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open multi-agent systems

network of self-driving cars

smart-grid with EV integration

Resillience and robustness of
network systems required for
safe operations
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networked dynamic systems

(Σ,Π,G)

Components of a networked system
▶ agents - dynamical systems that should

interact with eachother to achieve
some goal

▶ network - communication and sensing
infrastructure for sharing of information

▶ controllers - computational nodes that
process information from the network
to make decisions for each agent

2



networked dynamic systems

(Σ,Π,M)

Network Interconnection
▶ Network is encoded by a matrix

M ∈ Rn×m

▶ [M ]ij =

{
⋆, controller j access to agent i
0, otherwise
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networked dynamic systems

(Σ,Π,M)

Network Interconnection
▶ Network is encoded by a matrix

M ∈ Rn×m

▶ [M ]ij =

{
⋆, controller j access to agent i
0, otherwise

A Stability Result

The stability of the dynamic network
(Σ,Π,M) can be guaranteed for output-
strictly passive agent dynamics Σi and
passive controller dynamics Πe.
[Corollary of B&Z 2014]
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passivation by the network

▶ stability result requires a passivity property to hold

▶ what if this cannot be guaranteed?
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passivation by the network

▶ stability result requires a passivity property to hold
▶ what if this cannot be guaranteed?

▶ ρi is passivity index of each agent
◦ ρi = 0 : passive
◦ ρi > 0 : strictly output-passive
◦ ρi < 0 : output passive short

▶ R = diag(ρ1, . . . , ρn)

Lemma [Belabbas, Chen, Z 2023]

Assume that ρi < 0 for at least one agent. If R + Mdiag(β)MT is
positive definite, then Σ̃ : ũ(t) 7→ ỹ(t), is output-strict passive with
respect to any steady-state input-output pair. Furthermore, there ex-
ists scalars βi, i = 1, . . . ,m such that R+Mdiag(β)MT > 0 if and only
if xTRx > 0 for any x ∈ ker(MT ). 3



passivation by the network

▶ if MTM is full-rank, we can
always passivy the systems with
a constant network gain β

▶ stability of network is
guaranteed for any passive
controllers and correct gain β

▶ gain depends on spectral
properties of M
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passivation by the network

▶ in fact, a single agent can be
used to passivy the entire
network!

▶ design goal is to ensure agent
has sufficient excess of passivity
to compensate for any shortage
of passivity in the network
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passivation goals

▶ how do we passivy as dynamical
system?
→ feedback passivation
→ loop-transformations (classic)

▶ can we passivy a system to
achieve arbitrary passivity
indices?

▶ can we characterize all
transformations that map a
system with given passivty index
to a system with prescribed
passivity index?
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passivity for dynamical systems

ẋ = f(x, u)

y = h(x, u)
u y

uTy ≥ Ṡ

0 = f(0, 0)

0 = h(0, 0)

Definition
Let Σ be a SISO system with a constant input-output steady-state pair
(u, y). The system is said to be input-output (ρ, ν)-passive wrt (u, y) if
there exists a C1 positive semi-definite storage function S(x) and
numbers ρ, ν ∈ R, such that ρν < 1/4 and

Ṡ =
∂S

∂x
f(x, u) ≤ (y − y)(u− u)− ρ(y − y)2 − ν(u− u)2,

for any trajectory u, y.
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passivity for dynamical systems

Definition
Let Σ be a SISO system with a constant input-output steady-state pair
(u, y). The system is said to be input-output (ρ, ν)-passive wrt (u, y) if
there exists a C1 positive semi-definite storage function S(x) and
numbers ρ, ν ∈ R, such that ρν < 1/4 and

Ṡ =
∂S

∂x
f(x, u) ≤ (y − y)(u− u)− ρ(y − y)2 − ν(u− u)2,

for any trajectory u, y.

▶ ρ = ν = 0 ⇒ passivity
▶ ρ, ν > 0 ⇒ strict input/output passivity
▶ ρ, ν < 0 ⇒ passive short
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interconnection of passive systems

▶ Parallel Interconnection
▶ Negative Feedback Interconnection
▶ Symmetric Interconnection

+

+

Σ1

Σ2

u y

Passive

Σ1

Σ2

u y
Passive

−

Σ1

Σ2

u y

Passive

−

u1 y1ET E
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feedback passivation

For a passive-short system Σ : u 7→ y,
we aim to find a map T̂ such that the
closed-loop system Σ̃ : ũ 7→ ỹ is pas-
sive. This is known as feedback pas-
sivation.

