

Clustering, Robustness, and Effective Resistance in Linear Consensus

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

University of Minnesota February 10, 2014

networks of dynamical systems are one of *the* enabling technologies of the future

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

- steady-state behavior

- interplay between dynamics and graph
- equilibrium configurations

Synthesis

- design of distributed protocols
 design of "good" network
 structures
 - good performance

can we reveal *deep* results describing the underlying behavior of these systems?

What about robustness?

what is the right way to approach *robustness* of networked dynamic systems?

The Consensus Protocol

The consensus protocol is a *distributed and dynamic protocol* used for computing the average of a set of numbers.

Agent Dynamics

$$\dot{x}_i(t) = u_i(t)$$

Information Exchange Network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ $\mathcal{W} : \mathcal{E} \to \mathbb{R}$ Incidence Matrix $E(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{E}|}$ $E(\mathcal{G}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

The Consensus Protocol

The consensus protocol is a *distributed and dynamic protocol* used for computing the average of a set of numbers.

Robustness in Consensus Networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Consensus Protocol

 $\underbrace{\underbrace{Consensus Protocol}_{i\sim j}}_{(v_{3})} \quad \begin{array}{l} \text{Laplacian Matrix} \\ \bullet \ L(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \\ \bullet \ L(\mathcal{G}) = E(\mathcal{G})WE(\mathcal{G})^{T} \\ \bullet \ L(\mathcal{G})\mathbbm{1} = 0 \\ e = (v_{i}, v_{j}) \in \mathcal{E} \\ \mathcal{W}(e) = w_{ij} = [W]_{ee} \end{array}$

Theorem 1 Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ be a weighted and connected graph with positive edge weights $\mathcal{W}(k) > 0$ for $k = 1, \ldots, |\mathcal{E}|$. Then the consensus dynamics synchronizes; i.e., $\lim_{t\to\infty} x_i(t) = \beta$ for $i = 1, \ldots, |\mathcal{V}|$.

Mesbahi & Egerstedt, Olfati-Saber, Ren

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Synchronization and the Laplacian

$$x(t) = e^{-L(\mathcal{G})t} x_0$$

 $\lim_{t\to\infty} x(t) = \beta \mathbb{1} \Leftrightarrow L(\mathcal{G}) \text{ has only$ **one**eigenvalue at the origin

 $L(\mathcal{G}) \ge 0$

 $\begin{array}{l} L(\mathcal{G}) \geq 0 \\ & \text{has only one} \\ & \text{eigenvalue at} \\ & \text{the zero} \end{array}$

has **more than one** eigenvalue at the zero $L(\mathcal{G})$ has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Synchronization and the Laplacian

$$\dot{x}(t) = -L(\mathcal{G})x(t)$$

system behavior depends on the spectral properties of the graph Laplacian

 $L(\mathcal{G}) \ge 0$ has **more than one** eigenvalue at the zero $L(\mathcal{G})$ has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Synchronization and the Laplacian

$$\dot{x}(t) = -L(\mathcal{G})x(t)$$

can we understand spectral properties of the Laplacian from the structure of the graph?

 $L(\mathcal{G}) \ge 0$ has **more than one** eigenvalue at the zero

has **at least one** negative eigenvalue (indefinite)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

University of Minnesota, Feb. 10, 2014

 $L(\mathcal{G})$

Spanning Trees and Cycles

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Some Properties of $L_e(\mathcal{G})$

Proposition 1 The matrix $L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^T$ has the same inertia as $R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^T$. Similarly, the matrix $(L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^T)^{-1}$ has the same inertia as $(R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^T)^{-1}$.

Recall: The *inertia* of a matrix is the number of negative, 0, and positive eigenvalues

Proof:

$$\begin{split} L_e(\mathcal{T}) R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^T &\sim L_e(\mathcal{T})^{\frac{1}{2}} R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^T L_e(\mathcal{T})^{\frac{1}{2}} \\ L_e(\mathcal{T})^{\frac{1}{2}} R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^T L_e(\mathcal{T})^{\frac{1}{2}} & \text{is congruent to} \quad R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^T W R_{(\mathcal{T},\mathcal{C})}^T L_e(\mathcal{T})^{\frac{1}{2}} \end{split}$$

congruent matrices have the same inertia

Some Properties of $L_e(\mathcal{G})$

Proposition 1 $L(\mathcal{G}) \ge 0 \Leftrightarrow R_{(\mathcal{T},\mathcal{C})} W R_{(\mathcal{T},\mathcal{C})}^T \ge 0$

The definiteness of the graph Laplacian can be studied through another matrix!

