Uncertain Consensus Networks: Robustness and its Connection to Effective Resistance

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Control Theory: A Mathematical Perspective on Cyber-Physical Systems Oberwolfach, Germany Feb. 22-28, 2015

Networked Dynamic Systems (or CPS)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Diffusively Coupled Networks

Kumamoto Model

$$
\dot{\theta}_i = -k \sum_{i \sim j} \sin(\theta_i - \theta_j)
$$

Traffic Dynamics Model

$$
\dot{v}_i = \kappa_i \left(V_i^0 - v_i + V_i^1 \sum_{i \sim j} \tanh(p_j - p_i) \right)
$$

Neural Network $C\dot{V}_i = f(V_i, h_i) + \sum_{i \sim j} g_{ij}(V_j - V_i)$ \dot{h}_i = $g(V_i, \dot{h}_i)$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Diffusively Coupled Networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Networked Dynamic Systems

What about robustness?

what is the right way to approach *robustness* **of networked dynamic systems?**

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Robustness in Consensus Networks

$$
\dot{x}_i(t) = \sum_{i \sim j} w_{ij}(x_j(t) - x_i(t))
$$

 $G²⁵$ nodes
98 edges

...

Z

Z

 w_1

 (w_2)

Z

G G

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Oberwolfach February 25, 2015

6

Synchronization and the Laplacian

$$
x(t) = e^{-L(\mathcal{G})t}x_0
$$

lim $t\rightarrow\infty$ $x(t) = \beta \mathbb{1} \Leftrightarrow L(\mathcal{G})$ has only **one** eigenvalue at the origin

has only **one** eigenvalue at the zero $L(G) \geq 0$ *L*(*G*) ≥ 0

has **more than one** eigenvalue at the zero

L(*G*) has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Synchronization and the Laplacian

$$
\dot{x}(t) = -L(\mathcal{G})x(t)
$$

can we understand spectral properties of the Laplacian from the structure of the graph?

has only **one** eigenvalue at the zero $L(G) \geq 0$ *L*(*G*) ≥ 0

has **more than one** eigenvalue at the zero

has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

8

Oberwolfach February 25, 2015

 $L(\mathcal{G})$

The Uncertain Consensus Protocol he Uncertain Consensu holds also when *G* is connected and *F* = *T* is a spanning tree. In this case, the system ⌃*^T* (*G*) is identical to the Ine Uncertain Consensus Protocol

\blacksquare In this work we consider the linear weighted consensus protocol \blacksquare die nominal consensus protocol the *nominal* consensus protocol **F** *The nominal consensus protocol*

$$
\Sigma(\mathcal{G}) : \begin{cases} \dot{x}(t) = -L(\mathcal{G})x(t) + w(t) \\ z(t) = E(\mathcal{G}_o)^T x(t) \end{cases}
$$

- $-$ assur - assume finite-energy disturbances $w(t) \in \mathcal{L}_2^n[0,\infty)$ \Box $w(t) \in \mathcal{L}_2^n[0, \infty)$
- controlled variable are relative states $w(t)$ and $w(t)$ and $z(t)$ over *any* graph of interest and uncertainty of the uncertainty of the uncertainty of the nominal edge weight as an additional edge wei

 \mathcal{A} additive directionity in the eage weights **and the system** additive *uncertainty* in the edge weights . Thus, we can define the uncertainty set as we can define the uncertainty set as a set of the uncertainty set as a set of the uncertainty set as a set of the uncertainty set as a

$$
\Delta = \{ \Delta : \Delta = \text{diag}\{\delta_1, \dots, \delta_{|\mathcal{E}_{\Delta}|}\}, ||\Delta|| \leq \overline{\delta} \}
$$

$$
\Sigma(\mathcal{G}, \Delta) : \left\{ \begin{array}{l} \dot{x}(t) = -E(\mathcal{G})(W + \Delta)E(\mathcal{G})^T x(t) + w(t) \\ z(t) = E(\mathcal{G}_o)^T x(t) \end{array} \right\}
$$

הפקולטה להנדסת אוירונוטיקה וחלל *x*˙ *^F* = *Le*(*F*)*R*(*F,C*) *Faculty* of Aerospace Engineering __
הנ **P** $\frac{1}{2}$

