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Networked Dynamic Systems
What about robustness?

�

what is the right way to approach 
robustness of networked dynamic systems?
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Synchronization and the Laplacian

x(t) = e�L(G)tx0
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x(t) = � , L(G) has only one eigenvalue at the origin
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Synchronization and the Laplacian
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from the structure of the graph? G
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The Uncertain Consensus Protocol
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Proof: Define the transformation matrices

S =
⇥

EF NF

⇤
, S�1 =


Le(F)�1ET

F

NT
F

�
,

where IM[NF ] = span[N [ET
F ]]. It is straightforward to verify that the matrix in (1) equals S�1L(G)S.

The matrix Le(F)R(F,C)WRT
(F,C) := Less(F) is referred to as the essential edge Laplacian [13] (for a connected

graph with spanning tree T , we write Less(T )). For a more in depth discussion on the matrices R(F,C) and T(F,C),
please see [12], [13]. Note also that the matrix Le(F)�1ET

F is the left-inverse of EF ; we denote this matrix as EL
F .

Proposition II.1 immediately leads to the following results on the signature of the weighted Laplacian, the weighted
edge Laplacian, and the essential edge Laplacian.2

Theorem II.2 ( [14]) Assume G has c connected components and s(L(G)) = (n+, n�, n0). Then s(Less(F)) =
(n+, n�, n0 � c). Furthermore, Less(F) has the same signature as the matrix R(F,C)WRT

(F,C).

Proof: Using the similarity transformation matrix Le(F)
1
2 we have that Le(F)R(F,C)WRT

(F,C) is similar to
Le(F)

1
2 R(F,C)WRT

(F,C)Le(F)
1
2 . This matrix is congruent to R(F,C)WRT

(F,C) and thus has the same signature as
Le(F)R(F,C)WRT

(F,C).
An immediate corollary of Theorem II.2 is that the if s(L(G)) = (n+, n�, n0) and G has c connected components,

then s(R(F,C)WRT
(F,C)) = (n+, n�, n0 � c).

The matrix R(F,C)WRT
(F,C) turns out to be closely related to many combinatorial properties of a graph. For

example, the rows of the matrix R(F,C) form a basis for the cut-space of the graph [17]. This matrix is also
intimately related to the notion of effective resistance of a graph, which will be discussed in Section IV. Theorem
II.2 thus shows that studying the definiteness of the weighted Laplacian can be reduced to studying the matrix
R(F,C)WRT

(F,C) which contains in a more explicit way information on how both the location and magnitude of
negative weight edges influence it spectral properties. This theme will be periodically revisited throughout this
work.

III. CONSENSUS AND THE EDGE AGREEMENT

In this work we consider the linear weighted consensus protocol [1] in the presence of exogenous finite-energy
disturbances. The consensus dynamics over the graph G = (V, E , W) can thus be expressed as

⌃(G) :

⇢
ẋ(t) = �L(G)x(t) + w(t)
z(t) = E(Go)T x(t)

. (2)

Here, w(t) =
⇥

w1(t) · · · wn(t)
⇤T

2 L
n
2 [0, 1) is a finite-energy exogenous disturbance entering each agent in

the system. The performance of the system is measured in terms of the energy of the vector z(t) 2 R|Eo| capturing
the relative states over a set of edges determined by the unweighted graph Go = (V, Eo).3 For the remainder of this
section we assume that L(G) is positive semi-defininte.

With this model we can consider how finite energy disturbances affect the asymptotic deviation a subset of the
states to an agreement value. This can formally be analyzed by considering the L2-induced gain of the system,
i.e., its H1 performance, k⌃(G)k1 [12]. It is a well-established result that if the graph G is connected and all
the weights are positive, then (2) reaches consensus, i.e., limt!1 z(t) = 0, for any output graph Go. Therefore,
z(t) 2 L

|Eo|
2 [0, 1) and k⌃(G)k1 is finite. However, this is not the case if L(G) has multiple eigenvalues at the

origin. Indeed, if G is disconnected and E(Go) = G,4 then z(t) is not a finite-energy signal. On the other hand, for
the same example and choosing Go ✓ G it can be verified that z(t) 2 L

|Eo|
2 [0, 1) (since each component of the

graph will reach consensus).

2We use a slight abuse of terminology by referring to the signature of Less(F) since it is not, in general, a symmetric matrix. However, it
is straight forward to show that Less(F) is similar to a symmetric matrix, and thus the meaning of s(Less(F)) is clear in this context.

