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INTRODUCTION



NETWORKED DYNAMIC SYSTEMS

Networks of dynamical

systems are one of the

enabling technologies
of the future.
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NETWORKED DYNAMIC SYSTEMS

» how do we analyze
these systems

» how do we design
these systems
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IN THIS TALK...

Explore the structure and
mechanisms of networked systems

Ej to reveal deep connections
between properties of dynamical
ITe systems and optimization theory.
Z . \ J
T
» A general model of diffusively coupled networks

v

Characterization of network equilibriums via Network Optimization

» Convergence properties of dynamic networks via passivity theory

v

Exploring further connections between passivity and optimization
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A PHYSICS WARM-UP



A MASS-SPRING NETWORK

» A fixed network of (linear)
springs

» springs connected to
masses with position p; € R?
and mass m;

» r masses have a fixed
position (anchors)
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A MASS-SPRING NETWORK

» A fixed network of (linear)
springs

» springs connected to
masses with position p; € R?
and mass m;

» r masses have a fixed
position (anchors)

Determine the positions of
the free masses that mini-
mize the total potential en-
ergy of the mass-spring net-
L work.

451



A MASS-SPRING NETWORK

» Potential Energy due to gravity
7ningi
» Elastic Potential Energy of springs

1
gkz‘j(\lpi —pjll —7i;)°

an optimization problem (take 1)

) 1
min Y mig"pi+ > gk (Ipi = pill = 13y)’
@

i

s.t.p; =p;,i=1,...,r (fixed nodes)

5/51



A MASS-SPRING NETWORK

/ » Potential Energy due to gravity
» @ \ (nodes)

migip, i=1,...,n
L" h » Elastic Potential Energy of springs
(edges)
pj 1
le(Hp/ o 1}/” - 7)6)2a €= 1; cee, MM
N——

an optimization problem (take 2)

T

min > (mig"pi + Lp: () Z mig pz+22 (IGell

PiCe =1 P

s.t.pi —p;j = e, Ve = (i,])
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A MASS-SPRING NETWORK

A Convex Program!

an optimization problem (take 2)

r

. - 1
min Y (mag"pi + Lo (1) + Y mag pi + Y Hhii([IGell = re)?

Pi Ce - .
) o=rraril @

s.t.pi —pj = Ce, Ve = (4,5)
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A MASS-SPRING NETWORK - THE DYNAMICS

» dynamic model for the masses P> springs couple masses together

5. ) o ol — ) Pd TP
H B {O I} H + H i +mig v = Ly b P = pill = i) =y
pi 10 op Ll U e bij By — pi)

¥ ;(7)1 , i=1,...,r (anchors) =2in; kii(Yi — y;5)

Yi = ’
1')1 , i=r4+1,...,n
pi
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A MASS-SPRING NETWORK - THE DYNAMICS

» dynamic model for the masses P> springs couple masses together
H ) {O I} H * H wi +mig wi = iy kg (s = pill = rag) =g+
Pi 0 Of |p: I I, : bij(p; — pi)
¥ ;(7)1 , i=1,...,r (anchors) = 2ing rii (i = u5)
Yi =
|:pl:| , i=r4+1,...,n
Pi
Mass Dynamics
Py
U, 5 Y
B i Zn
An example of a
iffusi T iffusi . .
couing B E" Coming diffusively coupled
network!
I
m
K - ¢
1L,
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A MASS-SPRING NETWORK - THE DYNAMICS

Mass Dynamics

Y
» System Equilibrium
0 =p; coing B ET S
0 =mig+ X kisllpi — psll = i) i =pey

¢

Spring Dynarmics

Minimum Total Potential Energy Principle (MTPE)

Equilibrium configurations extremize the total potential energy. Stable
equilibriums correspond to minimizers of the total potential energy.
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LESSONS AND TOOLS

Dynamics

» Diffusively Coupled Network

Mass Dynamics

P
ﬁ = L
Zn
Diffusive E ET Diffusive
Coupling Coupling
L )
L —
H ¢
1L,

Spring Dynamics

» Dissipasivity Theory

1 . 1
Viz) =5 > ||Z?z‘H2+§ > kijllpi—pslis

inj 10/51



LESSONS AND TOOLS

Dynamics Optimization
» Diffusively Coupled Network > Convex Optimization

E:\ll.ass Dynamics min J(p, C)

w g y PisGe
T_ ".E" S.t.pi*pjzéevve:(iaj)
'c’f,'[.“jlﬁz E ET ggﬂ:)sl::: > Optlmallty Conditions
n 0€dJ(p,¢)
.Hg -
[z ¢
1,

