Aviv Priel

Department of Guidance, Navigation and Control Lulav Space Ltd.

Daniel Zelazo Faculty of Aerospace Engineering Technion

Distributed Consensus Kalman Filtering Over Time-Varying Graphs

A network of sensors aim to cooperatively estimate the state of a linear discrete-time stochastic process. The sensors can share information over a *time-varying* network.

<u>Assumptions</u>

- measurement and process noise assumed to be AGWN
- process is observable by each agent
- communication graph is time varying

Classic Approach: Consensus Kalman Filter

sub-optimal approach

$$\begin{cases} \textbf{Estimation} & [0lfati-Saber 2009] \\ K_{k}^{i} = P_{k}^{i} H^{i^{T}} \left(R^{i} + H^{i} \bar{P}_{k}^{i} H^{i^{T}} \right)^{-1} \\ \hat{P}_{k}^{i} = F_{k}^{i} \bar{P}_{k}^{i} F_{k}^{i^{T}} + K_{k}^{i} R^{i} K_{k}^{i^{T}} \\ \hat{x}_{k}^{i} = \bar{x}_{k}^{i} + K_{k}^{i} \left(z_{k}^{i} - H^{i} \bar{x}_{k}^{i} \right) + C_{k}^{i} \sum_{j \in \mathcal{N}_{i}} \left(\bar{x}_{k}^{j} - \bar{x}_{k}^{i} \right) \\ \textbf{Prediction} \\ \bar{x}_{k+1}^{i} = A \hat{x}_{k}^{i} \\ \bar{P}_{k+1}^{i} = A \hat{p}_{k}^{i} A^{T} + BQB^{T}, \end{cases}$$

- Nominally calculated using global graph properties
- Nominally not robust to time varying graphs
- May lead to in degraded performance if consensus gain is chosen to be small.

Prediction

$$\begin{split} \bar{x}^{i}_{k+1} &= A \hat{x}^{i}_{k} \\ \bar{P}^{i}_{k+1} &= \frac{1}{|\mathcal{N}_{i,k}| + 1} A \sum_{i \in \mathcal{N}_{i} \to i(i)} \hat{P}^{j}_{k} A^{T} + B Q B^{T} \end{split}$$

Consensus Gain

$$C_k^i = \begin{cases} \frac{1}{|\mathcal{N}_{i,k}|+1} \underbrace{(I - K_k^i H^i)}_{:=F_k^i}, & |\mathcal{N}_{i,k}| > 0\\ 0, & |\mathcal{N}_{i,k}| = 0 \end{cases}$$

• depends only on neighborhood size

Covariance Update

$$\bar{P}_{k+1}^i = \frac{1}{|\mathcal{N}_{i,k}| + 1} A \sum_{j \in \mathcal{N}_{i,k} \cup \{i\}} \hat{P}_k^j A^T + BQB^T$$

communication of error covariance matrix with neighbors
local averaging

Theorem

The noiseless error dynamics are asymptotically stable.

-40 -40 -20 0 20 Results

$$\sigma = \frac{1}{MC} \sum_{j=1}^{MC} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{x}^{i,j} - \frac{1}{N} \sum_{i=1}^{N} \hat{x}^{i,j} \right)^2} \quad \text{RMSE} = \frac{1}{MC} \sum_{j=1}^{MC} \sqrt{\sum_{i=1}^{N} \left(\mathbb{E}[(\eta^{i,j})^T \eta^{i,j}] \right)}$$

Comparison between several Solutions

- NCLKF: the non-cooperative local KF filter with null consen- sus gain;
- SOCKF: the sub-optimal consensus KF with a centralized consensus factor as presented in [1];
- DSOCKF1: the decentralized sub-optimal consensus KF with consensus gain taken from [2];
- DSOCKF2: our decentralized sub-optimal consensus KF and proposed consensus gain;
- O OCKF: the optimal consensus Kalman filter as derived in [3].

Results Performance under graph switching topology.

.AB

AEROSPACE ENGINEERING

The decentralized consensus Kalman Filter Is robust to graph topology switches.

Conclusion

- proposed a simple modification to consensus Kalman filter that requires no global network information
- built in robustness to time-varying graphs
- fully distributed design

Future work:

- constructing similar decentralized consensusbased techniques for the EKF and UKF.
- Modifying algorithm to be robust for the general case where not all agents observe the target.

References

 Priel, A. and Zelazo, D. (2021). An improved distributed consensus kalman filter design approach. In 2021 60th IEEE conference on Decision and Control, 502–507. IEEE.

[2] Sandell, N.F. and Olfati-Saber, R. (2008). Distributed data association for multi-target tracking in sensor networks. In 2008 47th IEEE Conference on Decision and Control, 1085 – 1090. IEEE.

[3] Deshmukh, R., Kwon, C., and Hwang, I. (2017). Optimal discrete-time Kalman consensus filter. In 2017 American Control Conference (ACC), 5801–5806. IEEE.

[4] Olfati-Saber, R. (2009). Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 7036–7042. IEEE.

IFAC World Congress