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what is control theory?
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a classic control system

Controller
System

ẋ = f(x, u, d)

Disturbances

u

Measurements

r e y
−
ym

A control systems engineer aims to design a controller that en-
sures the closed-loop system

I is stable
I satisfies some performance criteria
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what are multi-agent systems?

What is the right control architecture?
I of each agent
I of the information exchange layer
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control architectures
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control architectures
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coordination objectives

rendezvous formation control localization

I Does the control strategy need to change with different
sensing/communication?

I Are there common architectural requirements that do not
depend on the choice of sensing?

6


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




formation control

Formation Control Objective
Given a team of robots endowed with the ability to
sense/communicate with neighboring robots, design a control for
each robot using only local information that moves the team into
a desired spatial configuration - the formation
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agent dynamics

Control Theory provides us with an analytical
justification for using simple models!

INTEGRATOR DYNAMICS

ẋ = ux
ẏ = uy
ż = uz

UNICYCLE DYNAMICS

ẋ = vlin cos(ψ)

ẏ = vlin sin(ψ)

ψ̇ = vang
8



agent configurations

I we consider a team of n agents in a
d-dimensional Euclidean space

pi(t) ∈ Rd

I the configuration of the agents at
time t is the vector

p(t) =



p1(t)

...
pn(t)


 ∈ Rnd

I agents modelled by single
integrator dynamics

ṗi(t) = ui(t), i = 1, . . . , n

I agents interact
according to a sensing
graph

G = (V , E)
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a formation potential

THE ”FORMATION” POTENTIAL

Φ(p) =
1

4

∑

i∼j

(‖pi−pj‖2−d2
ij)

2

A GRADIENT FLOW

ṗ = −∇pΦ(p)

Theorem
The gradient dynamical system asymptotically converges to the
critical points of the formation potential.
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a distributed implementation

Distributed Control

ṗi =
∑

i∼j

(‖pi−pj‖2−d2
ij)(pj−pi)

I Does this strategy solve the formation control problem?
I Does it reveal a necessary control architecture for the

multi-agent system?
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rigidity meets formation control

For a framework (G, p), we have

Edge Function

fD(p) =
1

2




...
‖pi − pj‖2

...




Rigidity Matrix

RD(p) =
∂fD(p)

∂p

ṗ = ∇Φ(p) =
∂

∂p
‖fD(p)− 1

2
d2‖2

= −RD(p)TRD(p)p−RD(p)Td2

12



rigidity meets formation control

For a framework (G, p), we have

Edge Function

fD(p) =
1

2




...
‖pi − pj‖2

...




Rigidity Matrix

RD(p) =
∂fD(p)

∂p
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rigidity meets formation control

Theorem (Stability and Rigidity)
If the target formation is infinitesimally rigid, then the dynamics
are (locally) asymptotically stable and satisfy

lim
t→∞

p(t) = p?

where ‖p?i − p?j‖2 = d2
ij for all {i, j} ∈ E .

L. Krick, M. E. Broucke & B. A. Francis, Stabilisation of infinitesimally rigid
formations of multi-robot networks, International Journal of Control, 82(3):423-439,

2009.
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a real robot
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bearing sensing

Bearing Sensing
The bearing between two agents is defined as the unit vector

gij(t) =
pj(t)− pi(t)
‖pj(t)− pi(t)‖

,

where pi(t) is the position of agent i.

I NOTE: gij can be expressed in a common frame or local frame
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bearing-only formation control

target formation specified by desired bearings

Formation Control Objective
Design ui for each agent using only bearing measurements such
that

lim
t→∞

gij(t) = g∗ij

for all pairs (i, j) in the sensing graph.
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what is bearing rigidity?

Bearing Rigidity

I If we fix the bearing of each edge in a network, can the
geometric pattern of the network be uniquely determined?

I Intuitive definition: a network is bearing rigid if its bearings
can uniquely determine its geometric pattern.
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bearing-edge function

� How can one determine if a given network is bearing rigid?

(a) (b) (c) (d)

The Bearing-Edge Function

For a network with |E| = m edges, the bearing-edge function is
defined as

fB(p) ,



g1
...
gm


 ∈ Rdm.
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bearing-preserving motions

Bearing Trivial Motions
Trivial motions preserve the bearing between all pairs of agents
for any framework

I (rigid body) translations
I scaling

19



infinitesimal motion

Consider the Taylor-series expansion of the bearing-edge function:

fB(p+ δp) = fB(p) +
∂fB(p)

∂p
δp + h.o.t.

