a characterization of all passivizing input-output transformations of a passive-short system

Miel Sharf (Jether Energy) and **Daniel Zelazo**

November 5, 2024 New Jersey Institute of Technology

Braat Institute

open multi-agent systems

network of self-driving cars

smart-grid with EV integration

open multi-agent systems

network of self-driving cars

 Σ_1 Σ_n $|\Pi_1$ Π_m

smart-grid with EV integration

open multi-agent systems

network of self-driving cars

smart-grid with EV integration

Resillience and robustness of network systems required for safe operations

Components of a networked system

- \triangleright agents dynamical systems that should interact with eachother to achieve some goal
- \triangleright network communication and sensing infrastructure for sharing of information
- \triangleright controllers computational nodes that process information from the network to make decisions for each agent

Network Interconnection

 \blacktriangleright Network is encoded by a matrix $M \in \mathbb{R}^{n \times m}$

 $\blacktriangleright [M]_{ij} = \begin{cases} \star, & \text{controller } j \text{ access to agent } i \\ 0 & \text{otherwise} \end{cases}$ 0, otherwise

 (Σ, Π, M)

networked dynamic systems

Network Interconnection

 \blacktriangleright Network is encoded by a matrix

 $M \in \mathbb{R}^{n \times m}$

- $\blacktriangleright [M]_{ij} = \begin{cases} \star, & \text{controller } j \text{ access to agent } i \\ 0 & \text{otherwise} \end{cases}$
	- 0, otherwise

A Stability Result

The stability of the dynamic network (Σ, Π, M) can be guaranteed for outputstrictly passive agent dynamics Σ_i and passive controller dynamics Π_e . [Corollary of B&Z 2014]

▶ stability result requires a passivity property to hold

- \triangleright stability result requires a passivity property to hold
- \triangleright what if this cannot be guaranteed?

passivation by the network

 \triangleright stability result requires a passivity property to hold \blacktriangleright what if this cannot be guaranteed?

- ρ_i is passivity index of each agent
	- $\rho_i = 0$: passive
	- $\rho_i > 0$: strictly output-passive
	- \circ ρ_i < 0 : output passive short

$$
\blacktriangleright R = \text{diag}(\rho_1, \ldots, \rho_n)
$$

Lemma [Belabbas, Chen, Z 2023]

Assume that $\rho_i\ <\ 0$ for at least one agent. If $R\ +\ M\mathrm{diag}(\beta)M^T$ is positive definite, then $\tilde{\Sigma}$: $\tilde{u}(t) \mapsto \tilde{y}(t)$, is output-strict passive with respect to any steady-state input-output pair. Furthermore, there exists scalars $\beta_i,\,i=1,\ldots,m$ such that $R+M\mathrm{diag}(\beta)M^T>0$ if and only if $x^TRx>0$ for any $x\in\ker(M^T)$). \vert 3

- \blacktriangleright if M^TM is full-rank, we can always passivy the systems with a constant network gain β
- \blacktriangleright stability of network is guaranteed for any passive controllers and correct gain β
- \blacktriangleright gain depends on spectral properties of M

passivation by the network

- ▶ in fact, a single agent can be used to passivy the entire network!
- \blacktriangleright design goal is to ensure agent has sufficient excess of passivity to compensate for any shortage of passivity in the network

- \blacktriangleright how do we passivy as dynamical system?
	- \rightarrow feedback passivation
	- \rightarrow loop-transformations (classic)
- \triangleright can we passivy a system to achieve arbitrary passivity indices?
- ▶ can we characterize all transformations that map a system with given passivty index to a system with prescribed passivity index?

passivity for dynamical systems

Definition

Let Σ be a SISO system with a constant input-output steady-state pair (u, y) . The system is said to be input-output (ρ, ν) -passive wrt (u, y) if there exists a C^1 positive semi-definite storage function $S(x)$ and numbers $\rho, \nu \in \mathbb{R}$, such that $\rho \nu < 1/4$ and

$$
\dot{S} = \frac{\partial S}{\partial x} f(x, u) \le (y - y)(u - u) - \rho(y - y)^2 - \nu(u - u)^2,
$$

for any trajectory u, y .

