SYMMETRY-FORCED FORMATION CONTROL

Daniel Zelazo

with Shin-Ichi Tanigawa (University of Tokyo) and Bernd Shulze (Lancaster University)

Rigidity in Action April 7, 2024

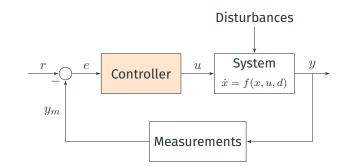
WHAT IS GOING ON?

- How do I autonomously control robots?
- How do I control networks of robots?
- What should I consider?
 - who talks to whom?
 - · who defines team mission?
 - how do sensors impact solutions?
 - • •

What is the correct mathematical language for studying the coordination of teams of autonomous systems?

- Control Theory
- Graph Theory
- Optimization Theory

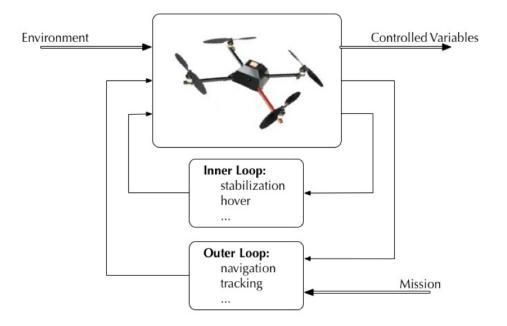
A CLASSIC CONTROL SYSTEM



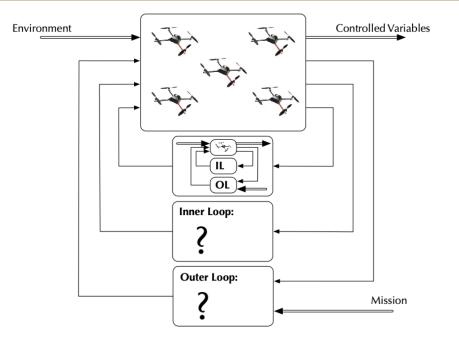
A control systems engineer aims to design a controller that ensures the closed-loop system

- is stable
- · satisfies some performance criteria

CONTROL ARCHITECTURES

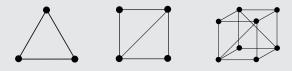


TOWARDS A MULTI-AGENT ARCHITECTURE



Formation Control Objective

Given a team of robots endowed with the ability to sense/communicate with neighboring robots, design a control for each robot using only local information that moves the team into a desired spatial configuration.



FORMATION CONSTRAINTS

- The desired formation is characterized by a set of M constraints, encoded in the function $F : \mathbb{R}^{nd} \to \mathbb{R}^{M}$, and a configuration \mathbf{p}^{\star} satisfying the constraints.
- The set of all feasible formations is

$$\mathcal{F}(p) = \{ p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^{\star}) \}$$

Formation Control Objective

For an ensemble of n agents with dynamics

$$\dot{p}_i = u_i,$$

with $p_i(t) \in \mathbb{R}^d$, an information exchange graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and formation constraint function $F : \mathbb{R}^{nd} \to \mathbb{R}^M$, design a distributed control law for each agent $i \in \{1, \ldots, n\}$ such that $\lim_{t \to \infty} p(t) \in \mathcal{F}(p),$

i.e., $\mathcal{F}(p)$ is asymptotically stable.

• Agents are represented by the nodes in a graph

 $i \in \mathcal{V} \mapsto x_i(t)$

• Dynamics of each agent

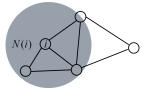
$$\dot{x}_i(t) = f(x_i(t), u_i(t))$$

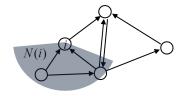
- Agent i acquires information from the set of its neighbors \mathcal{N}_i

$$\mathcal{I}_i(t) = \{ x_j(t) \mid j \in \mathcal{N}_i \cup \{i\} \}$$

• control $u_i(t)$ is distributed if

$$u_i(t) \equiv u_i(\mathcal{I}_i(t))$$





• Define a formation potential function

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

• distance errors on each edge of graph

• Define a formation potential function

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

- o distance errors on each edge of graph
- proposed control:

$$u_i = -\frac{\partial F_f(p)}{\partial p_i} = \sum_{ij \in \mathcal{E}} (\|p_i - p_j\|^2 - \mathbf{d}_{ij}^2)(p_j - p_i)$$

 $\circ~$ a distributed control!

Theorem - Distance Constrained Formation Control

[Krick 2009]

Consider the potential function

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

and assume the desired distances \mathbf{d}_{ij} correspond to a feasible formation. Then the gradient dynamical system

$$u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} \left(\|p_i - p_j\|^2 - \mathbf{d}_{ij}^2 \right) (p_j - p_i)$$

asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial F_f(p)}{\partial p} = 0$.

