STABILIZATION OF SYMMETRIC FORMATIONS

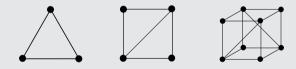
Daniel Zelazo*, Bernd Schulze**, Shin-Ichi Tanigawa***

* Technion - Israel Institute of Technology ** Lancaster University *** University of Tokyo

14.07.2023 IFAC World Congress Yokohama, Japan

Formation Control Objective

Given a team of robots endowed with the ability to sense/ communicate with neighboring robots, design a control for each robot using only local information that moves the team into a desired spatial configuration.



FORMATION CONSTRAINTS

- The desired formation is characterized by a set of M constraints, encoded in the function $F : \mathbb{R}^{nd} \to \mathbb{R}^M$, and a configuration \mathbf{p}^* satisfying the constraints.
- The set of all feasible formations is

$$\mathcal{F}(p) = \{ p \in \bar{\mathcal{D}} \, | \, F(p) = F(\mathbf{p}^{\star}) \}$$

Formation Control Objective

For an ensemble of n agents with dynamics

$$\dot{p}_i = u_i,$$

with $p_i(t) \in \mathbb{R}^d$, an information exchange graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, and formation constraint function $F : \mathbb{R}^{nd} \to \mathbb{R}^M$, design a distributed control law for each agent $i \in \{1, ..., n\}$ such that the set $\mathcal{F}(p) = \{p \in \overline{\mathcal{D}} \mid F(p) = F(\mathbf{p}^*)\},\$

is asymptotically stable.

Theorem - Distance Constrained Formation Control

Consider the potential function

$$F_f(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - (d_{ij}^*)^2 \right)^2$$

and assume the desired distances d_{ij}^\star correspond to a feasible formation. Then the gradient dynamical system

$$u_{i} = -\nabla_{p_{i}} F_{f}(p) = \sum_{ij \in \mathcal{E}} \left(\|p_{i} - p_{j}\|^{2} - (d_{ij}^{*})^{2} \right) (p_{j} - p_{i})$$
$$\dot{p} = -\nabla_{p} F_{f}(p) = -R^{T}(p)R(p)p + R^{T}(p)(d^{*})^{2}$$

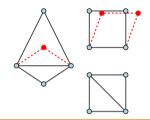
asymptotically converges to the critical points of the potential function, i.e., $\frac{\partial F_f(p)}{\partial p} = 0$.

- + R(p) is the *rigidity matrix* for the framework (\mathcal{G}, p)
- rigidity theory used to understand more about the equilibrium sets

[Krick 2009]

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network

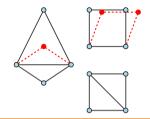


A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

$$\mathrm{rk}\,R(p)=2|\mathcal{V}|-3$$
 and $|\mathcal{E}|=2|\mathcal{V}|-3$ (in \mathbb{R}^2)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network



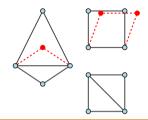
A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

 $\operatorname{rk} R(p) = 2|\mathcal{V}| - 3 \text{ and } |\mathcal{E}| = 2|\mathcal{V}| - 3 \text{ (in } \mathbb{R}^2)$

Q: is this a necessary condition? (can we solve the problem with fewer edges?)

Rigidity theory helps us understand

- how many constraints are required to ensure uniqueness of formation shape (modulo translations, rotations, and flip ambiguities)
- how the constraints should be distributed in the network



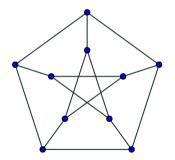
A widely accepted architectural requirement for distance constrained formation control is that minimally infinitesimally rigid frameworks are required. Equivalent to:

$$\operatorname{rk} R(p) = 2|\mathcal{V}| - 3$$
 and $|\mathcal{E}| = 2|\mathcal{V}| - 3$ (in \mathbb{R}^2)

- **Q:** is this a necessary condition? (can we solve the problem with fewer edges?)
- A: Impose additional symmetry constraints without requiring more information exchange (in fact, less!)