Definition

Let Σ be a SISO system with a constant input-output steady-state pair (u, y). The system is said to be input-output (ρ, ν)-passive wrt (u, y) if there exists a C^1 positive semi-definite storage function $S(x)$ and numbers $\rho, \nu \in \mathbb{R}$, such that $\rho \nu < 1/4$ and

$$
\dot{S} = \frac{\partial S}{\partial x} f(x, u) \le (y - y)(u - u) - \rho(y - y)^2 - \nu(u - u)^2,
$$

for any trajectory u, y .

- $\rho = \nu = 0 \Rightarrow$ **passivity**
- $\rho, \nu > 0 \Rightarrow$ strict input/output passivity
- $\rho, \nu < 0 \Rightarrow$ passive short

interconnection of passive systems

- ▶ Parallel Interconnection
- ▶ Negative Feedback Interconnection
- ▶ Symmetric Interconnection

feedback passivation

For a passive-short system $\Sigma: u \mapsto y$, we aim to find a map \hat{T} such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.

feedback passivation

For a passive-short system $\Sigma : u \mapsto u$, we aim to find a map \hat{T} such that the closed-loop system $\tilde{\Sigma} : \tilde{u} \mapsto \tilde{y}$ is passive. This is known as feedback passivation.

Problem Statement

Let Σ be a dynamical system with equal input and output dimensions, which is I/O (ρ, ν)-passive, and let $\rho_{\star}, \nu_{\star}$ be numbers such that $\rho_{\star} \nu_{\star}$ < 1/4. Characterize all I/O transformations \hat{T} such that the transformed system $\tilde{\Sigma}$ is I/O $(\rho_{\star}, \nu_{\star})$ -passive.

Consider the following system:

$$
\dot{x} = -\sqrt[3]{x} + 0.5x + 0.5u
$$

$$
y = 0.5x - 0.5u
$$

the system is passive-short

$$
S(x) = \frac{1}{6}x^2
$$

$$
\dot{S} = yu + \frac{2}{3}y^2 + \frac{1}{3}u^2 - \frac{1}{3}(2y+u)\sqrt[3]{2y+u} \leq yu + \frac{2}{3}y^2 + \frac{1}{3}u^2
$$

system has $\rho = -2/3, \nu = -1/3$

we can consider the following transformation:

$$
\begin{cases}\nu(t) &= \tilde{u}(t) - y(t) \\
\tilde{y}(t) &= u(t) + 2y(t)\n\end{cases} \Rightarrow \begin{bmatrix}\nu(t) \\ \tilde{y}(t)\n\end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} y(t) \\ \tilde{u}(t) \end{bmatrix}
$$

yields the transformed system

$$
\dot{x} = -\sqrt[3]{x} + \tilde{u}
$$

$$
\tilde{y} = x
$$

which is passive with storage function $S(x)=\frac{1}{2}x^2$ satisfying

$$
\dot{S}(x) = \tilde{y}\tilde{u} - \tilde{y}\sqrt[3]{\tilde{y}} \le \tilde{y}\tilde{u}
$$

The loop transformation, combination of feedback, feedforward, pre-, and post-multiplication is the classic approach to feedback passivation

The loop transformation, combination of feedback, feedforward, pre-, and post-multiplication is the classic approach to feedback passivation

A geometric approach to finding our map $T...$

Projective Quadratic Inequalities

A *projective quadratic inequality (PQI)* is an inequality with variables $\xi, \chi \in \mathbb{R}$ of the form

$$
0 \le a\xi^{2} + b\xi\chi + c\chi^{2} = \mathbf{f}_{(a,b,c)}(\xi,\chi),
$$

for some numbers a, b, c, not all zero. The inequality is called *non-trivial* if $b^2-4ac>0.$ The associated solution set $\mathcal{C}_{\xi,\chi}$ of the PQI is the set of all points $(\xi, \chi) \in \mathbb{R}^2$ satisfying the inequality.