3Note that Go need not have any dependence on G.
4The notation G denotes the complement of the graph G.

the nominal consensus protocol

- assume finite-energy disturbances
w(t) 2 Ln

2 [0, 1)

- controlled variable are relative states 
over any graph of interest

additive uncertainty in the edge weights

⌃(G,�) :

⇢
ẋ(t) = �E(G)(W +�)E(G)Tx(t) + w(t)
z(t) = E(Go)Tx(t)

Nevertheless, we would like to examine some notion of performance of (2) for any choice of output graph Go.
In this direction, we can define a coordinate transformation for (2), x̃(t) = S�1x(t), with

S =
⇥

(EL
F )T NF

⇤
, S�1 =


ET

F

NT
F

�
,

where IM[NF ] = span{N [ET
F ]}. Thus, the state vector x̃(t) can be partitioned into two components as x̃(t) =⇥

xF(t)T xT
a (t)

⇤T , where xF(t) = ET
F x(t) are the relative states over the edges forming the spanning forrest

of G, and xa(t) = NT
F x(t) correspond to modes in the direction of the all-ones vector across each component of

G. Applying this transformation to (2) leads to the following system,


ẋF(t)
ẋa(t)

�
=


�Less(F) 0

0 0

� 
xF(t)
xa(t)

�
+ S�1w(t)

z(t) = E(Go)
T
⇥

(EL
F )T NF

⇤  xF(t)
xa(t)

�
. (3)

In the new coordinate system, it is now straightforward to show that limt!1 z(t) = E(Go)T NFxa(0) and
furthermore that E(Go)T (EL

F )T xF(t) 2 L
|EF |
2 [0, 1). We can now consider the following truncated system,

⌃F(G) :

⇢
ẋF(t) = �Less(F)xF(t) + ET

F w(t)
zF(t) = E(Go)T (EL

F )T xF(t)
. (4)

We term the system ⌃F(G) the edge agreement protocol over the spanning forrest F ✓ G. The above transformation
holds also when G is connected and F = T is a spanning tree. In this case, the system ⌃T (G) is identical to the
edge agreement problem considered in [12], [13]. It is also verifiable that the system ⌃F(G) is minimal.When
F = T is a spanning tree, then ⌃F(G) is a minimal realization of ⌃(G).

A. The Uncertain Edge Agreement Protocol
We now introduce a notion of uncertainty into the edge agreement protocols. First we examine an uncertainty

model where it is assumed that the exact weights of a subset of edges are an uncertain but bounded perturbation
about some nominal value. In this direction, let E� ✓ E denote the set of uncertain edges. The nominal edge weight
for an edge k 2 E� is determined by the weight function W; i.e., the nominal weight of edge k is W(k) = wk.
The uncertainty of the weight on edge k is modeled as an additive perturbation to the nominal edge weight as
wk + �k with |�k|  � for some finite positive scalar �. Thus, we can define the uncertainty set as

� = {� : � = diag{�1, . . . , �|E�|}, k�k  �}.

In this way, we can consider the uncertain edge agreement protocol as

⌃F(G, �) : (5)⇢
ẋF = �Le(F)R(F,C)

�
W + P�PT

�
RT

(F,C)xF + ET
F w(t)

z = E(Go)T (EL
F )T xF

.

for � 2 �. In this form we see that the uncertainty is a structured additive uncertainty. The matrix P 2 R|E|⇥|E�|

is a {0, 1}-matrix used to select the uncertain edges with [P ]ij = 1 if ei 2 E \ E�, and [P ]ij = 0 otherwise (i.e.,
E(G)P = E(G�) with G� = (V, E�)). This setup is visualized by the two-port block diagram in Figure 1.

We also consider the consensus protocol with non-linear couplings. By introducing appropriate assumptions on
the non-linear couplings we are able to cast the problem as an uncertain agreement protocol in the form of Figure
1. In this direction, the non-linear consensus protocol has the form

ẋ(t) = �L(G)x(t) � E(G�)�
�
E(G�)T x(t)

�
+ w(t)

z(t) = E(Go)
T x(t).

As before, we assume E� ✓ E . The non-linear vector function � : R|E�|
! R|E�| is assumed to be decoupled, that

is �(y) =
⇥

�1(y1) · · · �|E�|(y|E�|)
⇤T . Furthermore, we assume that the nonlinear functions �i(·) belong to

the sector [↵i, �i]; that is ↵iu2
i  ui�i(yi)  �iu2

i for all ui 2 R and ↵i < �i both real numbers.
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,
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graph with spanning tree T , we write Less(T )). For a more in depth discussion on the matrices R(F,C) and T(F,C),
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F is the left-inverse of EF ; we denote this matrix as EL
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Proposition II.1 immediately leads to the following results on the signature of the weighted Laplacian, the weighted
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(n+, n�, n0 � c). Furthermore, Less(F) has the same signature as the matrix R(F,C)WRT

(F,C).