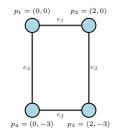
A NOTE ON FORMATION POTENTIALS AND RIGIDITY THEORY

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^{\star} \right)^2$$

formation potential can be written in terms of a rigidity function

$$F_f(p) = \frac{1}{2} \| r_{\mathcal{G}}(p) - r_{\mathcal{G}}(\mathbf{p}) \|^2$$

- $r_{\mathcal{G}}: p \mapsto \begin{bmatrix} \cdots & \frac{1}{2} \|p_i p_j\|^2 & \cdots \end{bmatrix}^T$: distances between neighbors $\mathbf{p}:$ a configuration satisfying distance constraints (i.e., $\|\mathbf{p}_i \mathbf{p}_j\|^2 = \mathbf{d}_{ij}^2$)



$$r_{\mathcal{G}}(p) = \begin{bmatrix} \|p_1 - p_2\|^2 \\ \|p_2 - p_3\|^2 \\ \|p_3 - p_4\|^2 \\ \|p_4 - p_1\|^2 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 4 \\ 9 \end{bmatrix}$$

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^{\star} \right)^2$$

• formation potential can be written in terms of a rigidity function

$$F_f(p) = \frac{1}{2} \| r_{\mathcal{G}}(p) - r_{\mathcal{G}}(\mathbf{p}) \|^2$$

• $r_{\mathcal{G}}: p \mapsto \begin{bmatrix} \cdots & \frac{1}{2} \|p_i - p_j\|^2 & \cdots \end{bmatrix}^T$: distances between neighbors

 $\circ~{f p}$: a configuration satisfying distance constraints (i.e., $\|{f p}_i-{f p}_j\|^2={f d}_{ij}^2)$

• rigidity theory looks for distance-preserving infinitesimal motions

$$\left(r_{\mathcal{G}}(p+\delta p) = r_{\mathcal{G}}(p) + \frac{\partial r_{\mathcal{G}}(p)}{\partial p}\delta p + \text{h.o.t}\right)$$

- infinitesimal motions satisfy $\frac{\partial r_{\mathcal{G}}(p)}{\partial p} \delta p = 0$
- the Rigidity matrix : $R(p) = \frac{\partial r_{\mathcal{G}}(p)}{\partial p} \in \mathbb{R}^{|\mathcal{E}| \times 2|\mathcal{V}|}$
- "rigid body" rotations and translations are always distance preserving: trivial motions
- \circ A framework (\mathcal{G}, p) is infinitesimally rigid if the only infinitesimal motions are trivial

our formation control

$$u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} \left(\|p_i - p_j\|^2 - \mathbf{d}_{ij}^2 \right) (p_j - p_i)$$

our formation control

$$u_i = -\nabla_{p_i} F_f(p) = \sum_{ij \in \mathcal{E}} (\|p_i - p_j\|^2 - \mathbf{d}_{ij}^2) (p_j - p_i)$$

can be expressed with rigidity matrix

$$u = -R^T(p)(R(p)p - \mathbf{d}^2)$$

our formation control

$$u_{i} = -\nabla_{p_{i}} F_{f}(p) = \sum_{ij \in \mathcal{E}} \left(\|p_{i} - p_{j}\|^{2} - \mathbf{d}_{ij}^{2} \right) \left(p_{j} - p_{i}\right)$$

can be expressed with rigidity matrix

$$u = -R^T(p)(R(p)p - \mathbf{d}^2)$$

a proof sketch

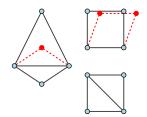
- define error dynamics for distance error: $e=R(p)p-\mathbf{d}^2$

 $\dot{e} = -R(p)R^T(p)e$

- Construct a Lyapunov function $V(e) = \frac{1}{2} ||e||^2$
- $\frac{d}{dt}V(e) = -e^T R(p) R(p)^T e \leq 0$
 - when $R(p)R^{T}(p) > 0$, we have (local) exponential convergence to desired formation
 - good frameworks are i) infinitesimally rigid, and ii) full row-rank (isostatic farmeworks)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

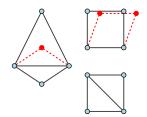


A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

$$\operatorname{rk} R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3$$
 (in \mathbb{R}^2)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network



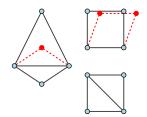
A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

$$\operatorname{rk} R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{(in } \mathbb{R}^2\text{)}$$

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

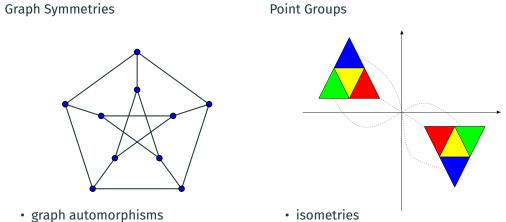


A widely accepted architectural requirement for distance constrained formation control is that isostatic frameworks are required. Equivalent to:

 $\operatorname{rk} R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \quad \text{(in } \mathbb{R}^2\text{)}$

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

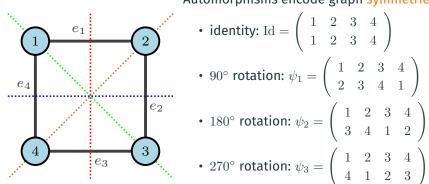
A: Impose additional symmetry constraints without requiring more information exchange (in fact, less!)



