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Networked Dynamic Systems (or CPS)

dynamics
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topology Interaction
(graph) protocol

wi(t) = I;(x(t), G)
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Diffusively Coupled Networks

Kumamoto Model
O _ @ (9@ — —stin(@i — (93)

- . invj
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TP (. h_ ) Traffic Dynamics Model
G g,
A (H1 ~ Vi = K; (V;O — V; + V,L-1 Ztanh(pj — pz))
@
g Neural Network
N - |
CV; = f(%,hi)+27;~j 9i;(V; = Vi)
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Diffusively Coupled Networks

Lateral view
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Consensus Protocol

Decentralized Rigidity Maintenance Control with Range-only Measurements for Multi-Robot Systems

Daniel Zelazo, Antonio Franchi and Heinrich H. Biilthoff, Paolo Robuffo Giordano,
Technion, Israel Max Planck Institute for Biological Cybernetics, Germany CNRS at Irisa, France

Distributed Estimates of the
Rigidity Eigenvalue (rigidity metrics)
Circled robots: Maintain rigidity while tracking an exogenous command
Other robots: Maintain rigidity

Link colors:

The leader robots (circled) are free to move and operate in the environment
while the entire group ensures that rigidity of the formation is maintained,
avoids inter-robot collisions and ensures obstacle avoidance
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Networked Dynamic Systems

What about robustness?
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what is the right way to approach
robustness of networked dynamic systems?

a
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Robustness in Consensus Networks

The Linear Weighted @@ \
O——» .
Consensus Protocol - " l
ii(t) = 3w (;(t) — (1)) @
i~j .
g 25 nodes [ @.. -
98 edges (@

I
0.5

Wt > 2101911 wt=-101911  w* < —10.1911
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Synchronization and the Laplacian

r(t) = e L9y,

lim z(t) = B1 < L(G) has only one eigenvalue at the origin

{— 00

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)

q
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Synchronization and the Laplacian
©(t) = —L(G)x(t)

can we understand spectral
properties of the Laplacian
from the structure of the graph?

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)

q
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The Uncertain Consensus Protocol

the nominal consensus protocol

o) = —L(G)a(t) +w(t) -
s@)  { H 2 e ] A/
- assume finite-energy disturbances
w(t) € LZ]0, c0) 4 ™

- controlled variable are relative states w(t)

over any graph of interest

v
QN
-

additive uncertainty in the edge weights
A = {A . A = diﬂg{&l, . ,5|5A|}, ||A|| < g}

x (1

$(G,A) - { Zét —E(G)(W + A)E(G)" x(t) + w(t)

E(G,)" (1)

)
)
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The Uncertain Consensus Protocol

the nominal consensus protocol

(G) - { () = —L(Q)x(ti) + w(t) A -
2(t) = E(G,)" x(t _ )
- assume finite-energy disturbances
w(t) € LZ]0, c0) 4 ™
- controlled variable are relative states w(t) g (1)
over any graph of interest g g/ g

sector-bounded non-linearities in the edge weights

O(y) = [P1(y1) -+ Dea|Wea))]  iv; < uidi(yi) < Biu;

—L(G)z(t) — E(Ga)® (E(Ga)"z(t)) + w(t)
E(G,)" (1)

g
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Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles

E(G) =E(T)[ I Tire ]
o JC

Lire) = £E7T-ET)_1E7T;E(C)

N

Bt
T .
L(G) = E(G)WE(G) a spanning tree Jemaining edges
complete cycles
Weighted Edge Laplacian Essential Edge Laplacian

N

L.(G) =W2E(Q)TE(G)W T)Rir o WRY o = Less(9)

: /lmllarlty between ed e\
R( rows form a basis for the and graph Laplacians

TC)  cut space of the graph

a
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The Edge Agreement

the uncertain consensus protocol

[ i) = —EG)W+AEG)Tx(t)+ TrRenhy
Z(Q7A) | { Z(t) — E(QO)TCE(t) /SlmllarltV\
S=| (Ez)" Ngr }
the uncertain linear edge agreement r=5""w

2 E(Go)" (Ex)" x-
- a minimal realization of consensus network
- z(t) € L]0, 0o).
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The Edge Agreement

4 )
What are the robustness margins of A -
a consensus network with bounded S /
additive perturbations to the edge
weights?
w(t) z(t)
- robust stability >

- robust performance
- robust synthesis

E(Go)" (E%)" x5

—
&g.

