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Networked Dynamic Systems

networks of dynamical systems are one of
the enabling technologies of the future
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Networked Dynamic Systems

zi(t) = fi(wi(t), u;(t))

dynamics
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topology Interaction
(graph) protocol

wi(t) = I;(x(t), G)
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Networked Dynamic Systems

Analysis

- steady-state behavior
- interplay between dynamics
and graph

- equilibrium configurations

dynamics

Synthesis

interaction - design of distributed protocols
protocol_ design of “good” network
structures
- good performance

can we reveal deep results describing the
underlying behavior of these systems?
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Networked Dynamic Systems

What about robustness?
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what is the right way to approach
robustness of networked dynamic systems?
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The Consensus Protocol

The consensus protocol is a distributed and
dynamic protocol used for computing the
average of a set of numbers.

Agent Dynamics Information Exchange Network
(1) = u;(t) G=W,EW)
( : W: €& =R
—> / —> Incidence Matrix
E(G) RIVIXIE]
1 0 0 0
BG) = _01 —11 _01 (1)
0 0 1 -1
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The Consensus Protocol

The consensus protocol is a distributed and
dynamic protocol used for computing the
average of a set of numbers.

Consensus Protocol Laplacian Matrix
o L(G) € RVIXIVI

ui(t) = wij(x;(t) — zi(t)) o L(G) = EGWEQG)T
] e L(G)L =0

z(t) = —L(G)z(1) e = (vi,v;) €
W(e) =w;i; = [Wee
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Robustness in Consensus Networks

The Linear Weighted o
Consensus Protocol / l

zi(t) = ;wz‘j(l‘j(t) — (1)) ﬁi} ﬁ}
1~ [

w2

g 25 nodes
98 edges

I
0.5

w* > —10.1911 w*=-10.1911 = w* < —10.1911
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The Consensus Protocol

Consensus Protocol Laplacian Matrix
o L(G) € RVIXVI

U; (t) — Z W; (ZEJ' (t) — X (t)) e L(G) = E(Q)WE(G)
L~g e L(G)L =0

z(t) = —L(G)z(1) e = (vi,v;) €
W(e) =w;i; = [Wee

Theorem 1 Let G = (V, &£, W) be a weighted and
connected graph with positive edge weights W(k) > 0
for k=1,...,|&|. Then the consensus dynamics
synchronizes; i.e., limy_ oo x;(t) =B fori=1,...,|V|.

Mesbahi & Egerstedt, Olfati-Saber, Ren
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Synchronization and the Laplacian

r(t) = e L9y,

lim z(t) = B1 < L(G) has only one eigenvalue at the origin

{— 00

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)
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Synchronization and the Laplacian

o(t) = —L(G)x (1)

system behavior depends on
the spectral properties of the
graph Laplacian

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)
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Synchronization and the Laplacian

o(t) = —L(G)x (1)

can we understand spectral
properties of the Laplacian
from the structure of the graph?

L(G) >0

has only one has more than has at least one
eigenvalue at one eigenvalue negative eigenvalue
the zero at the zero (indefinite)

D5M NPWLINIMN NDTIND NL,MPaAN

Faculty of Aerospace Engineering

<<l

University of Minnesota, Feb. 10, 2014



Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles

BG) =BT [ I Tire) ]

o JC

Lire) = £E7T-ET)_1E7T;E(C)

N

L
ET

. remaining edges
a spanning tree y .
complete cycles

Weighted Edge Laplacian Essential Edge Laplacian

L.(G) =W2E(G)TEG)W T)Rr e WRE

. /lmllarlty between ed e\
R rows form a basis for the and graph Laplacians
(7€)

cut space of the graph

N
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Some Properties of L.(G)

<<l

Proposition 1 The matric L.(T)Rr o WR/, .,
has the same inertia as R C)WR(T ¢y Oimilarly,

the matrix (L.(T)R C>VVR(,r o) L has the same
inertia as (R oy WR/ o))"

Recall: The inertia of a matrix
is the number of negative, 0,
and positive eigenvalues

Proof:

1

L (T)R(T C)WR(T C) ~ L (T)QR(T C)WR(T C)L (T)§

1

L (T)QR(T C)WR(T C)L (T)§ IS congruent to R(T C)WR(T C)

congruent matrices have the same inertia
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Some Properties of L.(G)

Proposition 1
L(G)>0& R+ C)WR(T ¢ = 0

The definiteness of the graph
Laplacian can be studied
through another matrix!