Graph Automorphism

An automorphism of the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$



Automorphisms encode graph symmetries

Automorphisms of a graph form a group - Aut(G)

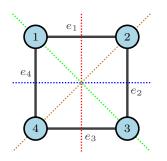
- Aut(\mathcal{G}) = {Id, $\psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6, \psi_7$ }

A subgroup is a subset of a group, and also satisfies all properties of a group

- $\{ \mathrm{Id}, \psi_1, \psi_2, \psi_3 \}$
- $\{ \mathrm{Id}, \psi_2, \psi_4, \psi_5 \}$
- $\{ Id, \psi_2 \}$
- $\{ Id, \psi_6 \}$
- $\{ \mathrm{Id}, \psi_7 \}$
- + Subgroups of $\operatorname{Aut}(\mathcal{G})$ define specific symmetries in $\mathcal G$
- for any subgroup $\Gamma \subseteq \operatorname{Aut}(\mathcal{G})$, we say that \mathcal{G} is Γ -symmetric

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and vertex $i \in \mathcal{V}$, the set $\Gamma_i = \{\gamma(i) \mid \gamma \in \Gamma\}$ is called the vertex orbit of *i*. Similarly, for an edge $e = ij \in \mathcal{E}$, the set $\Gamma_e = \{\gamma(i)\gamma(j) \mid \gamma \in \Gamma\}$ is termed the edge orbit of *e*.



Consider $\Gamma = { Id, \psi_2 }$ (ψ_2 is the 180° rotation)

• Vertex Orbit:

 $\Gamma_1 = \Gamma_3 = \{1, 3\}, \ \Gamma_2 = \Gamma_4 = \{2, 4\}$

vertices inside a vertex orbit are equivalent representative vertex set: $V_0 = \{1, 2\}$

• Edge Orbit:

$$\begin{split} &\Gamma_{e_1}=\Gamma_{e_3}=\{e_1,e_3\},\\ &\Gamma_{e_2}=\Gamma_{e_4}=\{e_2,e_4\}\\ &\text{representative edge set: } \mathcal{E}_0=\{e_1,e_2\} \end{split}$$

combine notions of graph symmetries with point groups

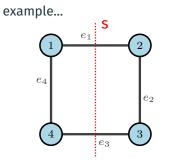
- let ${\mathcal G}$ be a $\Gamma\text{-symmetric graph}$
- + Γ also represented as a point group
 - a set of isometries that preserve symmetries
 - homomorphism $\tau: \Gamma \to O(\mathbb{R}^d)$
 - τ assigns an orthogonal matrix (describing an isometry of \mathbb{R}^d such as a rotation or reflection) to each element of Γ

Definition

A framework (\mathcal{G}, p) in \mathbb{R}^d is called $\tau(\Gamma)$ -symmetric if

 $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$.

$au(\Gamma)$ -SYMMETRIC FRAMEWORK

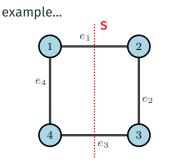


- consider $\Gamma = {\mathrm{Id}, \psi_4} \subseteq \mathrm{Aut}(\mathcal{G})$
- $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ \tau(\gamma) \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ b \end{bmatrix}$

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$.

• note: for a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) and for every $j \in \Gamma_i$, there is a $\gamma_j \in \Gamma$ such that $\tau(\gamma_j)p_j = p_i$ for all $j \in \Gamma_i$

$au(\Gamma)$ -SYMMETRIC FRAMEWORK



- consider $\Gamma = {\mathrm{Id}, \psi_4} \subseteq \mathrm{Aut}(\mathcal{G})$
- + $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ \tau(\gamma) \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ b \end{bmatrix}$

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$.

• note: for a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) and for every $j \in \Gamma_i$, there is a $\gamma_j \in \Gamma$ such that $\tau(\gamma_j)p_j = p_i$ for all $j \in \Gamma_i$

isometries of configuration p coincide with symmetries of the automorphisms of ${\mathcal{G}}$

- in $\tau(\Gamma)$ -symmetric frameworks, the configurations p are in a special geometric position (not necessarily generic)
- · symmetry can lead to unexpected infinitesimal flexibility/rigidity

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric if

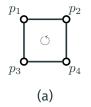
$$\tau(\gamma)(u_i) = u_{\gamma(i)}$$
 for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$.

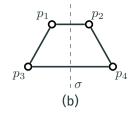
We say that (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

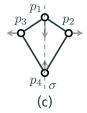
- recall that infinitesimal motions are in the kernel of the rigidity matrix

$$R(p)\delta p = 0$$

- we can find a subspace of the kernel that is isomorphic to the space of 'fully-symmetric' infinitesimal motions
- velocity assignments to the points of (\mathcal{G},p) that exhibit exactly the same symmetry as the configuration p







- C_{4v} -symmetric (and hence $\tau(\Gamma)$ -symmetric for any subgroup $\tau(\Gamma)$ of C_{4v})
- $\tau(\Gamma)$ -symmetric infinitesimally rigid

- C_s -symmetric (with respect to the reflection σ)
- $\tau(\Gamma)$ -symmetric infinitesimally rigid

- C_s -symmetric (with respect to the reflection σ) with a non-trivial C_s -symmetric infinitesimal motion
- $\tau(\Gamma)$ -symmetric infinitesimally flexible

