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FORMATION CONTROL - INTRODUCTION

Many applications require multiple agents to organize into specific spatial formations.

« UAV Formations 9
- Surveillance 3
- Aerial Transportation . 4
- Communication Networks . e 7

 Spacecraft formations

- Interferometry
- Constellations for sensing




FORMATION CONTROL - OBJECTIVE

Given a team of agents able to sense/communicate with neighboring agents:

- Design a control strategy for each agent by using only local information to achieve a
desired spatial configuration - Formation Aquisition




FORMATION CONTROL - OBJECTIVE

Given a team of agents able to sense/communicate with neighboring agents:

- Design a control strategy for each agent by using only local information to achieve a
desired spatial configuration - Formation Aquisition

AN r:s

« Simultaneously move the formation through space as a rigid body - Formation
Maneuvering




FORMATION CONTROL - AGENT CONFIGURATION

Consider a team of n agents, where the position of the ith agent is given by p;(t) € R4
Each follows the simple integrator dynamics:

pi(t) = ui(t)

- The agents interact
according to an
Information exchange

graph G = (V,¢€)
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FORMATION CONTROL - AGENT CONFIGURATION

Consider a team of n agents, where the position of the ith agent is given by p;(t) € R4
Each follows the simple integrator dynamics:

pi(t) = ui(t)

- The agents interact - The framework - (G, p) - The desired formation is
according to an embeds the graph in represented by the
information exchange Euclidean space framework (G, p*)
graph G = (V,¢&)
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FORMATION CONTROL - CONSTRAINTS

- The Is characterized by a set of M constraints, encoded in the
function F': R* — R¥, and a configuration p* satisfying the constraints.
- The set of all IS

F(p) ={p € R"| F(p) = F(p")}

For an ensemble of n agents with dynamics
pi = Ui,

with p;(¢) € R%, an information exchange graph G = (V, &), and formation constraint
function F: R"® — RM, design a distributed control law for each agentic {1,...,n}

h that th 1 n *
such that the se F(p) ={p e R™|F(p) = F(p*)},

Is asymptotically stable.



FORMATION CONTROL & RIGIDITY THEORY

Consider the potential function

Fip) = 5 3 (i) — o)1 — ()’

ijeE
and assume the desired distances d;; correspond to a feasible formation. Then the
gradient dynamical system

i =u; ==V Fr(p) = Y _ (Ilps — pill* = (d5)?) (95 — p:)

je&

OFy(p) _ .

asymptotically converges to the critical points of the potential function, i.e., 3



FORMATION CONTROL & RIGIDITY THEORY

How do we define shapes ?
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« Rigidity Theory allows us to determine:
- the number of constraints required to ensure the desired shape.
- how the constraints should be distributed on the network.
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« Rigidity Theory allows us to determine:
- the number of constraints required to ensure the desired shape.
- how the constraints should be distributed on the network
* R(p) = ag;p) = diag(p; — p;)(ET ® I), the rigidity matrix of (G, p), where Eis the
Incidence matrix of G
- Aframework is infitesimally rigid if and only if tkR(p) = 2n — 3 in R?

- property that ensures formations defined properly
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How do we define shapes ?
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« Rigidity Theory allows us to determine:
- the number of constraints required to ensure the desired shape
- how the constraints should be distributed on the network
* R(p) = 81;;?”) = diag(p; — p;)(ET ® I), the rigidity matrix of (G, p), where Eis the
Incidence matrix of G
- Aframework is infitesimally rigid if and only if tkR(p) = 2n — 3 in R?

- property that ensures formations defined properly

=~V Fp) = —R"(p) (R(p)p — (d)?)




FORMATION CONTROL & RIGIDITY THEORY

« Properties of the rigidity matrix lead to an architectural requirement for formation
control problems, ensuring that the controller converges to the correct formation
shape. Equivalent to:

1k R(p) = 2/V| - 3and |€] =2V - 3] (in R?)

Q: Can the problem be solved with fewer constraints ?




FORMATION CONTROL & RIGIDITY THEORY

« Properties of the rigidity matrix lead to an architectural requirement for formation
control problems, ensuring that the controller converges to the correct formation
shape. Equivalent to:

1k R(p) = 2/V| - 3and |€] =2V - 3] (in R?)

\

Q: Can the problem be solved with fewer constraints ?
A: Yes, by additionally implementing symmetry constraints!




SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph G = (V, ) Is a permutation ) : V — V of of its vertex
set such that

{‘U?;? ’Uj} el & {w(vz)alr/)(vj)} €&

€2 €1 c

Identity: 90° rotation: reflection:

1 2 3 4 1 2 3 4 (1 2 3 4
Id(1234) ¢1(2341) w2(2143)

Automorphisms encode graph symmetries




AUTOMORPHISM GROUPS

- Additional permutations can be found for the given
graph considering all possible reflectionsand -
rotations (by 180° and 270°) |

The set of all automorphisms of G form a group - Aut(G)
- AUt(g) — {Id7¢1:w2= }

A subgroup is a subset of a group, satisfying all properties of a group

- {Ida ?71)1}
- {Ida ’Qb?}

Subgroups of Aut(G) define specific symmetries in G

for any subgroup I' C Aut(G), we say that G is I'-symmetric

10



|'-SYMMETRIC FRAMEWORKS

Definition
For a I'-symmetric graph G = (V,€) and vertex i € V, the setI'; = {~(7) |y € T'} Is called
the vertex orbit of 4 Similarly, for an edge e=ij € &, thesetI'. = {~v()v(j) |y € '} Is

termed the edge orbit of e.

consider I' = {Id, v5} (reflection about mirror S)

 Vertex Orbit:
'y =Ty={1.2}, I's =Ty ={3 1}

- Edge Orbit:
Fel — {61}3 Fﬁa — {63}7 Fez — F64 — {627 64}

1



|'-SYMMETRIC FRAMEWORKS

Definition

For a I'-symmetric graph G = (V,€) and vertex i € V, the setI'; = {~(7) |y € T'} Is called
the vertex orbit of 4. Similarly, for an edge e=ij€ &, thesetI'. = {~v())y(j) |y € '} Is
termed the edge orbit of e.

consider I' = {Id, v5} (reflection about mirror S)

- Vertex Orbit:
[y=Te={l.2}, I =Ty = {31}
vertices inside a vertex orbit are equivalent
representative vertex set: Vy = {1,4}

- Edge Orbit:
ey ={er}, Tey ={es}, Ie, =T, = {e2, €4}
edges inside an edge orbit are equivalent
representative edge set: & = {ey, 3, e4}

1



7(I")~SYMMETRIC FRAMEWORKS

Let I" be represented as a point group.

- homomorphism 7 : ' — O(R%)
- 7 assigns an orthogonal matrix (describing an isometry of R¢) to each element of I
Definition

A framework (G, p) in R% is called 7(I')-symmetric if
7(7)(pi) = pysy forally €T and all i€ V.

For example - consider I' = {Id, ¥} C Aut(G)
(—a,b) y (a, b) . —1 0 —a a
OO « Isometry 7 () = {0 e 7(1)2) { b=
) &) Isometries of the desired configuration coincide with

symmetries of the automorphisms of G
. J 12




ORBIT RIGIDITY MATRIX

The rigidity matrix:

(—a, b)

(r,,d) (—a—c b—d) (c+a d-—0b) (0 0) (0 0)
() R(p) = [ (0 2b) (0 0) (0 0) (0 —2b) W
P} = L (0 0) (0 2d) (0 — 2d) (0 0) J
B I © o © 0 (cta —dbb) (cace —bid
(=4 Symmetries make certain rows and columns of the rigidity matrix
(—a,~b) redundant
Orbit Rigidity Matrix O(Gy, p) [Schulze 2011]
(p1 —p2)" (p2 —p1)” (—ra—c b—d) (c+a d—0)
O(Go,p) = |(2p1 — Tep1 — 7, 'p1)” (0 0) = (0 2b) (0 0)
(0 0) (2p2 — Top2 — 7, 'p2)" (0 0) (0 2d)

Describes the 7(I")-symmetric infinitesimal rigidity properties of 7(I")-symmetric frameworks.

The introduction of the orbit rigidity matrix suggests a further way to exploit symmetry in
formation control

- representative edges used to maintain distances

- symmetry within vertex orbits have no need for distance constraints s



A GRADIENT APPROACH

Similar to traditional rigidity approaches, define a symmetric formation potential

Fr(p(t)) = Fe(p(t)) + Fs(p(1))
where

« The representative edge formation potential:

F.(p(t)) = i Z (sz(t) - T('Y)Pj(t)HQ - (d:'y(j))Q)Q

€&

- The symmetry potential:

Y T Hpu 'Yvu)pv( )HQ

?EV() u,vel’;
wveE

[Zelazo 25]
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SYMMETRY FORCED FORMATION CONTROL

T
The states can be defined as p(¢) = Pp(t) = [pff(t) p}f(t)} , for some permutation
matrix P.

- po(t) - the restriction of the configuration vector p(¢) to agents in the representative vertex
set V.

- ps(t) - The remaining agents

Propose the gradient control
u(t) = =V Fi(p(1))

The dynamics in state-space form become

—OT(QOT po(t)) (O(QU; po(t))po(t) — dé)
0

}PQPT

[Zelazo 25]

15



SYMMETRIC FORMATION - EXAMPLE

14 ;9
12 £/ P
i / /f/ / R

10 k = ‘;,;/f/ 7 /'/ o
S ! // i \/i?f))@, fu
‘ - | /,/

« 27 /6 rotational symmetry N

« Requires at least 21 edges for of

"classic” formation control .

- Symmetry forced formation
control requires only 11 edges

16



FORMATION MANEUVERING

7(I")-symmetric frameworks by definition have point-group symmetries defined with
respect to some fixed inertial point.

4 )
Q: Can the formation acquisition problem be achieved while simultaneously moving
the formation through space as a rigid body ?

17



FORMATION MANEUVERING

7(I")-symmetric frameworks by definition have point-group symmetries defined with
respect to some fixed inertial point.

r

Q: Can the formation acquisition problem be achieved while simultaneously moving
the formation through space as a rigid body ?

A: Yes! By implementing a virtual state r(t) € R?as the reference signal for the agents
to arrange themselves with respect to any point.

"

17



SPECIAL CASE: FLOCKING

The trajectory consists only of a translation component, known by all agents.

Define the shifted state:

o(t) = [o(6) cF()] = Plo(t) ~ 1 @ (1)

T
choose [po(t) pf(t)} — u(t) = ug(t) + um(t)

« Formation Acquisition
—O0"(Go, co(1)) (O(go, co(t))co(t) — d%)
0

« Formation Maneuvering
U (t) = 1 & 7(t)

Ua(t) = — PQPT

(.'{}(\ ”
(/( t)

18



FLOCKING - EXAMPLE

12 —

0 3 10 15 20 25 3l
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FLOCKING: DISTRIBUTED APPROACH

A single agent is subjected to the reference velocity input.

The modified control including a reference model takes the form:

[mm] O7(Go. co(0) (OGo: co(D)eal®) )| e
f?f(t) 0

CO(t)] + ’,( £)

The trajectory is computed distributedly based to the consensus protocol:

{ = —kpL(G)T — k1L(G)C + nB® wo(1)

= L(G)T
- vy € R%is the reference velocity input
- Be R™Is a standard base vector denoting which agent is subjected to vy()

SN 3

where:

20



FLOCKING: DISTRIBUTED APPROACH - EXAMPLE

-10

-15 -

0 ] 10 15 20 25 a0 35 A0

21



SYMMETRY CONSTRAINED FORMATION MANEUVERING

Symmetry-constrained formations undergoing rotations requires time-varying point
group symmetries

4 N
A similarity transformation of a point group element 7(+) by a rotation matrix R(6(t))
reorients the isometries about 6(¢) in the original frame

7(7,0(8)) = R(O()T(n)R(O(?))

. 7

Notations:

- 6(t) - The orientation of the rigid body

- wy(t) - The desired angular velocity vector

22



SYMMETRY CONSTRAINED FORMATION MANEUVERING

Assumption: The centroid of the formation is defined at the origin

Recall the defined shifted state:

o) = [ef (1) eI "= P(p(t) — 1 ® (1))

T
choose [po(t) pf(t)} — u(t) = ug(t) + ()
: Formatio_n Aquisition
—O0"(Go, co(t), 7(1)) (O(gO') co(t), 7(1))co(t) — d%)
0

Uy (1) =

« Formation Maneuvering

() = 1@ (1) + |wo(?) » pi(1)

23
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[Queiroz 18]

For classic formation control:
representing its geometric

requires a known agent
center

- At least 21 edges are required

« A desired cube formation
for infinitesimal rigidity
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A symmetry constrained cube

formation:

« has its geometric center at

the origin

* requires 7 edges

24



CONCLUDING REMARKS

Summary

« Symmetry-constrained formations require simpler graphs with significantly fewer
Information links compared to “classic” strategies

- The velocity reference command can be assigned to a single agent

« Point group symmetries can be conserved during rotations of the rigid body

Future Work

« Extending the approach to multi-agent systems with double integrator dynamics
« Exploring extensions for bearing rigidity

[ Questions? ]

25
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