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formation control

Formation Control Objective
Given a team of robots endowed with the ability to sense/ communicate with
neighboring robots, design a control for each robot using only local information that
moves the team into a desired spatial configuration.
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formation constraints

- The desired formation is characterized by a set of M constraints, encoded in the
function F : Rnd → RM , and a configuration p? satisfying the constraints.

- The set of all feasible formations is
F(p) = {p ∈ D̄ |F (p) = F (p?)}

Formation Control Objective
For an ensemble of n agents with dynamics

ṗi = ui,

with pi(t) ∈ Rd, an information exchange graph G = (V, E), and formation constraint
function F : Rnd → RM , design a distributed control law for each agent i ∈ {1, . . . , n}
such that the set F(p) = {p ∈ D̄ |F (p) = F (p?)},

is asymptotically stable.
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rigidity theory and formation control

Theorem - Distance Constrained Formation Control [Krick 2009]

Consider the potential function

Ff (p) =
1

4

∑
ij∈E

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

and assume the desired distances d?ij correspond to a feasible formation. Then the
gradient dynamical system

ui = −∇piFf (p) =
∑
ij∈E

(
‖pi − pj‖2 − (d?ij)

2
)

(pj − pi)

ṗ = −∇pFf (p) = −RT (p)R(p)p+RT (p)(d?)2

asymptotically converges to the critical points
of the potential function, i.e., ∂Ff (p)

∂p = 0.

• R(p) is the rigidity matrix for the framework (G, p)
• rigidity theory used to understand more about the equilibrium sets 3



rigidity theory and formation control

Rigidity theory helps us understand
• how many constraints are required to ensure

uniqueness of formation shape (modulo
translations, rotations, and flip ambiguities)

• how the constraints should be distributed in the
network

A widely accepted architectural requirement for distance constrained formation con-
trol is that minimally infinitesimally rigid frameworks are required. Equivalent to:

rkR(p) = 2|V| − 3 and |E| = 2|V| − 3 (in R2)

Q: is this a necessary condition? (can we solve the problem with fewer edges?)
A: Impose additional symmetry constraints without

requiring more information exchange (in fact, less!)
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graph symmetries and point groups

Graph Symmetries Point Groups

• graph automorphisms • isometries
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• identity: Id =

(
1 2 3 4

1 2 3 4

)

• 90◦ rotation: ψ1 =

(
1 2 3 4

2 3 4 1

)

• 180◦ rotation: ψ2 =

(
1 2 3 4

3 4 1 2

)

• 270◦ rotation: ψ3 =

(
1 2 3 4

4 1 2 3

)
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symmetry and graph automorphisms

Graph Automorphism
An automorphism of the graph G = (V, E) is a permutation ψ of of its vertex set such
that

{vi, vj} ∈ E ⇔ {ψ(vi), ψ(vj)} ∈ E

e1

e2

e3

e4

1 2

4 3

Automorphisms encode graph symmetries

• reflection: ψ4 =

(
1 2 3 4

2 1 4 3

)

• reflection: ψ5 =

(
1 2 3 4

4 3 2 1

)

• reflection: ψ6 =

(
1 2 3 4

1 4 3 2

)

• reflection: ψ7 =

(
1 2 3 4

3 2 1 4

)
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automorphism group

Definition
Let X be a set, and let Γ be a collection of invertible functions X → X . Then Γ is called
a group if the identity map, Id, belongs to Γ, and for any Γ 3 f, g : X → X , both the
composite function f ◦ g and the inverse function f−1 belong to Γ.

Automorphisms of a graph form a group - Aut(G)

- Aut(G) = {Id, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7}

A subgroup is a subset of a group, and also satisfies all properties of a group

- {Id, ψ1, ψ2, ψ3}
- {Id, ψ2, ψ4, ψ5}
- {Id, ψ2}
- {Id, ψ6}
- {Id, ψ7}
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Γ-symmetric graphs

• Subgroups of Aut(G) define specific symmetries in G
• for any subgroup Γ ⊆ Aut(G), we say that G is Γ-symmetric

Definition
For a Γ-symmetric graph G = (V, E) and vertex i ∈ V , the set Γi = {γ(i) | γ ∈ Γ} is called
the vertex orbit of i. Similarly, for an edge e = ij ∈ E , the set Γe = {γ(i)γ(j) | γ ∈ Γ} is
termed the edge orbit of e.

e1

e2

e3

e4

1 2

4 3

Consider Γ = {Id, ψ2} (ψ2 is the 180◦ rotation)

• Vertex Orbit:
Γ1 = Γ3 = {1, 3}, Γ2 = Γ4 = {2, 4}

vertices inside a vertex orbit are equivalent
representative vertex set: V0 = {1, 2}

• Edge Orbit:
Γe1 = Γe3 = {e1, e3},
Γe2 = Γe4 = {e2, e4}
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τ(Γ)-symmetric framework

combine notions of graph symmetries with point groups

• let G be a Γ-symmetric graph
• Γ also represented as a point group

- homomorphism τ : Γ → O(Rd)
- τ assigns an orthogonal matrix (describing an isometry of Rd such as a rotation or

reflection) to each element of Γ

Definition
A framework (G, p) in Rd is called τ(Γ)-symmetric if

τ(γ)(pi) = pγ(i) for all γ ∈ Γ and all i ∈ V.
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τ(Γ)-symmetric framework

example...
e1

e2

e3

e4

s
1 2

4 3

• consider Γ = {Id, ψ4} ⊆ Aut(G)

