PASSIVITY THEORY IN COOPERATIVE CONTROL:

A NETWORK OPTIMIZATION PERSPECTIVE

Daniel Zelazo

September 16, 2020 28th Mediterranean Conference on Control and Automation Saint-Raphaël, France (via Zoom)

TECHNION Israel Institute of Technology

INTRODUCTION

NETWORKED DYNAMIC SYSTEMS

Networks of dynamical systems are one of the enabling technologies of the future.

NETWORKED DYNAMIC SYSTEMS

- how do we analyze these systems
- how do we design these systems

IN THIS TALK...

Explore the structure and mechanisms of networked systems to reveal deep connections between properties of dynamical systems and optimization theory.

- A general model of diffusively coupled networks
- ► Characterization of network equilibriums via Network Optimization
- Convergence properties of dynamic networks via passivity theory
- Exploring further connections between passivity and optimization

A PHYSICS WARM-UP

- A fixed network of (linear) springs
- \blacktriangleright springs connected to masses with position $p_i \in \mathbb{R}^2$ and mass m_i
- r masses have a fixed position (anchors)

Free

Fixed

- Free
- Fixed

- A fixed network of (linear) springs
- ightharpoonup springs connected to masses with position $p_i \in \mathbb{R}^2$ and mass m_i
- r masses have a fixed position (anchors)

Determine the positions of the free masses that minimize the total potential energy of the mass-spring network.

► Potential Energy due to gravity

$$m_i g^T p_i$$

Elastic Potential Energy of springs

$$\frac{1}{2}k_{ij}(\|p_i - p_j\| - r_{ij})^2$$

an optimization problem (take 1)

$$\min_{p_i} \sum_{i} m_i g^T p_i + \sum_{i \sim j} \frac{1}{2} k_{ij} (\|p_i - p_j\| - r_{ij})^2$$

$$s.t.p_i = \mathbf{p}_i^*, i = 1, \dots, r$$
 (fixed nodes)

Potential Energy due to gravity (nodes)

$$m_i g^T p_i, i = 1, \dots, n$$

► Elastic Potential Energy of springs (edges)

$$\frac{1}{2}k_e(\|\underline{p_i - p_j}\| - r_e)^2, \ e = 1, \dots, m$$

an optimization problem (take 2)

$$\min_{p_i, \zeta_e} \sum_{i=1}^r (m_i g^T p_i + \mathbb{I}_{\mathbf{p}_i^*}(p_i)) + \sum_{i=r+1}^n m_i g^T p_i + \sum_e \frac{1}{2} k_e (\|\zeta_e\| - r_e)^2$$

$$s.t.p_i - p_j = \zeta_e, \forall e = (i, j)$$

A Convex Program!

an optimization problem (take 2)

$$\begin{aligned} & \min_{p_i, \zeta_e} & & \sum_{i}^{r} (m_i g^T p_i + \mathbb{I}_{\mathbf{P}_i^*}(p_i)) + \sum_{i=r+1}^{n} m_i g^T p_i + \sum_{e} \frac{1}{2} k_{ij} (\|\zeta_e\| - r_e)^2 \\ & \text{s.t.} p_i - p_j = \zeta_e, \, \forall e = (i, j) \end{aligned}$$

A MASS-SPRING NETWORK - THE DYNAMICS

► dynamic model for the masses

springs couple masses together

$$\Sigma_i \,: \left\{ \begin{bmatrix} \dot{p}_i \\ \ddot{p}_i \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u_i + m_i g & \Pi_e \,: \\ y_i &= \begin{cases} \begin{bmatrix} p_i \\ 0 \end{bmatrix}, \quad i = 1, \ldots, r \text{ (anchors)} \end{cases} \right. \\ \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix}, \quad i = r+1, \ldots, n \end{cases} = \left\{ \begin{array}{c} u_i &= \sum_{i \sim j} k_{ij} (\|p_i - p_j\| - r_{ij}) \frac{p_j - p_i}{\|p_j - p_i\|} + p_j \|p_j - p_j\| \\ b_{ij} (\dot{p}_j - \dot{p}_i) \\ b_{ij} (\dot{p}_i - \dot{p}_j) \\ b_{ij} (\dot{p}_i - \dot{p}_j) \\ \vdots \\ b_{ij} (\dot{p}_i - \dot{p}_i) \\ \vdots \\ b_{ij} (\dot{p}_i - \dot$$