Infinitesimal Motions
An infinitesimal motion, δp, of a network satisfies

∂fB(p)

∂p
δp = 0.

I first order ”bearing-preserving” motions
I trivial motions are always infinitesimal motions
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a rank test

The Rigidity Matrix

RB(p) ,
∂fB(p)

∂p

Rank-Test for Bearing Rigidity
A network is infinitesimally bearing rigid if and only if

rank(RB(p)) = dn− d− 1.

Examples:

(a) (b) (c) (d) 21
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some features of bearing rigidity

Bearing Rigidity
infinitesimal

bearing rigidity

bearing rigidity global
bearing rigidity

Distance Rigidity
infinitesimal

distance rigidity

distance rigidity global
distance rigidity

I in R2, infinitesimal distance rigidity and infinitesimal bearing
rigidity are equivalent

I infinitesimal bearing rigidity is preserved in lifted spaces
I Laman graphs are generically bearing rigid in arbitrary

dimension
I at most 2n− 3 edges are sufficient to ensure bearing rigidity

in arbitrary dimension
I infinitesimal bearing rigid frameworks uniquely define a shape

(modulo scale and translation) 23



directed bearing rigidity

i-th agent properties n-agents formation properties
D �i M bij Ī � IBR condition

Sec. IV-A Rd d 2 {2, 3} pi 2 Rd

Sd�1 p̄ij Rdn �p =
⇥
ṗ>

1 . . . ṗ>
n

⇤> rank (BK (�)) = dn � d � 1
(d tdofs + 0 rdofs)

Sec. IV-B R2 ⇥ S1 pi 2 R2,↵i 2 [0, 2⇡)

(2 tdofs + 1 rdofs)
S1 R>

i p̄ij R3n

� =
⇥
�>p �o

⇤>

rank (BK (�)) = 3n � 4�p =
⇥
ṗ>

1 . . . ṗ>
n

⇤>

�o =
⇥
↵̇>

1 . . . ↵̇>
n

⇤>

Sec. IV-B R3 ⇥ S1 pi 2 R3,↵i 2 [0, 2⇡)

(3 tdofs + 1 rdofs)
S2 R>

i p̄ij R4n

� =
⇥
�>p �o

⇤>

rank (BK (�)) = 4n � 5�p =
⇥
ṗ>

1 . . . ṗ>
n

⇤>

�o =
⇥
↵̇>

1 . . . ↵̇>
n

⇤>

Sec. IV-C R3 ⇥ SO(3) pi 2 R3,Ri 2 SO(3)

(3 tdofs + 3 rdofs)
S2 R>

i p̄ij R6n

� =
⇥
�>p �o

⇤>

rank (BK (�)) = 6n � 7�p =
⇥
ṗ>

1 . . . ṗ>
n

⇤>

�o =
⇥
!>

1 . . . !>
n

⇤>

TABLE III: Summary of the principal notions related to the bearing rigidity theory in the different domains accounted in Sec. IV-A-IV-C.

(a) R2 (b) R2 ⇥ S1 (c) R3 ⇥ S1 (d) SE(3)

Fig. 5: Bearing measurements in the different domains accounted in Sec. IV-A-IV-C.
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se(2) framework example

Trivial Motions

Trivial motions in SE(2) are translations, scaling, and
coordinated rotations

•
1

•
2

•
3

•
1

•
2

•3

In directed bearing rigidity, local rigidity does not imply global
rigidity 25



examples

Given these premises, the directed edge ek = (vi, vj) 2 E
refers to the bearing measurement of the j-th agent obtained
by the i-agent. Although measured in the i-th agent local
frame, this can be expressed in terms of the relative position
and orientation of the agents in the inertial frame, namely

bk = bij = R>
i p̄ij 2 Sd�1, (16)

where p̄ij 2 Rd is the normalized relative position vector
introduced in Sec. ?? and Ri = R(↵i) 2 SO(d) is the
rotation matrix that describe the orientation of Fi w.r.t. FW .
Note that M = Sd�1 as in the previous case since rotation
transformations applied to vectors preserve the norm.