Proof: Using the similarity transformation matrix Le(F)
1
2 we have that Le(F)R(F,C)WRT

(F,C) is similar to
Le(F)

1
2 R(F,C)WRT

(F,C)Le(F)
1
2 . This matrix is congruent to R(F,C)WRT

(F,C) and thus has the same signature as
Le(F)R(F,C)WRT

(F,C).
An immediate corollary of Theorem II.2 is that the if s(L(G)) = (n+, n�, n0) and G has c connected components,

then s(R(F,C)WRT
(F,C)) = (n+, n�, n0 � c).

The matrix R(F,C)WRT
(F,C) turns out to be closely related to many combinatorial properties of a graph. For

example, the rows of the matrix R(F,C) form a basis for the cut-space of the graph [17]. This matrix is also
intimately related to the notion of effective resistance of a graph, which will be discussed in Section IV. Theorem
II.2 thus shows that studying the definiteness of the weighted Laplacian can be reduced to studying the matrix
R(F,C)WRT

(F,C) which contains in a more explicit way information on how both the location and magnitude of
negative weight edges influence it spectral properties. This theme will be periodically revisited throughout this
work.

III. CONSENSUS AND THE EDGE AGREEMENT

In this work we consider the linear weighted consensus protocol [1] in the presence of exogenous finite-energy
disturbances. The consensus dynamics over the graph G = (V, E , W) can thus be expressed as

⌃(G) :

⇢
ẋ(t) = �L(G)x(t) + w(t)
z(t) = E(Go)T x(t)

. (2)

Here, w(t) =
⇥

w1(t) · · · wn(t)
⇤T

2 L
n
2 [0, 1) is a finite-energy exogenous disturbance entering each agent in

the system. The performance of the system is measured in terms of the energy of the vector z(t) 2 R|Eo| capturing
the relative states over a set of edges determined by the unweighted graph Go = (V, Eo).3 For the remainder of this
section we assume that L(G) is positive semi-defininte.

With this model we can consider how finite energy disturbances affect the asymptotic deviation a subset of the
states to an agreement value. This can formally be analyzed by considering the L2-induced gain of the system,
i.e., its H1 performance, k⌃(G)k1 [12]. It is a well-established result that if the graph G is connected and all
the weights are positive, then (2) reaches consensus, i.e., limt!1 z(t) = 0, for any output graph Go. Therefore,
z(t) 2 L

|Eo|
2 [0, 1) and k⌃(G)k1 is finite. However, this is not the case if L(G) has multiple eigenvalues at the

origin. Indeed, if G is disconnected and E(Go) = G,4 then z(t) is not a finite-energy signal. On the other hand, for
the same example and choosing Go ✓ G it can be verified that z(t) 2 L

|Eo|
2 [0, 1) (since each component of the

graph will reach consensus).

2We use a slight abuse of terminology by referring to the signature of Less(F) since it is not, in general, a symmetric matrix. However, it
is straight forward to show that Less(F) is similar to a symmetric matrix, and thus the meaning of s(Less(F)) is clear in this context.

3Note that Go need not have any dependence on G.
4The notation G denotes the complement of the graph G.

the nominal consensus protocol

- assume finite-energy disturbances
w(t) 2 Ln

2 [0, 1)

- controlled variable are relative states 
over any graph of interest

sector-bounded non-linearities in the edge weights

⌃(G,�) :
⇢

ẋ(t) = �L(G)x(t)� E(G�)�
�
E(G�)Tx(t)

�
+w(t)

z(t) = E(Go)Tx(t)

�(y) = [�1(y1) · · · �|E�|(y|E�|)] ↵iu
2
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A graph as the union of a spanning  
tree and edges that complete cycles

Spanning Trees and Cycles

a spanning tree
remaining edges 

“complete cycles”

T [ C

Weighted Edge Laplacian

L(G) Le(G)

Le(T )R(T ,C)RT
(T ,C)

similarity between edge  
and graph LaplaciansR(T ,C)

rows form a basis for the  
cut space of the graph

Essential Edge Laplacian

E(G) = E(T )
⇥
I T(T ,C)

⇤
| {z }

R(T ,C)

T(T ,C) = (ET
T ET )

�1ET
T| {z }

EL
T

E(C)

Le(G) = W
1
2E(G)TE(G)W 1

2 Le(T )R(T ,C)WRT
(T ,C)

:= Less(G)

11
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L(G) Le(G)

Le(T )R(T ,C)RT
(T ,C)

similarity 

Essential Edge 

The Edge Agreement

- a minimal realization of consensus network 
-                           . 