Problem Statement

Let Σ be a dynamical system with equal input and output dimensions,
which is I/O (ρ, ν)-passive, and let ρ⋆, ν⋆ be numbers such that ρ⋆ν⋆ <

1/4. Characterize all I/O transformations T̂ such that the transformed
system Σ̃ is I/O (ρ⋆, ν⋆)-passive.
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an example

Consider the following system:

ẋ = − 3
√
x+ 0.5x+ 0.5u

y = 0.5x− 0.5u

the system is passive-short

S(x) =
1

6
x2

Ṡ = yu+
2

3
y2 +

1

3
u2 − 1

3
(2y + u) 3

√
2y + u ≤ yu+

2

3
y2 +

1

3
u2

system has ρ = −2/3, ν = −1/3
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an example

we can consider the following transformation:{
u(t) = ũ(t)− y(t)

ỹ(t) = u(t) + 2y(t)
⇒

[
u(t)

ỹ(t)

]
=

[
−1 1

1 1

][
y(t)

ũ(t)

]

yields the transformed system

ẋ = − 3
√
x+ ũ

ỹ = x

which is passive with storage function S(x) = 1
2x

2 satisfying

Ṡ(x) = ỹũ− ỹ 3
√
ỹ ≤ ỹũ
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loop transformations

The loop transformation, combination of feedback, feedforward, pre-, and
post-multiplication is the classic approach to feedback passivation
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loop transformations

The loop transformation, combination of feedback, feedforward, pre-, and
post-multiplication is the classic approach to feedback passivation

for this work, we prefer to consider the map T :

[
u(t)

y(t)

]
7→

[
ũ(t)

ỹ(t)

]
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a geometric approach

A geometric approach to finding our map T ...

Projective Quadratic Inequalities
A projective quadratic inequality (PQI) is an inequality with variables
ξ, χ ∈ R of the form

0 ≤ aξ2 + bξχ+ cχ2 = f(a,b,c)(ξ, χ),

for some numbers a, b, c, not all zero. The inequality is called non-trivial
if b2 − 4ac > 0. The associated solution set Cξ,χ of the PQI is the set of all
points (ξ, χ) ∈ R2 satisfying the inequality.
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a geometric approach

PQI:

0 ≤ aξ2 + bξχ+ cχ2 = f(a,b,c)(ξ, χ),

recall our definition for I/O (ρ, ν)-passivity

Ṡ ≤ yu− ρy2 − νu2

PQI captures passivity
Ṡ ≤ f(−ν,1,−ρ)(u, y)

Solution set

Cρ,ν = {(ξ, χ) ∈ R× R : f(−ν,1,−ρ)(ξ, χ) ≥ 0}
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geometric understanding of pqis

▶ we are interested in maps T :

[
u(t)

y(t)

]
7→

[
ũ(t)

ỹ(t)

]
▶ original system has a PQI solution set Cρ,ν for some (ρ, ν)

▶ transformed system has PQI solution set Cρ⋆,ν⋆ for some (ρ⋆, ν⋆)

An I/O transformation T maps an I/O (ρ, ν)-passive system to an I/O
(ρ⋆, ν⋆)-passive system if and only if it maps the PQI 0 ≤ f(−ν,1,−ρ)(ξ, χ)

to the PQI 0 ≤ f(−ν⋆,1,−ρ⋆)(ξ, χ) (or to a stricter inequality)

12



geometric understanding of pqis

▶ we are interested in maps T :

[
u(t)

y(t)

]
7→

[
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example revisited

recall our earlier example...

ẋ = − 3
√
x+ 0.5x+ 0.5u

y = 0.5x− 0.5u

satisfies
1

3
χ2 + χξ +

2

3
ξ2 = f(1/3,1,2/3)(ξ, χ) ≥ 0

we considered the transformation
[
χ̃

ξ̃

]
=

[
1 1

1 2

][
χ

ξ

]
transformed system satisfies some PQI

aχ̃2 + bχ̃ξ̃ + cξ̃2 ≥ 0

13



example revisited

we should recover original PQI by inverting the map

0 ≤ aχ̃2 + bχ̃ξ̃ + cξ̃2

= a(χ+ ξ)2 + b(χ+ ξ)(χ+ 2ξ) + c(χ+ 2ξ)2

= (a+ b+ c)χ2 + (2a+ 3b+ 4c)χξ + (a+ 2b+ 4c)ξ2

solving for (a, b, c) using 1 1 1

2 3 4

1 2 4


ab
c

 =

 1
3

1
2
3


gives a = c = 0, b = 1/3 implying that

0 ≤ 1

3
χ̃ξ̃

i.e., the transformed system is passive 13



example revisited

main idea

Let A be the solution set of the original PQI. The solution set of the
new PQI under the transformation T is

T (A) = {T (χ, ξ) : (χ, ξ) ∈ A}.