From (16), according to Def. III.4, the bearing rigidity
function can be compactly expressed as

bG (�) = diag(dijR
>
i )Ē>p 2 S(d�1)m, (17)

where Ē 2 Rdn⇥dm is computed accounting for the inci-
dence matrix of the directed graph G.

To evaluate the infinitesimal rigidity properties of a forma-
tion modeled as a framework in (Rd⇥S1)n, one can observe
that each agent belonging to this system is characterized by
d tdofs and only one rotational dof (rdof) that are assumed
to be independently controllable. Hence, the instantaneous
variation vector � belonging to Ī = R(d+1)n results from
the contribution of two components related to (first-order)
variation of the position and of the orientation vector, namely
� =

⇥
�>p �o

⇤> where

�p =
⇥
ṗ>

1 . . . ṗ>
n

⇤> 2 Rdn, (18)

�o =
⇥
↵̇1 . . . ↵̇n

⇤> 2Rn. (19)

Remark 4. Note that, for d = 2, the variation of the angle ↵i

corresponds to the variation of the i-th agent orientation on
the plane. For d = 3, instead, it identifies a variation of the
i-th agent orientation only along the direction determined by
n 2 R3, according to Rmk. 3.

To determine the rigidity matrix, we focus on the time
derivative of the generic bearing measurement bij 2 Sd�1

in (16). For d = 2, this results to be

ḃij = dijR
>
i P (p̄ij) (ṗj � ṗi) + R>

i p̄?
ij↵̇i, (20)

where p̄?
ij = R (⇡/2) p̄ij 2 R2 with R (⇡/2) 2 SO(2)

is the (unit) vector perpendicular to p̄ij on the plane. For
d = 3, the expression of ḃij is more complex involving the
skew-symmetric of the (unit) rotation vector n 2 S2, i.e.,

ḃij = dijR
>
i P (p̄ij) (ṗj � ṗi) + R>

i [n]⇥ p̄ij↵̇i. (21)

As a consequence of (20)-(21), according to Def. III.9, the
bearing rigidity matrix can be written as

BG (�) =
⇥
D1Ē

> �D2E
>
o
⇤ 2 dm⇥(d+1)n, (22)

where Ē 2 Rdn⇥dm, Eo 2 Rn⇥m are derived from G and

D1 = diag(dijR
>
i P (p̄ij)) 2 Rdm⇥dm if d 2 {2, 3}, (23)

D2 =

(
diag(R>

i p̄?
ij) 2 Rdm⇥m if d = 2

diag(R>
i [n]⇥ p̄ij) 2 Rdm⇥m if d = 3

(24)

(a) n = 3 (b) n = 4 (c) n = 6 (d) n = 8

(e) n = 3 (f) n = 4 (g) n = 6 (h) n = 8

Fig. 3: Examples of IBF frameworks in (R2⇥S1)n (Figs. 3(a) 3(b))
and in (R3⇥S1)n with n = e3 (Figs. 3(c) 3(d)). Examples of IBR
frameworks in (R2 ⇥S1)n (Figs. 3(e) 3(f)) and in (R3 ⇥S1)n with
n = e3 (Figs. 3(g) 3(h)).

Note that the two matrix blocks in (22) correspond to the
gradients of the bearing rigidity function along vectors p and
↵, i.e., to rpbG (�) 2 Rdm⇥dn and r↵bG (�) 2 Rdm⇥n

respectively.
In this perspective, imposing �o = 0 (i.e., assuming that

the agents do not change their orientation), the solution �p

of (??) in correspondence of K coincides with the translation
and uniform scaling of the entire configuration. On the other
hand, when �o 6= 0, we can prove that the unique trivial
variation for a framework (G,�) in (Rd ⇥ S1)n corresponds
to a coordinated rotation, namely the equal rotation of all
the agents jointly with the equal rotation of the whole for-
mation around its center. Moreover, the coordinated rotation
subspace3 R is formally determined as

R =

8
>><
>>:

span

⇢
(Id ⌦ R (⇡/2))p

1n

��
, if d = 2

span

⇢�
Id ⌦ [n]⇥

�
p

1n

��
, if d = 3

(25)

where the vector 1n 2 Rn has all the entries equal to one.
Note that dim (R ) = 1 both for d = 2 and d = 3. As a

consequence, the set including all the instantaneous variation
vectors related to translations, scalings, and coordinated
rotations of a framework, namely

St = span

⇢
1n ⌦ Id

0

�
,


p
0

�
, R 

�
, (26)

has dimension dim (St) = d + 2.

