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Multi-Agent Systems
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Overview

Analysis of SISO Multi-Agent Systems using Network Optimization

Weak Symmetries in Diffusively-Coupled Networks and Clustering

A Brief on Cluster Synthesis
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Closed-Loop System - Diffusive Coupling
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Σi are nonlinear dynamical systems representing the agents.

Πe are nonlinear dynamical system representing the edge controllers.

E is the incidence matrix of the graph with arbitrary orientation.
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Passivity

A Convergence Result and Passivity (Arcak,2007)

Assume

i) Agent dynamics Σi are output-strictly passive with respect to any
steady-state,

ii) Controller dynamics Πe are passive with respect to any steady-state

iii) There is a steady-state of the closed-loop system.

Then the closed-loop system converges to a constant steady-state.
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The Steady-state Input-Output Relation

For the closed loop to reach a steady-state, each agent and controller
must reach steady-state.

Definition

The collection of all steady-state input-output pairs of a system is called a
steady-state input-output relation.

Let ki be the relations for the agents Σi, γe be the relations for the
controllers Πe and let k, γ be the stacked relation.
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Assuring the Existence of a Consistent Steady-State

How can we assure that there is a closed-loop steady-state?

Definition

A relation r ⊂ R× R is called monotone if for any u1,u2,

u1 < u2 =⇒ r(u1) ≤ r(u2).

We say that r is maximally monotone if it is monotone and it is not
contained in a larger monotone relation.

Theorem

Suppose all the relations ki, γe are maximally monotone. Then there is a
steady-state for the closed-loop system.

Thus, we demand that ki and γe are maximally monotone.
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Maximally Monootone Relations
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MEIP

We consider the following variant of passivity1

Definition (MEIP)

A SISO system is called (output-strictly) maximal monotone
equilibrium-independent passive (MEIP) if:

1 The system is (output-strictly) passive with respect to any
steady-state input-output pair.

2 The steady-state input-output relation is maximally-monotone.

1
M. Burger, D.Zelazo and F. Allgower, ”Duality and network theory in passivity-based cooperative control”, Automatica,

vol. 50, no. 8, pp, 2051–2061, 2014.
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Example: Integrators

Consider the following SISO dynamical system:

Υ :

{
ẋ = u

y = x

The input-output steady-state relation kΥ consists of all pairs (0, y)
where y ∈ R. It’s maximally monotone.

The storage function for (0, y0) is Sy0(x) = 0.5(x− y0)2.
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Refinements of Passivity

Scope 1
s

Ref

Passivity Single s.s. input-output Yes,
separately

1

Equilibrium-
Independent Passivity

s.s. input-output func-
tion yss = f(uss)

No 2

MEIP s.s. input-output relation Yes 3

1
H. Khalil, ”Nonlinear Systems”, Perason Education, Prentice Hall, 2002.

2
G.H. Hines, M. Arcak and K. Packard, ”Equilibrium-independent passivity: A new definition and numerical certifications”,

Automatica, vol.47. no.9. pp. 1949–1956, 2011.
3

M. Burger, D.Zelazo and F. Allgower, ”Duality and network theory in passivity-based cooperative control”, Automatica,
vol. 50, no. 8, pp, 2051–2061, 2014.
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Integral Convex Function

Rockafellar’s Theorem (Rockafellar,1969)

A relation is maximally monotone if and only if it is the subgradient of
some convex function.

Let Ki,K
?
i ,Γe,Γ

?
e be integral functions of ki, k

−1
i , γe, γ

−1
e .

Subgraident is a generalized form of the gradient. If ki is smooth then
∇Ki = ki

Let K =
∑

iKi and Γ =
∑

e Γe.
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Analysis Result for SISO Systems

Theorem (Bürger, Zelazo and Allgöwer, 2014)

Consider the closed loop system, and suppose all nodal systems Σi are
output-strictly MEIP and all edge controllers Πe are MEIP.
Then the signals u(t), y(t), ζ(t) and µ(t) converge to constants û, ŷ, ζ̂ and
µ̂ which are optimal solutions to the problems (OFP) and (OPP):

(OPP) (OFP)

min
y,ζ

∑
iK

?
i (yi) +

∑
e Γe(ζe)

s.t. ET y = ζ

min
u,µ

∑
iKi(ui) +

∑
e Γ?e(µe)

s.t. u+ Eµ = 0.

The minimized functions are convex, so we can use gradient descent to
solve these efficiently.
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Network Optimization

These problems are part of a field Network Optimization studying
static optimization problems on graphs.
Network Optimization has been extensively studied for decades, and
found a range of uses in theoretical computer science, communication
theory and operations research.

Optimal Potential Problem Optimal Flow Problem

min
y,ζ

∑
iK

?
i (yi) +

∑
e Γe(ζe)

s.t. ETy = ζ

min
u,µ

∑
iKi(ui) +

∑
e Γ?e(µe)

s.t. u + Eµ = 0.
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Symmetries and Clustering

Suppose we are given a multi-agent system (G,Σ,Π).

Symmetries in the network structure should force some agents to act
similarly.

In the steady-state limit, this should lead to clustering.
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Symmetries in Multi-Agent systems

Symmetries are used throughout the control community for different
applications, including designing observers, more efficient MPC and
even bipedal locomotion.

In multi-agent systems, they were used be Rahmani, Chapman and
Mesbahi to study controlability and observability of networked linear
systems.

The idea - network symmetries force some agents to act identically,
implying that the system is not controlable.
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Weak Symmetries in Networks

We want to understand how symmetries in a multi-agent system
affect the steady-state of system.

