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EU electricity generation trends

(taken from “EU Energy, Transmission, and GHG Emissions: Trends to 2050 - Reference
Scenario 2015”)
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The Future Energy Landscape | M imiue.

Natural Gas is
clean, cheap, and
safe!
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Energy Independence in Israel | W st
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source: https://www.greenprophet.com/2012/02/israel-lebanon-natural-gas-discovery/

Leviathan - 22 trillion cubic feet
Tamar — 10.8 trillion cubic feet
Tanin - 3 trillion cubic feet

Natural Gas could transform
Israel’s energy market!
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Natural Gas and the Smart Grid| ¥ Za .

Natural gas is the ideal near-term
solution to bridge the gap
between traditional energy
generation and renewables
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Micro-Gas Turbines for CHP W e

* runs on natural gas

* high power-to-weight ratio

* small terrain footprint

* reliable (few moving parts)

* quiet

e agile and flexible — on-demand!

Electricity and Heating/Cooling Generation
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MGT Integration into the Grid | M sateiue.
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Meet the consumer power demand
in an economically optimal way
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The Economic Dispatch Problem ¥ iimi

Economic Dispatch is a short-term scheduling for the output of a number of
electricity generation facilities required to meet system demand at the
lowest cost subject to operational constraints

min J(P, H)
st. P=Dp
H =Dy
operational constraints

Dp
Dy
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The Economic Dispatch Problem| M s
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What is the cost of operating an MGT?
* relation of fuel consumption to heat
and power output
e start-up and shut-down costs
e time constants for power delivery

Electricity and Heat Tariffs
* how much does electricity cost
» electricity market for buying and
selling power

Consumer Needs
 what are the power and heat
demand profiles for consumers
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MGT Modeling Y Sk
Recuperated MGT Simulation Model

Input-
ambient conditions, gas turbine data. component
performance maps

Calculate TO2, P02 Set Interpolation scheme for i N ASA DY N G E N a Ig 0 rit h m

Select Nreal and calculate |« performance maps with Beta
N2corr line grid

T * generates steady-state maps

Select TO4
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MGT Modeling e
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(d) Electrical Efficiency. (e) Heat Efficiency.
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Towards an Optimization Model| ¥ sz

Operational Constraints as discretized state-transition graph
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e system “state” is shaft speed and bypass valve
e arrows indicate allowable transitions to new
steady-states, and their time
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Operational Constraints as discretized state-transition graph

e system “state” is shaft speed and bypass valve
e arrows indicate allowable transitions to new
steady-states, and their time
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Towards an Optimization Model | ¥ ium
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Operational Constraints as discretized state-transition graph

can be represented

‘ by graphs
— . zar(t+cAT) = for(zar(t), uer(t))

can be assigned to each
edge
* relates to fuel price
* maintenance cost
e utility commitment and
consumer demand
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. J P H
min (g, uerT, TuT, TuT)
ToT UYgT sTUuTH»TUT

subject to

(MGT Dynamics)  xgp(t + cAT) = for(rar(t), ugr(t)),

(Power Balance) Pgp(zar(t))+ (zir(t) — P(t)) =0,

(Heat Balance) Heap(zar(t)) + (xiirp(t) — H(t)) =0,
rar(t) € {(pi(t), hi(t),i=1,....8,§=1,...,v}
xpr(t) >0, air(t) >0,t=1,...,T.

Optimization over a directed acyclic graph
Shortest Path Algorithm — complexity is linear in #nodes+edges

J. F. Rist, M. F. Dias, M. Palman, D. Zelazo, B. Cukurel, Economic dispatch of a single micro-gas turbine under CHP operation,
Applied energy 200 (2017) 1-18.
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A Fundamental Flaw M e
: P H
min J(xGTaUGTaxUTvaT)
LT »UGT»TUuT»TUT
subject to
(MGT Dynamics)  zaor(t + cAT) = for(zar(t), uar(t)),

(Power Balance) Pgp(zgr(t))+ (zpr(t) —IP(t)) =0,

(Heat Balance) Hgp(zar(t)) + (i (t) —|H(t)) =0,

vor(t) € {(pit), h;(1), i=1,....8,5=1,...,v}

xUT(t) > 07 CCUT(t) > 07 t = 17 s 7T'
power and heat demand are unknown!
* jtis not possible to deterministically know the demand

profiles
* we can only estimate based on data, forecast models, etc
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Robust Shortest Path Problems | ¥ s
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Robust Optimization
min max {F(x,¢&) : ¢(x,&) <0, VE e W}

e

cost function
constraints

example:

w={<¢: léll <4} L
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Shortest Path

r A

Y

Jmin_ 3 D). w, : Path_, € PATH,_(G)
79 | e€Pathg_,

. v

Robust Shortest Path

'

' : Path,_,, € PATH
ain md 3P € PATH,

e€Pathg_,

e generally hard to solve!
* NP-hard for general uncertainty sets
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Robust Shortest Path Problems | M ismwe

Robust Shortest Path

~

Y

min max < Z w, : Pathy_,, € PATH_,,(G)

Pathg_,, weWw ecPath,

L uncertainty mixed L1 /L uncertainty

P(t) = Py(t) + n{ (1) + n L (),
—_ — H H
| P(r) — Py(1)| < AP(1), } WL HoT, ¢ 0= HO O+,

|H(t) — Hy(1)| < AH(2) =1 YT [18p PO+ 185 n O] < 1, [
InL (O] < AP@), [n2 ()| < AH (@), V1

W= {(P(o, H@).,

e attempts to deal with unforeseen
short demand spikes and long-term
demand bias

* computationally more expensive
(order because square of edges)

 demand uncertainty “ball”

* equivalent to “normal” SP problem

* depending on confidence interval,
solution may be too conservative or
not robust
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Residential Building

residential electricity tariff

neighborhood of 20 apartment US DOE 2004
buildings

|"

e consider 4 “typical” days (24 hours in 15sec intervals):
winter, spring, summer autumn
 demand forecasting based on previous 2 week data (mean and
standard deviation)
 compare following algorithms:
o benchmark : ED problem with perfect knowledge of
demand
o nominal : ED problem without demand uncertainty
Fhadeling
0% /r@yst algorithm
® robust algorithm
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Schedule cost in $ Winter Spring Summer Autumn
(Reduction in excess cost in %) Feb. 5th Mar. 24th  Jun. 28th  Sep. 19th

Benchmark case 293.02 196.86 188.83 126.48
Nominal algorithm 299.39 202.30 191.35 133.32
First robust algorithm 298.48 202.16 191.35 133.32
(14.29%)| | (2.57%) (0.00%) (0.00%)
Second robust algorithm 299.16 202.30 188.83 126.48
(3.61%) (0.00%) (100.00%)| | (100.00%)
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e implementation with MGT model
e extension to combined CHP

Multi-Unit ED

lelo) bk i\ P10 3Tia e extension of robust ED to multi-
=p) unit case

SEIGNEI=E 15 1= » simulation with real MGT
loop e "virtual" smart grid

........................................................................................

i N + M
Utilit s . : : : o
. ' . : : : : gy
Y| control | : : ECU : : Cr ol
- . & : F et N L
: : : [ A : P
Micro-Gas Turbine : Optimization) o e : f i
i H L NE220 Nig263 : &

Control ... e
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Micro-Gas Turbines using natural gas is an
economically viable solution towards a
distributed power generation economy

Detailed modeling required to gain a better
understanding of the economic operational
modes of the MGT

(d) Electrical Efficiency. (e) Heat Efficiency.

robust optimization methods can manage
demand uncertainty in numerically
tractable way
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