A MASS-SPRING NETWORK - THE DYNAMICS

dynamic model for the masses

springs couple masses together

$$\Sigma_i : \begin{cases} \begin{bmatrix} \dot{p}_i \\ \ddot{p}_i \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u_i + m_i g & \Pi_e : \\ \begin{cases} u_i &= \sum_{i \sim j} k_{ij} (\|\mathbf{p}_i - \mathbf{p}_j\| - r_{ij}) \frac{\mathbf{p}_j - \mathbf{p}_i}{\|\mathbf{p}_j - \mathbf{p}_i\|} + b_{ij} (\dot{\mathbf{p}}_j - \dot{\mathbf{p}}_i) \\ b_{ij} (\dot{\mathbf{p}}_j - \dot{\mathbf{p}}_i) \\ &= \sum_{i \sim j} \kappa_{ij} (\mathbf{y}_i - \mathbf{y}_j) \end{cases}$$

$$\begin{bmatrix} p_i \\ \dot{p}_i \end{bmatrix}, \quad i = r + 1, \dots, n$$

An example of a diffusively coupled network!

► System Equilibrium

$$\begin{cases} 0 &= \dot{p}_i \\ 0 &= m_i g + \sum_{i \sim j} k_{ij} (\|p_i - p_j\| - r_{ij}) \frac{p_j - p_i}{\|p_j - p_i\|} \end{cases}$$

Minimum Total Potential Energy Principle (MTPE)

Equilibrium configurations extremize the total potential energy. Stable equilibriums correspond to minimizers of the total potential energy.

LESSONS AND TOOLS

Dynamics

► Diffusively Coupled Network

► Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_{i} ||\dot{p}_{i}||^{2} + \frac{1}{2} \sum_{i \sim j} k_{ij} ||p_{i} - p_{j}||_{2}^{2}$$

LESSONS AND TOOLS

Dynamics

Diffusively Coupled Network

► Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_i \|\dot{p}_i\|^2 + \frac{1}{2} \sum_{i \sim j} k_{ij} \|p_i - p_j\|_2^2$$

Optimization

► Convex Optimization

$$\begin{aligned} & \min_{p_i, \zeta_e} & J(p, \zeta) \\ & \text{s.t.} p_i - p_j = \zeta_e, \forall \, e = (i, j) \end{aligned}$$

Optimality Conditions

$$0\in\partial J(p,\zeta)$$

LESSONS AND TOOLS

Dynamics

► Diffusively Coupled Network

► Dissipasivity Theory

$$V(x) = \frac{1}{2} \sum_i \|\dot{p}_i\|^2 + \frac{1}{2} \sum_{i \sim j} k_{ij} \|p_i - p_j\|_2^2$$

Optimization

► Convex Optimization

$$\begin{split} & \min_{p_i,\zeta_e} & J(p,\zeta) \\ & \text{s.t.} p_i - p_j = \zeta_e, \forall \, e = (i,j) \end{split}$$

Optimality Conditions

MTPE Principle ensures that the dynamics of the diffusively coupled network solve the optimization problem, and vice versa.

THE QUESTION

- ► What class of systems can be "solved" by examining a related optimization problem?
- ► What class of optimization problems can be be "solved" by a dynamical system?

A network system is comprised of dynamical systems that interact with eachother over an information exchange network (a graph).