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the Γ -symmetric sensing graph \mathcal{G} . Let $\mathbf{p} \in \mathbb{R}^{dn}$ be a configuration such that $(\mathcal{G}, \mathbf{p})$ is $\tau(\Gamma)$ -symmetric for some desired point group $\tau(\Gamma)$, and let \mathcal{V}_0 be a set of representatives of the vertex orbits of \mathcal{G} under Γ . Design a control $u_i(t)$ for each agent i such that

(i)
$$\lim_{t \to \infty} \|p_i(t) - p_j(t)\| = \|\mathbf{p}_i - \mathbf{p}_j\| = \mathbf{d}_{ij} \text{ for all } ij \in \mathcal{E};$$
 (distance constraints)
(ii)
$$\lim_{t \to \infty} \|p_u(t) - \tau(\gamma_{vu})p_v(t)\| = 0 \text{ for all } u, v \in \Gamma_i, i \in \mathcal{V}_0.$$
 (symmetry constraints)

• the formation potential

$$F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

• the formation potential

$$F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

• the symmetry potential

$$F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} \|p_u(t) - \tau(\gamma_{vu}) p_v(t)\|^2$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the formation potential

$$F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - \mathbf{d}_{ij}^2 \right)^2$$

• the symmetry potential

$$F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} \|p_u(t) - \tau(\gamma_{vu}) p_v(t)\|^2$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

 $F(p(t)) = F_f(p(t)) + F_s(p(t))$

• propose the gradient control

$$u(t) = -\nabla F(p(t))$$

• propose the gradient control

$$u(t) = -\nabla F(p(t))$$

closed-loop dynamics

$$\dot{p}(t) = -R(p(t))^T \left(R(p(t))p(t) - \mathbf{d}^2 \right) - Qp(t)$$

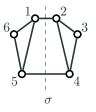
where Q is symmetric and a block-diagonal matrix with

$$[Q_i]_{uv} = \begin{cases} d_{\Gamma_i}(u)I, & u = v, \, u \in \Gamma_i & \bullet Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ -\tau(\gamma_{uv}), & uv \in \mathcal{E}, u, v \in \Gamma_i \\ 0, & \bullet Q_i \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ \bullet [Q]_{uv} \in O(\mathbb{R}^d) \text{ (orthogonal group)} \\ \bullet \tau(\gamma_{uv})^{-1} = \tau(\gamma_{uv})^T \end{cases}$$

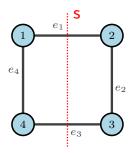
- Q_i has a decomposition $Q_i = E(\Gamma_i)E(\Gamma_i)^T$
- $\circ \ Q = \bar{E}(\Gamma)\bar{E}(\Gamma)^T$

 $\circ~$ any p in a symmetric position satisfies Qp=0

- symmetric formation potential makes no assumption on relation between the graph ${\cal G}$ and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as $\ensuremath{\mathcal{G}}$



- symmetric formation potential makes no assumption on relation between the graph ${\cal G}$ and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as ${\cal G}$



• $\Gamma = {\mathrm{Id}, \psi_4} \subseteq \mathrm{Aut}(\mathcal{G})$

•
$$\Gamma_1 = \Gamma_2 = \{1, 2\}, \ \Gamma_3 = \Gamma_4 = \{3, 4\}$$

- $\mathcal{V}_0 = \{1, 4\}$
- isometry $\tau(\gamma) : (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$ and for each $i \in \mathcal{V}_0$ and $j \in \Gamma_i \setminus \{i\}$, the edge ij is in \mathcal{E} (i.e. $\mathcal{G}(\Gamma_i)$ is connected) • propose the gradient control

$$u(t) = -\nabla F(p(t))$$

• closed-loop dynamics

$$\dot{p}(t) = -R(p(t))^T \left(R(p(t))p(t) - \mathbf{d}^2 \right) - Qp(t)$$

• dynamics at for each agent

$$\dot{p}_{i}(t) = \sum_{ij \in \mathcal{E}} (\|p_{i}(t) - p_{j}(t)\|^{2} - \mathbf{d}_{ij}^{2})(p_{j}(t) - p_{i}(t)) + \sum_{\substack{ij \in \mathcal{E}\\i,j \in \Gamma_{u}}} (\tau(\gamma_{ij})p_{j}(t) - p_{i}(t))$$

Theorem

[Z, Shulze, Tanigawa '23]

Consider a team of n integrator agents interacting over a Γ -symmetric graph G satisfying Assumption 1 that can be drawn with maximum point group symmetry S in \mathbb{R}^d , and let

$$\mathcal{F}_f = \{ p \in \mathbb{R}^{dn} \mid \|p_i - p_j\| = \mathbf{d}_{ij} \ ij \in \mathcal{E} \}, \text{ and } \mathcal{F}_s = \{ p \in \mathbb{R}^{dn} \mid \tau(\gamma)(p_i) = p_{\gamma(i)} \ \forall \gamma \in \Gamma, \ i \in \mathcal{V} \}.$$