PQI:

$$
0 \le a\xi^2 + b\xi\chi + c\chi^2 = \mathbf{f}_{(a,b,c)}(\xi, \chi),
$$

recall our definition for I/O (ρ, ν) -passivity

$$
\dot{S} \leq yu - \rho y^2 - \nu u^2
$$

PQI captures passivity

$$
\dot{S} \le \mathbf{f}_{(-\nu,1,-\rho)}(u,y)
$$

Solution set

$$
\mathcal{C}_{\rho,\nu} = \{ (\xi,\chi) \in \mathbb{R} \times \mathbb{R} : \mathbf{f}_{(-\nu,1,-\rho)}(\xi,\chi) \ge 0 \}
$$

- \blacktriangleright we are interested in maps T : $\begin{bmatrix} u(t) \end{bmatrix}$ $y(t)$ 1 \mapsto $\int \tilde{u}(t)$ $\tilde{y}(t)$ 1
- \triangleright original system has a PQI solution set $\mathcal{C}_{q,\nu}$ for some (ρ, ν)
- ▶ transformed system has PQI solution set C_{ρ^*,ν^*} for some (ρ^*,ν^*)

$$
\blacktriangleright \text{ we are interested in maps } T: \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} \mapsto \begin{bmatrix} \tilde{u}(t) \\ \tilde{y}(t) \end{bmatrix}
$$

- \triangleright original system has a PQI solution set $\mathcal{C}_{\alpha\nu}$ for some (ρ, ν)
- ▶ transformed system has PQI solution set C_{ρ^*,ν^*} for some (ρ^*,ν^*)

An I/O transformation T maps an I/O (ρ, ν) -passive system to an I/O (ρ_\star, ν_\star) -passive system if and only if it maps the PQI $0 \leq \mathbf{f}_{(-\nu,1,-\rho)}(\xi,\chi)$ to the PQI $0 \leq f_{(-\nu^*,1,-\rho^*)}(\xi,\chi)$ (or to a stricter inequality)

example revisited

recall our earlier example...

$$
\dot{x} = -\sqrt[3]{x} + 0.5x + 0.5u
$$

$$
y = 0.5x - 0.5u
$$

satisfies

$$
\frac{1}{3}\chi^2 + \chi\xi + \frac{2}{3}\xi^2 = \mathbf{f}_{(1/3,1,2/3)}(\xi,\chi) \ge 0
$$

we considered the transformation
$$
\begin{bmatrix} \tilde{\chi} \\ \tilde{\xi} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \chi \\ \chi \\ \xi \end{bmatrix}
$$

transformed system satisfies some PQI

$$
a\tilde{\chi}^2 + b\tilde{\chi}\tilde{\xi} + c\tilde{\xi}^2 \ge 0
$$

example revisited

we should recover original PQI by inverting the map

$$
0 \le a\tilde{\chi}^2 + b\tilde{\chi}\tilde{\xi} + c\tilde{\xi}^2
$$

= $a(\chi + \xi)^2 + b(\chi + \xi)(\chi + 2\xi) + c(\chi + 2\xi)^2$
= $(a + b + c)\chi^2 + (2a + 3b + 4c)\chi\xi + (a + 2b + 4c)\xi^2$

solving for (a, b, c) using

$$
\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ 1 \\ \frac{2}{3} \end{bmatrix}
$$

gives $a = c = 0$, $b = 1/3$ implying that

$$
0 \le \frac{1}{3}\tilde{\chi}\tilde{\xi}
$$

i.e., the transformed system is passive 13

main idea

Let A be the solution set of the original PQI. The solution set of the new PQI under the transformation T is

$$
T(\mathcal{A}) = \{T(\chi,\xi) \,:\, (\chi,\xi) \in \mathcal{A}\}.
$$

We can therefore study the effect of linear transformations on PQIs by studying their actions on the solution sets.

a geometric approach

The solution set of any nontrivial PQI is a symmetric double-cone. Moreover, any symmetric double-cone is the solution set of some non-trivial PQI.

Theorem★ **contracts and the original contracts and the or**

.

