) + B(S)u(t)

Controllability/observability: stabilization via feedback, observer
design, disturbance/noise rejection, optimal control, and pole
placement

50



NETWORK CONTROLLABILITY

For the LTI plant (A(G, S), B(S)) what are the structural conditions
for controllability? One approach is to link uncontrollability to

symmetry

-3 <

For today, we will use the edge leader follower dynamics
i = A(G,S)r + B(S)u=—(L(G) + B(S)B(S)")x + B(S)u.

(These results can be extended to the leader follower dynamics
& = A(G,R)z + B(R)u and controlled consensus dynamics
i =—L(G)x + B(S)u)

)



SYMMETRY

First, what do we mean by symmetry...

An automorphism of the graph is a mapping 7 : V(G) — V(G) such
that if {i,p} € £(G) < {n(i),m(p)} € £(G)

Represented as 7 : {1,2,...,n} = {1,2,...,n},7(i) =p

1 2 3 .- n
) \J 3 1
m(1) 7w(2) w(3) m(n)

1—+3,2—+23—>1

Mapping 7 : V(G) — V(G)

m(1l) =3,7(2) =2,7(3) =1

The edges {7 (i), 7(p)}

{1,2} - {3,2} € &,{2,3} - {2,1} € £ = misan
automorphism

52



SYMMETRY

We need an algebraic representation of the automorphism 7.

A permutation matrix is a {0, 1} square matrix with one “1” and
one “zero” in each row and column.

7 —permutation matrix P such that PA(G) = A(G)P

Example
Vi oo 1]7[o 1 0] [o 1 0]
v, PA(G) = 01 0 1 0 1|l=|101
I 1 00][0 10| [0 1 0]
h o1 0]lo o 1] [o 1 o]
3 AG)P = 1 0 1 01 0f=]|101
o1 0|1 00| [0 1 0]

53



SYMMETRY

We also need a link between the automorphism and the inputs.

A system is input symmetric with respect to the input nodes if
there exists a nonidentity automorphism with input nodes
invariant under its action.

Input symmetry (permutation P) w.r.t. to the input nodes +—=
P #1,A(G)P = PA(G) and PB(S) = B(S).

Example
[0 0 1][o0o] [o]
Vi PB({v:}) = |0 1 0 1 |=|1|=B{w)
v, (1000 |o]
I — Input symmetric
0o 0 1[0 [1]
Vs PB({vs}) = |0 1 0||o]|=|0]#B({u)
10 o0][1] [0] 54




SYMMETRY

Some more preliminary work before showing our controllability
conditions

For an automorphism 7 of G with permutation matrix P

A(G)P = PA(G) = deg(v) = deg(nm(v)) = A(G)P = PA(G)

then as L(G) = A(G) — A(G) we have
L(G)P = PL(G).

For input symmetry PB(S) = B(S) then
PB(S) = B(S) = n({s}) ={s} forallse S

Finally, A(G,S)P = —(L(G) + B(S)B(S)")P
~P(L(G) + B(S)B(S)")
— PA(G, 5).

55



SYMMETRY

Input symmetry implies uncontrollability.

Proof.
For P # I, A(G)P = PA(G) and PB(S) = B(S) =
A(G,S)P = PA(G,S)

Let v be an eigenvector of A(G, S) := A then
APv=PAv = P(\v)=APv

So Pu is also an eigenvector.

As A(G, S) is symmetric with a spanning set of eigenvectors then
for some v, Pv # v.

Then v — Puv is an eigenvector and
(v — Pv)" B(S) = vT B(S) — vTPTB(S); hence

(v — Pv)" B(S) =v"B(S) —vIB(S) =0 56



MORE GENERALLY ...

Suppose that the network dynamics assumes the form
& =A(G)x +B(G)u

is such at there exists some P € AUT(G) that commutes with the
dynamics and leaves the input invariant under its action, i.e.,

PA(G) = A(G)P PB(G) = B(9);

if A(G) is non-defective, then (A(G), B(G)) is not controllable.

57



DOES INPUT ASYMMETRY —> CONTROLLABILITY?

No!