Oberwolfach $\frac{1}{2}$ + $\frac{1}{$

R^T

The Uncertain Consensus Protocol he Uncertain Consensu

\blacksquare In this work we consider the linear weighted consensus protocol \blacksquare die nominal consensus protocol the *nominal* consensus protocol

$$
\Sigma(\mathcal{G}) : \begin{cases} \dot{x}(t) = -L(\mathcal{G})x(t) + w(t) \\ z(t) = E(\mathcal{G}_o)^T x(t) \end{cases}
$$

- $-$ assur - assume finite-energy disturbances $w(t) \in \mathcal{L}_2^n[0,\infty)$ \Box $w(t) \in \mathcal{L}_2^n[0, \infty)$
- controlled variable are relative states $w(t)$ over *any* graph of interest

 \mathcal{L} and the subset of \mathcal{L} is asymptotic the asymptotic the asymptotic deviation and the asymptotic of the asymptotic deviation and the asymptotic deviation and the asymptotic deviation and the subset of the subs statur-bounded non-initial lites in the euge weights **by analyzed by considering the system**, *sector-bounded non-linearities* in the edge weights

$$
\Phi(y) = [\phi_1(y_1) \cdots \phi_{|\mathcal{E}_{\Delta}|}(y_{|\mathcal{E}_{\Delta}|})) \quad \alpha_i u_i^2 \leq u_i \phi_i(y_i) \leq \beta_i u_i^2
$$

$$
\Sigma(\mathcal{G}, \Phi) : \begin{cases} \dot{x}(t) = -L(\mathcal{G})x(t) - E(G_{\Delta})\Phi(E(G_{\Delta})^T x(t)) + w(t) \\ z(t) = E(\mathcal{G}_o)^T x(t) \end{cases}
$$

Spanning Trees and Cycles

The Edge Agreement

the *uncertain* consensus protocol

$$
\Sigma(\mathcal{G},\Delta)\,:\,\left\{\begin{array}{rcl} \dot{x}(t)&=&-E(\mathcal{G})(W+\Delta)E(\mathcal{G})^Tx(t)+{\rm w}(t)\\ z(t)&=&E(\mathcal{G}_o)^Tx(t)\end{array}\right\}_{\scriptstyle L^{(G)}\xrightarrow{\scriptstyle\text{E},\text{conflal Fdo}}\scriptstyle\text{minilarity}}\,\left\{\begin{array}{rcl}\scriptstyle\text{E},\scriptstyle\
$$

$$
S = \left[(E_{\mathcal{F}}^{L})^{T} \quad N_{\mathcal{F}} \right]
$$

$$
\tilde{x} = S^{-1}x
$$

the *uncertain linear edge agreement*

$$
\Sigma_{\mathcal{F}}(\mathcal{G}, \Delta)
$$
\n
$$
\begin{cases}\n\dot{x}_{\mathcal{F}} = -L_e(\mathcal{F})R_{(\mathcal{F}, c)}(W + P\Delta P^T)R_{(\mathcal{F}, c)}^T x_{\mathcal{F}} + E_{\mathcal{F}}^T w \\
z = E(\mathcal{G}_o)^T (E_{\mathcal{F}}^L)^T x_{\mathcal{F}}\n\end{cases}
$$

- a *minimal* realization of consensus network
- $z(t) \in \mathcal{L}_2^m[0, \infty)$.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Edge Agreement

What are the *robustness margins* of a consensus network with bounded additive perturbations to the edge weights?

- robust stability
- robust performance
- robust synthesis

$$
\begin{cases} \begin{array}{ll} \dot{x}_{\mathcal{F}} &= -L_e(\mathcal{F})R_{(\mathcal{F},c)}(W+P\Delta P^T)R_{(\mathcal{F},c)}^T x_{\mathcal{F}} + E_{\mathcal{F}}^T\text{w} \\ z &= E(\mathcal{G}_o)^T (E_{\mathcal{F}}^L)^T x_{\mathcal{F}} \end{array} \end{cases}
$$

Some Properties of *Le*(*G*)