Spring Dynamics

» Dissipasivity Theory

1 . 1
Viz) =5 > ||Z?z‘H2+§ > kijllpi—pslis

inj 10/51



LESSONS AND TOOLS

Dynamics Optimization
» Diffusively Coupled Network » Convex Optimization
E:\ll.ass Dynamics min J(p, C)
u . 5 Yy PiCe
T_ ".E" S.t.pi*pjzéevve:(iaj)
g BT D » Optimality Conditions
H].. - a D TL AY ~
m T MTPE Principle ensures that
1,

the dynamics of the
S diffusively coupled network
» Dissipasivity Theory solve the optimization

1 i 1 ) problem, and vice versa.
Viz) =5 > il t5 > kijllpi—psl3

g 10/51

Spring Dynamics

Vs
.




THE QUESTION

» What class of systems can be “solved” by examining a related

optimization problem?

» What class of optimization problems can be be “solved” by a

dynamical system?

Diffusive
Coupling

E

Mass Dynamics
oy

I,

Spring Dynamics

T Diffusive
Coupling
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DIFFUSIVELY COUPLED NETWORKS



A NETWORK MODEL

A network system is comprised of
dynamical systems that interact with
eachother over an information
exchange network (a graph).
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A NETWORK MODEL

Agent dynamics:

u; Ez Yi o {561: fi(wi, u;)

—
Yi= 7(T17 W)
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A NETWORK MODEL

Agent dynamics:

u; Ez Yi o {561: fi(wi, ug)

—
Yi= 7(7“17 W)

Information Exchange Network:
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A NETWORK MODEL

Agent dynamics:
u. .
i Ez Yi

Information Exchange Network:

Controller dynamics:

Ce He
[+

5, &= fi(wi, u;)
Yyi= hi(wi, u;)

G=(V,E)
(B, — {:tl (i,5) e E
0 0.W
ET1=0

10, : {’f]e: (be(nevCe)
He= we(naCe)
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DIFFUSIVE COUPLING

» Consensus Dynamics

b= = Y ug(e, )
= - i~
U : Yy
o Ze — » Kumamoto Model
- ‘
9i = kasin(H,' — (‘//)
E ET o
» Traffic Dynamics
I
I -'He — O =ry | V2 —v + Vi Ztanh(p‘/ — i)
H ¢ i~vj
1L,
controllers > Neural NetWOI’k

OVi = f(Vi, hy) Jrzgij(‘f, -Vi)
(1L G) _ "~

hi = g(Vi, hyi) 14/51



STEADY-STATE NETWORK SOLUTIONS

dynamics

¥

What properties must the sys-
tems X; and II, possess such that
B BT (3,11, G) admits and converges to a
steady-state solution?

361

| ™ - | u(t) = u
g w y(t) —
controllers C(t)

p(t) — 1

» Consensus: y = a1 (¢ = 0) All signals converge to a constant
» Formation: ¢ # 0 constant steady-state
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NETWORK OPTIMIZATION MEETS
PASSIVITY THEORY



STEADY-STATE INPUT-OUTPUT MAPS

Assumption 1

dynamics

o Each agent &; and controller II, admit
o, Ty _Y forced steady-state solutions.
E ET
I,
I = -
K ¢

controllers
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STEADY-STATE INPUT-OUTPUT MAPS

- Assumption 1
o Each agent &; and controller II, admit
o, Ty _Y forced steady-state solutions.
E ET  The steady-state input-output map
associated with X is the set
_ consisting of all steady-state input-output
— . N pairs (u,y) of the system.
o
controllers
i € ki(u; Ue €7.(C,)
uiy—(u)yi {, ——)> |
Ui 2 Yi Ce ]._.[ He
— i —> — e
U; < —— Y ; (. < —— .

w € k7 (yi) Lo €7, (e) 16/51



INPUT-OUTPUT RELATIONS

T = Ax + Bu
y=Cx+ Du
= k(u) ={y| (-CA™'B+ D)u}
—_————

[

SISO and stable linear system
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INPUT-OUTPUT RELATIONS

T = Ax + Bu T =u
y=Cx+ Du y=ux
= k() = {y| (-CA™'B + D)u} =k ={(0,y), y € R}
—_————
y
y
Q@
u
u