Consider the smallest asymmetric graph G controlled through a

[ON
FATERN
2o NN
o N

]

I

]

I

P \ NN
’ 1 \ Al ~
7 i s
1 \‘ \
N N
\ i

49—
Then A(G,R) = L(G) + I and B(R) = —1; A(G,R) has 1 as an
eigenvector:
AGRILI=LG1+1=1
All other eigenvectors of A(G,R) are orthogonal to 1; now invoke
PBH! 58



Performance of Networks

59



CONSENSUS-SEEKING NETWORKS

The consensus protocol is a canonical model
for studying complex networked systems

f

formation system theory distributed

control over graphs optimization

Are certain Can system How do we synthesize

information performance be good information
structures more characterized using structures?

favorable than others?  properties of the
graph?
-

< Ho cycle lengths i, |2(g)||

GeG

H. o< node degree

60



INFLUENCED NETWORKED DYNAMICS

Networks may be influenced by

- selected leaders
- exogenous inputs (disturbances or noises)
- malicious agents

General Dynamics F(G,x(0),u(0),d(0))
#(t) = f(9,2(t), u(t), d(t)) 0, 0
y(t) = 9(9,z(t), u(t), d(t)) d() -

Analysis draws upon:

+ Large-scale Optimization:

 Control theory: For large # nodes n

Input-output dynamics
+ Machine-learning:

For uncertain dynamics and
inputs 61

« Graph theory:
Design and reasoning on G



THE NOISY CONSENSUS PROTOCOL

Dynamics
&(t) = —L(G)x(t) + w(t)
y(t) = B(H) a(t)

 Each node corrupted by zero-mean
white Gaussian noise.

« H models the performance network
(e, HC GorH=K,)

consensus state (average) is
driven by noise

& ava(a(t) = 1 Tw()

covariance exhibits a random
walk

62
Slavelr(D)2)) = 2@+



THE NOISY CONSENSUS PROTOCOL

When driven by noise, it is
meaningful to examine how
noises effect the stead-state
. ) Ker(E(G)") = span{1}
covariance of the relative states
Idea

Characterized by the #,
performance

63



MINIMAL REALIZATIONS AND THE EDGE LAPLACIAN

A two-port model

2(t) = B(H)T=(t)

Note the system is not minimal
(unobservable) and also has
unbounded H, norm (eigenvalue

at 0)
= Find a stable minimal g
realization!
290 090 0.90 —-0.40 | 0.00
S=[P g aTP=0 | bl om e
—0.40 0.60 0.60 1.29 | —0.00

Z(t) = S (1) 000 0.00 000 000 | —0.00 | 64



SPANNING TREES AND CO-TREES

A connected graph can be
decomposed into a
spanning tree and the
edges that complete cycles
(co-tree)

Cycles can be expressed as
a “linear combination” of
edges in the tree

R is referred to as the
Tucker representation of G
with spanning tree 7

G=TUcC

Theorem [Godsil and Royle, 2001]

The cycle space of G is spanned by the
fundamental cycles of G.

Ker[E(G)] = Im _IR
R=(BE(T)"E(T))'E(T)" E(C)
B7 65
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MINIMAL REALIZATIONS AND THE EDGE LAPLACIAN

A two-port model

2(t) = B(H)T=(t)

= Find a stable minimal
realization!

S =

The Essential Edge Laplacian
o= avgm))} =S7"()  Lews(9) := (B(T)TE(T))(I + RRT)

67



THE EDGE LAPLACIAN

g

- _[BE(TMTE(MI+RRT) 077 _ |1 2 -1 0]_
S JL(Q)S_ 0 ol =12 5 2 4 = L(T)

L.(G) = E(G)TE(G) € RI¢IxI¢]

shares the same non-zero [Le(G)]i; = £1 when edge ¢
eigenvalues of L(G) is adjacent to edge j
L.(T) is positive definite

indexed by the in the Ker[L.(G)] is spanned by

graph fundamental cycles in G
68



(, PERFORMANCE OF CONSENSUS

The H, performance of the consensus protocol is
IZ@)Il; = HEH)TEF XEFE(H)),

where )
X=3(I+RR)"

is the positive definite solution to the Lyapunov equation

L(X) = —Lewa(G)X — XLews(G)T + E(T)TE(T) = 0. )



(, PERFORMANCE OF CONSENSUS

Consider the consensus protocol with G = H = 7 and an edge
e ¢ G. Then

_ ) -1
IS(TUe)lE = IZe(TIz - 500

where /(c) is the length of the fundamental cycle created by
adding the edge e.

« long cycles are better than short ones 70



(, PERFORMANCE OF CONSENSUS

COI‘Olla I‘y [Zelazo et al., Systems & Controls Letters, 2013]

Consider the consensus protocol with G = H = 7 and an edges
€1,€2 ¢ g. Then

12T U fex,ead)lf = 2B = (1= gy @)

2(£(c1)l(c2) — 5%)

where s;; is the edge correlation number for cycles ¢; and ¢;.

812:0 812:4

« edge disjoint cycles are better
71



DESIGN OF CYCLES

A network design problem
Given a graph G with spanning tree 7, add k edges that optimizes

I2(6) 3.
w(t) '''''''''''''''''''''''''''''''''''''''

lb‘(f,);’ N e
u(t)_ w(t)y—s] 26 (T) 0

* Cycles interpreted as a
feedback system

« Can be formulated as
a mixed-integer SDP

* re-weighted ¢,

optimization; ADMM &



H, PERFORMANCE OF CONSENSUS

73



CIRCUIT INTERPRETATIONS

Linear Consensus as an RC-Circuit

: v
z(t) = —L(G)z(t) + w(t)

BE(H)Tz(t)

<

—~
~

~—
|

Capacitors < Node Dynamics (ntegrators)

Resistors < Edge Dynamics near gain

- edge weights model the ()
admittance of the resistor T T
1
Ty = —
Wi
»(0) AAG)

« in steady-state, network
corresponds to a resistive RC circuit

circuit
74



EFFECTIVE RESISTANCE

The effective resistance between two nodes » and v is the electrical

resistance measured across the nodes when the graph represents a
resistive circuit.

Effective Resistance Calculation [Kiein and Randi¢ 1993]

Ruv(G) = [LN(G)]uu + 2[LN(G)]uw + [L1(G)]ow

The total effective resistance of a graph is the sum over all pairs of
nodes of R, (G), 75

—



EFFECTIVE RESISTANCE AND THE EDGE LAPLACIAN

Consider a graph G with spanning tree 7 and Tucker matrix R. Let
R, satisfy (e, —e,) = E(T)R.,- Then the effective resistance
between nodes v and v can be computed as

Ruv(g) - RL;(I I RRT)ilRuv-
This can be extended to derive an expression for the total effective

resistance. Let Ry, satisfy E(K,) = E(T )Rk, , representing the
Tucker matrix for all possible edges, then

Riot(G) = Tr[R¢ (I+RR") 'Ry, ].

ISO)I3 = 5Ru(6)

76



EFFECTIVE RESISTANCE AND SIGNED NETWORKS

a signed graph is a graph with positive (=) (+)
and negative edge weights
(+) (=)
G=W,EW)
W:€—-R H g =g, uc

E,={ec& : W(e) >0} E_={ec& : W(e) <0}

77



EFFECTIVE RESISTANCE AND SIGNED NETWORKS

Th eorem [zetazo and Biirger, TCNS2017]

Let G = (V, E~) be a strictly positive network with edge functions
pr = wily, (i.e., wy > 0forall k € £) and let G = (V, &~ U e) where
e = (u,v) is a negative edge with weight w. < 0. Then the signed
consensus network reaches agreement if and only if

lwe| < 7o,

where 7., is the effective resistance in G between nodes u and v.

Tuw (G)

The negative edge weights effectively creates an open circuit

78



SUMMARY AND OUTLOOKS

General Dynamics
x(t) = f(g7 x(t), u(t)7 d(t))
y(t) = g(G, =(t), u(t), d(t))

 network structure
influences the performance
of network systems

« in linear consensus, H,
performance can be
understood in terms of
fundamental structural
properties of the graph:
trees and co-trees

- effective resistance is a

(G, x(1),u(n),d(1))
u(t)

- Y

d(

———

powerful concept for
analyzing performance and
robustness of linear
consensus

design of networks
leverages combinatorial
understanding of
performance with modern
optimization methods

79



SUMMARY AND OUTLOOKS

Plant

()
N0 ) y(t)

Explore graph-theoretic s
interpretations for more &)
general networked
systems structures @

o) o few

Control

Leader-follower networks

&(t) = A(G, R)x(t) + B(R)u(t)

+ leader selection and #
performance

« effective resistance
interpretations

+ network design using online 80
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Unexplored Opportunities

81



NETWORKED DYNAMIC SYSTEMS
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GRAPHS AT CDC

Why do we need this tutorial?

Network analysis and control

Networked control systems

MoA00., Mongs, MoAD?.2 MaA0L, MoA122 MOAI26, MoBQDD Moos.

MoB106, 13.6, MoC14,
TR Turdds. Tus0o, 005 Tubis 1 B1S ToANsS Tub1z4
Tugf2s uB126 uB163 Tubte Tuco4 3 Tucos 6 Tucos 1 Tucun |
TuC09.3 TuC10.5, TuC12.1, TuC12.2, [uC123, uC124, uC125, U126,

TuC186, WeA0D.2 WeAD.3, WeADD 4, WeAQD.5, WeAD9.6, WeA12.1,

WeA122, WeA123, WeA12.4, WeA12.5, WeA12.6, WeBO3.6, WeB05.1, WeB05.4,

S etla g VRN SR SIS L ieia | Gl
WeB186 WeCOL6, m&z

MoAD13, MoAQ3.4, MoAO3.S, MoA4.2. MoAG4.3,
HSAGEY oGS MoATo s ozt m_zz MoALx S MoATE S oAtz s
MoBOO 4. 12,

MoA126, MoBO3 2, MoB04 4 MoB046 121

MoB123. MoB12.4 HioRi2 ok & Hachs & HaGoss.
MMMMMMM

MaC128 MaCta 1 MaCT2Z MoC 13 MoC18.4, MoC19.4 TuADL 5.

1 1
057 TUATO.T. TUALS s TUATSS TUALZ 3, TuA1d. TUATSS T A2
TuAtd T TuBo4d, 3

4, TuC03.2. TuC05.3, T T Ticiie,
Tt THIE s WeAssi. WeASs s Wardia , WeAds s Ciaati s eada.s
12.4, WeA125, WeA12 6, WeA14.4, WeA16.1, WeBO1 3, WeBO43, WeB04.4,
. WeOg 1. a3 wﬁuu: MeB104 WeB123. WeD1Z 4 We 1 1
s

Control system architecture

GoaBerative control

MoA17.2, MoCO7.6, TuAD4.S, TuB0G.3, TuB12.6, WeADG.2, WeB14.3, WeC05.4

See also Large-saale Systems

MoAD3.3, MoAQ3.4, MoAQ3.6, MoA11,6, MoA14.1, MoA14.2, MoA14.3, MoA14.4,

IGATE5 MoBOS1 Mogon & HaBoS & MoBI2 . MoBI4.1 MOB1S . MoBi£
. MoB17.2 MoC03.6, MoC12.2.

MoC14.2, MoC14.3, MoC14.4, HaC1is aCiis MaCiZ2 MaSELL TuieaZ
 TUAI06, TUALLL1, TuA12.1, TUAldd,

MMMMMMMM

VIsATSA WoAOSS WoA0 e VoA ez VioAled
WeA145, WeB04.4, WeB12.3, WeB13.1, WeB13.3, WeB14.3, WeB14.3, WeB14.4,
WeBiis Wects T Woczod

The network approach to systems is here to stay. This tutorial aims
to bring to the forefront the role of graphs in these systems.
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NETWORKED DYNAMIC SYSTEMS

So far in this tutorial... /5

@ ®
« graphs and modelling of © /(_%
network systems @/

« stability of network systems

y(t)
* input-output properties of —
network systems = i.i @
—)



A GRAPH STRUCTURE <= SYSTEM BEHAVIOR MORPHISM

We are interested in morphisms between

(networks/operations) <= (systems/properties)

Our thesis is that for control theoretic methods to have an impact in
the growing field of networks, our techniques should be modular,
scalable, and offer flexibility in their use.