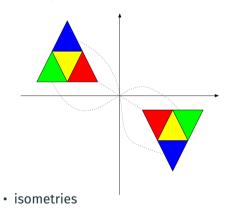
GRAPH SYMMETRIES AND POINT GROUPS

Graph Symmetries



• graph automorphisms

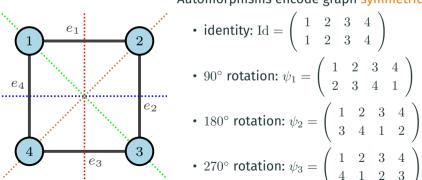
Point Groups



Graph Automorphism

An automorphism of the graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$

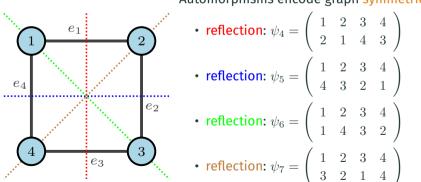


Automorphisms encode graph symmetries

Graph Automorphism

An automorphism of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a permutation ψ of of its vertex set such that

 $\{v_i, v_j\} \in \mathcal{E} \Leftrightarrow \{\psi(v_i), \psi(v_j)\} \in \mathcal{E}$



Automorphisms encode graph symmetries

Definition

Let X be a set, and let Γ be a collection of invertible functions $X \to X$. Then Γ is called a group if the identity map, Id, belongs to Γ , and for any $\Gamma \ni f, g: X \to X$, both the composite function $f \circ g$ and the inverse function f^{-1} belong to Γ .

Automorphisms of a graph form a group - $Aut(\mathcal{G})$

- Aut(\mathcal{G}) = {Id, $\psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6, \psi_7$ }

A subgroup is a subset of a group, and also satisfies all properties of a group

- $\{ \mathrm{Id}, \psi_1, \psi_2, \psi_3 \}$
- $\{ \mathrm{Id}, \psi_2, \psi_4, \psi_5 \}$
- $\{ Id, \psi_2 \}$
- $\{ Id, \psi_6 \}$
- $\{ \text{Id}, \psi_7 \}$

Γ -SYMMETRIC GRAPHS

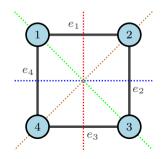
- + Subgroups of $\operatorname{Aut}(\mathcal{G})$ define specific symmetries in $\mathcal G$
- for any subgroup $\Gamma\subseteq {\rm Aut}(\mathcal{G}),$ we say that \mathcal{G} is $\Gamma\text{-symmetric}$

Γ -SYMMETRIC GRAPHS

- Subgroups of $\operatorname{Aut}(\mathcal{G})$ define specific symmetries in $\mathcal G$
- for any subgroup $\Gamma\subseteq {\rm Aut}(\mathcal{G}),$ we say that \mathcal{G} is $\Gamma\text{-symmetric}$

Definition

For a Γ -symmetric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and vertex $i \in \mathcal{V}$, the set $\Gamma_i = \{\gamma(i) \mid \gamma \in \Gamma\}$ is called the vertex orbit of *i*. Similarly, for an edge $e = ij \in \mathcal{E}$, the set $\Gamma_e = \{\gamma(i)\gamma(j) \mid \gamma \in \Gamma\}$ is termed the edge orbit of *e*.



Consider $\Gamma = { \mathrm{Id}, \psi_2 }$ (ψ_2 is the 180° rotation)

• Vertex Orbit: $\Gamma_1 = \Gamma_3 = \{1, 3\}, \ \Gamma_2 = \Gamma_4 = \{2, 4\}$

vertices inside a vertex orbit are equivalent representative vertex set: $\mathcal{V}_0 = \{1, 2\}$

• Edge Orbit:

 $\begin{aligned} \Gamma_{e_1} &= \Gamma_{e_3} = \{e_1, e_3\}, \\ \Gamma_{e_2} &= \Gamma_{e_4} = \{e_2, e_4\} \end{aligned}$

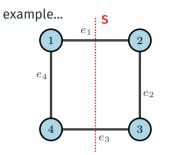
combine notions of graph symmetries with point groups

- let ${\mathcal G}$ be a $\Gamma\text{-symmetric graph}$
- + Γ also represented as a point group
 - homomorphism $\tau: \Gamma \to O(\mathbb{R}^d)$
 - τ assigns an orthogonal matrix (describing an isometry of \mathbb{R}^d such as a rotation or reflection) to each element of Γ

Definition

A framework (\mathcal{G}, p) in \mathbb{R}^d is called $\tau(\Gamma)$ -symmetric if $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $\gamma \in \Gamma$ and all $i \in \mathcal{V}$.