Agent dynamics:

$$\xrightarrow{u_i} \Sigma_i \xrightarrow{y_i}$$

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

Agent dynamics:

Information Exchange Network:

$$E = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

$$\begin{split} \mathcal{G} &= (\mathbb{V}, \mathbb{E}) \\ [E]_{ij} &= \begin{cases} \pm 1 & (i,j) \in \mathbb{E} \\ 0 & \text{o.w.} \end{cases} \\ E^{\top} \mathbf{1} &= 0 \end{split}$$

Agent dynamics:

$$\Sigma_i : \begin{cases} \dot{x}_i = f_i(x_i, u_i) \\ y_i = h_i(x_i, u_i) \end{cases}$$

Information Exchange Network:

$$\begin{split} \mathcal{G} &= (\mathbb{V}, \mathbb{E}) \\ [E]_{ij} &= \begin{cases} \pm 1 & (i,j) \in \mathbb{E} \\ 0 & \text{o.w.} \end{cases} \\ E^{\top} \mathbf{1} &= 0 \end{split}$$

Controller dynamics:

$$\xrightarrow{\zeta_e} \Pi_e \xrightarrow{\mu_e}$$

$$\Pi_e: \begin{cases} \dot{\eta}_e = \phi_e(\eta_e, \zeta_e) \\ \mu_e = \psi_e(\eta_e, \zeta_e) \end{cases}$$

DIFFUSIVE COUPLING

Consensus Dynamics

$$\dot{x}_i = -\sum_{i \in I} w_{ij} (x_j - x_i)$$

► Kumamoto Model

$$\dot{\theta}_i = -k \sum_{i > j} \sin(\frac{\theta_i}{\theta_i} - \frac{\theta_j}{\theta_j})$$

► Traffic Dynamics

$$\dot{v}_i = \kappa_i \left(V_i^0 - v_i + V_i^1 \sum_{i \sim j} \tanh(\mathbf{p_j} - \mathbf{p_i}) \right)$$

Neural Network

$$C\dot{V}_i = f(V_i, h_i) + \sum_{i \sim j} g_{ij} (V_j - V_i)$$

$$\dot{h}_i = g(V_i, h_i)$$
14/51

STEADY-STATE NETWORK SOLUTIONS

What properties must the systems Σ_i and Π_e possess such that (Σ,Π,\mathcal{G}) admits and converges to a steady-state solution?

$$u(t) \rightarrow \mathbf{u}$$

 $y(t) \rightarrow \mathbf{y}$
 $\zeta(t) \rightarrow \boldsymbol{\zeta}$
 $\mu(t) \rightarrow \boldsymbol{\mu}$

- ► Consensus: $y = \alpha 1$ ($\zeta = 0$)
- ▶ Formation: $\zeta \neq 0$ constant

All signals converge to a constant steady-state

STEADY-STATE INPUT-OUTPUT MAPS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

STEADY-STATE INPUT-OUTPUT MAPS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Input-Output Maps

The steady-state input-output map $k:\mathcal{U}\to\mathcal{Y}$ associated with Σ is the set consisting of all steady-state input-output pairs (u,y) of the system.

INPUT-OUTPUT RELATIONS

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$\Rightarrow k(\mathbf{u}) = \{ y \mid \underbrace{(-CA^{-1}B + D)}_{C} \mathbf{u} \}$$

SISO and stable linear system

INPUT-OUTPUT RELATIONS

$$\begin{aligned} \dot{x} &= Ax + Bu \\ y &= Cx + Du \\ &\Rightarrow k(\mathbf{u}) = \{ \mathbf{y} \mid \underbrace{\left(-CA^{-1}B + D \right)}_{\alpha} \mathbf{u} \} \end{aligned}$$

SISO and stable linear system

simple integrator

SOLUTION OF NETWORK EQUATIONS

The network system (Σ,Π,\mathcal{G}) admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

$$\begin{aligned} &0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y}) \\ &0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu}) \end{aligned}$$

- ▶ When do solutions exist?
- ► How do we find them?