Definition (Weakly Equivalent Systems)

Two systems are called weakly equivalent if they have the same
steady-state relation

Definition (Weak Symmetries)

Let (G,Σ,Π) be a multi-agent system. A map ψ : V→ V is called a weak
automorphism if for any vertices i, j and any edge e,

1 If i→ j is an edge, then so is ψ(i)→ ψ(j).

2 Σi is weakly equivalent to Σψ(i).

3 Πe is weakly equivalent to Πψ(e).

The group of weak symmetries is denoted Aut(G,Σ,Π).
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Exchangeability

We say that the nodes i, j are exchangeable if there is a weak
symmety ψ ∈ Aut(G,Σ,Π) such that ψ(i) = j.

The exchangeability relation can be viewed using the exchangeability
graph H = H(G,Σ,Π).

H has the same vertices as G.
Two vertices are connected by an edge in H if they are exchangeable.

Proposition

The exchangability graph is a union of disjoint cliques
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Exchangeability

Theorem

Let (G,Σ,Π) be a diffusively-coupled system, and let H be the
exchangeability graph. Assume the agents are output-strictly MEIP and
that the controllers are MEIP, or vice versa. Then:

The closed-loop system converges to some ouput y.

If i, j are connected in H, then yi = yj .

If i, j are not connected in H, then yi 6= yj .
a

aMore precisely, this happens if the controllers avoid some zero-measure set

In other words, generically, the closed-loop system converges to a clustered
steady-state, with clusters corresponding to the cliques in the
exchangeability graph H.
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Idea of Proof

Let ψ ∈ Aut(G,Σ,Π). Let Pψ and Qψ be the corresponding
permutation matrix on the nodes and edges, respectively.

Show that PψE = EQψ.

Conclude that the function K(y) + Γ(ETG y) is invariant under ψ.

Conclude that the set of minimizers is invariant under ψ

Use geometric understanding og the set of minimizers to conclude
each minimizers y satisfies Pψy = y.
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Homogenous Networks and Cluster Synthesis

Definition

We say that a network is weakly homogenous if all agents are weakly
equivalent and all controllers are also weakly equivalent.

In this case, Aut(G,Σ,Π) is just the automorphism of the oriented
graph.

Problem (Cluster Synthesis)

Given fixed weakly homogenous agents, find a graph G and weakly
homogenous controllers so that the closed-loop system converges to a
clusterd steady-state, with prescribed cluster sizes at prescribed locations.
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Cluster Synthesis - Example

We are given 5 agents are LTI with TF G(s) = 1
s+1 .

Goal - cluster of size 3 at y = 1 and cluster of size 2 at y = 0.

Orient edges from 1, 2 to 3, 4, 5, and let γ1 be the steady-state of the
homogenous controller.

The desired steady-state has k−1(y) 6∈ Im(E), so we need to use an
external input, which will be identical to all agents.
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Cluster Synthesis - Example

The steady-state equation w = k−1(y) + Eγ(ETy) gives:

w = 0− 3γ1(1− 0) = −3γ1(1)

w = 1 + 2γ1(1− 0) = 1 + 2γ1(1)

A monotone relation solving the equations is γ1(x) = −1.2 + x,
together with w = 0.6

We take all controllers equal to µe = −1.2 + ζe.
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Conclusions

The connection between diffusively-coupled systems and network
optimization appears naturally when studying analysis of multi-agent
systems.

This connection and network symmetries prescribe a clustering
structure using the exchangeability graph.

One can use this idea to solve the cluster synthesis problem for
homogenous agents using homogenous controllers.
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Advancements

A lower bound on the number of edges of graphs achieve a certain
clustering structure was found.

A methocial way of building graphs with a given clustering structure,
and relatively few edges, was found.

For many interesting cases, we need no more than twice the edges as
appearing in the lower bound.

Given a fixed graph, finding a homogenous controller solving the
cluster synthesis problem is equivalent to a LP problem.
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Questions?
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Weak Symmetries in Networks and Orientation

We require that ψ preserves orientation as the controllers need not be
“symmetric”.

If the controllers are chosen so that orientation does not matter, one
can prove that the system converges to consensus.

In order to achieve clustering, we have to take demand that the
orientation is preserved.

The orientation can be arbitrary, but different orientations will dictate
different choices of controllers
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Cluster Synthesis - Graph Synthesis

How many edges to we need to achieve a certain clustering formation
in a weakly homogenous network?

Theorem

Consider a collection of n homogenous agents, and let r1, · · · rk be the
desired cluster sizes

Any connected graph G solving the probelm has at least m edges,
where

m = min
T tree on k vertices

∑
e∈T ,e={i,j}

rirj
gcd(ri, rj)

The exists a connected graph G solving the problem with M edges,
where

M = min
T path on k vertices

min
e′={i′,j′}∈T

[( ∑
e′ 6=e∈T ,e={i,j}

rirj
gcd(ri, rj)

)
+ 2

ri′rj′

gcd(ri′ , rj′)

]
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Cluster Synthesis - Graph Synthesis

Corollary

For n agents, if the cluster sizes r1, · · · , rk are all equal, then n edges are
enough to get the desired clusters

Corollary

For n agents, if the cluster sizes r1, · · · , rk are all bounded by q, then no
more than n+ q3 edges are needed to get the desired clusters

Corollary

For n agents, if the cluster sizes r1, · · · , rk satisfy that for any i, j, either
ri divides rj or vice versa, then no more than 2n edges are needed to get
the desired clusters
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