Proposition The matrix $L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T$ *has the same inertia as* $R_{(\tau,c)}WR_{(\tau,c)}^T$ *. Similarly, the matrix* $(L_e(\mathcal{T})R_{(\mathcal{T},c)}WR_{(\mathcal{T},c)}^T)^{-1}$ *has the same* $inertia \; as \; (R_{(\tau,c)}WR_{(\tau,c)}^T)^{-1}.$

Recall: The *inertia* of a matrix is the number of negative, 0, and positive eigenvalues

Proof:

$$
L_e(\mathcal{T})R_{(\tau,c)}WR_{(\tau,c)}^T \sim L_e(\mathcal{T})^{\frac{1}{2}}R_{(\tau,c)}WR_{(\tau,c)}^T L_e(\mathcal{T})^{\frac{1}{2}}
$$

$$
L_e(\mathcal{T})^{\frac{1}{2}}R_{(\tau,c)}WR_{(\tau,c)}^T L_e(\mathcal{T})^{\frac{1}{2}}
$$
 is congruent to $R_{(\tau,c)}WR_{(\tau,c)}^T$

Sylvester's Law of Inertia: congruent matrices have the same inertia

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Some Properties of *Le*(*G*)

Proposition

 $L(G) \geq 0 \Leftrightarrow R_{(\tau,c)}WR_{(\tau,c)}^T \geq 0$

The definiteness of the graph Laplacian can be studied through another matrix!

intimately related to the notion of **effective resistance** of a network

 $R_{(\tau,c)}$ *W* $R_{(\tau,c)}^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Effective Resistance of a Graph

The **effective resistance** between two nodes *u* and *v* is the electrical resistance measured across the nodes when the graph represents an electrical circuit with each edge a resistor

Faculty of Aerospace Engineering

February 25, 2015

Effective Resistance of a Graph Γ **LITECTIV**

Proposition $L^{\dagger}(\mathcal{G})=(E_{\tau}^{L})$ $T\left(R_{(\mathcal{T},c)} W R_{(\mathcal{T},c)}^T\right)$ $^{-1}$ E_{τ}^L \overline{I} Proposition IV.6 ([14]) *Let G be a connected graph and assume s*(*L*(*G*)) = (*n*+*, n,* 1)*. Then* L [†] $(\mathcal{G})=(E_{\tau}^L)^T$ $\left(R_{\left(\mathcal{T},\mathcal{C}\right)} W R_{\left(\mathcal{T},\mathcal{C}\right)}^{T}\right)$ (*T ,C*) $^{\mathsf{L}}E_{\tau}^{I}$ $=$ $(E_{\tau}^{L})^{T}L_{ess}(\mathcal{T})^{-1}E_{\tau}^{T}$ $\frac{1}{\tau}$

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)
$$

$$
E_{\tau}^L(\mathbf{e}_u - \mathbf{e}_v) = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{matrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_4 \end{matrix}
$$

indicates a path from node *u* to *v* using only edges in the spanning tree

$$
T_{(\tau,c)} = \underbrace{(E_{\tau}^T E_{\tau})^{-1} E_{\tau}^T E(\mathcal{C})}_{E_{\tau}^L}
$$

$$
\mathcal{G} = \mathcal{T} \cup \mathcal{C}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

17

T

Oberwolfach February 25, 2015

E^L

Effective Resistance of a Graph

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T (E_{\tau}^L)^T (R_{(\tau, c)} W R_{(\tau, c)}^T)^{-1} E_{\tau}^L (\mathbf{e}_u - \mathbf{e}_v)
$$

$$
R_{(\tau,c)} = I
$$

\n
$$
E_{\tau}^{L}(\mathbf{e}_{u} - \mathbf{e}_{v}) = \mathbb{1}
$$

\n
$$
r_{uv} = \mathbb{1}^{T}W^{-1}\mathbb{1} = \sum_{i=1}^{5} \frac{1}{w_{i}}
$$

\n
$$
r_{k} = \frac{1}{w_{k}}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Effective Resistance of a Graph

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T (E_{\tau}^L)^T (R_{(\tau, c)} W R_{(\tau, c)}^T)^{-1} E_{\tau}^L (\mathbf{e}_u - \mathbf{e}_v)
$$