A MASS-SPRING NETWORK

A Convex Program!

Minimum Potential Energy Problem

$$\min_{p_i, \zeta_e} \quad \sum_{i}^{r} (m_i g^T p_i + \mathbb{I}_{\mathbf{P}_i^*}(p_i)) + \sum_{i=r+1}^{n} m_i g^T p_i + \sum_{e} \frac{1}{2} k_{ij} (\|\zeta_e\| - r_e)^2$$

$$s.t.p_i - p_j = \zeta_e, \forall e = (i, j)$$

A MASS-SPRING NETWORK

A Convex Program!

Minimum Potential Energy Problem

$$\min_{p_i,\zeta_e} \quad \sum_i J_i(p_i) + \sum_e \Gamma_e(\zeta_e)$$

$$\mathrm{s.t.}E^Tp=\zeta$$

A MASS-SPRING NETWORK

A Convex Program!

Minimum Potential Energy Problem

$$\min_{p} \quad J(p) + \Gamma(E^{T}p)$$

First-order Optimality Condition:

$$0 \in \partial J(p) + E \partial \Gamma(E^T p)$$

SOLUTION OF NETWORK EQUATIONS

The network system (Σ,Π,\mathcal{G}) admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

$$0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$$
$$0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu})$$

RECALL First-order Optimality Condition:

$$0 \in \partial J(p) + E \partial \Gamma(E^T p)$$

Network equations are the first-order optimality conditions of a corresponding optimization problem!

SOLUTION OF NETWORK EQUATIONS

The network system (Σ,Π,\mathcal{G}) admits a steady-state if and only if there exists a solution to the system of non-linear inclusions

$$0 \in k^{-1}(\mathbf{y}) + E\gamma(E^T\mathbf{y})$$
$$0 \in \gamma^{-1}(\mathbf{\mu}) - E^Tk(-E\mathbf{\mu})$$

RECALL First-order Optimality Condition:

$$0 \in \partial J(p) + E \partial \Gamma(E^T p)$$

Network equations are the first-order optimality conditions of a corresponding optimization problem!

What is it?

INTEGRAL FUNCTIONS

Definition

Let k_i be the input-output relation for system Σ_i . Define the function $K_i: \mathbb{R} \to \mathbb{R}$ such that $\partial K_i(\mathbf{u}_i) = k_i(\mathbf{u}_i)$ and $K = \sum_i K_i$. The function K is called the *cost function* associated with the system Σ_i .

Similarly,

$$\partial K_i^{\star}(\mathbf{y}_i) = k_i^{-1}(\mathbf{y}_i), K^{\star} = \sum_i K_i^{\star}$$
$$\partial \Gamma_e(\zeta_e) = \gamma_e(\zeta_e), \Gamma = \sum_e \Gamma_e$$
$$\partial \Gamma_e^{\star}(\mu_e) = \gamma_e^{-1}(\mu_e) \Gamma^{\star} = \sum_e \Gamma_e^{\star}$$

INTEGRAL FUNCTIONS

NETWORKS AND OPTIMIZATION

Steady-state values u,y,ζ and μ are the solutions of the following pair of optimization problems 1 :

$$\begin{array}{ll} \mathsf{ms}^1 \colon & \\ \underset{\mathbf{y}, \zeta}{\min} & \sum_i K_i^\star(\mathbf{y}_i) + \sum_e \Gamma_e(\zeta_e) \\ s.t. & E^T \mathbf{y} = \zeta. \end{array} \qquad \begin{array}{ll} \min_{\mathbf{u}, \mu} & \sum_i K_i(\mathbf{u}_i) + \sum_e \Gamma_e^\star(\mu_e) \\ s.t. & \mathbf{u} = -E\mu. \end{array}$$

First-order Optimality Condition $0 \in k^{-1}(y) + E\gamma(E^Ty)$ First-order Optimality Condition $0 \in \gamma^{-1}(\mu) - E^Tk(-E\mu)$