We can therefore study the effect of linear transformations on PQIs by
studying their actions on the solution sets.
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a geometric approach

The solution set of any non-
trivial PQI is a symmetric
double-cone. Moreover, any
symmetric double-cone is the
solution set of some non-trivial
PQI.

Theorem⋆ [Sharf, Jain, Z 2021]

Let (ξ1, χ1), (ξ2, χ2) be non-colinear solutions of a1ξ2 + ξχ+ c1χ
2 = 0,

and (ξ̃1, χ̃1),(ξ̃2, χ̃2) be non-colinear solutions of a2ξ2 + ξχ+ c2χ
2 = 0.

Define

T1 =

[
ξ̃1 ξ̃2
χ̃1 χ̃2

][
ξ1 ξ2
χ1 χ2

]−1

, T2 =

[
ξ̃1 −ξ̃2
χ̃1 −χ̃2

][
ξ1 ξ2
χ1 χ2

]−1

.

Then one of T1, T2 transforms the PQI a1ξ2 + ξχ+ c1χ
2 ≥ 0 to the PQI

τa2ξ
2 + τξχ+ τc2χ

2 ≥ 0 for some τ > 0. 14



example continued

...back to our original system with PQI

1

3
χ2 + χξ +

2

3
ξ2 = f(1/3,1,2/3)(ξ, χ) ≥ 0

can be rewritten as
1

3
(χ+ ξ)(χ+ 2ξ) = 0

so two solutions are (2,−1), (−1, 1) ∈ C1/3,2/3

the new PQI satisfies
1

3
χ̃ξ̃ ≥ 0

with solutions (1, 0), (0, 1) ∈ C0,0 applying theorem

T1 =

[
1 0

0 1

][
2 −1

−1 1

]−1

=

[
1 1

1 2

]

i.e., the transformation we found earlier!
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towards a characterization

summary

A map T transforms an I/O (ρ, ν)-passive system to an I/O (ρ⋆, ν⋆)-
passive system if and only if it sends Cρ,ν into Cρ⋆,ν⋆

, which we denote
by Cρ,ν ↪→ Cρ⋆,ν⋆

▶ earlier theorem gives a characterization for these maps - allows to
find a map from one double cone to another double cone

▶ we would like to characterize all possible maps

main idea

show that all maps from an arbitrary double cone into another arbi-
trary double cone can be built using maps from C0,0 into iteslf
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mapping C0,0 into itself

Proposition

Let ρ, ν, ρ⋆, ν⋆ be any four numbers such that ρν, ρ⋆ν⋆ < 1/4, and let
T : Cρ,ν ↪→ Cρ⋆,ν⋆

. Let Sρ,ν : C0,0 ↪→ Cρ,ν and Sρ⋆,ν⋆
: C0,0 ↪→ Cρ⋆,ν⋆

built using Theorem ⋆. Then there exists a matrix Q : C0,0 ↪→ C0,0,
such that T = Sρ⋆,ν⋆

QS−1
ρ,ν holds.

C0,0

Sρ,ν

↪→ Cρ,ν
T
↪→ Cρ⋆,ν⋆

S−1
ρ⋆,ν⋆
↪→ C0,0.

gives a prescription for finding all matrices mapping Cρ,ν into Cρ⋆,ν⋆
.