R(T C)WR(T C)
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Effective Resistance of a Graph

The effective resistance between two nodes u and v is the
electrical resistance measured across the nodes when the
graph represents an electrical circuit with each edge a resistor

: Cg :
u®  wy W
U Tk

i edge weights are the

Tk = w;. conductance of each resistor
TFuv = (eu — ev)TLT (g)(eu — ev)
l1<I9e9ig and Randi¢ — [LT (g)] — 9 [LT (g)} ” 1 [LT (g)} .
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Effective Resistance of a Graph

Proposition 1

LY(G) = (E7)" (R0 WRi )

1

Fuv = (eu — efu)TLT (g)(eu — ev)

11 T1
L B 0 T2
by (e —ey) = +1 | 73
0 T4
indicates a path from node G=TUC

uto v using only edges in = L(r.¢) = SEZET)_lE;Jj E(C)
the spanning tree
o~
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Effective Resistance of a Graph

—1
Puv = (€4 — ev)T<E£)T (R(T,C)WREFT,C)) Efj; (ey — €y)

Bire =1
1
L - _ 7T Wr—l _
Wy
1 Z:]_
e — —
W
e
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Effective Resistance of a Graph

—1
Puv = (€4 — efv)T(Ef%)T (R(T,C)WREFT,C)) Efj; (ey — €y)

r1ir2
Tuv =
1+ T2
Ry = [ I 1 } . , »
. ruw =17 (RroWR ) 1
! =17 (W, +wel17) " 1
1
= — — —1
Tk = (T" W) wg
k —
—1 —1
' 1TW,- "1 +w
W, = diag{ws, ..., ws} 7 L+ wg
e
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Signed Graphs

a signed graph is a graph with positive
and negative edge weights

Gg=V,EW)
W:£ — R

Er={ec & : W(e) >0}

Qf N - 6@

E_|_—E]:_|_R(]:_|_ Ci) E(g_) :E_

L(G) = E(G+ )WL E(G+)" — E(G-)|W-|E(G-)"
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Spectral Properties of Signed Graphs

Proposition 1

[ —1 T
L) > 0w | W] ET

E_ E_|_W_|_E_7|j ] -

Proof:

Schur Complement

L(G) = E(G+ )WL E(G+)" — E(G-)|W-|E(G-)"

E(g+) E+ — EJ:+R(]:+ Cy)

IM[N~, | = span[\ @/21 @\@ ﬂ_

Identifies how the posmve
weight graph is partitioned

O O = =
—_—_— O O O
| ]
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Spectral Properties of Signed Graphs

Proposition 1

i —1 T L \T T
W ET(EL)"  ETN,,
L(g) > 0= EJZ';_;_E_ R(F+’c+)W+R?;:+aC+) 0 >
NI E_ 0 0
L + R
Proof: - 0 -
C t Transformation S =
ongruent Transformation 0 [ (EJI;JF)T N, }
If the positive portion weighted
graph is connected... _ » S _
o) =0 | W ET(EE,)
= L T =
N}__I_ — ]]_ I EJ—"_,_E— R(F+,C+)W—|—R(F+,C+) ]

<<l
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Spectral Properties of Signed Graphs

Theorem 1 Assume that G s connected and
E_|=1andlet E. ={e_ = (u,v)}. Let ry,
denote the effective resistance between nodes
u,v € V over the graph G.. Then
L(G)>0& W(el)| <71y

uv

Proof:
W= = EL(EZ ) (R ey Wi R, o ) EZ E- >0
b g g uv g

ruo(Gs) ruv(G4)
any single edge can destabilize U ° U
a consensus network with a
“negative enough” edge weight VY VVY

W(e_)*
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A Small-Gain Interpretation

Fir =71 4<L(g+)><— Z(g_|_)

e C ) C > C > C ) C > C > C ) C > C > C ) C > C > C ) C > C > d]

Theorem 1 (zelazo '11)

—1
[2(G)I% =7 | BN (L) (Rir, o Wi R, o)) B E-

(F.Cyp)

Tuv(g+)
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Spectral Properties of Signed Graphs

Corollary 1 Assume that both £+ and &_
are not empty. If G, is not connected, then
L(G) s indefinite for any choice of negative weights.

Proof:

’”;—“1 ET(EE, );“ EIN,,

EF+E_ R(F+,C+)W+R(}‘+,C+) 0

NT E_ 0 0
L + - I

permutation

| W_|"1 ETN,, ET(EE)T

NI E_ 0 y

+
; E£+E_ 0 R<f+7c+)W+RZF+’C+> _
- if and only if edge k
I er = (U,

_E— NF+]’Lk __1 separates node u and v k ( 7 )
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Spectral Properties of Signed Graphs

Corollary 1 Assume that both £+ and &_
are not empty. If G, is not connected, then
L(G) s indefinite for any choice of negative weights.

Proof: ] i
: I —1
1 0 T _
1 0 E_ Nz + |1 -1
— |1 0 . Lt -
0 1 E
NSO
1 0
E_=1| 0 1 " corresponds precisely to when
-1 0 / the negative edge weights form
0 -1 7 acut!
N
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Spectral Properties of Signed Graphs

Corollary 1 Assume that both £+ and &_
are not empty. If G, is not connected, then
L(G) s indefinite for any choice of negative weights.