^{1[}Bürger, Z, Allgower, 2014]

MONOTONE MAPS AND CONVEXITY

A relation on $\mathbb R$ is monotone if they are non-decreasing curves in $\mathbb R^2$

MONOTONE MAPS AND CONVEXITY

Theorem

The subdifferentials of convex functions on $\mathbb R$ are maximally monotone relations from $\mathbb R$ to $\mathbb R.^a$

 $a_{
m [R.\ T.\ Rockafellar,\ Convex\ Analysis.\ Princeton\ University\ Press,\ 1997]}$

NETWORKS AND OPTIMIZATION

Theorem

If the input-output maps k_i and γ_e are maximally monotone, then the steady-state values u, y, ζ and μ are the solutions of the following pair of convex dual optimization problems¹:

Optimal Flow Problem (OFP)		Optimal Potential Problem (OPP)	
$\min_{\mathbf{y}, \zeta} \qquad \sum_{i} K_{i}^{\star}(\mathbf{y}_{i}) + \sum_{e} \Gamma_{\epsilon}$ $s.t. \qquad E^{T} \mathbf{y} = \zeta.$	- 11		$\sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\mu_{e})$ $\mathbf{u} = -E\mu.$

¹[Bürger, Z, Allgower, 2014]

NETWORK OPTIMIZATION

	Optimal Flow Problem ¹	Ор	timal Potential Problem ¹
$\min_{\mathrm{u},\mu} s.t.$	$\begin{split} \sum_{n=1}^{ \mathcal{V} } C_n^{div}(\mathbf{u}_n) + \sum_{e=1}^{ \mathcal{E} } C_e^{flux}(\mathbf{\mu}_e) \\ u + E\mu &= 0. \end{split}$		

¹[R. T. Rockafellar, Network Flows and Monotropic Optmizations. John Wiley and Sons, Inc., 1984]

STEADY-STATE NETWORK SOLUTIONS

Diffusively coupled dynamic networks can be associated to static network optimization problems!

Monotone steady-state maps ⇔ Network Duality

MONOTONE DIFFUSIVE NETWORKS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Assumption 2

The input-output maps of each agent, k_i , and controller, γ_e , are maximally monotone.

Under what conditions does the network actually *converge* to these steady states?

PASSIVITY FOR DYNAMICAL SYSTEMS

Definition [Khalil 2002]

A system is passive if there exists a C^1 storage function S(x) such that

$$u^T y \ge \dot{S} = \frac{\partial S}{\partial x} f(x, u), \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^p$$

Moreover, it is said to be

- ▶ Input-strictly passive if $\dot{S} \leq u^T y u^T \phi(u)$ and $u^T \phi(u) > 0, \forall u \neq 0$
- ▶ Output-strictly passive if $\dot{S} \leq u^T y y^T \rho(y)$ and $y^T \rho(y) > 0, \forall y \neq 0$

INTERCONNECTION OF PASSIVE SYSTEMS

- ► Parallel Interconnection
- ► Negative Feedback Interconnection
- ► Symmetric Interconnection

A CONVERGENCE RESULT

Theorem

Consider the network system $(\Sigma, \Pi, \mathcal{G})$ comprised of SISO agents and controllers. Suppose that there are vectors u_i, y_i, ζ_e and μ_e such that

- i) the systems Σ_i are output strictly-passive with respect to u_i and y_i ;
- ii) the systems Π_e are passive with respect to ζ_e and μ_e ;
- iii) the vectors u, y, ζ and μ satisfy $u = -\mathcal{E}\mu$ and $\zeta = \mathcal{E}^T y$.

Then the output vector y(t) converges to y as $t \to \infty$.