⌃F (G,�)

the uncertain linear edge agreement 

⇢
ẋF = �Le(F)R(F,C)(W + P�PT )RT

(F,C)xF + ET
F w

z = E(Go)T (EL
F )

TxF

z(t) 2 Lm
2 [0, 1)

12

the uncertain consensus protocol

S =
⇥
(EL

F )
T NF

⇤

x̃ = S�1x

⌃(G,�) :

⇢
ẋ(t) = �E(G)(W +�)E(G)Tx(t) + w(t)
z(t) = E(Go)Tx(t)
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The Edge Agreement

G

∆

w(t) z(t)

p(t)q(t)

⇢
ẋF = �Le(F)R(F,C)(W + P�PT )RT

(F,C)xF + ET
F w

z = E(Go)T (EL
F )

TxF

What are the robustness margins of 
a consensus network with bounded  
additive perturbations to the edge 
weights?

- robust stability 
- robust performance 
- robust synthesis 
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Some Properties of Le(G)
Proposition 1 The matrix Le(T )R(T ,C)WRT

(T ,C)

has the same inertia as R(T ,C)WRT
(T ,C). Similarly,

the matrix (Le(T )R(T ,C)WRT
(T ,C))

�1 has the same
inertia as (R(T ,C)WRT

(T ,C))
�1.

Recall:  The inertia of a matrix  
is the number of negative, 0,  
and positive eigenvalues

Proof: 

Le(T )R(T ,C)WRT
(T ,C) ⇠ Le(T )

1
2R(T ,C)WRT

(T ,C)Le(T )
1
2

Le(T )
1
2R(T ,C)WRT

(T ,C)Le(T )
1
2 is congruent to R(T ,C)WRT

(T ,C)

Sylvester’s Law of Inertia:  congruent matrices have the same inertia

14
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Some Properties of Le(G)

Proposition 1
L(G) � 0 , R(T ,C)WRT

(T ,C) � 0

The definiteness of the graph 
Laplacian can be studied  
through another matrix!

R(T ,C)WRT
(T ,C)

intimately related to the notion 
of effective resistance of a 
network
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Effective Resistance of a Graph

u

v

u

v

wk

rk
rk =

1

wk

The effective resistance between two nodes u and v is the 
electrical resistance measured across the nodes when the 
graph represents an electrical circuit with each edge a resistor

edge weights are the  
conductance of each resistor

ruv = (eu � ev)
TL†(G)(eu � ev)

=
⇥
L†(G)

⇤
uu

� 2
⇥
L†(G)

⇤
uv

+
⇥
L†(G)

⇤
vv

Klein and Randić 
1993
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Effective Resistance of a Graph

Proposition 1

L†(G) = (EL
T )

T
�
R(T ,C)WRT

(T ,C)

��1
EL

T

ruv = (eu � ev)
TL†(G)(eu � ev)

u

v

G = T [ C

⌧1

⌧2 ⌧3

⌧4

EL
T (eu � ev) =

2

664

±1
0
±1
0

3

775

⌧1
⌧2
⌧3
⌧4

indicates a path from node  
u to v using only edges in  
the spanning tree

T(T ,C) = (ET
T ET )

�1ET
T| {z }

EL
T

E(C)

Proof: Consider the following sub-matrix of (9) obtained by deleting the center block row and column,


|W�|
�1 ET

�NF+

NT
F+

E� 0

�
2 R(m+c)⇥(m+c),

where m = |E�| and c is the number of connected components of G+. We assume that G+ is not connected, and
thus NF+

contains c columns. Partition the matrix as NF+
=

⇥
n1 · · · nc

⇤
and recall that [ET

�ni]k = ±1 if
and only if k = (u, v) 2 E� such that u and v are not in the same components of G+. Denote by CUTi ✓ E� as
the set of negative weight edges used to form a cut with the ith component of G+, and let CUT = [iCUTi. Then
an expression for the quadratic form of the matrix of interest is

xT


|W�|

�1 ET
�NF+

NT
F+

E� 0

�
x =

X

i2E�

|W�(i)|�1x2
i +

X

k2CUT1

±2xkxm+1 + · · · +
X

k2CUTc

±2xkxm+c.