Let (ξ_1, χ_1) , (ξ_2, χ_2) be non-colinear solutions of $a_1 \xi^2 + \xi \chi + c_1 \chi^2 = 0$, and $(\tilde{\xi}_1, \tilde{\chi}_1)$, $(\tilde{\xi}_2, \tilde{\chi}_2)$ be non-colinear solutions of $a_2 \xi^2 + \xi \chi + c_2 \chi^2 = 0$. Define $\sqrt{ }$ 1^{-1} $\sqrt{ }$ \sim \sim \sim \sim \sim \sim -1

$$
T_1 = \begin{bmatrix} \tilde{\xi}_1 & \tilde{\xi}_2 \\ \tilde{\chi}_1 & \tilde{\chi}_2 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2 \\ \chi_1 & \chi_2 \end{bmatrix}^{-1}, T_2 = \begin{bmatrix} \tilde{\xi}_1 & -\tilde{\xi}_2 \\ \tilde{\chi}_1 & -\tilde{\chi}_2 \end{bmatrix} \begin{bmatrix} \xi_1 & \xi_2 \\ \chi_1 & \chi_2 \end{bmatrix}^{-1}
$$

Then one of T_1, T_2 transforms the PQI $a_1 \xi^2 + \xi \chi + c_1 \chi^2 \geq 0$ to the PQI $\tau a_2 \xi^2 + \tau \xi \chi + \tau c_2 \chi^2 \geq 0$ for some $\tau > 0$.

example continued

...back to our original system with PQI

$$
\frac{1}{3}\chi^2+\chi\xi+\frac{2}{3}\xi^2=\mathbf{f}_{(1/3,1,2/3)}(\xi,\chi)\geq 0
$$

can be rewritten as

$$
\frac{1}{3}(\chi + \xi)(\chi + 2\xi) = 0
$$

so two solutions are $(2, -1), (-1, 1) \in C_{1/3, 2/3}$

example continued

...back to our original system with PQI

$$
\frac{1}{3}\chi^2+\chi\xi+\frac{2}{3}\xi^2=\mathbf{f}_{(1/3,1,2/3)}(\xi,\chi)\geq 0
$$

can be rewritten as

$$
\frac{1}{3}(\chi + \xi)(\chi + 2\xi) = 0
$$

so two solutions are $(2, -1), (-1, 1) \in C_{1/3, 2/3}$

the new PQI satisfies

$$
\frac{1}{3}\tilde{\chi}\tilde{\xi} \ge 0
$$

with solutions $(1, 0), (0, 1) \in C_{0,0}$

example continued

...back to our original system with PQI

$$
\frac{1}{3}\chi^2+\chi\xi+\frac{2}{3}\xi^2=\mathbf{f}_{(1/3,1,2/3)}(\xi,\chi)\geq 0
$$

can be rewritten as

$$
\frac{1}{3}(\chi + \xi)(\chi + 2\xi) = 0
$$

so two solutions are $(2, -1), (-1, 1) \in C_{1/3, 2/3}$

the new PQI satisfies

$$
\frac{1}{3}\tilde{\chi}\tilde{\xi} \ge 0
$$

with solutions $(1, 0), (0, 1) \in C_{0,0}$ applying theorem

$$
T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}
$$

i.e., the transformation we found earlier!

summary

A map T transforms an I/O (ρ, ν) -passive system to an I/O $(\rho_{\star}, \nu_{\star})$ passive system if and only if it sends $C_{\rho,\nu}$ into C_{ρ_\star,ν_\star} , which we denote by $C_{\rho,\nu} \hookrightarrow C_{\rho_\star,\nu_\star}$

- ▶ earlier theorem gives a characterization for these maps allows to find a map from one double cone to another double cone
- \triangleright we would like to characterize all possible maps

summary

A map T transforms an I/O (ρ, ν) -passive system to an I/O $(\rho_{\star}, \nu_{\star})$ passive system if and only if it sends $C_{\rho,\nu}$ into C_{ρ_\star,ν_\star} , which we denote by $C_{\rho,\nu} \hookrightarrow C_{\rho_\star,\nu_\star}$