¹[Arcak, 2007], [Bürger, Z, Allgower, 2014]

A CONVERGENCE RESULT

Theorem

Consider the network system $(\Sigma, \Pi, \mathcal{G})$ comprised of SISO agents and controllers. Suppose that there are vectors u_i, y_i, ζ_e and μ_e such that

- i) the systems Σ_i are output strictly-passive with respect to u_i and y_i ;
- ii) the systems Π_e are passive with respect to ζ_e and μ_e ;
- iii) the vectors $\mathbf{u}, \mathbf{y}, \zeta$ and μ satisfy $\mathbf{u} = -\mathcal{E}\mu$ and $\zeta = \mathcal{E}^T\mathbf{y}$.

Then the output vector y(t) converges to y as $t \to \infty$.

► requires passivity w.r.t. to specific equilibrium configuration

¹[Arcak, 2007], [Bürger, Z, Allgower, 2014]

PASSIVITY W.R.T. FORCED EQUILIBRIUM POINTS

Large-scale Networked Systems

- Not feasible to calculate the equilibrium point for the overall network
- Operate the network at multiple desired equilibrium points (formation of UAVs carrying a suspension load)

[Meissen et al., 2017]

Passivity w.r.t. forced equilibra (u, y)

$$\frac{d}{dt}S(x(t)) \le (u - \mathbf{u})^T(y - \mathbf{y})$$

Incremental Passivity: A close concept however restricted as passivation inequality must be satisfy along any two arbitrary trajectories

EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP^1

A dynamical system Σ is equilibrium independent passive on $\mathcal U$ if for every $u\in \mathcal U$ there exists a once-differentiable and positive semi-definite storage function $S(x):\mathcal X\to\mathbb R^+$ such that $S(x)|_{\mathbf x}=0$ and

$$\dot{S} \leq (y-y)^T(u-u) \implies k \text{ monotonically increasing function}$$

for all $u \in \mathcal{U}$ and $y \in \mathcal{Y}$.

EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP^1

A dynamical system Σ is equilibrium independent passive on $\mathcal U$ if for every $u\in \mathcal U$ there exists a once-differentiable and positive semi-definite storage function $S(x):\mathcal X\to\mathbb R^+$ such that $S(x)|_{\mathbf x}=0$ and

$$\dot{S} \leq (y-y)^T(u-u) \implies k \text{ monotonically increasing function}$$

for all $u \in \mathcal{U}$ and $y \in \mathcal{Y}$.

- ▶ Passive with respect to $\mathcal{U} = \{0\}$ and any output value $y \in \mathbb{R}$ with storage function $S(x) = \frac{1}{2}(x y)^2$.
- ▶ The equilibrium input-output map $k = \{(0, y) : y \in \mathbb{R}\}$ is not a single valued function and hence the integrator is **NOT** *EIP*.

MAXIMALLY EQUILIBRIUM-INDEPENDENT PASSIVITY (MEIP)

MEIP1

A dynamical SISO system Σ is maximal equilibrium independent passive if the following conditions hold:

- ▶ The system Σ is passive with respect to any steady-state $(u, y) \in k$.
- \blacktriangleright The relation k is maximally monotone.

¹[M. Bürger et al., 2014]

MEIP NETWORKS

Assumption 1

Each agent Σ_i and controller Π_e admit forced steady-state solutions.

Assumption 2

The agent dynamics Σ_i are output-strictly MEIP and the controllers are MEIP.

Theorem

Assume Assumptions 1 and 2 hold. Then the signals $u(t),y(t),\zeta(t),\mu(t)$ converge to the solutions of the following pair of convex dual optimization problems 1:

Optimal Flow Problem (OFP)	Optimal Potential Problem (OPP)	
$s.t. E^T y = \zeta.$	$s.t.$ $u = -E\mu$.	

^{1 [}Bürger, Z. Allgower, 2014]

MONOTONICITY AND ITS ROLE IN SYSTEMS THEORY

What else can we say about MEIP systems?

PASSIVITY-SHORT SYSTEMS

In practice, systems are usually passivity-short (or non-passive)!