Some areas that have been explored in this direction include:

« structural considerations

+ compositional perspective/motifs
 approximations

« randomness

We believe this area is highly unexplored!
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Extremal Graphs

86



LARGE SCALE NETWORKS

How do we analyze networks that are too large to model?

N~

Ve = 2
X ~.'ﬂ 2% 3
T :
- fault detection and isolation « internet-of-things
« power distribution networks « cyber-pysical systems
- transportation networks « social networks

87



EXTREMAL GRAPH THEORY

Mantel's Theorem (1907)

If a graph G on n vertices contains no triangles, then it contains at
most %2 edges.

o o « o
AN 7
>
/
.
/ / ™\
Mt
/
y
; //
/ V/d
p
o g *
\\\ ///
.« . >
AN / (/ \></ \)
N/ \
o /5K
o« e /N
/ \
V/d ANY
o« e

The complete bipartite graphs are extremal

Extremal graph theory studies how global properties of a graph (i.e.,
number of edges) relate to local substructures (i.e., a triangle
subgraph)
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FORBIDDEN GRAPHS

Forbidden Subgraph Problem

Given a set H of forbidden graphs, what is the maximum number
of edges in a graph G on n nodes (denoted e(G)) such that H ¢ G
for any H € H?

Extremal Number ex(n,G) = max e(G)
HLG

Generalize Mantel's Theorem for K,

Taran Graphs T'(n,r) - complete
r-partite graphs with n vertices

2 > <
e(n,K,) < % (1— ! 1)
" T(13,4)
« avoiding paths of length & « avoiding edge disjoint
+ avoiding Hamiltonian cycles cycles 89
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EXTREMAL NETWORKED SYSTEMS

A simple example...

Wy,

A relative sensing network

=)z = 21€1lI=13

Proposition
Let 3(G) be a relative sensing network with n agents such that G is
K,;1-free. Then the 7, performance of £(G) is at most n?ZL||3|3.
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RECALL: K-DECOMPOSITIONS

* k-cycle in G: a sequence of k distinct nodes
connected by edges.

 Two cycles are disjoint if they have no nodes
in common.

+ k-decomposition in G: union of disjoint
cycles covering k nodes.

A k-decomposition is given by cycles 1-cycle = (1)
S1,...,5; if the S; are disjoint and 2-cycle: (23)
IS+ -+ S| = k. 3-cycle: (456)
3-decomp.: (1)(23) or
+ Hamiltonian cycle (resp. decomposition): (456)
n-cycle (resp. decomposition). 4-decomp.: (1)(456)

)
5-decomp.: (23)(456)
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A NECESSARY CONDITION FOR STABILITY

Theorem*
A digraph G is stable only if it contains a k-decomposition for each
k=1,2,....n

* % 0 0 =x
0 0 = 0 0
* 0 0 % 0
0 0 0 0 =
* 0 0 % 0

An extremal question

What is the maximum number of edges in a graph G on n nodes
before a k-decomposition appears?
4B. “Sparse Stable Systems”, Systems and Control Letters, 2013
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Composite Networks
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COMPOSITIONAL APPROACHES: A GENERAL SETUP

« let P be a system theoretic property, G be a class of graphs,
and consider P(G)

« consider a subset of G and examine how P varies over this
subset

- impose algebraic operations on G and examine how P behaves
with respect to this algebra

« make G a semi-lattice and examine how the ordering on G is
reflected on P
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CASE IN POINT: COMPOSITE NETWORKS

Controllability of the product networks?
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INPUT AND OUTPUT SET PRODUCT

—
—
O —_
— — —
Sl X 52 —
Ry X R,
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CONTROLLABILITY FACTORIZATION - PRODUCT CONTROL

The dynamics
i(t) = —Aq;[ G)a(t) + B([] So)ut)
y(t) = C(J] Rz (1)
where A([]G;) has simple eigenvalues is controllable/observable
if and onl? if

#;(t) = —A(Gi)zi(t) + B(Si)ui(t)
yi(t) = C(Ri)zi(t)

is controllable/observable for all i.
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Graph Theory Systems Theory
« Algebraic graph theory « Stability
« Geometric graph theory + Performance
 Extremal graph theory * Input-Output Properties
« Probabilistic graph theory + Control Synthesis
« Topological graph theory « Control Architectures

Thank you!
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