Theorem IV.2 (Condition for IBR, Thm. III.6 in [46]). A
non-degenerate framework (G,�) in (Rd ⇥ S1)n with d 2
{2, 3} is IBR if and only if

In Fig. 3 are reported some examples of IBR and IBF
frameworks in (Rd ⇥ S1)n for d 2 {2, 3}. Here, the local
reference frames are omitted for sake of simplicity, while
the bi-directed edges are reported in red to distinguish them
from the directed ones in blue.

3This set represents a pure coordinated rotation for (G,�) only in the
case the com of the framework coincides with the origin of FW , otherwise
it represents a coordinated rotation along with a translation.

IBF frameworks in (R2 × S1)n ((a),(b)), in (R3 × S1)n with n = e3 ((c),(d)). Examples

of IBR frameworks in (R2 × S1)n ((e),(f )) and in (R3 × S1)n with n = e3 ((g),(h)).

26



a general bearing rigidity matrix

For a framework (G, χ), the bearing rigidity matrix takes the form

BG(χ) = [Bp Bo] ∈ R3m×6n,

with

Bp = DpĒ
> ∈ R3m×3n and Bo = DoĒ

>
o ∈ R3m×3n (1)

D pi Ri Dp Do

SE(3)
⇥
px

i py
i pz

i

⇤> R
�
↵i,�i, �i, {eh}3

h=1

�
diag(dijR

>
i P (p̄ij)) diag(R>

i [p̄ij ]⇥ I3)

R3 ⇥ S1 ⇥
px

i py
i pz

i

⇤> R (↵i,n) ,n =
P3

h=1nheh diag(dijR
>
i P (p̄ij)) diag(R>

i [p̄ij ]⇥ [03⇥2 n])

R2 ⇥ S1 ⇥
px

i py
i 0

⇤> R (↵i, e3) diag(dijR
>
i P (p̄ij)) diag(R>

i [p̄ij ]⇥ [03⇥2 e3])

R3 ⇥
px

i py
i pz

i

⇤> R (↵i,03⇥1) = I3 diag(dijI
>
3 P (p̄ij)) diag(I>3 [p̄ij ]⇥ 03⇥3)

R2 ⇥
px

i py
i 0

⇤> R (↵i,03⇥1) = I3 diag(dijI
>
3 P (p̄ij)) diag(I>3 [p̄ij ]⇥ 03⇥3)

TABLE I

1) The Heterogeneous Formation Case Study: ...
...
...

VI. ON DEGENERATE FORMATIONS

In this section we briefly discuss the degenerate formations
case, focusing on the bearing-preserving variations set. In
particular, we show why for these multi-agent groups the def-
inition of infinitesimal bearing rigidity becomes meaningless
and the related results are not relevant.

According to Def. III.2, a formation composed of n � 3
univocally placed agents is degenerate if all the agents are
collinear, i.e., for any k-th component of the position vectors,
k 2 {1 . . . d}, it exists c 2 R such that pk

i = cpk
j for each

pair (vi, vj) of agents in the group. Under this hypothesis,
we can observe that the shape uniqueness is guaranteed for
a larger set of infinitesimal variations w.r.t. that described
in the previous sections. Although this statement is valid
independently from the space D of interest, in the following
we distinguish between the three cases previously treated.

a) D = Rd: we first recall that for a formation com-
posed of n agents controllable in the metric space D = Rd,
d 2 {2, 3}, and aligned along a certain direction identified
by the (unit) vector v 2 Sd�1 the bearing measurements are
collinear, namely it holds bG (�) = diag(b1 . . . bm) (1n ⌦ v)
with bi 2 R for i 2 {1 . . . m}. Given these premises, one can
realize that the bearing measurements are preserved despite
the displacement of any agent along the direction specified by
v and the translation of the whole formation in the subspace
W of Rd orthogonal to v. Hence the trivial variation set5

coincides with Sd
t = span {In ⌦ v,1n ⌦ W} where W 2

Rd⇥(d�1) is a matrix whose columns represent a basis for W .
Trivially, Sd

t has dimension n+(d� 1) > d+1 = dim(St).
b) D = Rd⇥S1: for a formation acting in D = Rd⇥S1,

the bearing measurements are retrieved in the local agents
frame. Additionally, each agent has a (controllable) rdof
allowing rotations only around n 2 S2 when d = 3. To
analyze the degenerate situation in which all the agents
are aligned along the direction identified by v 2 Sd�1,
it is necessary to distinguish between the following cases:
(i) d = 2 or d = 3 and n 6= v, (ii) d = 3 and
n = v. For a degenerate formation satisfies conditions (i),
the bearing measurements are preserved when the whole