- ► Generator (always generates energy) [R. Harvey , 2016]
- ▶ Oscillating systems with small or nonexistent damping [R. Harvey, 2017]
- ▶ Dynamics of robot system from torque to position [D. Babu, 2018]
- ► Power-system network (turbine-governor dynamics) [S. Trip, 2018]
- ► Electrical circuits with nonlinear components
- ► More general as include non-minimum phase systems and systems with relative degree greater than 1 [Z. Qu, 2014]

EQUILIBRIUM-INDEPENDENT PASSIVITY-SHORT SYSTEMS

Definition

A SISO system $\Sigma: u \mapsto y$ with steady-state input-output relation k is said to be equilibrium independent output ρ -passive (EI-OP(ρ)) if there exists a storage function S(x), and a number $\rho \in \mathbb{R}$, such that the following inequality holds for any trajectory and any equilibrium pair $(u, y) \in k$:

$$\dot{S} \le (y - y)(u - u) - \rho(y - y)^2.$$
 (1)

- ▶ If $\rho > 0$, then Σ is output strictly passive.
- ▶ If $\rho = 0$, then Σ is passive.
- ▶ If ρ < 0, then Σ is output passive short.

Similar definitions for input (EI-IP(ν)) and input-output (EI-IOP(ρ, ν)) passive systmes.

PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy the developed network optimization framework!

System Type	Relations	Integral Function
MEIP	k, k^{-1} max. monotone	$K(\mathbf{u}), K^{\star}(\mathbf{y})$ are convex
Input PS	k is not monotone	K(u) is non-convex
Output PS	k^{-1} is not monotone	$K^*(y)$ is non-convex
Input-output PS	k, k^{-1} are not monotone	May not exist

PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy the developed network optimization framework!

System Type	Relations	Integral Function
MEIP	k, k^{-1} max. monotone	$K(\mathbf{u}), K^{\star}(\mathbf{y})$ are convex
Input PS	k is not monotone	K(u) is non-convex
Output PS	k^{-1} is not monotone	$K^*(y)$ is non-convex
Input-output PS	k, k^{-1} are not monotone	May not exist

Optimal Flow Problem (OFP)		Optimal Potential Problem (OPP)	
	$\sum_{i} K_{i}^{\star}(y_{i}) + \sum_{e} \Gamma_{e}(\zeta_{e})$ $E^{T}y = \zeta.$		$\sum_{i} K_{i}(\mathbf{u}_{i}) + \sum_{e} \Gamma_{e}^{\star}(\mu_{e})$ $\mathbf{u} = -E\mu.$

FEEDBACK PASSIVATION

For a passive-short system $\Sigma: u\mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma}: \tilde{u}\mapsto \tilde{y}$ is passive. This is known as feedback passivation.

FEEDBACK PASSIVATION

For a passive-short system $\Sigma: u\mapsto y$, we aim to find a map T such that the closed-loop system $\tilde{\Sigma}: \tilde{u}\mapsto \tilde{y}$ is passive. This is known as feedback passivation.

AN EXAMPLE

an example

$$\dot{x} = -x + \sqrt[3]{x} + u$$

$$y = \sqrt[3]{x}$$

$$\overline{\mathbf{u}} = k^{-1}(\overline{\mathbf{y}}) = \overline{\mathbf{y}}^3 - \overline{\mathbf{y}}$$
not a monotone input-output relation!