$au(\Gamma)$ -SYMMETRIC FRAMEWORK



- consider $\Gamma = {\mathrm{Id}, \psi_4} \subseteq \mathrm{Aut}(\mathcal{G})$
- + $\gamma = \psi_4 \in \Gamma$ (reflection about mirror S)
- isometry $\tau(\gamma): (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$.

• note: for a $\tau(\Gamma)$ -symmetric framework (\mathcal{G}, p) and for every $j \in \Gamma_i$, there is a $\gamma_j \in \Gamma$ such that $\tau(\gamma_j)p_j = p_i$ for all $j \in \Gamma_i$

isometries of configuration p coincide with symmetries of the automorphisms of ${\mathcal G}$

- in $\tau(\Gamma)$ -symmetric frameworks, the configurations p are in a special geometric position (not necessarily generic)
- symmetry can lead to unexpected infinitesimal flexibility/rigidity

Symmetric Formation Control Objective

Consider a group of n integrator agents that interact over the Γ -symmetric sensing graph \mathcal{G} . Let $p^* \in \mathbb{R}^{dn}$ be a configuration such that (\mathcal{G}, p^*) is $\tau(\Gamma)$ -symmetric for some desired point group $\tau(\Gamma)$, and let \mathcal{V}_0 be a set of representatives of the vertex orbits of \mathcal{G} under Γ . Design a control $u_i(t)$ for each agent i such that

(i)
$$\lim_{t \to \infty} \|p_i(t) - p_j(t)\| = \|p_i^* - p_j^*\| = d_{ij}^* \text{ for all } ij \in \mathcal{E};$$
 (distance constraints)
(ii) for each $i \in \mathcal{V}_0$,
$$\lim_{t \to \infty} \|p_i(t) - \tau(\gamma_j)p_j(t)\| = 0 \forall j \in \Gamma_i, \gamma_j \in \Gamma.$$
 (symmetry constraints)

• the formation potential

$$F_f(p(t)) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i(t) - p_j(t)\|^2 - (d_{ij}^*)^2 \right)^2$$

• the symmetry potential

$$F_{s}(p(t)) = \frac{1}{2} \sum_{i \in \mathcal{V}_{0}} \sum_{j \in \Gamma_{i}} \|p_{i}(t) - \tau(\gamma_{j})p_{j}(t)\|^{2}$$

• the symmetric formation potential

 $F(p(t)) = F_f(p(t)) + F_s(p(t))$

• propose the gradient control

$$u(t) = -\nabla F(p(t))$$

closed-loop dynamics

$$\dot{p}(t) = -R(p(t))^T \left(R(p(t))p(t) - (d^*)^2 \right) - Qp(t)$$

where \boldsymbol{Q} is symmetric and a block matrix with

$$Q_{ij} = \begin{cases} (|\Gamma_i| - 1)I, & i = j, i \in \mathcal{V}_0 \\ -\tau(\gamma_j), & i \in \mathcal{V}_0, j \in \Gamma_i & \cdot Q_{ij} \in \mathbb{R}^{|\Gamma_i|d \times |\Gamma_i|d} \\ I, & i = j, j \notin \mathcal{V}_0, j \in \Gamma_i & \cdot Q_{ij} \in O(\mathbb{R}^d) \text{ (orthogonal group)} \\ -\tau(\gamma_j)^{-1}, & j \in \mathcal{V}_0, i \in \Gamma_j & \cdot \tau(\gamma_j)^{-1} = \tau(\gamma_j)^T \\ 0, & \text{o.w.} \end{cases}$$

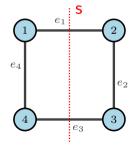
- structure of Q requires information exchange between $i \in \mathcal{V}_0 \cap \Gamma_i$ and $j \in \Gamma_i$

"NICE" GRAPHS

- symmetric formation potential makes no assumption on relation between the graph ${\cal G}$ and the point group $\tau(\Gamma)$
- we restrict our study to graphs where communication required by symmetric potential use same edges as $\ensuremath{\mathcal{G}}$

Assumption 1

For each $i \in \mathcal{V}_0$ and $j \in \Gamma_i \setminus \{i\}$, the edge ij is in \mathcal{E} .