 $R_{(\mathcal{T},\mathcal{C})}WR_{(\mathcal{T},\mathcal{C})}^{'I'}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The **effective resistance** between two nodes *u* and *v* is the electrical resistance measured across the nodes when the graph represents an electrical circuit with each edge a resistor

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition 1 $L^{\dagger}(\mathcal{G}) = (E_{\tau}^{L})^{T} \left(R_{(\tau,c)} W R_{(\tau,c)}^{T} \right)^{-1} E_{\tau}^{L}$

$$r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)$$

$$E_{\mathcal{T}}^L(\mathbf{e}_u - \mathbf{e}_v) = \begin{bmatrix} \pm 1 \\ 0 \\ \pm 1 \\ 0 \end{bmatrix} \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_4 \end{bmatrix} u \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_1 \end{bmatrix} (\tau_1 - \tau_2) = \mathbf{e}_v \mathbf{e}_v$$
edicates a path from node $\mathcal{G} = \mathcal{T} \cup \mathcal{C}$

 E_{τ}^{L}

indicates a path from node *u* to *v* using only edges in $T_{(\tau,c)} = \underbrace{(E_{\tau}^T E_{\tau})^{-1} E_{\tau}^T}_{T} E(\mathcal{C})$ the spanning tree

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

$$r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T (E_{\tau}^L)^T \left(R_{(\tau,c)} W R_{(\tau,c)}^T \right)^{-1} E_{\tau}^L (\mathbf{e}_u - \mathbf{e}_v)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T (E_{\tau}^L)^T \left(R_{(\tau,c)} W R_{(\tau,c)}^T \right)^{-1} E_{\tau}^L (\mathbf{e}_u - \mathbf{e}_v)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Signed Graphs

a **signed graph** is a graph with positive and negative edge weights

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ $\mathcal{W}:\mathcal{E} \to \mathbb{R}$ $\mathcal{E}_{+} = \{ e \in \mathcal{E} : \mathcal{W}(e) > 0 \}$ $E(\mathcal{G}_+) = E_+ = E_{\mathcal{F}_+} R_{(\mathcal{F}_+, \mathcal{C}_+)}$

 $L(\mathcal{G}) = E(\mathcal{G}_+)W_+E(\mathcal{G}_+)^T - E(\mathcal{G}_-)|W_-|E(\mathcal{G}_-)^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition 1

$$L(\mathcal{G}) \ge 0 \Leftrightarrow \begin{bmatrix} |W_{-}|^{-1} & E_{-}^{T} \\ E_{-} & E_{+}W_{+}E_{+}^{T} \end{bmatrix} \ge 0$$

Proof:

Schur Complement

 $L(\mathcal{G}) = E(\mathcal{G}_+)W_+E(\mathcal{G}_+)^T - E(\mathcal{G}_-)|W_-|E(\mathcal{G}_-)^T$

$$E(\mathcal{G}_{+}) = E_{+} = E_{\mathcal{F}_{+}} R_{(\mathcal{F}_{+},\mathcal{C}_{+})}$$
$$\mathrm{IM}[N_{\mathcal{F}_{+}}] = \mathrm{span}[\mathcal{N}(E_{\mathcal{F}_{+}}^{T})]$$

Identifies how the positive weight graph is partitioned

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

If the positive portion weighted graph is connected...

$$L(\mathcal{G}) \ge 0 \Leftrightarrow \left[\begin{array}{cc} |W_{-}|^{-1} & E_{-}^{T} (E_{\mathcal{F}_{+}}^{L})^{T} \\ E_{\mathcal{F}_{+}}^{L} E_{-} & R_{(\mathcal{F}_{+},\mathcal{C}_{+})} W_{+} R_{(\mathcal{F}_{+},\mathcal{C}_{+})}^{T} \end{array} \right] \ge 0$$

 $N_{\mathcal{F}_+} = 1$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem 1 Assume that \mathcal{G}_+ is connected and $|\mathcal{E}_-| = 1$ and let $\mathcal{E}_- = \{e_- = (u, v)\}$. Let r_{uv} denote the effective resistance between nodes $u, v \in \mathcal{V}$ over the graph \mathcal{G}_+ . Then

$$L(\mathcal{G}) \ge 0 \Leftrightarrow |\mathcal{W}(e_{-})| \le r_{uv}^{-1}$$

Proof:

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A Small-Gain Interpretation

Theorem 1 $(z_{elazo}, 11)$

$$\|\Sigma(\mathcal{G}_{+})\|_{\infty}^{2} = \overline{\sigma} \underbrace{\left[E_{-}^{T} (E_{\mathcal{F}_{+}}^{L})^{T} \left(R_{(\mathcal{F}_{+},\mathcal{C}_{+})} W_{+} R_{(\mathcal{F}_{+},\mathcal{C}_{+})}^{T} \right)^{-1} E_{\mathcal{F}_{+}}^{L} E_{-} \right]}_{r_{uv}(\mathcal{G}_{+})}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Corollary 1 Assume that both \mathcal{E}_+ and $\mathcal{E}_$ are not empty. If \mathcal{G}_+ is not connected, then $L(\mathcal{G})$ is indefinite for any choice of negative weights.