5Note that the uniform scaling of the formation corresponds to suitable
(not equal) translations of all the agents along the direction v 2 Sd�1.

agents group translates along any direction in the (d�1)-
dimensional subspace W ✓ Rd orthogonal to v, when a
coordinated rotation is performed according to the definition
given in Sec. IV-B, and also when any agent moves along the
alignment direction. As a consequence the trivial variation set
Sd

t is spanned by n + (d� 1) + 1 elements. In case (ii), the
dimension of Sd

t increases since the formation is not required
to perform a coordinated rotation to preserve the bearings:
also the rotation of any agent around the axis identified by
n = v ensures the measurements maintenance. Hence, we
get dim(Sd

t ) = 2n + (d � 1). Note that in both cases (i)
and (ii) the trivial variation set has dimension grater w.r.t.
non-degenerate case for which dim(St) = d + 2.

c) D = SE(3): when the space of interest is D =
R3 ⇥SO(3) = SE(3), we figure out that for the degenerate
case in which the agents are aligned along the direction
identified by v 2 S2, bearings are preserved when any
agent translates or rotates along the direction specified by
v and when the whole formation performs a translation or
a coordinated rotation around any direction in the (two-
dimensional) subspace W ✓ R3 orthogonal to v. The trivial
variation set has thus dimension 2n + 4 > 7 = dim(St).

To validate the provided observations, in Tab.II we report
a basis for St and for Sd

t in correspondence to the different
metric spaces evaluated in this work. For sake of simplicity,
the corresponding formations are supposed to be composed
by n = 3 agents all equally oriented, i.e., such that ↵i = 0
or Ri = Id for i 2 {1 . . . 3} according to the adopted
rotation representation. Additionally, we supposed n = e3

when required. For the degenerate cases, we assume that
the agents are all aligned along the x-axis of FW , namely
v = e1 and in particular pi = ie1, i 2 {1 . . . 3}, while in
the non-degenerate cases they are placed in order to form a
triangle on the plane identified by the x and y-axis of FW .
As previously stated, we can observe that for every metric
space D it occurs that dim(Sd

t ) > dim(St).

VII. CONCLUSIONS

This work focuses on the bearing rigidity theory applied
to multi-agent systems whose elements are characterized
by a certain number of both tdofs and rdofs. As original
contribution, we propose a unified framework for the defi-
nition of the main rigidity properties without accounting for
the specific controllable agents state domain. Moreover, we
summarize the existing results about bearing rigidity theory
for frameworks embedded in Rd, in Rd⇥S1 with d 2 {2, 3}
and in SE(3). For each case, the principal definitions are

27



bearing rigidity

...back to formation control
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the bearing potential

Consider the potential function of bearing errors:

Φ(t) =
1

2

∑
‖gij(t)− g∗ij‖2

A Gradient-descent control

ṗ = −∇pΦ(t)

ṗi(t) = −
∑

j∈Ni

1

‖eij(t)‖
Pgij(t)g

∗
ij

I eij(t) = pj(t)− pi(t)
I implementation requires distance and bearing measurements!
I Pgij(t) is an orthogonal projection matrix 29



bearing-only strategy

Proposed Control Law

ṗi(t) = −
∑

j∈Ni

Pgij(t)g
∗
ij

ṗ(t) = RT
B(p)diag{‖eij‖}g∗

1

gij

g∗ij

Pgijg
∗
ij

−Pgijg
∗
ij

pi

pj

Figure 1: Geometric interpretation 30



examples
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examples
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bearing-only formation control - stability analysis

Centroid and Scale Invariance

I Centroid of the formation

p̄ ,
1

n

n∑

i=1

pi

I Scale of the formation

s ,

√√√√1

n

n∑

i=1

‖pi − p̄‖2.