- $\Gamma = {\mathrm{Id}, \psi_4} \subseteq \mathrm{Aut}(\mathcal{G})$
- $\Gamma_1 = \Gamma_2 = \{1, 2\}, \ \Gamma_3 = \Gamma_4 = \{3, 4\}$
- $\mathcal{V}_0 = \{1, 4\}$
- isometry $\tau(\gamma): (a, b) \mapsto (-a, b)$

satisfies $\tau(\gamma)(p_i) = p_{\gamma(i)}$ for all $i \in \mathcal{V}$ and for each $i \in \mathcal{V}_0$ and $j \in \Gamma_i \setminus \{i\}$, the edge ij is in \mathcal{E}

Theorem

Consider a team of n integrator agents interacting over a Γ -symmetric graph \mathcal{G} satisfying Assumption 1 that can be drawn with maximum point group symmetry \mathcal{S} in \mathbb{R}^d , and let

 $\mathcal{F}_f = \{ p \in \mathbb{R}^{dn} \mid \|p_i - p_j\| = d_{ij}^{\star} \ ij \in \mathcal{E} \}, \text{ and } \mathcal{F}_s = \{ p \in \mathbb{R}^{dn} \mid \tau(\gamma)(p_i) = p_{\gamma(i)} \ \forall \gamma \in \Gamma, \ i \in \mathcal{V} \}.$

Then for initial conditions $p_i(0)$ satisfying

$$\sum_{ij\in\mathcal{E}} (\|p_i(0) - p_j(0)\| - d_{ij}^{\star})^2 \le \epsilon_1, \text{ and } \|p_i(0) - \tau(\gamma_j)p_j(0)\|^2 \le \epsilon_2$$

for all $i \in \mathcal{V}_0$ and $j \in \Gamma_i$, for a sufficiently small and positive constant ϵ_1 and ϵ_2 , the control

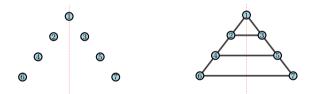
$$u = -\nabla F(p(t)),$$

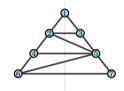
renders the set $\mathcal{F}_f \cap \mathcal{F}_s$ exponentially stable, i.e.

$$\lim_{t \to \infty} \|p_i(t) - p_j(t)\| = d_{ij}^{\star} \text{ and } \lim_{t \to \infty} \tau(\gamma)(p_i(t)) = \lim_{t \to \infty} p_{\gamma(i)}(t) \quad \text{for all } \gamma \in \Gamma, i \in \mathcal{V}.$$

EXAMPLE: THE VIC FORMATION

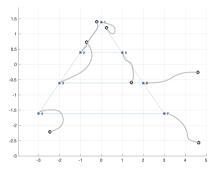
- formation flight for aircraft originated in WWI
- Vic formation used by pilots to improve visual communication and defensive advantages



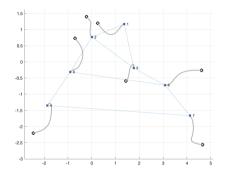


Vic formation with symmetryFlexible framework (9 edges;Minimally Rigid frameworkmirrorsatisfies Assumption 1)(11 edges)

EXAMPLE: THE VIC FORMATION



- symmetry constraints force agents to correct formation
- requires less agent communication than standard formation control with MIR requirement



• with flexible framework and only formation potential can not guarantee convergence to correct shape

Summary

- exploit notions of symmetry in formation control
- + $\tau(\Gamma)\text{-symmetric graphs captures symmetry of configurations and graphs$
- symmetric formation potential used to design distributed control law with less edges compared to "traditional" formation control strategies

Future Work

- formation maneuvering requires time-varying point group symmetries
- relax requirement of edges between all nodes in vertex orbit
- · richer trajectories including symmetry-preserving flexes

Questions?