AN

| ]
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Some Properties of L.(G)

Proposition  The matric L.(T)Rr o WR/, .,
has the same inertia as R C)WR(T ¢y Oimilarly,

the matrix (L.(T)R C>VVR(,r o) L has the same
inertia as (R oy WR/ o))"

Recall: The inertia of a matrix
is the number of negative, 0,
and positive eigenvalues

Proof:

1

L (T)R(T C)WR(T C) ~ L (T)QR(T C)WR(T C)L (T)§

L (T)QR(T C)WR(T C)L (T)% IS congruent to R(T C)WR(T C)

Sylvester’s Law of Inertia: congruent matrices have the same inertia

R
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Some Properties of L.(G)

Proposition
L(G)>0& R+ C)WR(T ¢ =0

The definiteness of the graph
Laplacian can be studied R(T C) WR(T c)

through another matrix!

intimately related to the notion

of effective resistance of a
network
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Effective Resistance of a Graph

The effective resistance between two nodes u and v is the
electrical resistance measured across the nodes when the
graph represents an electrical circuit with each edge a resistor

: Cg 5
u® wy W
U Tk

i edge weights are the

T — :
& w;. conductance of each resistor
T
TFuv = (eu — ev) LT (g)(eu — ev)

Klein and Randié _ [ T ] L [ T ] [ T ]
1993 = |L (g) UU 2 | L (g) UV + |L (g) VU
25M NPLINIMKX NDTIND NLMPaAN Oberwolfach
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Effective Resistance of a Graph

Proposition
—1
LT(Q) — (Ef%)T (R<T,C>WR<TT,c>) E£

(EXTL,.(T) 'ET

Fuv = (eu — efu)TLT (g)(eu — ev)

11 T1
L B 0 T2
by (e —ey) = +1 | 73
0 T4
indicates a path from node G=TUC

uto v using only edges in = L(r.¢) = SEZET)_lE;Jj E(C)
the spanning tree

a
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Effective Resistance of a Graph

—1
Puv = (€4 — ev)T<E£)T (R(T,C)WREFT,C)) Efj; (ey — €y)

R(ch) — I
1
Efj(eu — ev) — 1 Py = ]1TW—1]1 — —
1 1=1 Wi
'y — —
Wi
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Effective Resistance of a Graph

—1
Puv = (€4 — efv)T(Ef%)T (R(T,C)WREFT,C)) Efj; (ey — €y)

179
Tuv —
r1 + T2

Fuv = ]]-T (R(T,C)WRT )—1 1

(T,C)
=17 (W, + wgl1T) 1
ry = — B (]lTWT_lll) w6_1
C1TWl 4+ T

W = diag{ws,...,ws}

\,‘
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Signed Graphs

a signed graph is a graph with positive
and negative edge weights

Gg=V,EW)
W:£ — R

Er={ec & : W(e) >0}

Qf N - 6@

E_|_—E]:_|_R(]:_|_ Ci) E(g_) :E_

L(G) = E(G+ )WL E(G+)" — E(G-)|W-|E(G-)"
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Spectral Properties of Signed Graphs

Proposition

[ —1 T
L) > 0w | W] ET

E_ E_|_W_|_E_7|j ] -

Proof:

Schur Complement

L(G) = E(G+ )WL E(G+)" — E(G-)|W-|E(G-)"
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Spectral Properties of Signed Graphs

Proposition
i —1 T L \T T ]
i BT(EE)T BTN,
L(g) Z O R E]I;+E_ R(F+,C+)W+R?;I+’c+) O 2 O
NI E_ 0 0
L + .
Proof: ST 0 -
Congruent Transformation .S = 0 [ (EJIE;+)T Ny, }
applied to Wl B ]
PP E. E,W,ET

E(Gy) =FEy =Ex Rz, c,)

IM[N.,] = span[A'(EZ )] @/1 N n

Identifies how the positive
. weight graph is partitioned

S O = =
——_— O O O
| ]

\\7 55M NpWININMN NDTIND NLMPan Oberwolfach
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Spectral Properties of Signed Graphs

Proposition
i —1 T L \T T ]
i BT(EE)T BTN,
L(g) Z O <:> E]I;+E_ R(F+,C+)W+R?;:+,c+) O Z O
NI E_ 0 0
L + .
Proof: ST 0 -
Congruent Transformation .S = 0 [ (EJIE;+)T Ny, }
applied to Wl B ]
PP E. E,W,ET

If the positive portion weighted
graph is connected... ) _

LG) > 0 & w_|~ EX(EZ )" -
-l L T -l
N;Jr =1 L EF+E— R<f+’c+>W+R<f+,c+> _

o
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Spectral Properties of Signed Graphs