Then for initial conditions $p_i(0)$ satisfying

$$\sum_{ij\in\mathcal{E}} (\|p_i(0) - p_j(0)\| - \mathbf{d}_{ij})^2 \le \epsilon_1, \text{ and } \|p_i(0) - \tau(\gamma_{ij})p_j(0)\|^2 \le \epsilon_2$$

for all $i, j \in \Gamma_u$ and $u \in \mathcal{V}_0$, for a sufficiently small and positive constant ϵ_1 and ϵ_2 , the control

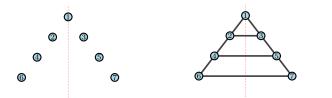
 $u = -\nabla F(p(t)),$

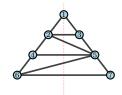
renders the set $\mathcal{F}_f \cap \mathcal{F}_s$ exponentially stable, i.e.

$$\lim_{t\to\infty} \|p_i(t) - p_j(t)\| = \mathbf{d}_{ij} \text{ and } \lim_{t\to\infty} \tau(\gamma)(p_i(t)) = \lim_{t\to\infty} p_{\gamma(i)}(t) \quad \text{for all } \gamma \in \Gamma, i \in \mathcal{V}.$$

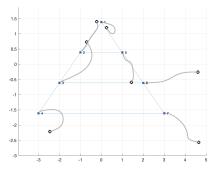
EXAMPLE: THE VIC FORMATION

- formation flight for aircraft originated in WWI
- Vic formation used by pilots to improve visual communication and defensive advantages

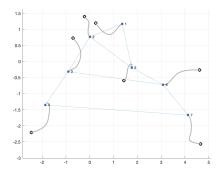




Vic formation with symmetryFlexible framework (9 edges; Minimally Rigid framework
mirrorMinimally Rigid framework
(11 edges)



- symmetry constraints force agents to correct formation
- requires less agent communication than standard formation control with MIR requirement



• with flexible framework and only formation potential can not guarantee convergence to correct shape • proposed strategy does not take advantage of the full power of symmetry

- proposed strategy does not take advantage of the full power of symmetry
- can we find redundant information between the symmetry constraints and the distance constraints?

Definition

An infinitesimal motion u of a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric if

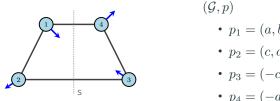
$$\tau(\gamma)(u_i) = u_{\gamma(i)} \quad \text{for all } \gamma \in \Gamma \text{ and all } i \in \mathcal{V}.$$
 (1)

We say that (\mathcal{G}, p) is $\tau(\Gamma)$ -symmetric infinitesimally rigid if every $\tau(\Gamma)$ -symmetric infinitesimal motion is trivial.

infinitesimal motions can also be studied in this framework

•
$$\tau(\gamma)(u_i) = u_{\gamma(i)}$$

• understanding symmetry structure means we only need to find infinitesimal motion for one representative vertex in each vertex orbit



• $p_1 = (a, b)^T$ • $p_2 = (c, d)^T$ • $p_3 = (-c, d)^T$ • $p_4 = (-a, b)^T$

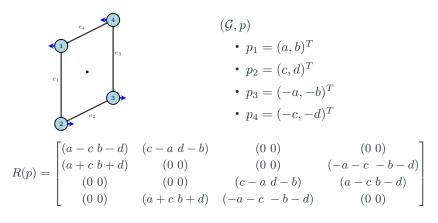
Rigidity matrix

$$R(p) = \begin{bmatrix} (a-c \ b-d) & (c-a \ d-b) & (0 \ 0) & (0 \ 0) \\ (2a \ 0) & (0 \ 0) & (0 \ 0) & (-2a \ 0) \\ (0 \ 0) & (2c \ 0) & (-2c \ 0) & (0 \ 0) \\ (0 \ 0) & (0 \ 0) & (a-c \ d-b) & (c-a \ b-d) \end{bmatrix}$$

- · 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(1 - 1 - 1 \frac{2(c-a)+b-d}{d-b} - 1 - \frac{2(c-a)+b-d}{d-b} 1 1)^T$ flex is not symmetric with respect to s

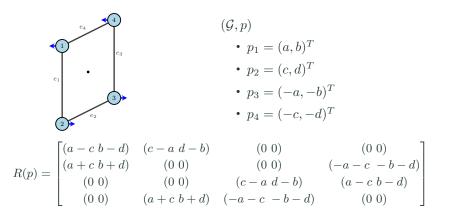
EXAMPLE



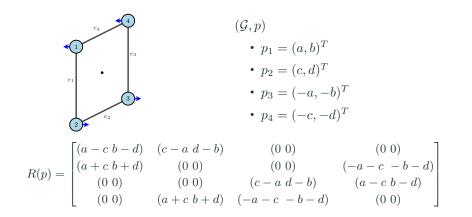
- 4-dimensional kernel flexible framework
- 3 trivial motions

1-dimensional flex spanned by $(-1 \ 0 \ \frac{cd-ab}{ad-bc} \ \frac{a^2-c^2}{ad-bc} \ 1 \ 0 \ - \frac{cd-ab}{ad-bc} \ - \frac{a^2-c^2}{ad-bc})^T$ flex is symmetric with respect to 180° rotation (C_2)