- ▶ earlier theorem gives a characterization for these maps allows to find a map from one double cone to another double cone
- \blacktriangleright we would like to characterize all possible maps

main idea

show that all maps from an arbitrary double cone into another arbitrary double cone can be built using maps from $C_{0,0}$ into iteslf

mapping C0,⁰ **into itself**

Proposition

Let $\rho, \nu, \rho_{\star}, \nu_{\star}$ be any four numbers such that $\rho \nu, \rho_{\star} \nu_{\star} < 1/4$, and let $T: C_{\rho,\nu} \hookrightarrow C_{\rho_\star,\nu_\star}.$ Let $S_{\rho,\nu}: C_{0,0} \hookrightarrow C_{\rho,\nu}$ and $S_{\rho_\star,\nu_\star}: C_{0,0} \hookrightarrow C_{\rho_\star,\nu_\star}$ built using Theorem \star . Then there exists a matrix $Q: C_{0,0} \hookrightarrow C_{0,0}$, such that $T=S_{\rho_\star,\nu_\star}QS_{\rho,\nu}^{-1}$ holds.

mapping C0,⁰ **into itself**

Proposition

Let $\rho, \nu, \rho_{\star}, \nu_{\star}$ be any four numbers such that $\rho \nu, \rho_{\star} \nu_{\star} < 1/4$, and let $T: C_{\rho,\nu} \hookrightarrow C_{\rho_\star,\nu_\star}.$ Let $S_{\rho,\nu}: C_{0,0} \hookrightarrow C_{\rho,\nu}$ and $S_{\rho_\star,\nu_\star}: C_{0,0} \hookrightarrow C_{\rho_\star,\nu_\star}$ built using Theorem \star . Then there exists a matrix $Q: C_{0,0} \hookrightarrow C_{0,0}$, such that $T=S_{\rho_\star,\nu_\star}QS_{\rho,\nu}^{-1}$ holds.

$$
C_{0,0} \stackrel{S_{\rho,\nu}}{\hookrightarrow} C_{\rho,\nu} \stackrel{T}{\hookrightarrow} C_{\rho_\star,\nu_\star} \stackrel{S_{\rho_\star,\nu_\star}^{-1}}{\hookrightarrow} C_{0,0}.
$$

mapping C0,⁰ **into itself**

Proposition

Let $\rho, \nu, \rho_{\star}, \nu_{\star}$ be any four numbers such that $\rho \nu, \rho_{\star} \nu_{\star} < 1/4$, and let $T: C_{\rho,\nu} \hookrightarrow C_{\rho_\star,\nu_\star}.$ Let $S_{\rho,\nu}: C_{0,0} \hookrightarrow C_{\rho,\nu}$ and $S_{\rho_\star,\nu_\star}: C_{0,0} \hookrightarrow C_{\rho_\star,\nu_\star}$ built using Theorem \star . Then there exists a matrix $Q: C_{0,0} \hookrightarrow C_{0,0}$, such that $T=S_{\rho_\star,\nu_\star}QS_{\rho,\nu}^{-1}$ holds.

$$
C_{0,0} \stackrel{S_{\rho,\nu}}{\hookrightarrow} C_{\rho,\nu} \stackrel{T}{\hookrightarrow} C_{\rho_\star,\nu_\star} \stackrel{S_{\rho_\star,\nu_\star}^{-1}}{\hookrightarrow} C_{0,0}.
$$

gives a prescription for finding all matrices mapping $C_{\rho, \nu}$ into $C_{\rho_\star, \nu_\star}.$

- \blacktriangleright $S_{\mu\tau}$
- \blacktriangleright matrices mapping $C_{0,0}$ into itself

Proposition

A matrix $T \in GL_2(\mathbb{R})$ sends $C_{0,0}$ into itself if and only if all of the entries of T have the same sign, i.e., $T_{ii}T_{kl} \geq 0$ for every $i, j, k, l \in$ {1, 2}.