Faculty of Aerospace Engineering

February 25, 2015

Signed Graphs

a **signed graph** is a graph with positive and negative edge weights

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ $\mathcal{W}: \mathcal{E} \rightarrow \mathbb{R}$ $E(\mathcal{G}_{+}) = E_{+} = E_{\mathcal{F}_{+}} R_{(\mathcal{F}_{+},\mathcal{C}_{+})}$

$$
L(\mathcal{G}) = E(\mathcal{G}_+)W_+E(\mathcal{G}_+)^T - E(\mathcal{G}_-)W_-|E(\mathcal{G}_-)^T
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition $L(G) \geq 0 \Leftrightarrow$ $\left[\begin{array}{cc} |W_{-}|^{-1} & E_{-}^{T} \\ \end{array} \right]$ $\frac{\ }{\ }$ E_{-} $E_{+}W_{+}E_{+}^{T}$ $\overline{1}$ ≥ 0

Proof:

Schur Complement

 $L(G) = E(\mathcal{G}_{+})W_{+}E(\mathcal{G}_{+})^{T} - E(\mathcal{G}_{-})|W_{-}|E(\mathcal{G}_{-})^{T}$

Proposition
\n
$$
L(\mathcal{G}) \geq 0 \Leftrightarrow \begin{bmatrix} |W_-|^{-1} & E_{-}^T (E_{\mathcal{F}_+}^L)^T & E_{-}^T N_{\mathcal{F}_+} \\ E_{\mathcal{F}_+}^L E_{-} & R_{(\mathcal{F}_+, \mathcal{C}_+)} W_+ R_{(\mathcal{F}_+, \mathcal{C}_+)}^T & 0 \\ N_{\mathcal{F}_+}^T E_{-} & 0 & 0 \end{bmatrix} \geq 0
$$
\n**Proof:**
\n
$$
\text{Congruent Transformation } S = \begin{bmatrix} I & 0 \\ 0 & [(E_{\mathcal{F}_+}^L)^T & N_{\mathcal{F}_+}] \end{bmatrix}
$$
\n
$$
E(\mathcal{G}_+) = E_+ = E_{\mathcal{F}_+} R_{(\mathcal{F}_+, \mathcal{C}_+)}
$$
\n
$$
E(\mathcal{G}_+) = E_+ = E_{\mathcal{F}_+} R_{(\mathcal{F}_+, \mathcal{C}_+)}
$$
\n
$$
\text{IM}[N_{\mathcal{F}_+}] = \text{span}[N(E_{\mathcal{F}_+}^T)]
$$
\n
$$
\text{identifies how the positive weight graph is partitioned}
$$
\n
$$
\text{weight graph is partitioned}
$$
\n
$$
\text{Span} \text{ operator, non-zero number of elements of } \mathcal{G} \text{ and } \text{non-symmetric number of elements of } \mathcal{G} \text{ and } \mathcal{G} \
$$

Proposition
\n
$$
L(\mathcal{G}) \geq 0 \Leftrightarrow \begin{bmatrix} |W_-|^{-1} & E_-^T (E_{\mathcal{F}_+}^L)^T & E_-^T N_{\mathcal{F}_+} \\ E_{\mathcal{F}_+}^L E_- & R_{(\mathcal{F}_+,\mathcal{C}_+)} W_+ R_{(\mathcal{F}_+,\mathcal{C}_+)}^T & 0 \\ N_{\mathcal{F}_+}^T E_- & 0 & \mathbf{0} \end{bmatrix} \geq 0
$$
\n**Proof:**
\n
$$
\text{Congruent Transformation } S = \begin{bmatrix} I & 0 \\ 0 & [(E_{\mathcal{F}_+}^L)^T & N_{\mathcal{F}_+}] \\ 0 & [(E_{\mathcal{F}_+}^L)^T & N_{\mathcal{F}_+}] \end{bmatrix}
$$
\n
$$
\text{applied to } \begin{bmatrix} |W|_- & E_{-}^T \\ E_- & E_+ W_+ E_{+}^T \end{bmatrix}
$$