System is output passivity-short

$$S(x) = \frac{3}{4}x^{4/3} - \overline{y}x + \frac{1}{4}\overline{y}$$

$$\dot{S} \le (y - \overline{y})(u - \overline{u}) + (y - \overline{y})^2$$
(passivity index $\rho = -1$)

AN EXAMPLE

what is the system interpretation of a "convexified" integral function?

$$K^{\star}(\overline{y}) = \frac{1}{4}\overline{y}^4 - \frac{1}{2}\overline{y}^2$$

$$\tilde{K}^{\star}(\overline{y}) = K^{\star}(\overline{y}) + \frac{1}{2}\overline{y}^2$$
(Tikhonov regularization term)

AN EXAMPLE

what is the system interpretation of a "convexified" integral function?

$$K^{\star}(\overline{\mathbf{y}}) = \frac{1}{4}\overline{\mathbf{y}}^4 - \frac{1}{2}\overline{\mathbf{y}}^2$$

$$\tilde{K}^{\star}(\overline{y}) = K^{\star}(\overline{y}) + \frac{1}{2}\overline{y}^2$$

(Tikhonov regularization term)

regularization is realized by output feedback!

$$u = v - y$$

$$\Rightarrow \dot{x} = -x + v$$

$$\Rightarrow \overline{v} = \tilde{k}^{-1}(\overline{y}) = \overline{y}^{3}$$
(maximally monotone!)

NEW METRICS FOR PASSIVATION DESIGN

PASSIVATION, MONOTONIZATION AND CONVEXIFICATION

PASSIVATION OF DIFFUSIVELY-COUPLED NETWORKS OF EIPS SYSTEMS

- Without loss of generality assume that the systems at nodes are EIPS (applicable if some of the systems are EIPS)
- ► Loop Transformation results in a pair of regularized network optimization problems

AND MORE...

Controller Synthesis

Idea: shape the integral functions of controllers to achieve desired solution to network optimization problems.

Controller Synthesis

Idea: shape the integral functions of controllers to achieve desired solution to network optimization problems.

Applications

► Network Reconstruction

Idea: leverage uniqueness of network optimization minima to different exogoneous inputs.

AND MORE...

- an analysis result convergence of network system and solutions of a pair of network optimization problems [Automatica 14, TAC 19]
- a synthesis result it is possible to design the controllers and graph to achieve a desired steady by shaping the network optimization problems [L-CSS 17, TAC 19, MED '19]
- passivity-short systems optimization framework relates regularization to output-feedback passivation of the agents [I-CSS 18, TAC 20 (Submitted), Automatica '20 (Submitted), I-CSS '18].
- network detection, fault detection, signed nonlinear networks, data-driven control [coc

18, TCNS 19, TCNS '19 (submitted), TAC '20 (submitted)]

A MONOTONE VIEW

There is a strong duality theory in cooperative control.

ACKNOWLEDGEMENTS

Miol Sharf (Pl

Miel Sharf (PhD)

Dr. Mathias Bürger

Prof. Dr.-Ing. Frank Allgöwer

QUESTIONS?

SELECTED PUBLICATIONS

- M. Bürger, D. Zelazo and F. Allgower, "Duality and network theory in passivity-based cooperative control,", Automatica, 50(8): 2051-2061, 2014.
- ► M. Sharf and D. Zelazo, "Analysis and Synthesis of MIMO Multi-Agent Systems Using Network Optimization," *IEEE Transactions on Automatic Control*, 64(11):1558-2523, 2019.
- M. Sharf and D. Zelazo, "A Network Optimization Approach to Cooperative Control Synthesis," *IEEE Control Systems Letters*, 1(1):86-91, 2017.
- A. Jain, M. Sharf and D. Zelazo, "Regularization and Feedback Passivation in Cooperative Control of Passivity-Short Systems: A Network Optimization Perspective", IEEE Control Systems Letters, (2):4:731-736, 2018.
- M. Sharf, A. Jain and D. Zelazo, "A Geometric Method for Passivation and Cooperative Control of Equilibrium-Independent Passivity-Short Systems", arXiv preprint 2019.
- M. Sharf and D. Zelazo, "Passivity-Based Network Identification Algorithm with Minimal Time Complexity," arXiv preprint, 2019.
- M. Sharf and D. Zelazo, "A Characterization of All Passivizing Input-Output Transformations of a Passive-Short System," arXiv preprint, 2020.

Thank-you! (wish I were here!)