From the quadratic form, it is now clear that the elements of the vector xi for i = m + 1, . . . , m + c can be
arbitrarily chosen to make the inequality negative. Therefore, there exists at least one negative eigenvalue and the
matrix in (9) is indefinite. From Corollary IV.2 we can conclude that the weighted graph Laplacian is indefinite
independent of the value of the negative weights.

Theorem IV.3 shows that if any of the negative weight edges forms a cut in the graph, then the Laplacian matrix
must have negative eigenvalues. A particular class of graphs satisfying the conditions of Theorem IV.3 are the
balanced signed graphs.

Corollary IV.4 If a signed graph G is balanced then L(G) is indefinite for any choice of negative edge weights.

B. Effective Resistance and the Stability of ⌃(G)

The main result of Section IV-A provides an analytical justification of what may be considered an intuitive result.
That is, if the negative weight edges form a cut in the graph, then the weighted Laplacian will be indefinite; i.e.,
⌃(G) will be unstable. In this section, we reveal a more general condition on the negative edge weights that can lead
to an indefinite weighted Laplacian. This condition turns out to be related to the notion of the effective resistance
of a graph. Results from this section were recently reported in [14], and thus the reader is referred to that work for
related proofs.

It is well known that the weighted Laplacian of a graph can be interpreted as a resistor network [20]. Each
edge in the network can be thought of as a resistor with resistance equal to the inverse of the edge weight,
rk = W(k)�1 = w�1

k for k 2 E .5 The resistance between any two pairs of nodes can be determined using standard
methods from electrical network theory [20]. It may also be computed using the Moore-Penrose pseudo-inverse of
the graph Laplacian, denoted L(G)†.

Definition IV.5 ( [20]) The effective resistance between nodes u, v 2 V in a weighted graph G = (V, E , W) is

Ruv(G) = (eu � ev)T L†(G)(eu � ev)

= [L†(G)]uu � 2[L†(G)]uv + [L†(G)]vv,

where eu is the indicator vector for node u, that is eu = 1 in the u position and 0 elsewhere.

Our first result shows how the effective resistance between two nodes is related to the matrix R(T ,C)WRT
(T ,C)

and the essential edge Laplacian.

Proposition IV.6 ( [14]) Let G be a connected graph and assume s(L(G)) = (n+, n�, 1). Then

L†(G) = (EL
T )T

�
R(T ,C)WRT

(T ,C)

��1
EL

T

= (EL
T )T Less(T )�1ET

T . (11)

5Thus, the edge weight wk can be interpreted as an admittance.
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ruv = (eu � ev)
T (EL

T )
T
�
R(T ,C)WRT

(T ,C)

��1
EL

T (eu � ev)

u v
w1 w2 w3 w4 w5

R(T ,C) = I

EL
T (eu � ev) =

rk =
1

wk

ruv = TW�1 =
5X

i=1

1

wi
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Effective Resistance of a Graph

ruv = (eu � ev)
T (EL

T )
T
�
R(T ,C)WRT

(T ,C)

��1
EL

T (eu � ev)

u v
w1 w2 w3 w4 w5

EL
T (eu � ev) =

rk =
1

wk

w6

R(T ,C) =
⇥
I

⇤

ruv = T
�
R(T ,C)WRT

(T ,C)

��1

= T
�
WT + w6

T
��1

WT = diag{w1, . . . , w5}
=

�
TW�1

T

�
w�1

6

TW�1
T + w�1

6

v

u

r1 r2

ruv =
r1r2

r1 + r2
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Signed Graphs

G = (V, E ,W)

W : E ! R

a signed graph is a graph with positive 
and negative edge weights

(+)

(+)

(+)
(+)

(�)

(�)

G = G+ [ G�

E+ = {e 2 E : W(e) > 0} E� = {e 2 E : W(e) < 0}

E(G�) = E�

L(G) = E(G+)W+E(G+)
T � E(G�)|W�|E(G�)

T

E(G+) = E+ = EF+
R(F+,C+)
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Spectral Properties of Signed Graphs

Proposition 1

L(G) � 0 ,


|W�|�1 ET
�

E� E+W+ET
+

�
� 0

L(G) = E(G+)W+E(G+)
T � E(G�)|W�|E(G�)

T

Proof: 

Schur Complement
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Spectral Properties of Signed Graphs
Proposition 1