Proposition †

Let μ, τ be any two numbers such that $\mu\tau < 1/4$. Recall that $S_{\mu,\tau}$ is a map $C_{0,0} \hookrightarrow C_{\mu,\tau}$, as constructed in Theorem \star . Define $R = \sqrt{1-4\tau\mu}$.

i) If $\tau < 0$, we can choose $S_{\mu,\tau} = \frac{1}{2\tau} \begin{bmatrix} -1-R & 1-R \\ -2\tau & 2\tau \end{bmatrix}$. ii) If $\tau > 0$, we can choose $S_{\mu,\tau} = \frac{1}{2\tau} \left[\frac{1+R}{2\tau} \frac{1-R}{2\tau} \right]$. iii) If $\tau = 0$, we can choose $S_{\mu,\tau} = \begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix}$.

direct construction

Theorem

Let Σ be a SISO I/O (ρ, ν) -passive system, and let $T \in GL_2(\mathbb{R})$ be an invertible matrix I/O transformation. The transformed system $\tilde{\Sigma}$ is I/O $(\rho_{\star}, \nu_{\star})$ -passive if and only if there exists a matrix $M \in GL_2(\mathbb{R})$ such that

i) $M_{ij} \geq 0$ for all $i, j \in \{1, 2\}$;

ii) some $\theta \in \{\pm 1\}$ such that $T = \theta S_{\rho_\star,\nu_\star} M S_{\rho,\nu}^{-1}$, where $S_{\rho,\nu},S_{\rho_\star,\nu_\star}$ are given in Proposition †.

In other words, the transformed system $\tilde{\Sigma}$ is I/O ($\rho_{\star}, \nu_{\star}$)-passive if and only if all of the entries of the matrix $S_{\rho_{\star},\nu_{\star}}^{-1}TS_{\rho,\nu}$ have the same sign.

main result

▶ Motivation: feedback systems with different faulty modes

 $\{\Sigma_i\}_{i\in\mathcal{I}}$

- each Σ_i represents a system in different operating mode
- assume each Σ_i is I/O (ρ_i, ν_i)-passive while the desired passivity index is $(\rho_i^\star,\nu_i^\star)$
- $\bullet\,$ Transformed systems $\{\tilde{\Sigma}_i\}_{i\in\mathcal{I}}$ are I/O $(\rho_i^\star,\nu_i^\star)$ -passive for all i , if and only if there exists matrices M_i with all non-negative entries, and numbers $\theta_i \in {\pm 1}$ such that

$$
T = \theta_i S_{\rho_i^{\star}, \nu_i^{\star}} M_i S_{\rho_i, \nu_i}^{-1}
$$

$$
\blacktriangleright \ G_1(s) = \frac{s-1}{s+1}, \ G_2(s) = \frac{-s^3 + 6s + 5}{s^3 + 4s^2 + 5s + 2}
$$

▶ Parallel interconnection:

 $G(s) = \frac{2s+3}{s^2+3s+2} = \frac{1}{s+2} + \frac{1}{s+1}$ system is $(2/3, 0)$ passive

- \blacktriangleright assume $G_2(s)$ is faulty and switches to $G_1(s)$ in fault mode
- \triangleright with fault, $\overline{G}(s) = 2G_1(s)$ and it is $(0, -1.25)$ -passive

Find map T that maps fault $G(s)$ to a $(2,0)$ -passive system and $\overline{G}(s)$ to a $(0, 0)$ -passive system

$$
\blacktriangleright \ \ \text{Let} \ T_1 = S_{2,0}^{-1} T S_{\frac{2}{3},0} \ \text{and} \ T_2 = S_{0,0}^{-1} T S_{0,-1.25}
$$

 \blacktriangleright We want entries of T_1 and T_2 to have same sign. Let

$$
T = \begin{bmatrix} 1 & 0.4 \\ 0.4 & 0.2 \end{bmatrix}
$$

▶ leads to

$$
T_1 = \frac{1}{15} \begin{bmatrix} 3 & 2 \\ 6 & 7 \end{bmatrix} \text{ and } T_2 = \frac{1}{25} \begin{bmatrix} 10 & 10 \\ 3 & 5 \end{bmatrix}
$$