Almost global convergence

I Two isolated equilibriums:
one stable, one unstable

1

2

3

1

2

3

Figure 2: Solid line is target formation.

Reference: S. Zhao and D. Zelazo, “Bearing
rigidity and almost global bearing-only
formation stabilization,” IEEE Transactions on
Automatic Control, vol. 61, no. 5, pp. 1255-1268,
2016.
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extensions - attitude synchronization
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extensions - formation maneuvering
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limited field-of-view sensing

Sensing Model
Visual sensors are bounded by a limited field-of-view

I Sensing graph can become directed
I Neighbors are not static
I αij is the angle of the bearing gij
I δψi is the facing direction error

36



limited field-of-view sensing

ṗi(t) = −
∑

j∈Ni

Pgij(t)g
∗
ij

Facing direction is not controlled

37
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fov constrained formation control

Problem
Design the control inputs ui and ωi such that the desired bearing
is reached using only bearing measurements and a given limited
field-of-view of the visual sensor.

38



two agent case - simulations

No Sensing: w1(0) = w2(0) = 0

|δψ1(0)| > γ̄/2 and |δψ2(0)| > γ̄/2

39
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two agent case - simulations

Complete Sensing: w1(0) = w2(0) = 1

|δψ1(0)| < γ̄/2 and |δψ2(0)| < γ̄/2
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two agent case - simulations

Partial Sensing: w1(0) = 1, w2(t) = 0, t ≥ 0

|δψ1(0)| < γ̄/2 and |δψ2(t)| > γ̄/2 for all t ≥ 0

39
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two agent case - simulations

Partial Sensing: w1(0) = 1, w2(0) = 0 andw2(t) = 1 for
t > T

|δψ1(0)| < γ̄/2 and |δψ2(t)| < γ̄/2 for some t > T

39
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two agent case - results

Analytical Results for n = 2
If the following Assumptions hold:

1. Initially one agent can sense the other
2. The visual sensor satisfies γ̄/2 > 1/d12(0)

Then, the desired formation g∗12 will be reached from almost all
initial conditions (except for g12(0) = −g∗12).

I Holds for two agents only
I Includes directed interactions
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simulation for n > 2

What changes?

I Desired facing direction is not intuitive
I Rigidity conditions are required

Faces the closest neighbor.
Faces in the middle of the agents
that are inside the FOV.
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simulation for n > 2

Facing is controlled byωi
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experiments

TurtleBotII Robots - Unicycle Model

ẋi = vilin cos(ψi)

ẏi = vilin sin(ψi)

ψ̇i = viang
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on-board sensing

Vision sensing with Microsoft Kinect Sensor

Figure 3: Kinect used as a bearing-only
sensor. Figure 4: Camera frame that is taken

from a visual sensor on agent i, the red
square indicates the color of neighbor j
within the camera frame.
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unicycle dynamics bearing-only control

Bearing-Only Controller for Unicycle Dynamics

vilin = [cos(θi) sin(θi)]
T
ui

viang = [− sin(θi) cos(θi)]
T
ui

Inspired by S. Zhao et. al, A general approach to coordination control of mobile agents with

motion constraints, IEEE Transactions on Automatic Control, 63(5):1509-1516.
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unicycle dynamics bearing-only control

Bearing Formation Control with Unicycle

ẋi = − [cos(θi) sin(θi)]
∑

j∈Ni

Pgijg
∗
ij cos(θi)

ẏi = − [cos(θi) sin(θi)]
∑

j∈Ni

Pgijg
∗
ij sin(θi)

θ̇i = − [− sin(θi) cos(θi)]
∑

j∈Ni

Pgijg
∗
ij.

44



unicycle dynamics bearing-only control

Figure 5: The camera does not align with the moving direction of the unicycle but
is turned around +π/2.

Unique considerations required for unicycle dynamics!
44



unicycle dynamics bearing-only control

44



unicycle dynamics bearing-only control
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the right architecture
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summary and outlook

Topics covered by this talk:

I Distance rigidity and formation control
I General Bearing rigidity theory
I Bearing-only formation control law
I Field-of-View constrained systems
I Multi-robot implementation

Where next?

I directed rigidity theory
I general non-linear sensors
I more sophisticated models and robots
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