Theorem  Assume that G s connected and
E_|=1andlet E. ={e_ = (u,v)}. Let ry,
denote the effective resistance between nodes
u,v € V over the graph G.. Then
L(G)>0& W(el)| <71y

uv

Proof:
W= = EL(EZ ) (R ey Wi R, o ) EZ E- >0
h ~ ”? Fuv (9

o) (G+)
any single edge can destabilize U ° U
a consensus network with a
“negative enough” edge weight VY VVY

W(e_)*

o
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A Small-Gain Interpretation

upper fractional transformation

S(X£(G),A) = Mog + My A (I — MllA)_l My

Miq(s) = PTR?;’C)(SI—F Lo F) ' Le(F)Rir 0 P

Mis(s) = PTRY,  (sI + L...(F))'E(F)T w(t)
Mai(s) = E(Go) (EZ)" (sI + L...(F)) ' Le(F) Rz P
Mas(s) = E(Go)' (EZ)" (s + L...(F)) ' E(F)".

Small-Gain Theorem

|All <7 (Mi1(0)) ™

a
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A Small-Gain Interpretation

assume nominal network is
stable

consider a network with only
a single uncertain edge

Ea = 11U, V)

Theorem

[ M11(8)[loo = Ruw

- The uncertain consensus network is stable for any
Al < Ry

Miy(s) = P' Rl o) (s + Looo(F)) " Le(F)Riz 0y P
—1
. Tuv = (€4 — ev)T(Eﬁ)T (R(T,@WR(TT,C)) E$ (en — €y)

55M NpWININMN NDTIND NLMPan Oberwolfach
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A Small-Gain Interpretation

assume nominal network is 0
stable J\/\/\/\/X
consider a network with only U U

a single uncertain edge

En =

{{u,v}} Ruv(G)

Theorem

Mll(S)HOO — Ruv

he uncertain consensus network is stable for any
—1
AHOO < Ruv

for single edge uncertainty, small-gain condition is exact
(1.e., no conservatism)

o
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Signed Graphs and Cuts

Corollary

Assume that both £, and &_

are not empty. If G is not connected, then
L(G) s indefinite for any choice of negative weights.

a balanced signed graph

aa

R

V4

\
\
\
\
\
- |
I

The smallest cardinality cut of a graph can
be thought of as a combinatorial robustness
measure for linear consensus protocols

==> but always conservative

(max W(e)) B < max R.(G) < 7(M11(0))

ecéA ecéA

D5M NPWLINIMN NDTIND NL,MPaAN
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An lllustrative Example

any single edge in the
cycle can make the
Laplacian indefinite

L(G) has two eigenvalues
at the origin

D5M NPWLINIMN NDTIND NL,MPaAN Oberwolfach
W 29 February 25, 2015

Faculty of Aerospace Engineering



An lllustrative Example

)
X}

-

N

N TN
VY N

P
7

random geometric graph on 75 nodes

uncertain edge in blue

-
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Future Directions

e how do you “measure” the effective
resistance between dynamic agents?
- network identification
- fault detection

* synthesis of robust networks

\,‘
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Concluding Remarks

e networked dynamic systems require new
tools/interpretations for robustness analysis

e graph properties have real system theoretic
implications

\,‘
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The Consensus Protocol

The consensus protocol is a distributed and
dynamic protocol used for computing the
average of a set of numbers.

Agent Dynamics Information Exchange Network
(1) = u;(t) G=W,EW)
( : W: & =R
—> / —> Incidence Matrix
E(G) RIVIXIE]
1 0 0 0
BG) = _01 —11 _01 (1)
0 0 1 -1
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The Consensus Protocol

The consensus protocol is a distributed and
dynamic protocol used for computing the
average of a set of numbers.

Consensus Protocol Laplacian Matrix
o L(G) € RIVIXIV]

ui(t) = wij(x;(t) — xi(t)) o LG) = BGWEG)T
] e L(G)L =0

#(t) = —L(G)x(1) e = (vi,v;) € €
W(e) = wi; = [Wee
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The Consensus Protocol

Consensus Protocol

wi(t) = Y wig(w;(t) — zi(t))

1~

Theorem Let G = (V,E, W) be a weighted and

connected graph with positive edge weights W(k) > 0
for k=1,...,|&|. Then the consensus dynamics
synchronizes; i.e., limy_ oo x;(t) = B fori=1,...,|V|.

Mesbahi & Egerstedt, Olfati-Saber, Ren
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