If the positive portion weighted graph is connected…

$$
L(\mathcal{G}) \geq 0 \Leftrightarrow \left[\begin{array}{cc} |W_-|^{-1} & E_-^T (E_{\mathcal{F}_+}^L)^T \\ E_{\mathcal{F}_+}^L E_- & R_{(\mathcal{F}_+,\mathcal{C}_+)} W_+ R_{(\mathcal{F}_+,\mathcal{C}_+)}^T \end{array} \right] \geq 0
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem Assume that G_{+} is connected and $|\mathcal{E}_-| = 1$ *and let* $\mathcal{E}_- = \{e_- = (u, v)\}\$. Let r_{uv} denote the effective resistance between nodes $u, v \in V$ *over the graph* \mathcal{G}_+ . Then

 $L(G) \geq 0 \Leftrightarrow |\mathcal{W}(e_{-})| \leq r_{uv}^{-1}$

Proof:

$$
|W_{-}|^{-1} - \underbrace{E_{-}^{T} (E_{\mathcal{F}_{+}}^{L})^{T} (R_{(\mathcal{F}_{+}, \mathcal{C}_{+})} W_{+} R_{(\mathcal{F}_{+}, \mathcal{C}_{+})}^{T})^{-1} E_{\mathcal{F}_{+}}^{L} E_{-}}_{r_{uv}(\mathcal{G}_{+})} \ge 0
$$
\nany single edge can destabilize a consensus network with a "negative enough" edge weight

\n
$$
w \sim \frac{w \sim w(\mathcal{G}_{+})^{T} \sim w(\mathcal{G}_{+})^{T}}{w(\mathcal{G}_{+})^{-1}}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Oberwolfach February 25, 2015

24

$$
M_{11}(s) = P^{T} R_{(\mathcal{F}, c)}^{T} (sI + L_{ess}(\mathcal{F}))^{-1} L_{e}(\mathcal{F}) R_{(\mathcal{F}, c)} P
$$

\n
$$
M_{12}(s) = P^{T} R_{(\mathcal{F}, c)}^{T} (sI + L_{ess}(\mathcal{F}))^{-1} E(\mathcal{F})^{T}
$$

\n
$$
M_{21}(s) = E(\mathcal{G}_{o})^{T} (E_{\mathcal{F}}^{L})^{T} (sI + L_{ess}(\mathcal{F}))^{-1} L_{e}(\mathcal{F}) R_{(\mathcal{F}, c)} P
$$

\n
$$
M_{22}(s) = E(\mathcal{G}_{o})^{T} (E_{\mathcal{F}}^{L})^{T} (sI + L_{ess}(\mathcal{F}))^{-1} E(\mathcal{F})^{T}.
$$

We now cite a result from [12] that gives insight on the *H*¹ norm of the transfer function matrix *M*11(*s*).

k*M*11(*s*)k¹ = (*M*11(0))*.*

Small-Gain Theorem Small-Gain Theorem We now come that gives insight on the transfer function matrix $\frac{1}{\sqrt{2}}$

 $\Vert \Lambda \Vert \geq \overline{\sigma} (M_{11}(\Omega))^{-1}$ $\|\Delta\| \leq O\left($ $\|\Delta\| < \overline{\sigma}(M_{11}(0))^{-1}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering 25 February 25, 2015 k*M*11(*s*)k¹ = (*M*11(0))*. the uncertain edge any interesting*

$$
M_{11}(s) = PT RT(\mathcal{F}, c) (sI + Less(\mathcal{F}))^{-1} Le(\mathcal{F}) R(\mathcal{F}, c) P
$$

$$
r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T (E_{\mathcal{T}}^L)^T (R(\mathcal{T}, c) W RT(\mathcal{T}, c))^{-1} E_{\mathcal{T}}^L (\mathbf{e}_u - \mathbf{e}_v)
$$

A Small-Gain Interpretation

assume *nominal* network is stable

consider a network with only a *single* uncertain edge

$$
\mathcal{E}_{\Delta} = \{\{u,v\}\}
$$

Theorem

$$
-\|M_{11}(s)\|_{\infty} = \mathcal{R}_{uv}
$$

The uncertain consensus network is stable for any $\|\Delta\|_{\infty} < \mathcal{R}_{uv}^{-1}$

for single edge uncertainty, small-gain condition is *exact* (i.e., no conservatism)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Signed Graphs and Cuts Corollary IV.9 indicates that a weighted Laplacian Sioned Cranks and in the theorem system *M*11(*s*) can be obtained by computing the largest singular value of the real matrix \overline{M} result on the robust stability of ⌃*^F* (*G,*).