EXAMPLE



- 180° rotation of points corresponds to $\psi_2 \in \operatorname{Aut}(\mathcal{G})$
- recall: vertex orbits : $\{1,3\}$, $\{2,4\}$, edge orbits: $\{e_1, e_3\}$, $\{e_2, e_4\}$



symmetries make certain rows and columns of the rigidity matrix redundant

symmetries make certain rows and columns of the rigidity matrix redundant

$$R(p) = \begin{pmatrix} e_1 \\ e_4 \\ \psi_2(e_1) \\ \psi_2(e_4) \end{pmatrix} \begin{pmatrix} (a-c\ b-d) & (c-a\ d-b) & (0\ 0) & (0\ 0) \\ (a+c\ b+d) & (0\ 0) & (0\ 0) & (-a-c\ -b-d) \\ (0\ 0) & (0\ 0) & (c-a\ d-b) & (a-c\ b-d) \\ (0\ 0) & (a+c\ b+c) & (-a-c\ -b-d) & (0\ 0) \end{pmatrix}$$

symmetries make certain rows and columns of the rigidity matrix redundant

$$R(p) = \begin{pmatrix} e_1 \\ e_4 \\ \psi_2(e_1) \\ \psi_2(e_4) \end{pmatrix} \begin{pmatrix} (a-c\ b-d) & (c-a\ d-b) & (0\ 0) & (0\ 0) \\ (a+c\ b+d) & (0\ 0) & (0\ 0) & (-a-c\ -b-d) \\ (0\ 0) & (0\ 0) & (c-a\ d-b) & (a-c\ b-d) \\ (0\ 0) & (a+c\ b+c) & (-a-c\ -b-d) & (0\ 0) \end{pmatrix}$$

Orbit Rigidity Matrix

$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ e_1 & (p_1 - p_2)^T & (p_2 - p_1)^T \\ (p_1 - \psi_2(p_2))^T & (p_2 - \psi_2^{-1}(p_1))^T \end{pmatrix} = \begin{pmatrix} (a - c, b - d) & (c - a, d - b) \\ (a + c, b + d)) & (c + a, d + b) \end{pmatrix}$$

- + 2 rows one for each representative of edge orbits under action of ψ_2
- 4 columns nodes p_1, p_2 each have two dof; nodes $p_3 = \psi_2(p_1)$ and $p_4 = \psi_2(p_2)$ are uniquely determined by the symmetries

- relation between vertices within vertex orbits and between vertex orbits (through edge orbits) captured by quotient gain graph of a Γ -symmetric graph
 - node set is representative vertex set \mathcal{V}_0
 - edge set is representative edge set \mathcal{E}_0 : choose edge of form $i\gamma(j)$ with $i, j \in \mathcal{V}_0$

```
it is ok for i = j
```

edges are directed with 'edge gain' being the group action $\gamma \in \Gamma$

- $\Gamma = { \mathrm{Id}, \psi_1 }$ (rotation)
- $\Gamma_i = \{1, 2, 3, 4\}$
- $\mathcal{V}_0 = \{1\}, \mathcal{E}_0 = \{e_1\}$

10



• $\Gamma = { \mathrm{Id}, \psi_4 }$ (reflection)

•
$$\Gamma_{1,2} = \{1,2\}, \Gamma_{3,4} = \{3,4\}$$

•
$$\mathcal{V}_0 = \{1, 3\}$$
,
 $\mathcal{E}_0 = \{12, 13, 24\}$

• $\Gamma = { \mathrm{Id}, \psi_6 }$ (reflection)

•
$$\Gamma_1 = \{1\}$$
, $\Gamma_4 = \{4\}$,
 $\Gamma_{2,3} = \{2,3\}$

•
$$\mathcal{V}_0 = \{1, 3, 4\}, \mathcal{E}_0 = \{13, 14\}$$

Definition [Shulze 2011]

The orbit rigidity matrix $\mathcal{O}(\mathcal{G}_0, \bar{p})$ of (\mathcal{G}, p) is the $|\mathcal{E}_0| \times d|\mathcal{V}_0|$ matrix defined as follows. The row corresponding to an edge $((i, j); \gamma)$, where $i \neq j$, has the form:

$$\begin{pmatrix} 0\cdots 0 & (\bar{p}_i - \tau(\gamma)\bar{p}_j)^T & 0\cdots 0 & (\bar{p}_j - \tau(\gamma)^{-1}\bar{p}_i)^T & 0\cdots 0 \end{pmatrix}$$

with the *d*-dimensional entries $(\bar{p}_i - \tau(\gamma)\bar{p}_j)^T$ and $(\bar{p}_j - \tau(\gamma)^{-1}\bar{p}_i)^T$ being in the columns corresponding to vertex *i* and *j*, respectively. The row corresponding to a loop $((i, i); \gamma)$ has the form:

$$\left(\begin{array}{ccc} 0\cdots 0 & (2\bar{p}_i - \tau(\gamma)\bar{p}_i - \tau(\gamma)^{-1}\bar{p}_i)^T & 0\cdots 0 \end{array}\right),$$

with the *d*-dimensional entry $(2\bar{p}_i - \tau(\gamma)\bar{p}_i - \tau(\gamma)^{-1}\bar{p}_i)^T$ being in the columns corresponding to vertex *i*.

Theorem [Shulze 2011]

Let (\mathcal{G}, p) be a $\tau(\Gamma)$ -symmetric framework with orbit rigidity matrix $\mathcal{O}(\mathcal{G}_0, \bar{p})$. Then,

- (i) the kernel of $\mathcal{O}(\mathcal{G}_0, \bar{p})$ is isomorphic to the space of $\tau(\Gamma)$ -symmetric infinitesimal motions of (\mathcal{G}, p) , and
- (ii) the cokernel of $\mathcal{O}(\mathcal{G}_0, \bar{p})$ is isomorphic to the space of $\tau(\Gamma)$ -symmetric self-stresses of (\mathcal{G}, p) .
 - Orbit rigidity matrix can be used to identify symmetric infinitesimal flexes
 - full-rank $\mathcal{O}(\mathcal{G}_0,\bar{p})$ implies none exist
 - size of $\mathcal{O}(\mathcal{G}_0,\bar{p})$ does not depend on p, but only the graph and symmetry constraints
 - + $\tau(\Gamma)$ -isostatic frameworks have orbit rigidity matrices with full row-rank

key point: quotient gain graph and orbit rigidity matrix suggests a further way to exploit symmetry in formation control

- · representative edges used to maintain distances
- · symmetry within vertex orbits have no need for distance constraints

A MODIFIED FORMATION POTENTIAL

• the representative edge formation potential

$$F_{e}(p(t)) = \frac{1}{4} \sum_{e=ij \in \mathcal{E}_{0}} \left(\|p_{i} - \tau(\gamma)p_{j}\|^{2} - \mathbf{d}_{i\gamma(j)}^{2} \right)^{2}$$

 $\circ \ \gamma$ is label of edge in quotient gain graph

A MODIFIED FORMATION POTENTIAL

• the representative edge formation potential

$$F_{e}(p(t)) = \frac{1}{4} \sum_{e=ij \in \mathcal{E}_{0}} \left(\|p_{i} - \tau(\gamma)p_{j}\|^{2} - \mathbf{d}_{i\gamma(j)}^{2} \right)^{2}$$

- $\circ \ \gamma$ is label of edge in quotient gain graph
- the symmetry potential

$$F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u,v \in \Gamma_i \\ uv \in \mathcal{E}}} \|p_u(t) - \tau(\gamma_{vu})p_v(t)\|^2$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

A MODIFIED FORMATION POTENTIAL

· the representative edge formation potential

$$F_{e}(p(t)) = \frac{1}{4} \sum_{e=ij \in \mathcal{E}_{0}} \left(\|p_{i} - \tau(\gamma)p_{j}\|^{2} - \mathbf{d}_{i\gamma(j)}^{2} \right)^{2}$$

- $\circ \ \gamma$ is label of edge in quotient gain graph
- the symmetry potential

$$F_s(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_0} \sum_{\substack{u, v \in \Gamma_i \\ uv \in \mathcal{E}}} \|p_u(t) - \tau(\gamma_{vu})p_v(t)\|^2$$

Assumption 1

The sub-graph induced by each vertex orbit Γ_i is connected.

• the symmetric formation potential

$$F(p(t)) = F_e(p(t)) + F_s(p(t))$$

• node relabeling - representative vertices first

$$\tilde{p} = Pp = \begin{bmatrix} p_o^T & p_f^T \end{bmatrix}^T$$

• propose the gradient control

$$u(t) = -\nabla F(p(t))$$

Then the control for each agent $i \in \mathcal{V}_0$ can be expressed as

$$u_i(t) = u_i^{(a)}(t) + u_i^{(b)}(t) + u_i^{(c)}(t),$$

where

$$u_i^{(a)}(t) = \sum_{\substack{i\gamma(j)\in\mathcal{E}_0\\j\in\mathcal{V}_0,\,i\neq j}} (\|p_i(t)-\tau(\gamma)p_j(t)\|^2 - \mathbf{d}_{ij}^2)(\tau(\gamma)p_j(t)-p_i(t))$$
$$u_i^{(b)}(t) = \sum_{i\gamma(i)\in\mathcal{E}_0} (\|(I-\tau(\gamma))p_i\|^2 - \mathbf{d}_{i\gamma(i)}^2)(2I-\tau(\gamma)-\tau(\gamma)^{-1})p_i$$
$$u_i^{(c)}(t) = \sum_{ij\in\mathcal{E}(\Gamma_i)} (\tau(\gamma_{ij})p_j(t)-p_i(t)).$$

The control for the agents in $\mathcal{V} \setminus \mathcal{V}_0$ is simply

$$u_i(t) = \sum_{ij \in \mathcal{E}(\Gamma_u)} (\tau(\gamma_{ij}) p_j(t) - p_i(t)),$$

for each $u \in \mathcal{V}_0$.