• γ = ψ4 ∈ Γ (reflection about mirror S)
• isometry τ(γ) : (a, b) 7→ (−a, b)

satisfies τ(γ)(pi) = pγ(i) for all i ∈ V.
• note: for a τ(Γ)-symmetric framework (G, p) and for

every j ∈ Γi, there is a γj ∈ Γ such that τ(γj)pj = pi
for all j ∈ Γi

isometries of configuration p coincide with symmetries of the automorphisms of G

• in τ(Γ)-symmetric frameworks, the configurations p are in a special geometric
position (not necessarily generic)

• symmetry can lead to unexpected infinitesimal flexibility/rigidity
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symmetric configuration formation control

Symmetric Formation Control Objective
Consider a group of n integrator agents that interact over the Γ-symmetric sensing
graph G. Let p? ∈ Rdn be a configuration such that (G, p?) is τ(Γ)-symmetric for some
desired point group τ(Γ), and let V0 be a set of representatives of the vertex orbits of
G under Γ. Design a control ui(t) for each agent i such that

(i) lim
t→∞
‖pi(t)− pj(t)‖ = ‖p?i − p?j‖ = d?ij for all ij ∈ E ; (distance constraints)

(ii) for each i ∈ V0, lim
t→∞
‖pi(t)− τ(γj)pj(t)‖ = 0 ∀ j ∈ Γi, γj ∈ Γ. (symmetry constraints)
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a gradient approach

• the formation potential

Ff (p(t)) =
1

4

∑
ij∈E

(
‖pi(t)− pj(t)‖2 − (d?ij)

2
)2

• the symmetry potential

Fs(p(t)) =
1

2

∑
i∈V0

∑
j∈Γi

‖pi(t)− τ(γj)pj(t)‖2

• the symmetric formation potential

F (p(t)) = Ff (p(t)) + Fs(p(t))
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a gradient approach

• propose the gradient control

u(t) = −∇F (p(t))

• closed-loop dynamics

ṗ(t) = −R(p(t))T
(
R(p(t))p(t)− (d?)2

)
−Qp(t)

where Q is symmetric and a block matrix with

Qij =



(|Γi| − 1)I, i = j, i ∈ V0

−τ(γj), i ∈ V0, j ∈ Γi

I, i = j, j /∈ V0, j ∈ Γi

−τ(γj)
−1, j ∈ V0, i ∈ Γj

0, o.w.

.

• Qij ∈ R|Γi|d×|Γi|d

• Qij ∈ O(Rd) (orthogonal group)

• τ(γj)
−1 = τ(γj)

T

• structure of Q requires information exchange between i ∈ V0 ∩ Γi and j ∈ Γi
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“nice” graphs

• symmetric formation potential makes no assumption on relation between the graph
G and the point group τ(Γ)

• we restrict our study to graphs where communication required by symmetric
potential use same edges as G

Assumption 1
For each i ∈ V0 and j ∈ Γi \ {i}, the edge ij is in E .

e1

e2

e3

e4

s
1 2

4 3

• Γ = {Id, ψ4} ⊆ Aut(G)

• Γ1 = Γ2 = {1, 2}, Γ3 = Γ4 = {3, 4}
• V0 = {1, 4}
• isometry τ(γ) : (a, b) 7→ (−a, b)

satisfies τ(γ)(pi) = pγ(i) for all i ∈ V and
for each i ∈ V0 and j ∈ Γi \ {i},
the edge ij is in E 13



main result

Theorem
Consider a team of n integrator agents interacting over a Γ-symmetric graph G satisfying Assumption 1 that
can be drawn with maximum point group symmetry S in Rd, and let

Ff = {p ∈ Rdn | ‖pi − pj‖ = d?ij ij ∈ E}, and Fs = {p ∈ Rdn | τ(γ)(pi) = pγ(i) ∀γ ∈ Γ, i ∈ V}.

Then for initial conditions pi(0) satisfying∑
ij∈E

(‖pi(0)− pj(0)‖ − d?ij)2 ≤ ε1, and ‖pi(0)− τ(γj)pj(0)‖2 ≤ ε2

for all i ∈ V0 and j ∈ Γi, for a su�ciently small and positive constant ε1 and ε2, the control

u = −∇F (p(t)),

renders the set Ff ∩ Fs exponentially stable, i.e.

lim
t→∞

‖pi(t)− pj(t)‖ = d?ij and lim
t→∞

τ(γ)(pi(t)) = lim
t→∞

pγ(i)(t) for all γ ∈ Γ, i ∈ V.

14



example: the vic formation

• formation flight for aircraft originated in WWI
• Vic formation used by pilots to improve visual

communication and defensive advantages

1

2

4

6

3

5

7

Vic formation with symmetry
mirror

1

2

4

6

3

5

7

Flexible framework (9 edges;
satisfies Assumption 1)

1

2

4

6

3

5

7

Minimally Rigid framework
(11 edges)
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example: the vic formation

• symmetry constraints force agents to
correct formation

• requires less agent communication
than standard formation control with
MIR requirement

• with flexible framework and only
formation potential can not guarantee
convergence to correct shape
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concluding remarks

Summary

• exploit notions of symmetry in formation control
• τ(Γ)-symmetric graphs captures symmetry of configurations and graphs
• symmetric formation potential used to design distributed control law with less

edges compared to “traditional” formation control strategies

Future Work

• formation maneuvering requires time-varying point group symmetries
• relax requirement of edges between all nodes in vertex orbit
• richer trajectories including symmetry-preserving flexes

Questions?
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