Proof:

$$\begin{bmatrix} |W_{-}|^{-1} & E_{-}^{T}(E_{\mathcal{F}_{+}}^{L})^{T} & E_{-}^{T}N_{\mathcal{F}_{+}} \\ E_{\mathcal{F}_{+}}^{L} & E_{-} & R_{(\mathcal{F}_{+},c_{+})}W_{+}R_{(\mathcal{F}_{+},c_{+})}^{T} & 0 \\ N_{\mathcal{F}_{+}}^{T} & E_{-} & 0 & 0 \end{bmatrix} \text{ permutation}$$

$$\begin{bmatrix} |W_{-}|^{-1} & E_{-}^{T}N_{\mathcal{F}_{+}} \\ N_{\mathcal{F}_{+}}^{T} & E_{-} & 0 \\ E_{-}^{L}N_{\mathcal{F}_{+}}E_{-} & 0 \\ R_{(\mathcal{F}_{+},c_{+})}W_{+}R_{(\mathcal{F}_{+},c_{+})}^{T} \end{bmatrix} \text{ permutation}$$

$$\begin{bmatrix} E_{-}^{T}N_{\mathcal{F}_{+}} \end{bmatrix}_{ik} = \pm 1 \quad \text{if and only if edge k} \\ \text{separates node } u \text{ and } v \quad e_{k} = (u,v)$$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Corollary 1 Assume that both \mathcal{E}_+ and $\mathcal{E}_$ are not empty. If \mathcal{G}_+ is not connected, then $L(\mathcal{G})$ is indefinite for any choice of negative weights.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Corollary 1 Assume that both \mathcal{E}_+ and $\mathcal{E}_$ are not empty. If \mathcal{G}_+ is not connected, then $L(\mathcal{G})$ is indefinite for any choice of negative weights.

Proof:

$$\begin{aligned} x^T \begin{bmatrix} |W_-|^{-1} & E_-^T N_{\mathcal{F}_+} \\ N_{\mathcal{F}_+}^T E_- & \mathbf{0} \end{bmatrix} x &= \sum_{i \in \mathcal{E}_-} |W_-(i)|^{-1} x_i^2 + \sum_{k \in \text{CUT}_1} \pm 2x_k x_{m+1} + \dots + \sum_{k \in \text{CUT}_c} \pm 2x_k x_{m+c} \\ &< 0 \\ x_i, \ i &= m+1, \dots, m+c \quad \text{can be arbitrarily chosen} \end{aligned}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graph Cuts and Robustness

The smallest cardinality cut of a graph can be thought of as a **combinatorial robustness measure** for linear consensus protocols

As in the single negative weight edge example, graph cuts act to make an "open circuit"

- max-flow/min-cut algorithms
- minimum cardinality cut algorithms (Karger)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

any single red edge is a cut in the graph

a negative weight on any red edge leads to an indefinite graph Laplacian

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

any two edges on the cycle is a cut in the graph

a negative weight on any 2 red edge in a cycle leads to an indefinite graph Laplacian

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

any single edge in the cycle can make the Laplacian indefinite

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Computing Negative Weights

$$\min_{W_{-}} \quad \|W_{-}\|$$

s.t.
$$\begin{bmatrix} |W_{-}|^{-1} & E_{-}^{T}(E_{\mathcal{F}_{+}}^{L})^{T} & E_{-}^{T}N_{\mathcal{F}_{+}} \\ E_{\mathcal{F}_{+}}^{L}E_{-} & R_{(\mathcal{F}_{+},\mathcal{C}_{+})}W_{+}R_{(\mathcal{F}_{+},\mathcal{C}_{+})}^{T} & 0 \\ N_{\mathcal{F}_{+}}^{T}E_{-} & 0 & \mathbf{0} \end{bmatrix} \ge 0$$

 infeasible solution —> negative weight edges form a cut of the graph

p

 norm choice can influence structure of Laplacian spectrum

An Optimization Perspective

Consider the following optimization problem

$$\alpha = \min_{x} \frac{1}{2} x^{T} L(\mathcal{G}) x = \min_{y,\zeta} \frac{1}{2} \zeta^{T} W \zeta$$

s.t. $\zeta = E^{T} y$

 $\alpha = 0$

The consensus protocol corresponds to the gradient dynamics

$$\dot{x}(t) = -L(\mathcal{G})x(t)$$

The optimization problem has a bounded solution if and only if the Laplacian is positive semi-definite (i.e. convexity!)

Negative edge weights influence the *convexity* of the quadratic program

V

Difference of Convex (DC) Program

$$\alpha = \min_{y,\zeta_{+},\zeta_{-}} \frac{1}{2} \zeta_{+}^{T} W_{+} \zeta_{+} - \frac{1}{2} \zeta_{-}^{T} |W_{-}| \zeta_{-}$$

s.t. $\zeta_{+} = E_{+}^{T} y, \zeta_{-} = E_{-}^{T} y$

$$g(y) = \min_{\zeta_{+}} \frac{1}{2} \zeta_{+}^{T} W_{+} \zeta_{+} \qquad g^{*}(u) = \sup_{y} \{y^{T} u - g(y)\}$$

s.t. $\zeta_{+} = E_{+}^{T} y$
$$h(y) = \min_{\zeta_{-}} \frac{1}{2} \zeta_{-}^{T} W_{-} \zeta_{-}$$

s.t. $u = E_{+} \lambda_{+}$
s.t. $\zeta_{-} = E_{-}^{T} y$
 $h^{*}(u) = \text{ same form}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Difference of Convex (DC) Program

A Duality Result

Lemma 1

$$\alpha = \min_{u} \left\{ \left(\min_{\lambda_{-}} \frac{1}{2} \lambda_{-}^{T} W_{-}^{-1} \lambda_{-} \right) - \left(\min_{\lambda_{+}} \frac{1}{2} \lambda_{+}^{T} W_{+}^{-1} \lambda_{+} \right) \right\}$$

$$u = E_{-} \lambda_{-}, \quad u = E_{+} \lambda_{+}.$$

Theorem 1 $L(\mathcal{G}) \ge 0 \Leftrightarrow \alpha = 0$

What can the optimization perspective tell us?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Duality and Cooperative Control

a "canonical" networked dynamic system

- Passivity Theory
 - equilibrium independent passivity
 - maximal equilibrium independent passivity (dynamic)

duality in convex optimization

$$\mathcal{P} \min_{x} \sum_{i=1}^{n} J_{i}(x_{i})$$
s.t. $g(x) = 0$

$$\mathcal{L}(x,\lambda) = \sum_{i=1}^{\infty} J_i(x_i) + \lambda^T g(x)$$

$$\mathcal{D} \max_{\lambda} \inf_{x} \mathcal{L}(x,\lambda)$$

- Network Optimization Theory
 - optimal flow problems
 - optimal distribution problems

(static)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Network Optimization Problems

Optimal Flow Problem

$$\min_{\mathbf{u},\mu} \quad \sum_{i=1}^{|\mathbf{V}|} C_i^{div}(\mathbf{u}_i) + \sum_{k=1}^{|\mathbf{E}|} C_k^{flux}(\mu_k)$$

- s.t. $\mathbf{u} + E\mathbf{\mu} = 0$.
 - u_i: divergence (in/out-flow) at a node
 - μ_k : *flow* on an edge

Optimal Potential Problem

$$\min_{\mathbf{y}, \zeta} \sum_{i=1}^{|\mathbf{V}|} C_i^{pot}(\mathbf{y}_i) + \sum_{k=1}^{|\mathbf{E}|} C_k^{ten}(\zeta_k)$$

s.t. $\zeta = E^{\top} \mathbf{y}.$

- y_i: *potential* at a node
- ζ_k : *tension* (potential difference) on an edge

Dual Optimization Problems defined over the "same" network

$$C_i^{pot}(\mathbf{y}_i) := C_i^{div,*} = -\inf_{\tilde{\mathbf{u}}_i} \left\{ C_i^{div}(\tilde{\mathbf{u}}_i) - \mathbf{y}_i \tilde{\mathbf{u}}_i \right\}$$

Duality and Cooperative Control

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Nonlinear Consensus

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Concluding Remarks

- networked dynamic systems require new tools for robustness analysis
- graph properties have real system theoretic implications

Acknowledgements

Thank-you!

Mathias Bürger

Questions?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering