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• How do I autonomously control robots?
• How do I control networks of robots?
• What should I consider?

• who talks to whom?
• who defines team mission?
• how do sensors impact solutions?
• · · ·

What is the correct mathematical language for study-
ing the coordination of teams of autonomous sys-
tems?
• Control Theory
• Graph Theory
• Optimization Theory
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Controller
System

ẋ = f(x, u, d)

Disturbances

u

Measurements

r e y

�

ym

A control systems engineer aims to design a controller that ensures the closed-loop
system

• is stable
• satisfies some performance criteria
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Formation Control Objective
Given a team of robots endowed with the ability to sense/communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.
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- The desired formation is characterized by a set ofM constraints, encoded in the
function F : Rnd

! RM , and a configuration p? satisfying the constraints.
- The set of all feasible formations is

F(p) = {p 2 D̄ |F (p) = F (p?)}

Formation Control Objective
For an ensemble of n agents with dynamics

ṗi = ui,

with pi(t) 2 Rd, an information exchange graph G = (V, E), and formation constraint
function F : Rnd

! RM , design a distributed control law for each agent i 2 {1, . . . , n}

such that lim
t!1

p(t) 2 F(p),

i.e., F(p) is asymptotically stable.
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• Agents are represented by the nodes in a graph

i 2 V 7! xi(t)

• Dynamics of each agent
ẋi(t) = f(xi(t), ui(t))

• Agent i acquires information from the set of its neighbors Ni

Ii(t) = {xj(t) | j 2 Ni [ {i}}

• control ui(t) is distributed if
ui(t) ⌘ ui(Ii(t))
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• Define a formation potential function

Ff (p) =
1

4

X

ij2E

�
kpi(t)� pj(t)k

2
� d2

ij

�2

� distance errors on each edge of graph

• proposed control:

ui = �
@Ff (p)

@pi
=
X

ij2E
(kpi � pjk

2
� d2

ij)(pj � pi)

� a distributed control!
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Theorem - Distance Constrained Formation Control [Krick ����]

Consider the potential function

Ff (p) =
1

4

X

ij2E

�
kpi(t)� pj(t)k

2
� d2

ij

�2

and assume the desired distances dij correspond to a feasible formation. Then the
gradient dynamical system

ui = �rpiFf (p) =
X

ij2E

�
kpi � pjk

2
� d2

ij

�
(pj � pi)

asymptotically converges to the critical points of the potential function, i.e., @Ff (p)
@p = 0.
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Ff (p) =
1

4

X

ij2E

�
kpi(t)� pj(t)k

2
� d?ij)

2
�2

• formation potential can be written in terms of a rigidity function

Ff (p) =
1

2
krG(p)� rG(p)k

2

� rG : p 7!
h
· · · 1

2kpi � pjk2 · · ·
iT
: distances between neighbors

� p : a configuration satisfying distance constraints (i.e., kpi � pjk2 = d2
ij)

e1

e2

e3

e4

p1 = (0, 0) p2 = (2, 0)

p3 = (2,�3)p4 = (0,�3)

rG(p) =

2

6664

kp1 � p2k2

kp2 � p3k2

kp3 � p4k2

kp4 � p1k2

3

7775
=

2

6664

4

9

4

9

3

7775

• rigidity theory looks for distance-preserving infinitesimal motions

rG(p+ �p) = rG(p) +
@rG(p)

@p
�p+ h.o.t

� infinitesimal motions satisfy @rG(p)
@p �p = 0

� the Rigidity matrix : R(p) = @rG(p)
@p 2 R|E|⇥2|V|

� ”rigid body” rotations and translations are always distance preserving: trivial motions
� A framework (G, p) is infinitesimally rigid if the only infinitesimal motions are trivial

��



� ���� �� ��������� ���������� ��� �������� ������

Ff (p) =
1

4

X

ij2E

�
kpi(t)� pj(t)k

2
� d?ij)

2
�2

• formation potential can be written in terms of a rigidity function

Ff (p) =
1

2
krG(p)� rG(p)k

2

� rG : p 7!
h
· · · 1

2kpi � pjk2 · · ·
iT
: distances between neighbors

� p : a configuration satisfying distance constraints (i.e., kpi � pjk2 = d2
ij)

• rigidity theory looks for distance-preserving infinitesimal motions

rG(p+ �p) = rG(p) +
@rG(p)