L(G) � 0 ,

2

64
|W�|�1 ET

�(E
L
F+

)T ET
�NF+

EL
F+

E� R(F+,C+)W+RT
(F+,C+) 0

NT
F+

E� 0 0

3

75 � 0

Proof: 

Congruent Transformation S =

"
I 0

0
h
(EL

F+
)T NF+

i
#

E(G+) = E+ = EF+
R(F+,C+)

IM[NF+
] = span[N (ET

F+
)]

Identifies how the positive 
weight graph is partitioned

2
4

3

5

1

NF+
=

2

66664

1 0
1 0
1 0
0 1
0 1

3

77775


|W |� ET

�
E� E+W+ET

+

�
applied to
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Spectral Properties of Signed Graphs

If the positive portion weighted 
graph is connected…

NF+
=

L(G) � 0 ,
"

|W�|�1 ET
�(E

L
F+

)T

EL
F+

E� R(F+,C+)W+RT
(F+,C+)

#
� 0

Proposition 1

L(G) � 0 ,

2

64
|W�|�1 ET

�(E
L
F+

)T ET
�NF+

EL
F+

E� R(F+,C+)W+RT
(F+,C+) 0

NT
F+

E� 0 0

3

75 � 0

Proof: 

Congruent Transformation S =

"
I 0

0
h
(EL

F+
)T NF+

i
#


|W |� ET

�
E� E+W+ET

+

�
applied to
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Spectral Properties of Signed Graphs

Proof: 

Theorem 1 Assume that G+ is connected and
|E�| = 1 and let E� = {e� = (u, v)}. Let ruv
denote the e↵ective resistance between nodes
u, v 2 V over the graph G+. Then

L(G) � 0 , |W(e�)|  r�1
uv

|W�|�1 � ET
�(E

L
F+

)T (R(F+,C+)W+R
T
(F+,C+))

�1EL
F+

E�
| {z }

ruv(G+)

� 0

any single edge can destabilize 
a consensus network with a 
“negative enough” edge weight

u v

ruv(G+)

W(e�)
�1
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A Small-Gain Interpretation

G

∆

w(t) z(t)

p(t)q(t)

Ruv(G+)

u v

r�

Fig. 2. Resistive network interpretation with one negative weight edge.

V. ON THE ROBUST STABILITY OF THE UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system ⌃F(G, �) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs w(t) to the controlled output z(t) in the presence of the structured
uncertainty � 2 � can be characterized by the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)�1 M12, (13)

where

M11(s) = PT RT
(F,C)(sI + Less(F))�1Le(F)R(F,C)P

M12(s) = PT RT
(F,C)(sI + Less(F))�1E(F)T

M21(s) = E(Go)
T (EL

F )T (sI + Less(F))�1Le(F)R(F,C)P

M22(s) = E(Go)
T (EL

F )T (sI + Less(F))�1E(F)T .

This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I�M11�)
has a stable proper inverse is to ensure that kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])

kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|, k�k  �, � diagonal} and assume ⌃F(G) is nominally stable. Then
the uncertain edge agreement protocol is robustly stable for any � 2 � if k�k < (�(M11(0)))�1.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E� forms a cut set
of G, is it possible that maxe2E� W(e) < �(M11(0))�1. The following result shows that this can not be the case.

upper fractional transformation

Ruv(G+)

u v

r�

Fig. 2. Resistive network interpretation with one negative weight edge.
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uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system ⌃F(G, �) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs w(t) to the controlled output z(t) in the presence of the structured
uncertainty � 2 � can be characterized by the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)�1 M12, (13)

where

M11(s) = PT RT
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This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I�M11�)
has a stable proper inverse is to ensure that kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])

kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|, k�k  �, � diagonal} and assume ⌃F(G) is nominally stable. Then
the uncertain edge agreement protocol is robustly stable for any � 2 � if k�k < (�(M11(0)))�1.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E� forms a cut set
of G, is it possible that maxe2E� W(e) < �(M11(0))�1. The following result shows that this can not be the case.

Small-Gain Theorem

k�k < �(M11(0))
�1
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consider a network with only 
a single uncertain edge

Theorem

wi + �

assume nominal network is 
stable u

vE� = {{u, v}}

kM11(s)k1 = Ruv-
-  The uncertain consensus network is stable for any 
k�k1 < R�1

uv

Ruv(G+)

u v

r�

Fig. 2. Resistive network interpretation with one negative weight edge.