SISO and stable linear system simple integrator
17/51



NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u-- — :57
2
o—b , 5, Y
‘5.
E ET ueky)
I
- 1L
H : ¢
I,
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u y
E ET \ u € —Ey(ETy)
| |
I L. |
H : ¢
1y
——————————————————— ~(—— C:ETY

4(8) 18/51



NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u EEeee—— y
Py
C\L» = L
- 5
uek(y)
E ET ue —Ey(ETy)
0€ k™' (y) + Ev(ETy)
jucy
Z M
1L,
— {=E"y
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NETWORK CONSISTENCY EQUATIONS

The network interconnection imposes constraints on allowable
steady-states

u k!
—Ep=u LP Yy u 4& y
E ET \
,,,,,, ! — T
b r'(u_') < - C=ETy
Cer () wekT(y)
(€ E"k(-Ep) ue —Ey(ETy)
0€ v (w) — E"k(—Ew) 0€ k™' (y) + Ev(E"y)
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SOLUTION OF NETWORK EQUATIONS

The network system (%, IT, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€k~'(y) + Ev(ETY)
0€y () — ETk(-En)

» When do solutions exist?
» How do we find them?
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A MASS-SPRING NETWORK

A Convex Program!

Minimum Potential Energy Problem

r

n
. 1
i > (mig"pi+Tpr (i) + > mig'pi+ ) ks (lIGell = re)?
e i i=r+1 e

s.t.pi —p; = Ce, Ve = (i, )
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A MASS-SPRING NETWORK

A Convex Program!

Minimum Potential Energy Problem

min D Ji(pi) + 3 Te(Ce)

Pi Ce

s.t.ETp:C
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A MASS-SPRING NETWORK

min J(p) + T(E"p)

First-order Optimality Condition:

20/51



SOLUTION OF NETWORK EQUATIONS

The network system (X, IT, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€ k™ (y) + Ey(E"y)
0€v ' (w) — ETk(-Ew)

First-order Optimality Condition:

Network equations are the first-order optimality conditions of a
corresponding optimization problem!
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SOLUTION OF NETWORK EQUATIONS

The network system (X, IT, G) admits a steady-state if and only if there
exists a solution to the system of non-linear inclusions

0€ k™ (y) + Ey(E"y)
0€v ' (w) — ETk(-Ew)

First-order Optimality Condition:

Network equations are the first-order optimality conditions of a
corresponding optimization problem!
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INTEGRAL FUNCTIONS

Definition

Let k; be the input-output relation for system ;. Define the function

K; : R — R such that 0K, (u;) = k;(u;) and K = ), K;. The function K is
called the D

Similarly,
0K} (vi) = ki ' (va), K*zZK:
e (Ce) = 7e(Ce), ZF
T} (me) =72 " (e) :ZFE
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INTEGRAL FUNCTIONS

k(u), K(u)

—y = k(n) = sgn(u)



NETWORKS AND OPTIMIZATION

dynamics

E ET
Jucy
. -
© . ¢
controllers
4 \
Steady-state values u,y, ¢ and p are the solutions of the following pair of optimization
problems!:
min  STK{ (i) + YoTe(Ce) || min 3T Ki(u) + 30T (e
s.t. ETy = (. s.t. u=—FuW.
First-order Optimality Condition First-order Optimality Condition
0€ k1 (y) + Bv(ETY) 0€y () — ETk(—En)
. J

= 23051
[Biirger, Z, Allgower, 2014]



MONOTONE MAPS AND CONVEXITY

A

Not Monotone Monotone but not maximal
Maximal monotone function Maximal monotone relation

A relation on R is monotone
if they are non-decreasing curves in R?
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MONOTONE MAPS AND CONVEXITY

A

Not Monotone

/

Maximal monotone function

Monotone but not maximal

Maximal monotone relation

Theorem

The subdifferentials of convex functions on R are maximally monotone
relations from R to R.%

a o o 24/51
[R. T. Rockafellar, Convex Analysis. Princeton University Press, 1997]



NETWORKS AND OPTIMIZATION

dynamics

b

oY, b5 Yy
E ET
L_*
..He. -—
[ B ¢
controllers
If the input-output maps k; and ~. are , then the steady-state values
u,y, ¢ and pare the solutions of the following pair of =
Optimal Flow Problem (OFP) || Optimal Potential Problem (OPP)
i D OKiyi)+ D Te(Ce) min D Ki(wi) + Y Ti(ke)
s.t. ETy = s.t. u=—Fku.