@p
�p+ h.o.t

� infinitesimal motions satisfy @rG(p)
@p �p = 0

� the Rigidity matrix : R(p) = @rG(p)
@p 2 R|E|⇥2|V|

� ”rigid body” rotations and translations are always distance preserving: trivial motions
� A framework (G, p) is infinitesimally rigid if the only infinitesimal motions are trivial

��



�������� ������ ��� ��������� �������

our formation control

ui = �rpiFf (p) =
X

ij2E

�
kpi � pjk

2
� d2

ij

�
(pj � pi)

can be expressed with rigidity matrix

u = �RT (p)(R(p)p� d2)

a proof sketch

• define error dynamics for distance error: e = R(p)p� d2

ė = �R(p)RT (p)e

• Construct a Lyapunov function V (e) = 1
2kek

2

• d
dtV (e) = �eTR(p)R(p)T e  0

• when R(p)RT (p) > 0, we have (local) exponential convergence to desired formation
• good frameworks are i) infinitesimally rigid, and ii) full row-rank (isostatic farmeworks)
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Rigidity theory helps us understand
• how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

• how the constraints should be distributed in the
network

A widely accepted architectural requirement for distance constrained formation con-
trol is that isostatic frameworks are required. Equivalent to:

rkR(p) = 2|V|� 3 and |E| = 2|V|� 3 (in R2)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)
A: Impose additional symmetry constraints without

requiring more information exchange (in fact, less!)
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Graph Symmetries Point Groups

• graph automorphisms • isometries
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Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation  of of its vertex set such
that

{vi, vj} 2 E , { (vi), (vj)} 2 E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• identity: Id =

 
1 2 3 4

1 2 3 4

!

• 90� rotation:  1 =

 
1 2 3 4

2 3 4 1

!

• 180� rotation:  2 =

 
1 2 3 4

3 4 1 2

!

• 270� rotation:  3 =

 
1 2 3 4

4 1 2 3

!
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Automorphisms of a graph form a group - Aut(G)

- Aut(G) = {Id, 1, 2, 3, 4, 5, 6, 7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, 1, 2, 3}

- {Id, 2, 4, 5}

- {Id, 2}

- {Id, 6}

- {Id, 7}

• Subgroups of Aut(G) define specific symmetries in G

• for any subgroup � ✓ Aut(G), we say that G is �-symmetric
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Definition
For a �-symmetric graph G = (V, E) and vertex i 2 V , the set �i = {�(i) | � 2 �} is called
the vertex orbit of i. Similarly, for an edge e = ij 2 E , the set �e = {�(i)�(j) | � 2 �} is
termed the edge orbit of e.

e1

e2

e3

e4

1 2

4 3

Consider � = {Id, 2} ( 2 is the 180� rotation)

• Vertex Orbit:
�1 = �3 = {1, 3}, �2 = �4 = {2, 4}

vertices inside a vertex orbit are equivalent
representative vertex set: V0 = {1, 2}

• Edge Orbit:
�e1 = �e3 = {e1, e3},
�e2 = �e4 = {e2, e4}
representative edge set: E0 = {e1, e2}
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combine notions of graph symmetries with point groups

• let G be a �-symmetric graph
• � also represented as a point group

- a set of isometries that preserve symmetries
- homomorphism ⌧ : � ! O(Rd)

- ⌧ assigns an orthogonal matrix (describing an isometry of Rd such as a rotation or
reflection) to each element of �

Definition
A framework (G, p) in Rd is called ⌧(�)-symmetric if

⌧(�)(pi) = p�(i) for all � 2 � and all i 2 V.
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example...
e1

e2

e3

e4

s
1 2

4 3

• consider � = {Id, 4} ✓ Aut(G)

• � =  4 2 � (reflection about mirror S)

• isometry ⌧(�) =
"
�1 0

0 1

#
, ⌧(�)

"
a

b

#
=

"
�a

b

#

satisfies ⌧(�)(pi) = p�(i) for all i 2 V.