V. ON THE ROBUST STABILITY OF THE UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A. A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small gain theorem often provides very conservative results, we
demonstrate in this section that for certain classes of uncertainties the small gain result is in fact an exact condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system ⌃F(G, �) in (5). Based on the system interconnection shown in
Figure 1, the map from the exogenous inputs w(t) to the controlled output z(t) in the presence of the structured
uncertainty � 2 � can be characterized by the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)�1 M12, (13)

where

M11(s) = PT RT
(F,C)(sI + Less(F))�1Le(F)R(F,C)P

M12(s) = PT RT
(F,C)(sI + Less(F))�1E(F)T

M21(s) = E(Go)
T (EL

F )T (sI + Less(F))�1Le(F)R(F,C)P

M22(s) = E(Go)
T (EL

F )T (sI + Less(F))�1E(F)T .

This representation can lead directly to a small-gain interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In particular, a sufficient condition for determining whether (I�M11�)
has a stable proper inverse is to ensure that kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])

kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|, k�k  �, � diagonal} and assume ⌃F(G) is nominally stable. Then
the uncertain edge agreement protocol is robustly stable for any � 2 � if k�k < (�(M11(0)))�1.

Theorem V.2 is in fact a direct statement of the small-gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead to a less conservative result. That is, if E� forms a cut set
of G, is it possible that maxe2E� W(e) < �(M11(0))�1. The following result shows that this can not be the case.

ruv = (eu � ev)
T (EL

T )
T
�
R(T ,C)WRT

(T ,C)

��1
EL

T (eu � ev)
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A Small-Gain Interpretation

consider a network with only 
a single uncertain edge

Theorem

assume nominal network is 
stable

kM11(s)k1 = Ruv-
-  The uncertain consensus network is stable for any 
k�k1 < R�1

uv

u v

Ruv(G)

�

for single edge uncertainty, small-gain condition is exact 
(i.e., no conservatism)
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Signed Graphs and Cuts

Corollary 1 Assume that both E+ and E�
are not empty. If G+ is not connected, then
L(G) is indefinite for any choice of negative weights.

G+G+

E�

a balanced signed graph

28

The smallest cardinality cut of a graph can 
be thought of as a combinatorial robustness 
measure for linear consensus protocols 
 ==> but always conservative

Ruv(G+)

u v

r�

Fig. 2. Resistive network interpretation with one negative weight edge.

that Pi \ Pj = ; for all i, j 2 E�, where Pi is the set
of all edges belonging to a path connecting the nodes
incident to edge i 2 E·. Then the weighted Laplacian is
positive semi-definite if and only if |W�|  R�1.

Theorem IV.8 also has the same physical interpretation
as Theorem IV.7. Indeed, the resistance between two
nodes contained in a sub-graph G+(Pk) is not deter-
mined by any other edges in the network. Both Theorems
IV.7 and IV.8 provide a clear characterization of how
negative weight edges can impact the definiteness of
the weighted Laplacian, and how that is related to the
effective resistance in the graph. In fact, from (10) we
also can observe an additional fact relating the total
effective resistance between all nodes incident to edges
in E� and the definiteness of the graph, independent of
the actual location of these edges in the network.

Corollary IV.9 ( [14]) Assume that G+ is connected. If
L(G) � 0, then

P
k2E�

|W(k)|�1
� R

E�
tot, where

R
E�
tot=trace

h
ET

�(E
L
T+

)T (R(T+,C+)W+R
T
(T+,C+))

�1EL
T+

E�

i
.

Corollary IV.9 indicates that a weighted Laplacian
with negative weights can still be positive semi-definite,
and in that case the total magnitude of the negative
weight edges is closely related to the total effective
resistance in the network (defined over the nodes incident
to E�). The notion of total effective resistance has also
appeared in works characterizing the H2 performance of
certain multi-agent networks [22]–[24]. While Corollary
IV.9 only provides a sufficient condition for the definite-
ness of the weighted Laplacian, it nevertheless reinforces
its connection to the notion of effective resistance.

V. ON THE ROBUST STABILITY OF THE
UNCERTAIN CONSENSUS PROTOCOL

The results of the previous section provide the correct
foundation to now consider the robust stability of the
uncertain consensus models presented in Section III-A.
A natural approach for analyzing the robust stability is
via the celebrated small gain theorem. While the small
gain theorem often provides very conservative results,
we demonstrate in this section that for certain classes
of uncertainties the small gain result is in fact an exact
condition.