▶ Can be verified that T_1 sends $G(s) \mapsto \tilde{G}(s) = \frac{0.4s^2 + 1.6s + 1.4}{s^2 + 3.8s + 3.2}$ with passivity index $(2.2857, 0)$ and T_2 send $\bar{G}(s) \mapsto \int_{0}^{1} (\hat{s})^2 \frac{0.6s+0.2}{1.4s+0.6}$ to (2.333, 0)-passive system

results can be generalized to MIMO systems

Theorem

Let Σ be an I/O (ρ, ν)-passive system with input and output dimension equal to d, and let $T \in GL_{2d}(\mathbb{R})$ be an invertible matrix inducing an I/O transformation. The transformed system $\tilde{\Sigma}$ is I/O ($\rho_{\star}, \nu_{\star}$)-passive if and only if there exists a matrix $M \in GL_{2d}(\mathbb{R})$ and some positive $\lambda > 0$ such that:

$$
T = (S_{\rho_\star,\nu_\star} \otimes \mathrm{Id}_d) M (S_{\rho,\nu}^{-1} \otimes \mathrm{Id}_d), \ M^\top J M - \lambda J \ge 0,
$$

where $J=\left[\frac{0}{0.5{\rm Id}_d}\frac{0.5{\rm Id}_d}{0}\right]$, i.e., $\tilde{\Sigma}$ is I/O (ρ_\star,ν_\star) -passive if and only if there exists $\lambda>0$ such that $X=(S^{-1}_{\rho_{\star},\nu_{\star}}\otimes \mathrm{Id}_d)T(S_{\rho,\nu}\otimes \mathrm{Id}_d)$ satisfies $X^{\top}JX - \lambda J \geq 0.$

$$
\min_{T} \Phi(T)
$$
\ns.t. T maps I/O (ρ, ν) systems to I/O (ρ_*, ν_*)-systems.

$$
\min_{T,\lambda,M} \Phi(T)
$$
\n
$$
\text{s.t.} \quad M = (S_{\rho^*,\nu^*} \otimes \text{Id}_d)^{-1} T(S_{\rho,\nu} \otimes \text{Id}_d)
$$
\n
$$
M^\top J M - \lambda J \ge 0
$$
\n
$$
\lambda \ge 0,
$$

$$
\min_{T,\lambda,M} \Phi(T)
$$
\n
$$
\text{s.t.} \quad M = (S_{\rho^*,\nu^*} \otimes \text{Id}_d)^{-1} T(S_{\rho,\nu} \otimes \text{Id}_d)
$$
\n
$$
M^\top J M - \lambda J \ge 0
$$
\n
$$
\lambda \ge 0,
$$

 \triangleright extend to different passivity variations (incremental, equilibrium independent, etc.)

$$
\min_{T,\lambda,M} \Phi(T)
$$
\n
$$
\text{s.t.} \quad M = (S_{\rho^*,\nu^*} \otimes \text{Id}_d)^{-1} T(S_{\rho,\nu} \otimes \text{Id}_d)
$$
\n
$$
M^\top J M - \lambda J \ge 0
$$
\n
$$
\lambda \ge 0,
$$

- \triangleright extend to different passivity variations (incremental, equilibrium independent, etc.)
- ▶ applications to plug-and-play networks

Dr. Miel Sharf (Jether Energy Research) Prof. Anoop Jain (IIT-Jodhpur)

- ▶ M. Sharf, A. Jain and D. Zelazo, "A Geometric Method for Passivation and Cooperative Control of Equilibrium-Independent Passivity-Short Systems", *IEEE Transactions on Automatic Control*, 66(12):5877-5892, 2021.
- ▶ M. Sharf and D. Zelazo, "A Characterization of All Linear Passivizing Input-Output Transformations of a Passive-Short System: The SISO Case," *IEEE Control Systems Letters*, 8:532:537, 2024.

<https://connect-lab-technion.github.io/>

Open Faculty Positions

We invite applications for tenure-track positions at all ranks

- We seek individuals with outstanding potential for research and teaching, who will enrich the professional diversity of the academic community
- Research areas of interest include:
	- Aerodynamics, fluid mechanics, and aeroacoustics
	- Astrodynamics and space propulsion
	- Combustion and propulsion
	- Guidance, navigation, control, and autonomous systems
	- $-$ Robotics and AI $_{\text{N}}$ $_{\text{N}}$