• note: for a ⌧(�)-symmetric framework (G, p) and for
every j 2 �i, there is a �j 2 � such that ⌧(�j)pj = pi
for all j 2 �i

isometries of configuration p coincide with symmetries of the automorphisms of G

• in ⌧(�)-symmetric frameworks, the configurations p are in a special geometric
position (not necessarily generic)

• symmetry can lead to unexpected infinitesimal flexibility/rigidity
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Definition
An infinitesimal motion u of a ⌧(�)-symmetric framework (G, p) is ⌧(�)-symmetric if

⌧(�)(ui) = u�(i) for all � 2 � and all i 2 V.

We say that (G, p) is ⌧(�)-symmetric infinitesimally rigid if every ⌧(�)-symmetric
infinitesimal motion is trivial.

- recall that infinitesimal motions are in the kernel of the rigidity matrix

R(p)�p = 0

- we can find a subspace of the kernel that is isomorphic to the space of
‘fully-symmetric’ infinitesimal motions

- velocity assignments to the points of (G, p) that exhibit exactly the same symmetry
as the configuration p
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p3 p4

p2p1

 

(a)

- C4v-symmetric (and
hence ⌧(�)-symmetric
for any subgroup ⌧(�) of
C4v)

- ⌧(�)-symmetric
infinitesimally rigid

p1 p2

p3 p4
�

(b)

- Cs-symmetric (with
respect to the reflection
�)

- ⌧(�)-symmetric
infinitesimally rigid

p4

p3 p2
p1

�

(c)

- Cs-symmetric (with
respect to the reflection
�) with a non-trivial
Cs-symmetric
infinitesimal motion

- ⌧(�)-symmetric
infinitesimally flexible
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Symmetric Formation Control Objective
Consider a group of n integrator agents that interact over the �-symmetric sensing
graph G. Let p 2 Rdn be a configuration such that (G,p) is ⌧(�)-symmetric for some
desired point group ⌧(�), and let V0 be a set of representatives of the vertex orbits of
G under �. Design a control ui(t) for each agent i such that

(i) lim
t!1

kpi(t)� pj(t)k = kpi � pjk = dij for all ij 2 E ; (distance constraints)

(ii) lim
t!1

kpu(t)� ⌧(�vu)pv(t)k = 0 for all u, v 2 �i, i 2 V0. (symmetry constraints)
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• the formation potential

Ff (p(t)) =
1

4

X

ij2E

�
kpi(t)� pj(t)k

2
� d2

ij

�2

• the symmetry potential

Fs(p(t)) =
1

2

X

i2V0

X

u,v2�i
uv2E

kpu(t)� ⌧(�vu)pv(t)k
2

Assumption �
The sub-graph induced by each vertex orbit �i is connected.

• the symmetric formation potential

F (p(t)) = Ff (p(t)) + Fs(p(t))
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• propose the gradient control

u(t) = �rF (p(t))

• closed-loop dynamics

ṗ(t) = �R(p(t))T
�
R(p(t))p(t)� d2

�
�Qp(t)

where Q is symmetric and a block-diagonal matrix with

[Qi]uv =

8
>><

>>:

d�i(u)I, u = v, u 2 �i

�⌧(�uv), uv 2 E , u, v 2 �i

0, o.w.
.

• Qi 2 R|�i|d⇥|�i|d

• [Q]uv 2 O(Rd) (orthogonal group)

• ⌧(�uv)�1 = ⌧(�uv)
T

� Qi has a decomposition Qi = E(�i)E(�i)
T

� Q = Ē(�)Ē(�)T

� any p in a symmetric position satisfies Qp = 0
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� any p in a symmetric position satisfies Qp = 0

��



“����” ������

• symmetric formation potential makes no assumption on relation between the graph
G and the point group ⌧(�)

• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

1 2
3

45

6

�
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• symmetric formation potential makes no assumption on relation between the graph
G and the point group ⌧(�)

• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

e1

e2

e3

e4

s
1 2

4 3

• � = {Id, 4} ✓ Aut(G)

• �1 = �2 = {1, 2}, �3 = �4 = {3, 4}

• V0 = {1, 4}

• isometry ⌧(�) : (a, b) 7! (�a, b)

satisfies ⌧(�)(pi) = p�(i) for all i 2 V and
for each i 2 V0 and j 2 �i \ {i},
the edge ij is in E (i.e. G(�i) is connected)
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• propose the gradient control

u(t) = �rF (p(t))

• closed-loop dynamics

ṗ(t) = �R(p(t))T
�
R(p(t))p(t)� d2

�
�Qp(t)

• dynamics at for each agent

ṗi(t) =
X

ij2E
(kpi(t)� pj(t)k

2
� d2

ij)(pj(t)� pi(t)) +
X

ij2E
i,j2�u

(⌧(�ij)pj(t)� pi(t))
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Theorem [Z, Shulze, Tanigawa ’��]
Consider a team of n integrator agents interacting over a �-symmetric graph G satisfying Assumption � that
can be drawn with maximum point group symmetry S in Rd, and let

Ff = {p 2 Rdn | kpi � pjk = dij ij 2 E}, and Fs = {p 2 Rdn | ⌧(�)(pi) = p�(i) 8� 2 �, i 2 V}.