A. Robust Stability of ⌃F(G, �)

We now proceed with an analysis of the system
⌃F(G, �) in (5). Based on the system interconnection
shown in Figure 1, the map from the exogenous inputs
w(t) to the controlled output z(t) in the presence of the
structured uncertainty � 2 � can be characterized by
the upper fractional transformation [16],

S(⌃F(G), �) = M22 + M21� (I � M11�)�1 M12, (13)

where

M11(s) = PTRT
(F,C)(sI + Less(F))�1Le(F)R(F,C)P

M12(s) = PTRT
(F,C)(sI + Less(F))�1E(F)T

M21(s) = E(Go)
T (EL

F )
T (sI + Less(F))�1Le(F)R(F,C)P

M22(s) = E(Go)
T (EL

F )
T (sI + Less(F))�1E(F)T .

This representation can lead directly to a small-gain
interpretation for the allowable edge-weight uncertainties
that guarantees the system is robustly stable. In par-
ticular, a sufficient condition for determining whether
(I �M11�) has a stable proper inverse is to ensure that
kM11(s)�k1 < 1.

We now cite a result from [12] that gives insight on
the H1 norm of the transfer function matrix M11(s).

Proposition V.1 ( [12])

kM11(s)k1 = �(M11(0)).

This results shows that the H1 performance of the
system M11(s) can be obtained by computing the largest
singular value of the real matrix M11(0), leading to the
result on the robust stability of ⌃F(G, �).

Theorem V.2 Let � = {� 2 R|E�|⇥|E�|, k�k 

�, � diagonal} and assume ⌃F(G) is nominally stable.
Then the uncertain edge agreement protocol is robustly
stable for any � 2 � if k�k < (�(M11(0)))�1.

Theorem V.2 is in fact a direct statement of the small-
gain theorem and can be considered conservative. One
might wonder if the results of Theorem IV.3 might lead
to a less conservative result. That is, if E� forms a cut set
of G, is it possible that maxe2E� W(e) < �(M11(0))�1.
The following result shows that this can not be the case.

Proposition V.3

✓
max
e2E�

W(e)

◆�1

 max
e2E�

Re(G)  �(M11(0))  RE�
tot,

where

RE�
tot = trace

h
PTET (EL

T )
T (R(T ,C)WRT

(T ,C))
�1EL

T EP
i
.
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An Illustrative Example
any single edge in the 
cycle can make the 
Laplacian indefinite

w6 = � 1

r6
= �1

4

L(G) has two eigenvalues 
at the origin

w1

w2 w3 w4

w5

w6

w7

w9

w8

w9

w10
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An Illustrative Example

(a) Random geometric graph.
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(b) Clustering results from an edge weight perturbation.
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(c) Nonlinear coupling functions.

0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Nonlinearity satisfying Corollary V.11.

Fig. 3. A network with an uncertain edge weight.
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Future Directions

�

• how do you “measure” the effective 
resistance between dynamic agents? 
- network identification 
- fault detection 

• synthesis of robust networks
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Concluding Remarks

�

• networked dynamic systems require new 
tools/interpretations for robustness analysis 

• graph properties have real system theoretic 
implications
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The Consensus Protocol

The consensus protocol is a distributed and 
dynamic protocol used for computing the 
average of a set of numbers.

Agent Dynamics

ẋi(t) = ui(t)

Information Exchange Network

v1

v2

v3 v4

Incidence Matrix

E(G) 2 R|V|⇥|E|

E(G) =

2

664

1 0 0 0
�1 1 �1 0
0 �1 0 1
0 0 1 �1

3

775

Z

G = (V, E ,W)

W : E ! R
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The Consensus Protocol

ẋ(t) = �L(G)x(t)

The consensus protocol is a distributed and 
dynamic protocol used for computing the 
average of a set of numbers.

v1

v2

v3 v4

Consensus Protocol Laplacian Matrix

ui(t) =
X

i⇠j

wij(xj(t)� xi(t))

• L(G) 2 R|V|⇥|V|

• L(G) = E(G)WE(G)T

• L(G) = 0

e = (vi, vj) 2 E
W(e) = wij = [W ]ee
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The Consensus Protocol

ẋ(t) = �L(G)x(t)

Consensus Protocol

ui(t) =
X

i⇠j

wij(xj(t)� xi(t))

Theorem 1 Let G = (V, E ,W) be a weighted and
connected graph with positive edge weights W(k) > 0
for k = 1, . . . , |E|. Then the consensus dynamics
synchronizes; i.e., limt!1 xi(t) = � for i = 1, . . . , |V|.

Mesbahi & Egerstedt, Olfati-Saber, Ren
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