▶ Sµ,τ

▶ matrices mapping C0,0 into itself
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mapping C0,0 into itself

Proposition

A matrix T ∈ GL2(R) sends C0,0 into itself if and only if all of the
entries of T have the same sign, i.e., TijTkl ≥ 0 for every i, j, k, l ∈
{1, 2}.
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mapping from C0,0

Proposition †

Let µ, τ be any two numbers such that µτ < 1/4. Recall that Sµ,τ is a
map C0,0 ↪→ Cµ,τ , as constructed in Theorem ⋆. Define R =

√
1− 4τµ.

i) If τ < 0, we can choose Sµ,τ = 1
2τ

[−1−R 1−R
−2τ 2τ

]
.

ii) If τ > 0, we can choose Sµ,τ = 1
2τ

[
1+R 1−R
2τ 2τ

]
.

iii) If τ = 0, we can choose Sµ,τ =
[
1 µ
0 1

]
.

direct construction
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main result

Theorem

Let Σ be a SISO I/O (ρ, ν)-passive system, and let T ∈ GL2(R) be an
invertible matrix I/O transformation. The transformed system Σ̃ is I/O
(ρ⋆, ν⋆)-passive if and only if there exists a matrix M ∈ GL2(R) such
that

i) Mij ≥ 0 for all i, j ∈ {1, 2};
ii) some θ ∈ {±1} such that T = θSρ⋆,ν⋆

MS−1
ρ,ν , where Sρ,ν , Sρ⋆,ν⋆

are given in Proposition †.

In other words, the transformed system Σ̃ is I/O (ρ⋆, ν⋆)-passive if and
only if all of the entries of the matrix S−1

ρ⋆,ν⋆
TSρ,ν have the same sign.

20



main result
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application: multiple purpose transformations

▶ Motivation: feedback systems with different faulty modes

{Σi}i∈I

• each Σi represents a system in different operating mode
• assume each Σi is I/O (ρi, νi)-passive while the desired passivity index

is (ρ⋆i , ν
⋆
i )

• Transformed systems {Σ̃i}i∈I are I/O (ρ⋆i , ν
⋆
i )-passive for all i, if and

only if there exists matrices Mi with all non-negative entries, and
numbers θi ∈ {±1} such that

T = θiSρ⋆i ,ν
⋆
i
MiS

−1
ρi,νi

21



application: multiple purpose transformations

▶ G1(s) =
s−1
s+1 , G2(s) =

−s3+6s+5
s3+4s2+5s+2

▶ Parallel interconnection:
G(s) = 2s+3

s2+3s+2 = 1
s+2 + 1

s+1 system is
(2/3, 0)passive

▶ assume G2(s) is faulty and switches to
G1(s) in fault mode

▶ with fault, Ḡ(s) = 2G1(s) and it is
(0,−1.25)-passive

Find map T that maps fault G(s) to a (2, 0)-passive system and Ḡ(s) to a
(0, 0)-passive system

21



application: multiple purpose transformations

▶ Let T1 = S−1
2,0TS 2

3 ,0
and T2 = S−1

0,0TS0,−1.25

▶ We want entries of T1 and T2 to have same sign. Let

T =

[
1 0.4

0.4 0.2

]

▶ leads to

T1 =
1

15

[
3 2

6 7

]
and T2 =

1

25

[
10 10

3 5

]
▶ Can be verified that T1 sends G(s) 7→ G̃(s) = 0.4s2+1.6s+1.4

s2+3.8s+3.2 with
passivity index (2.2857, 0) and T2 send Ḡ(s) 7→ ˜¯(s)G = 0.6s+.2

1.4s+.6 to
(2.333, 0)-passive system
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mimo extensions

results can be generalized to MIMO systems

Theorem

Let Σ be an I/O (ρ, ν)-passive system with input and output dimension
equal to d, and let T ∈ GL2d(R) be an invertible matrix inducing an
I/O transformation. The transformed system Σ̃ is I/O (ρ⋆, ν⋆)-passive
if and only if there exists a matrix M ∈ GL2d(R) and some positive
λ > 0 such that:

T = (Sρ⋆,ν⋆
⊗ Idd)M(S−1

ρ,ν ⊗ Idd), M⊤JM − λJ ≥ 0,

where J =
[

0 0.5Idd

0.5Idd 0

]
, i.e., Σ̃ is I/O (ρ⋆, ν⋆)-passive if and only if

there exists λ > 0 such that X = (S−1
ρ⋆,ν⋆

⊗ Idd)T (Sρ,ν ⊗ Idd) satisfies
X⊤JX − λJ ≥ 0.

22



outlooks

▶ framework can allow us to consider optimal passivizing
transformations

min
T

Φ(T )

s.t. T maps I/O (ρ, ν) systems to I/O (ρ⋆, ν⋆)-systems.

▶ extend to different passivity variations (incremental, equilibrium
independent, etc.)

▶ applications to plug-and-play networks
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