1[Bijrger, Z, Allgower, 2014] 25/51



NETWORK OPTIMIZATION

- ~ - ~
’
’

A ’
/ Flux/Flow '\ 4 Dual | Potential
! |

\

Divergence ,

) 1
! Variables Meiem
\

Net in-flow (out-flow) Yi —_— Yi \\\ 7/ \ y
— . . Ny -
D'l Yi —Yj \ e R
ivergence (uy) Potential (va)
Tension ({.)
Optimal Flow Problem! Optimal Potential Problem'
VI _ €] V| €]
min Y C(un) + > CI(e) || min Y CR () + Y CEN(C)
o n=1 e=1 v n=1 e=1
s.t. u+ Eu=0. s.t. ETy =1
26/51

1[R. T. Rockafellar, Network Flows and Monotropic Optmizations. John Wiley and Sons, Inc., 1984]



STEADY-STATE NETWORK SOLUTIONS

dynamics

o1

C\i» ¥ L

T- ".2 Diffusively coupled dynamic net-
= works can be associated to static

network optimization problems!
B ET p p
m
I 1. —
H ¢

‘u,

controllers

Monotone steady-state maps < Network Duality
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MONOTONE DIFFUSIVE NETWORKS

Assumption 1

dynamics

n Each agent X; and controller IT, admit
. . forced steady-state solutions.
B Assumption 2
E ET  Theinput-output maps of each agent, k;,
and controller, ~,, are maximally
_B monotone.
I

1L,
controllers

Under what conditions does the network actually converge to these
steady states?
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PASSIVITY FOR DYNAMICAL SYSTEMS

U &= f(z,u) Y
y = h(z,u)

,,,,,,,,,,,,

Wy --»>5

Definition [Khalil 2002]
A system is passive if there exists a C! storage function S(z) such that

UT?JZSZ%E (z,u), VY(z,u) e R" x RP

Moreover, it is said to be

» Input-strictly passive if § < u”y — uT¢(u) and uT¢(u) > 0,Vu # 0
» Output-strictly passive if S < uTy — y"p(y) and y7 p(y) > 0,Vy # 0
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INTERCONNECTION OF PASSIVE SYSTEMS

» Parallel Interconnection
» Negative Feedback Interconnection
» Symmetric Interconnection

1 Passive : I Passive :
1 =S , U— = ——
1 —
| L | :
l ) I !
U —T— Y I i

| + i i
i ' I i
| = : | 3 ke ;
] | I i
Y/ | s )

L il !

1 u I

i

u ET Lo 3, (- E : Y

L— 1

1 1

! |

1 1

i

1 :

i

| P |

: Passive :
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A CONVERGENCE RESULT

Theorem
Consider the network system (3, II, G) comprised of SISO agents and
controllers. Suppose that there are vectors u;, y;, (. and . such that

i) the systems %; are output strictly-passive with respect to u; and y;;
ii) the systems II. are passive with respect to ¢, and p;
iii) the vectors u,y, ¢ and p satisfyu = —&uand ¢ = £7y.

Then the output vector y(¢) converges to y as ¢t — oo.!

1[Arcak, 2007], [Biirger, Z, Allgower, 2014]
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A CONVERGENCE RESULT

Theorem

Consider the network system (3, II, G) comprised of SISO agents and
controllers. Suppose that there are vectors u;, y;, (. and . such that

i) the systems %; are output strictly-passive with respect to u; and y;;
ii) the systems II. are passive with respect to ¢, and p;
iii) the vectors u,y, ¢ and p satisfyu = —&uand ¢ = £7y.

Then the output vector y(¢) converges to y as ¢t — oo.!

» requires passivity w.r.t. to specific equilibrium configuration

1[Arcak, 2007], [Biirger, Z, Allgower, 2014]
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PASSIVITY W.R.T. FORCED EQUILIBRIUM POINTS

Large-scale Networked Systems &g &@
» Not feasible to calculate the &g

equilibrium point for the overall
network \\

» Operate the network at multiple ‘\:fj.‘
desired equilibrium points (formation
of UAVs carrying a suspension load) L

[Meissen et al., 2017]

Passivity w.r.t. forced equilibra (u,v)

451 < (- (y—)

Incremental Passivity: A close concept however restricted as passivation
inequality must be satisfy along any two arbitrary trajectories

32/51



EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP!

