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FORMATION CONTROL

Given a team of robots endowed with the ability to sense/ communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.




FORMATION CONSTRAINTS

- The is characterized by a set of M constraints, encoded in the
function F : R* — RM and a configuration p* satisfying the constraints.
- The set of all is

F(p) ={p e D|F(p) = F(p*)}

For an ensemble of n agents with dynamics
Di = wi,

with p; () € R¢, an information exchange graph G = (V, £), and formation constraint
function F : R — RM design a distributed control law for each agenti € {1,...,n}

such that the set Fp) = {pe D|F(p) = F(p)},

is asymptotically stable.



RIGIDITY THEORY AND FORMATION CONTROL

Consider the potential function

1 . 12 2
Fy(p) =7 D (Ilpi(t) —p; (DI — (d5;)%)
ije€
and assume the desired distances dj; correspond to a feasible formation. Then the
gradient dynamical system

wi = =V Fr(p) = Y (Ipi = sl = (d5)°) (05 — ps)

ijeE

asymptotically converges to the critical points
of the potential function, i.e., apf(p) = 0.

« R(p) is the rigidity matrix for the framework (G, p)
« rigidity theory used to understand more about the equilibrium sets 3



RIGIDITY THEORY AND FORMATION CONTROL

Rigidity theory helps us understand

« how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

« how the constraints should be distributed in the
network

Awidely accepted architectural requirement for distance constrained formation con-
trol is that minimally infinitesimally rigid frameworks are required. Equivalent to:

rkR(p) =2|V|—3and || =2[V| -3 (inR?)
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RIGIDITY THEORY AND FORMATION CONTROL

Rigidity theory helps us understand

« how many constraints are required to ensure
uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

« how the constraints should be distributed in the
network

Awidely accepted architectural requirement for distance constrained formation con-
trol is that minimally infinitesimally rigid frameworks are required. Equivalent to:

rkR(p) =2|V|—3and || =2[V| -3 (inR?)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

A: Impose additional symmetry constraints without
requiring more information exchange (in fact, less!)




GRAPH SYMMETRIES AND POINT GROUPS

Graph Symmetries Point Groups

« graph automorphisms * isometries



SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph G = (V,€) is a permutation ¢ of of its vertex set such
that

{vi,v5} € € & {(vi),¥(vj)} € €

Automorphisms encode graph symmetries

« identity: Id = b2 34
1 2 3 4

. 1 2 4
+ 90° rotation: ¢; = 5
2 3 41

—_ W

. 1 2 4
+ 180° rotation: ¢, =
3 4 2

* 270° rotation: ¢35 =



SYMMETRY AND GRAPH AUTOMORPHISMS

Graph Automorphism

An automorphism of the graph G = (V,€) is a permutation ¢ of of its vertex set such
that

{vi,v5} € € & {(vi),¥(vj)} € €

Automorphisms encode graph symmetries

1 2 3 4
» reflection: =
2 3 4
« reflection:
Vs = < 3 2 1)
1 2 3 4
« reflection:
Ve = <1 4 3 2)
. 2 4
« reflection: ¥, = 3
2 1 4 .



AUTOMORPHISM GROUP

Definition

Let X be a set, and let T be a collection of invertible functions X — X. Then I is called
a group if the identity map, Id, belongs to I', and forany I’ > f,g : X — X, both the
composite function f o g and the inverse function f~* belong to T.

Automorphisms of a graph form a group - Aut(G)

- Aut(g) — {Id-,1/)171/1271/)371#47¢5a¢6a¢7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, 41, o, 3}
- {Id, Y2, 14, U5}
- {Id, ¥2}
- {Id, ¥}
- {Id, ¢}



['-SYMMETRIC GRAPHS

+ Subgroups of Aut(G) define specific symmetries in G
- for any subgroup I' C Aut(G), we say that G is I'-symmetric



['-SYMMETRIC GRAPHS

+ Subgroups of Aut(G) define specific symmetries in G
- for any subgroup I' C Aut(G), we say that G is I'-symmetric

Definition
For a '-symmetric graph G = (V,£) and vertex i € V, the setT'; = {v(i) |y € '} is called
the vertex orbit of i. Similarly, for an edge e = ij € £, the set T'. = {y(i)y(j) |y €T} is
termed the edge orbit of e.
Consider I' = {Id, 12} (42 is the 180° rotation)
+ Vertex Orbit:
[ =D3={1,3}, [y =y = {2,4}
vertices inside a vertex orbit are equivalent
representative vertex set: Vo, = {1, 2}
+ Edge Orbit:
Fe, =Ty = {61763}7
Pey, =T, = {(32764}




7(I")~SYMMETRIC FRAMEWORK

combine notions of graph symmetries with point groups

« let G be a I'-symmetric graph
- T also represented as a point group

- homomorphism 7 : T' — O(R?)
- 7 assigns an orthogonal matrix (describing an isometry of R? such as a rotation or

reflection) to each element of T'

Definition

A framework (G,p) in R? is called 7(1")-symmetric if
7(7)(pi) = pyy forally el and all i€ V.



7(I")~SYMMETRIC FRAMEWORK

example... ;S « consider I' = {Id, ¢4} C Aut(9)
« v =1y € I (reflection about mirror S)
. isometry 7(7) : (a,b) — (—a,b)
satisfies 7(v)(pi) = py(;) foralli e V.

« note: for a 7(T")-symmetric framework (G, p) and for
every j € I';, thereis a y; € I' such that 7(v;)p; = p;
forallj e T

isometries of configuration p coincide with symmetries of the automorphisms of G

« in 7(T')-symmetric frameworks, the configurations p are in a special geometric
position (not necessarily generic)

« symmetry can lead to unexpected infinitesimal flexibility/rigidity

10



SYMMETRIC CONFIGURATION FORMATION CONTROL

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the I'-symmetric sensing
graph G. Let p* € R be a configuration such that (G, p*) is 7(I')-symmetric for some
desired point group 7(T"), and let V, be a set of representatives of the vertex orbits of
G under T'. Design a control u;(¢) for each agent i such that

(i) tli)rgonpi(t) =) = llpy —p;ll = d;; forallij € &; (distance constraints)

(i) for eachi € Vy, Jim lpi(¢) — 7(v;)p; ()| =0V j €Ty, v; € I. (symmetry constraints)
—00

"



A GRADIENT APPROACH

« the formation potential

1 Y212
Fy(p() = 5 > (llpe(®) = p 1) = (d5)°)
ijeE
- the symmetry potential

Z Z [pi(t) — 7(7;) pa(t)HQ

zGVo jel;

« the symmetric formation potential

F(p(t)) = Fr(p(t)) + Fs(p(t))
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A GRADIENT APPROACH

« propose the gradient control
u(t) = =VF(p(t))
+ closed-loop dynamics
p(t) = —R(p(t))" (R(p(t))p(t) — (d)?) — Qp(t)

where Q is symmetric and a block matrix with

(I — DI, i=j,i€Vy
~7(v;),  i€Vo,jeT; * Qij € RITiIXIT
Qij =<1, i=4,7¢ Vo, jel;. * Qi€ ORY) (orthogonal group)
(), jEeVy, ieTy s T(y) Tt =T()"
0, 0.W.

« structure of Q requires information exchange betweeni € VoNT; and j € T;
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“NICE” GRAPHS

« symmetric formation potential makes no assumption on relation between the graph
G and the point group 7(T")

« we restrict our study to graphs where communication required by symmetric
potential use same edges as G

Assumption 1
For eachi € Vyand j € T; \ {i}, the edge ij isin £.

T = {Id, ¢4} C Aut(G)

e Ty =Ty ={1,2}, I3 =Ty = {3,4}

* Vo ={1,4}

- isometry 7(v) : (a,b) — (—a,b)
satisfies 7(v)(p:) = p(;) foralli € V and

foreachicVyandj eI\ {i},
the edge ij isin &£
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MAIN RESULT

Consider a team of n integrator agents interacting over a I'-symmetric graph G satisfying Assumption 1 that
can be drawn with maximum point group symmetry S in R%, and let

Fr={p € R™||lp; — p;ll = d};ij € £}, and Fo = {p € R™ | 7(7)(pi) = py(s) V¥ €T, i € V}.
Then for initial conditions p; (0) satisfying

> (Ipi(0) = p; ()| — d3;)? < e, and [|ps(0) — 7(7;)p; (0)]* < €2
ije&

foralli € Vo and j € T';, for a sufficiently small and positive constant €; and ez, the control
u= —VF(p(t)),
renders the set 7y N F; exponentially stable, i.e.

Jin [[pi(t) = p; ()l = dij and lim 7(y)(p;(t)) = lim py(y(t) forallyel,ie).
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EXAMPLE: THE VIC FORMATION

+ formation flight for aircraft originated in WWI

« Vic formation used by pilots to improve visual
communication and defensive advantages

Vic formation with symmetry Flexible framework (9 edges; Minimally Rigid framework
mirror satisfies Assumption 1) (11 edges)

15
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+ symmetry constraints force agents to
correct formation

* requires less agent communication
than standard formation control with
MIR requirement

EXAMPLE: THE VIC FORMATION

7

3 L L L L
2 E] [ 1 2 3 4 5

with flexible framework and only
formation potential can not guarantee
convergence to correct shape
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CONCLUDING REMARKS

Summary

+ exploit notions of symmetry in formation control
- 7(I')-symmetric graphs captures symmetry of configurations and graphs

« symmetric formation potential used to design distributed control law with less
edges compared to “traditional” formation control strategies

Future Work

- formation maneuvering requires time-varying point group symmetries
« relax requirement of edges between all nodes in vertex orbit
« richer trajectories including symmetry-preserving flexes

[ Questions? ]