Proof:
w_|=! ETN
:BT[ EVT‘E _OFJF ]xz Z IW_ (@)~ i + Z :|:2$—|—---—|— Z :|:2£C
T+ icE_ keCUT, keCUT.
< 0
Ti, t=m-+1,...,m -+ c canbe arbitrarily chosen
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Graph Cuts and Robustness

E_ The smallest cardinality cut of a graph can
be thought of as a combinatorial robustness
measure for linear consensus protocols

As in the single negative weight edge
example, graph cuts act to make an “open
circuit”

e max-flow/min-cut algorithms
eminimum cardinality cut algorithms
(Karger)

\4

A\
\
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An lllustrative Example
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An lllustrative Example

any single red edge is a O
cut in the graph w10
O

a negative weight on
any red edge leads to an
indefinite graph Laplacian
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An lllustrative Example

any two edges on the
cycle is a cut in the graph

a negative weight on

any 2 red edge in a cycle
leads to an indefinite graph
Laplacian
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An lllustrative Example

O
any single edge in the "
cycle can make the 0
Laplacian indefinite O

Wy
1 1
W = —— = ——
T'e

L(G) has two eigenvalues w2
at the origin
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An lllustrative Example

any single edge in the
cycle can make the
Laplacian indefinite

L(G) has two eigenvalues
at the origin
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Computing Negative Weights

min - [W_{|,
Wttt ET(EE)T BTN,
S,t, E]I_:_I_E_ R(}—_'_,C_I_)W_FRC(Z;_-_'_,C_'_) O 2 O
Ny E_ 0 0

e infeasible solution —> negative
weight edges form a cut of the graph

e norm choice can influence structure of
Laplacian spectrum
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An Optimization Perspective

Consider the following . 1 T . lT
optimization problem Oz—mxlnzx L(G)x _Iryl}gl QC W¢

s.t.( = Ely

The consensus protocol
corresponds to the t(t) = —L(G)x(t)

gradient dynamics

The optimization problem has a bounded
solution if and only if the Laplacian is a =70
positive semi-definite (i.e. convexity!)

Negative edge weights influence the
convexity of the quadratic program
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Ditference of Convex (DC) Program

1
a =min =W

2

s. E@

//edge// //node//
variable variable

|
min =¢TW, ¢,
¢+ 2

S.t.C_|_ — E_Ifljy

O =

|
min —

1
T T
W — — -\ W_|(_
i QCJF +C4 2( W_|C
S°t°C-|— — E—{ya C— — ETy

g*(u) = Sgp{yTu—g(y)}

.1 _
n)}in 5)\£W+1)\+
s.t.u = E_|_)\_|_

h™(u) = same form

e
‘7 D5M NPWLINIMN NDTIND NL,MPaAN
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Ditference of Convex (DC) Program

A Duality Result

Lemma 1
[, 1 _ .1 _
= min <\ (ng\u_n §)EW_1)\_) — (ng\lin 5)\£W+1)\+)}

U:E_)\_, U:E+)\+.

Theorem 1
L(G) >0 a=0

What can the optimization perspective tell us?
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Duality and Cooperative Control

I//

a “canonical” networked
dynamic system

t >1 i t

W x(t)

T_ 2|V l
E(G) E(G)’
i bl
w(t) - y(t)
e
- Passivity Theory

» equilibrium independent passivity
» maximal equilibrium independent

assivit
P ’ (dynamic)

duality in convex
optimization

max inf L(z, \)

- Network Optimization Theory

» optimal flow problems
» optimal distribution problems

(static)
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Network Optimization Problems

Optimal Flow Problem

M [ E|

min Y CH(w) + )OI (un)

u,u

i=1 k=1
st. u+LEu=0.

@ u,;: divergence (in/fout-flow) at

Optimal Potential Problem

V| |E|
min Y CP(yi) + Y CE"(Tk)
A k=1
st. t=FE'y.

@ y;: potential at a node

a node
@ u: flowon an edge

@ (i. tension (potential
difference) on an edge

Dual Optimization Problems
defined over the “same” network

O (y;) i= O™ = —inf {C* (1) -yt )

1
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Duality and Cooperative Control

V| V]
min Z K; (u;) System Input u(?) i_z_ System Output y(t) min Z K (ys),
u,u 1 0O > 2 . Y 1=1
st u+ Eu=0. T >V s.t. ETy = 0.
E E'
A wl f
v . / )
Controller Relative
Output p(t) Ve /| Output ¢(¢t)
y = 0K(u)
Divergence u Potential y
E| u=-—Ftu C=FE'v
min P (ug) E| V]|
" kz::l k min ZPk(nk) —Zquz,
k=1 1=1
stu+ Eu =0, Flow u Tension 1 Tension® o | _ g7,

u=VP(n)
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Nonlinear Consensus

<<l

1 (

V2()

Die|()
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Concluding Remarks

e networked dynamic systems require new
tools for robustness analysis

e graph properties have real system theoretic
implications
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