Corollary Assume that both \mathcal{E}_+ and $\mathcal{E}_$ are not empty. If \mathcal{G}_+ is not connected, then \overline{I} *L*(*G*) *is indefinite for any choice of negative weights.* resistance in the network (defined over the nodes incident $\begin{array}{ccc} & I & O & J \end{array}$ $L(\mathcal{Y})$ is indefinite for any \int_{R} \int_{R $\frac{1}{2}$ $\frac{1}{2}$ *hoice of negative weights.*

a *balanced* signed graph its connection to the notion of effective resistance.

ness of the weighted Laplacian, it never the weighted Laplacian, it never the weighted Laplacian, it never the
The weighted Laplacian, it is never the weight of the

The smallest cardinality cut of a graph can be thought of as a **combinatorial robustness measure** for linear consensus protocols ==> but *always* conservative c sinancst cardinality cut of a graph can
thought of as a **combinatorial robustness** The following result shows that the case of the case.

Theorem \mathcal{N} is in fact a direct statement of the small-direct statement of the small-direct statement of the small-

$$
\left(\max_{e \in \mathcal{E}_{\Delta}} \mathcal{W}(e)\right)^{-1} \leq \max_{e \in \mathcal{E}_{\Delta}} \mathcal{R}_e(\mathcal{G}) \leq \overline{\sigma}(M_{11}(0))
$$

T)

P ^T E^T (*E^L*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

^T (*R*(*^T ,C*)*W R^T*

(*^T ,C*))

E^L

^T EP

R*^E*

tot ⁼ trace ^h

An Illustrative Example

any single edge in the cycle can make the Laplacian indefinite

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

An Illustrative Example

random geometric graph on 75 nodes

uncertain edge in blue

Future Directions

- how do you "measure" the effective resistance between dynamic agents?
	- network identification
	- fault detection
- synthesis of *robust* networks

Concluding Remarks

- networked dynamic systems require new tools/interpretations for robustness analysis
- graph properties have real system theoretic implications

Acknowledgements

Dr. Mathias Bürger

Cognitive Systems Group at Robert Bosch GmbH

Thank-you!

Questions?

[1] D. Zelazo and M. Bürger, "On the Definiteness of the Weighted Laplacian and its Connection to Effective Resistance," IEEE CDC, Los Angeles, CA, 2014. [2] D. Zelazo and M. Bürger, "On the Robustness of Uncertain Consensus Networks," submitted to IEEE Transactions on Control of Network Systems, 2014 (preprint on arXiv)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Consensus Protocol

The consensus protocol is a *distributed and dynamic protocol* used for computing the average of a set of numbers.

Agent Dynamics

$$
\dot{x}_i(t) = u_i(t)
$$

Information Exchange Network

$$
\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{W})
$$

$$
\mathcal{W}:\mathcal{E}\rightarrow\mathbb{R}
$$

Incidence Matrix

$$
E(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{E}|}
$$

$$
E(\mathcal{G}) = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right]
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

3

 $\mathbf{1}$ $\mathbf{1}$ $\overline{1}$

*v*1

*v*2

 v_3 *(v₄*)

The Consensus Protocol

The consensus protocol is a *distributed and dynamic protocol* used for computing the average of a set of numbers.

 $W(e) = w_{ij} = [W]_{ee}$

The Consensus Protocol

$$
\text{Consensus Protocol}
$$
\n
$$
u_i(t) = \sum_{i \sim j} w_{ij}(x_j(t) - x_i(t))
$$
\n
$$
\dot{x}(t) = -L(\mathcal{G})x(t)
$$

Theorem $Let G = (V, E, W)$ *be a weighted and connected graph with positive edge weights* $W(k) > 0$ *for* $k = 1, \ldots, |\mathcal{E}|$ *. Then the consensus dynamics synchronizes; i.e.,* $\lim_{t\to\infty} x_i(t) = \beta$ *for* $i = 1, \ldots, |\mathcal{V}|$ *.*

Mesbahi & Egerstedt, Olfati-Saber, Ren

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering