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Motivation: consensus protocol
An ensemble of v independent integrator agents
1 1
Pi(s) == = P(s)=-1,
s s
Goal: Asymptotic Agreement
lim (yi(8) = y() =0, Vi

The challenge: each agent can use only measurements
relative to its neighbors.

The solution:

ui(t) == > ky(yi= )

JEN;

—un
—]

Ys
—

Consensus Trajectories (kjj = 1)
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An ensemble of v independent integrator agents
1 1
Pi(s) == = P(s)=-1,
s s
Goal: Asymptotic Agreement
lim (yi(8) = y() =0, Vi

The challenge: each agent can use only measurements
relative to its neighbors.

The solution:

ui(t) = = > kiyi =)

JEN;

N1 ={P2, P3, Ps}, No = {P1, P3}

An example coupling graph
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Diffusive coupling in cooperative control
An ensemble of general dynamic agents

Piiuv—y, i€ell,...,v].
Controlled by a structured controller

K:=(E® Im)K(E" ® I).

Canonical diffusivly-coupled control
structure

Three-part controller:
@ Difference operator.
@ Edge controllers.

@ Divergence operator.
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Diffusive coupling in cooperative control
An ensemble of general dynamic agents

Piiui vy, i€[l,...,v].

Controlled by a structured controller

K:=(E® Im)K(E" ® I).

Canonical diffusivly-coupled control
structure

. - Three-part controller:
Widespread in literature

Diff tor.
@ Vehicle formations (Fax and Murray, 2004) ¢ Dilierence operator

Ed trollers.
e Consensus and synchronization (Li et al., 2010) ¢ dee controfiers

e Flow control (Biirger and De Persis, 2015) ® Divergence operator.
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Disturbed consensus
What happens when disturbances are introduced?

x(t) = EK.E" x(t) + d(t)

y(t)| _ /
[u(t)} = [EKEET] x(1)

Disturbed consensus block-diagram
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Disturbed consensus
What happens when disturbances are introduced?

x(t) = EK.E" x(t) + d(t)
yol|_| |/
[u(t)} - [EKEET] x(t)

@ Some signals remain bounded.

Control signals, u;(t)
(=]

ta
Time, ¢t

Control signals with one perturbed agent
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Disturbed consensus
What happens when disturbances are introduced?
x(t) = EK.E"x(t) + d(t)

yol|_| |/
[u(t)} - [EKEET] x(t)

@ Some signals remain bounded.
@ Other signals diverge.

@ Pole-zero cancellations?

Motivates a deeper inspection of the internal stability of
diffusively-coupled systems.

States, z;(t)

<
S

tq
Time, ¢

States with one perturbed agent
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Internal stability

Definition -
The interconnection depicted to the right is Y
internally stable if all four subsystems mapping

. d
inputs [ dy ] to outputs [Z ] are causal and stable. S
u

Internal stability analysis framework.
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Internal stability

dy dy
«~— P |e—O—
Definition -
The interconnection depicted to the right is Y - u
internally stable if all four subsystems mapping K

. d
inputs [ dy ] to outputs [Z ] are causal and stable. S
u

Internal stability analysis framework.

For finite-dimensional systems: iff (/— PK)™! is stable and PK and KP have no unstable
cancellations.
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Where should disturbances enter?

(a) Disturbances at the nodes. (b) Disturbances at the edges.

Two possible setups.
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Where should disturbances enter?

(a) Disturbances at the nodes. (b) Disturbances at the edges.

Two possible setups.

@ In any realistic setup the input and outputs of the physical agents are the ones perturbed.
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Problem setup

Agents: All P; and K ; are LTI and causal

Coprime factors: right coprime M, N; € Hs and
left coprime M;, N; € Hy such
that

P = N;M:t = M7, Vi

Internal stability diagram for diffusive coupled
systems.

6/20



Problem setup

Agents: All P; and K ; are LTI and causal

Coprime factors: right coprime M, N; € Hs and
left coprime M;, N; € Hy such
that

P = N;M:t = M7, Vi

Internal stability diagram for diffusive coupled
systems.

Under what conditions on the agents P; are there edge controllers K ; internally stabilizing the
diffusively-coupled system? J
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The main result

Theorem 1

No LTI K can internally stabilize the diffusively-coupled system if there is A € Co,
common to all agents, such that

(" ker [M()]T # {0} (1a)
or !
ﬂ ker V(1) # {0}. (1b)
=1

where M; and M; are denominators in coprime factorizations of P;.
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Two technical Lemmas

Relating stability with denominators.

Lemma 2

If G(s) has coprime factorizations, then

Ge How &= Mg € Ho &= M € Hes.

The following Lemma is a consequence of the matrix corona theorem (Fuhrmann, 1968)

Lemma 3

If Ge HZ", then

Gl e HX" — infyg, a(G(s)) > 0.
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Proof sketch

@ The closed-loop system T4 := (d,, d,) = (y,u)

I _
T4:[K (I-PK) [ 1 P
[ Mk O] Mk -Np |7t
T Nk 0] =Nk Mp

where K = NKI\/I;(:l and P= diag{N,-}diag{l\/ll.‘l}.

Internal stability diagram for diffusive
coupled system.
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I _
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[ Mk O] Mk -Np |7t
T Nk 0] =Nk Mp

P,

where K = NKI\/I;(:l and P= diag{N,-}diag{l\/ll.‘l}.

€2 <{I:>C/,,,
i

@ From Lemma 2,

Mk —Np

-1
Ty e Hy = € He.
4 ~Nx Mp ] coupled system.
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Proof sketch

@ The closed-loop system T4 := (d,, d,) = (y,u)

I _
T4:[K (I-PK) [ 1 P
Pl
[ Mk O] Mk -Np |7t
T Nk 0] =Nk Mp

P,

where K = NKI\/IR:l and P= diag{N,-}diag{l\/ll.‘l}.

€2 «{k)@/,,,
i

@ From Lemma 2,

T4 € Ho &— coupled system.

-Ng Mp
@ From Lemma 3, T4 is stable iff

Mk(s) —Np(s) ]) 50

of (| e ©

SECO

-1 T : : :
Mk —Np ] y Internal stability diagram for diffusive
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Proof sketch

@ Since 1"TE=0 and
Nk(s) = (E® Im)Ke(s)(ET ® 1) Mk(s),

(17 ® I,,) Nk(s) = 0 for all s at which K.(s) is finite.
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Proof sketch

@ Since 1"TE=0 and
Nk (s) = (E® Im)Ke(s) (ET ® Ip) M(s),
(17 ® I,,) Nk(s) = 0 for all s at which K.(s) is finite.
e From condition (1a), N ker [M;(2)]T # {0},

Jv# 0such that vV M;() =0Vi = (1® v)"Mp(1) =0.

@ Note that
(1®v)"Nxk=v(1® I, Nx=0,

thus
Mic() =Np(D) | _

[0 @™ H ey Moy | =

which violates (3).
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Some corollaries

Intuitively: common unstable dynamics cannot be stabilized.
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Some corollaries

Intuitively: common unstable dynamics cannot be stabilized.

Corollary 4 (Homogeneous agents)

If the agents are homogeneous, i.e. Pi= Po for all i€ N,, and Py(s) has at least one pole in
Co, then no LTI K j can internally stabilize the diffusively-coupled system.

Corollary 5 (SISO agents)

If the agents are SISO and all have a pole at the same A € Cq, regardless of multiplicities, then
no LTI K j can internally stabilize the diffusively-coupled system.

Note: for MIMO agents, sharing an unstable pole is not equivalent to (1a) or (1b).
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Some generalizations
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Some generalizations
Arbitrary symmetric coupling: controllers of the form
K= (F® ImKe(F" ® Ip),

for some low-rank coupling matrix F.

Asymmetric coupling: controllers of the form
K=(F®Im)K(E" ®1,), or K= (E® Im)Ke(F® Ip)

for some coupling matrix F (directed graphs).

Time-varying graphs: controllers of the form

K(t) = (E(t) ® Im)Ke(E™ (1) ® 1),

for finite-dimensional agents using results by Verma, 1988.
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Conditions for finite-dimensional agents

If P;and K, are finite-dimensional, the main result can be formulated in a more insightful way.
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Proposition 6

Let P;i(s) have a minimal state-space realization (A;, Bi, Ci, D;) and let A € Cy be a pole of
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Conditions for finite-dimensional agents

If P;and K, are finite-dimensional, the main result can be formulated in a more insightful way.
Proposition 6

Let P;i(s) have a minimal state-space realization (A;, Bi, Ci, D;) and let A € Cy be a pole of
P(s).
i) (1a) holds if and only if

ﬂ B ker(1/— A)T # {0}.
i=1

i) (1b) holds if and only if

() Giker(al - A) # {0}
i=1

Common dynamics imply a common pole A and either of the above conditions.
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Example

Consider a system with v = 2 first-order agents,

P1<s>=[1{,52] and P2<s>=[i]§[1ﬁ], E=[_11]-
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Example

Consider a system with v = 2 first-order agents,

P1<s>=[1{,52] and P2<s>=[i]§[1ﬁ], E=[_11]-

It can be verified that

1

B] ker(A/—A1)" =1Im [ 0

]#Im[;] =Bj ker(1/-Ax)", B#0

Ci ker(A/— A7) =Im [ L

1
0]¢Im[a]:C2ker(/ll—A2), a+0

For edge controller

the closed-loop characteristic polynomial is then (s+ @?)(s+ °), which is stable.
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Internal stability of finite-dimensional systems

How to interpret these conditions for internal stability?
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Internal stability of finite-dimensional systems

How to interpret these conditions for internal stability?

Proposition 7 (Anderson and Gevers, 1981)

Let P(s) and K(s) be real-rational and proper transfer functions. If (|- PK)™! is
stable, then T4(s) is unstable if and only if either P(s)K(s) or K(s)P(s) has an
unstable pole-zero cancellation.

A well known criteria for the internal stability of an interconnection of real-rational transfer
functions.
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Pole cancellations
Definition
Given two systems Gy, Gy, their cascade G, Gy has cancellations if
deg(GoaGy) < deg(Gy) + deg(Go).

We say that a pole of Gi(s) and/or Gy(s) is canceled if its multiplicity in
Gy (s)G1(s) is smaller than the sum of its multiplicities in G1(s) and Gx(s).

16 /20



Pole cancellations
Definition
Given two systems Gy, Gy, their cascade GGy has cancellations if
deg(GoaGy) < deg(Gy) + deg(Go).

We say that a pole of Gi(s) and/or Gy(s) is canceled if its multiplicity in
Gy (s)G1(s) is smaller than the sum of its multiplicities in G1(s) and Gx(s).

SISO A pole is canceled iff there's a zero at the same location.

MIMO A pole can be canceled without the presence of zeroes.
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MIMO pole cancellations

Consider
Gi(s) =

0l

[(1) (1)} and Gz(s):[_ll _11]

—_——
deg(Gy)=2 deg(G2)=0

|
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MIMO pole cancellations

Consider .
10 1 -1
Gl(s)_§[01} and Gz(s)—[_l 1].
— ~—
deg(Gy)=2 deg(G2)=0

System Gj is static and thus has no zeros, yet

deg(Ga(s)G1(s)) = deg (% [ _11 _11 ]) =1,

meaning that one of the poles of Gj(s) is canceled.
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MIMO pole cancellations

Consider .
10 1 -1
Gl(s)_§[01} and Gz(s)—[_l 1].
— ~—
deg(Gy)=2 deg(G2)=0

System Gj is static and thus has no zeros, yet

1{1 -1
deg(Ga(9) G () =deg(; [ L ]) _1,
meaning that one of the poles of Gi(s) is canceled.

This cancellation was brought on by the normal rank deficiency of Gy (s).
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On the dangers of cancel culture

@ Controllers of the form
K=(E® I)K(E" ® Ip)

always have deficient normal rank.
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On the dangers of cancel culture

@ Controllers of the form
K=(E® I)K(E" ® Ip)

always have deficient normal rank.

Proposition 8

Let P(s) and Ke(s) be real-rational and proper and let A € Cy be a pole of P(s).
i) If (1a) holds, then A is canceled in P(s)K(s).
ii) If (1b) holds, then A is canceled in K(s)P(s).

o Diffusive coupling = unavoidable cancellations of common dynamics.
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Concluding remarks

@ Intuitively - the controller is "blind” to common dynamics and disturbances.

@ There is an inherent tradeoff between synchronization (common pole) and disturbance
rejection.

@ A clear explanation to phenomena observed in several scholarly works (e.g. Fax and
Murray, 2004, Li et al., 2010, Ding, 2015).

@ Future work: extending the results for non-linear P; and K. ;.
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