Then for initial conditions pi(0) satisfying
X

ij2E
(kpi(0)� pj(0)k � dij)

2  ✏1, and kpi(0)� ⌧(�ij)pj(0)k2  ✏2

for all i, j 2 �u and u 2 V0, for a su�ciently small and positive constant ✏1 and ✏2, the control

u = �rF (p(t)),

renders the set Ff \ Fs exponentially stable, i.e.

lim
t!1

kpi(t)� pj(t)k = dij and lim
t!1

⌧(�)(pi(t)) = lim
t!1

p�(i)(t) for all � 2 �, i 2 V.
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• formation flight for aircraft originated in WWI
• Vic formation used by pilots to improve visual
communication and defensive advantages

1

2

4

6

3

5

7

Vic formation with symmetry
mirror

1

2

4

6

3

5

7

Flexible framework (� edges;
satisfies Assumption �)

1

2

4

6

3

5

7

Minimally Rigid framework
(�� edges)
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• symmetry constraints force agents to
correct formation

• requires less agent communication
than standard formation control with
MIR requirement

• with flexible framework and only
formation potential can not guarantee
convergence to correct shape
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• proposed strategy does not take advantage of the full power of symmetry

• can we find redundant information between the symmetry constraints and the
distance constraints?

��



������� ���� ��������

• proposed strategy does not take advantage of the full power of symmetry
• can we find redundant information between the symmetry constraints and the
distance constraints?

��



�-��������� ���������

Definition
An infinitesimal motion u of a ⌧(�)-symmetric framework (G, p) is ⌧(�)-symmetric if

⌧(�)(ui) = u�(i) for all � 2 � and all i 2 V. (�)

We say that (G, p) is ⌧(�)-symmetric infinitesimally rigid if every ⌧(�)-symmetric
infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

• ⌧(�)(ui) = u�(i)

• understanding symmetry structure means we only need to find infintesimal motion
for one representative vertex in each vertex orbit
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s

1

2 3

4

(G, p)

• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (�c, d)T

• p4 = (�a, b)T

Rigidity matrix

R(p) =

2

6664

(a� c b� d) (c� a d� b) (0 0) (0 0)

(2a 0) (0 0) (0 0) (�2a 0)

(0 0) (2c 0) (�2c 0) (0 0)

(0 0) (0 0) (a� c d� b) (c� a b� d)

3

7775

• �-dimensional kernel - flexible
framework

• � trivial motions

�-dimensional flex spanned by
(1 � 1 � 1 2(c�a)+b�d

d�b � 1 � 2(c�a)+b�d
d�b 1 1)T

flex is not symmetric with respect to s
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• p1 = (a, b)T

• p2 = (c, d)T

• p3 = (�a,�b)T

• p4 = (�c,�d)T

R(p) =

2

6664

(a� c b� d) (c� a d� b) (0 0) (0 0)

(a+ c b+ d) (0 0) (0 0) (�a� c � b� d)

(0 0) (0 0) (c� a d� b) (a� c b� d)

(0 0) (a+ c b+ d) (�a� c � b� d) (0 0)

3

7775

• �-dimensional kernel - flexible
framework

• � trivial motions

�-dimensional flex spanned by
(�1 0 cd�ab

ad�bc
a2�c2

ad�bc 1 0 � cd�ab
ad�bc � a2�c2

ad�bc )
T

flex is symmetric with respect to 180� rotation
(C2)
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7775

• 180� rotation of points corresponds to  2 2 Aut(G)

• recall: vertex orbits : {1, 3}, {2, 4}, edge orbits: {e1, e3}, {e2, e4}
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7775

symmetries make certain rows and columns of the rigidity matrix redundant

��



����� �������� ������

symmetries make certain rows and columns of the rigidity matrix redundant

R(p) =

0

BB@

1 2 3 =  2(1) 4 =  2(2)

e1 (a � c b � d) (c � a d � b) (0 0) (0 0)
e4 (a + c b + d) (0 0) (0 0) (�a � c � b � d)
 2(e1) (0 0) (0 0) (c � a d � b) (a � c b � d)
 2(e4) (0 0) (a + c b + c) (�a � c � b � d) (0 0)

1

CCA

Orbit Rigidity Matrix

 1 2

e1 (p1 � p2)
T (p2 � p1)

T

e4 (p1 �  2(p2))
T (p2 �  

�1
2 (p1))

T

!
=

 1 2

(a� c, b� d) (c� a, d� b)

(a+ c, b+ d)) (c+ a, d+ b)

!

• � rows - one for each representative of edge orbits under action of  2

• � columns - nodes p1, p2 each have two dof; nodes p3 =  2(p1) and p4 =  2(p2) are
uniquely determined by the symmetries
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• relation between vertices within vertex orbits and between vertex orbits (through
edge orbits) captured by quotient gain graph of a �-symmetric graph
- node set is representative vertex set V0

- edge set is representative edge set E0: choose edge of form i�(j) with i, j 2 V0

it is ok for i = j

edges are directed with ‘edge gain’ being the group action � 2 �
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p3 p4

p2p1

 

• � = {Id, 1} (rotation)
• �i = {1, 2, 3, 4}

• V0 = {1}, E0 = {e1}

1
 1

p1 p2

p3 p4
�

• � = {Id, 4} (reflection)
• �1,2 = {1, 2}, �3,4 = {3, 4}

• V0 = {1, 3},
E0 = {12, 13, 24}

1

3

 4

 4
id

p4

p3 p2
p1

�
• � = {Id, 6} (reflection)
• �1 = {1}, �4 = {4},
�2,3 = {2, 3}

• V0 = {1, 3, 4}, E0 = {13, 14}

4

3

1id

id
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Definition [Shulze ����]

The orbit rigidity matrix O(G0, p̄) of (G, p) is the |E0|⇥ d|V0| matrix defined as follows.
The row corresponding to an edge ((i, j); �), where i 6= j, has the form:

⇣
0 · · · 0 (p̄i � ⌧(�)p̄j)T 0 · · · 0 (p̄j � ⌧(�)�1p̄i)T 0 · · · 0

⌘
,

with the d-dimensional entries (p̄i � ⌧(�)p̄j)T and (p̄j � ⌧(�)�1p̄i)T being in the
columns corresponding to vertex i and j, respectively. The row corresponding to a loop
((i, i); �) has the form:

⇣
0 · · · 0 (2p̄i � ⌧(�)p̄i � ⌧(�)�1p̄i)T 0 · · · 0

⌘
,

with the d-dimensional entry (2p̄i � ⌧(�)p̄i � ⌧(�)�1p̄i)T being in the columns
corresponding to vertex i.
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Theorem [Shulze ����]

Let (G, p) be a ⌧(�)-symmetric framework with orbit rigidity matrix O(G0, p̄). Then,

(i) the kernel of O(G0, p̄) is isomorphic to the space of ⌧(�)-symmetric infinitesimal
motions of (G, p), and

(ii) the cokernel of O(G0, p̄) is isomorphic to the space of ⌧(�)-symmetric self-stresses
of (G, p).

• Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
• full-rank O(G0, p̄) implies none exist
• size of O(G0, p̄) does not depend on p, but only the graph and symmetry constraints
• ⌧(�)-isostatic frameworks have orbit rigidity matrices with full row-rank
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key point: quotient gain graph and orbit rigidity matrix suggests a further way to
exploit symmetry in formation control

• representative edges used to maintain distances
• symmetry within vertex orbits have no need for distance constraints

��



� ������� ��������� ���������

• the representative edge formation potential

Fe(p(t)) =
1

4

X

e=ij2E0

⇣
kpi � ⌧(�)pjk

2
� d2

i�(j)

⌘2

� � is label of edge in quotient gain graph

• the symmetry potential

Fs(p(t)) =
1

2

X

i2V0

X

u,v2�i
uv2E

kpu(t)� ⌧(�vu)pv(t)k
2

Assumption �
The sub-graph induced by each vertex orbit �i is connected.

• the symmetric formation potential

F (p(t)) = Fe(p(t)) + Fs(p(t))
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• node relabeling - representative vertices first

p̃ = Pp =
h
pTo pTf

iT

• propose the gradient control

u(t) = �rF (p(t))
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Then the control for each agent i 2 V0 can be expressed as

ui(t) = u(a)
i (t) + u(b)

i (t) + u(c)
i (t),

where
u
(a)
i (t) =

X

i�(j)2E0
j2V0, i 6=j

�
kpi(t)� ⌧(�)pj(t)k2 � d2

ij

�
(⌧(�)pj(t)� pi(t))

u
(b)
i (t) =

X

i�(i)2E0

(k(I � ⌧(�))pik2 � d2
i�(i))(2I � ⌧(�)� ⌧(�)�1)pi

u
(c)
i (t) =

X

ij2E(�i)

(⌧(�ij)pj(t)� pi(t)).

The control for the agents in V \ V0 is simply

ui(t) =
X

ij2E(�u)

(⌧(�ij)pj(t)� pi(t)),

for each u 2 V0.
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in state-space form

"
ṗ0(t)

ṗf (t)

#
=

2

4�O
T (G0, p0(t))

✓
O(G0, p0(t))p0(t)� d2

0

◆

0

3

5� PQPT

"
p0(t)

pf (t)

#

recall our earlier idea

ṗ(t) = �R(p(t))T
�
R(p(t))p(t)� d2

�
�Qp(t)
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we can define an error system with

e =

"
�

q

#
=

"
O(G0, p0(t))p0(t)� d2

0

Ē(�)TPT p(t)

#

orbit error dynamics

"
˙̄�(t)
˙̄q(t)

#
= �

"
OO

T
OĒ0(�)

ĒT
0 (�)O

T ĒT (�)Ē(�)

#

| {z }
M

"
�̄(t)

q̄(t)

#

| {z }
e(t)

= �

" h
O 0

i

ĒT (�)PT

#""
O

T

0T

#
PĒ(�)

#"
�̄(t)

q̄(t)

#

| {z }
u(t)

.
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Theorem
Let p be the target formation satisfying conditions (i) and (ii) of the Symmetry-Forced
Formation Control Problem, and assume that (G,p) is a ⌧(�)-symmetric isostatic
framework. Then the origin is a locally exponentially stable equilibrium of the orbit
error dynamics.

proof sketch

• Define Lyapunov function V (e) = 1
2e

T e

• d
dtV (e) = �eTMe  0

• ⌧(�)-symmetric isostatic framework meansM is positive definite
• error converges exponentially fast to origin
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Theorem
The orbit rigidity control uses at most (1 + 1/|�|)|V| edges.

• can be significantly less than 2|V|� 3
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1

2

3

4

5

6

78

9

10

• graph has �� edges
• at least �� edges required for
infinitesimal rigidity

• flexible framework

1

2

3

4

5

6

78

9

10

• 2⇡/5 rotational symmetry
• can use only spanning tree
subgraph for each vertex orbit

• only � distances required

�
�

�

1

6

• quotient
gain graph
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• nice...but symmetries are defined with respect to a global origin
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idea: augment a virtual consensus dynamics

"
ṗ0(t)

ṗf (t)

#
=

2

4�O
T (G0, c0(t))

✓
O(G0, c0(t))c0(t)� d2

0

◆

0

3

5� PQPT

"
c0(t)

cf (t)

#

ṙ = �L(G)r

with c(t) = p(t)� r(t)

• Laplacian flow
r(t) 7! e�L(G)tr(0)

� when G is connected, r(t) 7! 1
n (

T
r(0))

• cascade structure
• same analysis idea
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Summary

• ⌧(�)-symmetric graphs captures symmetry of configurations and graphs
• symmetric formation potential used to design distributed control law with less
edges compared to “traditional” formation control strategies

• opportunities for more sophisticated motion coordination

Zelazo, Tanigawa and Shulze, Forced Symmetric Formation Control, arXiv ����.
Future Work

• formation maneuvering requires time-varying point group symmetries
• is it possible to distributedly decide on certain symmetries?
• can we eliminate need for requiring self-state in protocol?
• more?

Questions?
��


	fd@rm@0: 