A dynamical system X is on U if for
every u € U there exists a once-differentiable and positive semi-definite
storage function S(x) : X — R* such that S(z)|x = 0 and

S<(y-y)"(u—u) =

forallu e Y and y € ).

33/51

1[G.H. Hines et al., 2011]



EQUILIBRIUM-INDEPENDENT PASSIVITY (EIP)

EIP!

A dynamical system X is equilibrium independent passive on U if for
every u € U there exists a once-differentiable and positive semi-definite
storage function S(z) : X — R* such that S(z)|x = 0 and

S < (y—y)T(u—u) = k monotonically increasing function
forallu e Y and y € ).

Y » Passive with respect to &/ = {0} and
any output value y € R with storage
function S(z) = (2 — y)%

u » The equilibrium input-output map
k={(0,y) : y € R} is not a single
valued function and hence the
integrator is NOT EIP.

(1) = u(t), y(t) = (1)

1[G.H. Hines et al., 2011]
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MAXIMALLY EQUILIBRIUM-INDEPENDENT PASSIVITY (MEIP)

MEIP!

A dynamical SISO system X is maximal equilibrium independent passive
if the following conditions hold:

» The system X is passive with respect to any steady-state (u,y) € k.
» The relation k£ is maximally monotone.

[M. Biirger et al., 2014]
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MEIP NETWORKS

dynamics

w, Ty Y Assumption 1
- e Each agent &; and controller II, admit
T— n forced steady-state solutions.
E ET .
Assumption 2
L - The agent dynamics ¥, are output-strictly
b = v MEIP and the controllers are MEIP.

Assume Assumptions 1and 2 hold. Then the signals w(t), y(t), ¢(¢), () converge to the
solutions of the following pair of convex dual optimization problems!:

Optimal Flow Problem (OFP) || Optimal Potential Problem (OPP)

i Ki (vi Lo (Ce i Ky (ug % (ke
min Z z(y)+g: (Ce) || min Z (UHZQ: (e)
s.t. ETy =G s.t. u=—Fku.

35/51

1[Bu‘rger, Z, Allgower, 2014]



NEW PERSPECTIVES




MONOTONICITY AND ITS ROLE IN SYSTEMS THEORY

Systems ' ' Monotonicity ' ' Optimization
(Passivity) (1/0 Relations) (Convexity)

What else can we say about MEIP systems?

36/51



PASSIVITY-SHORT SYSTEMS

In practice, systems are usually passivity-short (or non-passive)!

vV vy vV v VY

Generator (always generates energy) [R. Harvey , 2016]

Oscillating systems with small or nonexistent damping [R. Harvey, 2017]
Dynamics of robot system from torque to position [D. Babu, 2018]
Power-system network (turbine-governor dynamics) [S. Trip, 2018]
Electrical circuits with nonlinear components

More general as include non-minimum phase systems and systems
with relative degree greater than 1[z. Qu, 2014]

h(-) € [0, 00] with o <0
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EQUILIBRIUM-INDEPENDENT PASSIVITY-SHORT SYSTEMS

Definition
A SISO system X : u — y with steady-state input-output relation % is said
to be (EI-OP(p)) if there exists

a storage function S(z), and a number p € R, such that the following
inequality holds for any trajectory and any equilibrium pair (u,y) € k:

S<(y—y)(u—u)—py—y)* (1)

» If p > 0, then X is output strictly passive.
» If p =0, then X is passive.

» If p<0,then X is

Similar definitions for input (EI-IP(v)) and input-output (EI-IOP(p, v/))
passive systmes.

38/51



PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy
the developed network optimization framework!

System Type ‘ Relations ‘ Integral Function
MEIP k,k~! max. monotone K(u), K*(y) are convex
Input PS k is not monotone K (u) is non-convex
Output PS k=T is not monotone K*(y) is non-convex
Input-output PS | k, k= are not monotone | May not exist

39/51



PASSIVITY SHORT SYSTEMS AND THE NETWORK FRAMEWORK

Passive short systems can destroy
the developed network optimization framework!