in state-space form

$$\begin{bmatrix} \dot{p}_0(t) \\ \dot{p}_f(t) \end{bmatrix} = \begin{bmatrix} -\mathcal{O}^T(\mathcal{G}_0, p_0(t)) \begin{pmatrix} \mathcal{O}(\mathcal{G}_0, p_0(t)) p_0(t) - \mathbf{d}_0^2 \\ 0 \end{bmatrix} - PQP^T \begin{bmatrix} p_0(t) \\ p_f(t) \end{bmatrix}$$

recall our earlier idea

$$\dot{p}(t) = -R(p(t))^T \left(R(p(t))p(t) - \mathbf{d}^2 \right) - Qp(t)$$

we can define an error system with

$$e = \begin{bmatrix} \sigma \\ q \end{bmatrix} = \begin{bmatrix} \mathcal{O}(\mathcal{G}_0, p_0(t))p_0(t) - \mathbf{d}_0^2 \\ \bar{E}(\Gamma)^T P^T p(t) \end{bmatrix}$$

orbit error dynamics

$$\begin{bmatrix} \dot{\bar{\sigma}}(t) \\ \dot{\bar{q}}(t) \end{bmatrix} = -\underbrace{\begin{bmatrix} \mathcal{O}\mathcal{O}^T & \mathcal{O}\bar{E}_0(\Gamma) \\ \bar{E}_0^T(\Gamma)\mathcal{O}^T & \bar{E}^T(\Gamma)\bar{E}(\Gamma) \end{bmatrix}}_{\mathcal{M}} \underbrace{\begin{bmatrix} \bar{\sigma}(t) \\ \bar{q}(t) \end{bmatrix}}_{e(t)}$$

$$= -\begin{bmatrix} \begin{bmatrix} \mathcal{O} & 0 \\ \bar{E}^T(\Gamma)P^T \end{bmatrix} \underbrace{\begin{bmatrix} \mathcal{O}^T \\ 0^T \end{bmatrix} P\bar{E}(\Gamma) \end{bmatrix} \begin{bmatrix} \bar{\sigma}(t) \\ \bar{q}(t) \end{bmatrix}}_{u(t)}.$$

Theorem

Let \mathbf{p} be the target formation satisfying conditions (i) and (ii) of the Symmetry-Forced Formation Control Problem, and assume that $(\mathcal{G}, \mathbf{p})$ is a $\tau(\Gamma)$ -symmetric isostatic framework. Then the origin is a locally exponentially stable equilibrium of the orbit error dynamics.

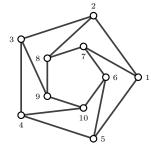
proof sketch

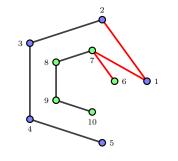
- Define Lyapunov function $V(e) = \frac{1}{2}e^T e$
- $\frac{d}{dt}V(e) = -e^T \mathcal{M}e \le 0$
 - + $\tau(\Gamma)\text{-symmetric}$ isostatic framework means $\mathcal M$ is positive definite
 - error converges exponentially fast to origin

Theorem

The orbit rigidity control uses at most $(1 + 1/|\Gamma|)|\mathcal{V}|$ edges.

- can be significantly less than $2|\mathcal{V}| - 3$

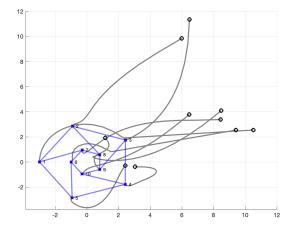




 quotient gain graph

- graph has 15 edges
- at least 17 edges required for infinitesimal rigidity
- flexible framework

- $2\pi/5$ rotational symmetry
- can use only spanning tree subgraph for each vertex orbit
- only 3 distances required



• nice...but symmetries are defined with respect to a global origin

idea: augment a virtual consensus dynamics

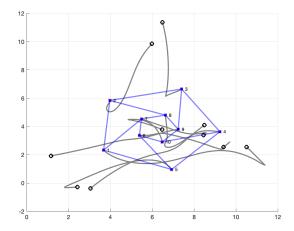
$$\begin{bmatrix} \dot{p}_0(t) \\ \dot{p}_f(t) \end{bmatrix} = \begin{bmatrix} -\mathcal{O}^T(\mathcal{G}_0, c_0(t)) \left(\mathcal{O}(\mathcal{G}_0, c_0(t)) c_0(t) - \mathbf{d}_0^2 \right) \\ 0 \end{bmatrix} - PQP^T \begin{bmatrix} c_0(t) \\ c_f(t) \end{bmatrix}$$
$$\dot{r} = -L(\mathcal{G})r$$

with c(t) = p(t) - r(t)

• Laplacian flow

$$r(t) \mapsto e^{-L(\mathcal{G})t} r(0)$$

- when \mathcal{G} is connected, $r(t) \mapsto \frac{1}{n}(\mathbb{1}^T r(0))\mathbb{1}$
- cascade structure
- same analysis idea



CONCLUDING REMARKS

Summary

- + $\tau(\Gamma)$ -symmetric graphs captures symmetry of configurations and graphs
- symmetric formation potential used to design distributed control law with less edges compared to "traditional" formation control strategies
- · opportunities for more sophisticated motion coordination

Zelazo, Tanigawa and Shulze, Forced Symmetric Formation Control, arXiv 2024.

Future Work

- formation maneuvering requires time-varying point group symmetries
- is it possible to distributedly decide on certain symmetries?
- can we eliminate need for requiring self-state in protocol?
- more?

Questions?