System Type ‘ Relations ‘ Integral Function
MEIP k,k~! max. monotone K(u), K*(y) are convex
Input PS k is not monotone K (u) is non-convex
Output PS k=T is not monotone K*(y) is non-convex
Input-output PS | k, k= are not monotone | May not exist

Optimal Flow Problem (OFP) Optimal Potential Problem (OPP)

min YK (yi) £ Te(C) | min T Ki(w) + D T (ke)

v,G u,

s.t. ETy =¢. s.t. u=—Fku.
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FEEDBACK PASSIVATION

'd \

pIRRSIu] 2 0] For a passive-short system ¥ : u — v,
we aim to find a map 7" such that the
closed-loop system X : @ — § is pas-
i) T Q) sive. This is known as feedback pas-
sivation.
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FEEDBACK PASSIVATION

' )

PR 2 () For a passive-short system X : u + v,

we aim to find a map 7" such that the

closed-loop system X : @ — § is pas-

) T ) sive. This is known as feedback pas-

sivation.
\ J
/I\
u—f 3 =y | 4— N =7

40/51



equilibrium input-output map

an example
r = —zx+Jr4u o
:l/ _= \3/5 ‘ﬁ 3
— —1/— -3 _ I=*
U=k (y) =y -7y
not a monotone input-output relation!
y
integral function
System is output passivity-short
3 1
S(x) =23 —yu 4+ -3
(z) =7 yo+ ¥ -
- _ - 2 .
S<y—y)u—u)+(y—7)

(passivity index p = —1)

41/51
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what is the system interpretation of
a "convexified” integral function?

1 1
K* ) — e
(¥) Y
. 1
K*(5) = K*(7) + 57

(Tikhonov regularization term)

452[51



what is the system interpretation of
a "convexified” integral function?

1 1
K* ) — e
(¥) Y
. 1
K*(5) = K*(7) + 57

(Tikhonov regularization term)

— - - - = - = 273 1 regularization is realized by output
| ; 2 I
v; —t Uj >, ~Ui feedback!

=1r=-x+v

|

, ; u=v—y
|
|

““““““ =v=k17) =7

(maximally monotone!)
42/51



NEW METRICS FOR PASSIVATION DESIGN

2
k=1 (7) — k7 (y)
=W
k)
1]
-2 1 2
-1
2 _
K() — Ky
-- (?()’)*)*
— K(y)
1
vy
) N B 1 2
43/51




PASSIVATION, MONOTONIZATION AND CONVEXIFICATION

EI-1OP(p, v) Non-monotone Non-existent

22—k K

T T T

)\ Y L/
MEIP Maximally Convex
monotone

Passivation Monotonization Convexification
(system) (/O Maps) (integral functions)
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PASSIVATION OF DIFFUSIVELY-COUPLED NETWORKS OF EIPS SYSTEMS

J

Elm MEIP
/// P > \\\ /// il 3 \:\
‘u S | Y ‘u N Yo
e v L [

E 7 E ET
1L I 151 11

1L, 4—, 1L, 5 4_]

M g ¢ H ¢, ¢

» Without loss of generality assume that the systems at nodes are EIPS (applicable if
some of the systems are EIPS)

» Loop Transformation results in a pair of regularized network optimization problems

45/51



AND MORE...

Controller Synthesis

dynamics

controllers

Idea: shape the integral func-
tions of controllers to achieve
desired solution to network op-

timization problems.
46/51




Controller Synthesis Applications
» Network Reconstruction

0 40 5

dynamics

20

controllers

Idea: the integral func- Idea: leverage uniqueness
tions of controllers to achieve of network optimization
desired solution to network op- minima to different exogo-
timization problems. neous inputs.
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AND MORE...

Controllers

an analysis result - convergence of network
system and solutions of a pair of network
optimization problems [automatica 1, Tac 19]

a synthesis result - it is possible to design
the controllers and graph to achieve a
desired steady by shaping the network
optimization problems [i-css 1, Tac 19, MED "19]
passivity-short systems - optimization
framework relates regularization to
output-feedback passivation of the agents

[L-CSS 18, TAC 20 (submitted), Automatica 20 (submitted), L-CSS "19]

network detection, fault detection, signed
nonlinear networks, data-driven control reoc

18, TCNS 19, TCNS 19 (submitted), TAC 20 (submitted)]
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CONCLUDING REMARKS




A MONOTONE VIEW

Systems ' ' Monotonicity ' ' Optimization
(Passivity) (1/0 Relations) (Convexity)

[ There is a strong duality theory in cooperative control. ]
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Thank-you!
(wish | were here!)
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