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A network of sensors aim to cooperatively
estimate the state of a linear discrete-time
stochastic process. The sensors can share
information over a time-varying network.

Assumptions
* measurement and process noise assumed to be AGWN
* process is observable by each agent

* communication graph is time varying

Classic Approach: Consensus Kalman Filter

sub-optimal approach

. . [Olfati-Saber 2009]
Estimation

. g et . P
i=pH" (R +HPHT)

Pi = FiPiF} +KLR'K]
# =%, + Ki (s — H'z}) + G Y (:zf; = z;’c)
JEN;
Prediction ‘

Thyr = AT},
B, = APiA" + BQB",

Consensus Gain

» Nominally calculated using global graph properties

» Nominally not robust to time varying graphs

» May lead to in degraded performance if consensus gain is
chosen to be small.
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Consensus Kalman Filtering: The Decentralized Case
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Consensus Gain
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« depends only on neighborhood size

Covariance Update
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» communication of error covariance matrix with neighbors
* local averaging
Theorem

The noiseless error
asymptotically stable.
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Process model
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Comparison between several Solutions:

@ NCLKF: the non-cooperative local KF filter with null consen- sus
gain;

@ SOCKF: the sub-optimal consensus KF with a centralized
consensus factor as presented in [1];

@ DSOCKF1: the decentralized sub-optimal consensus KF with
consensus gain taken from [2];

@ DSOCKF2: our decentralized sub-optimal consensus KF and
proposed consensus gain;

© OCKF: the optimal consensus Kalman filter as derived in [3].
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The decentralized consensus Kalman Filter
Is robust to graph topology switches.

Conclusion

» proposed a simple madification to consensus
Kalman filter that requires nc global network
information

+ builtin robustness to time-varying graphs

+ fully distributed design

Future work:
 constructing similar decentralized consensus-
based techniques for the EKF and UKF.
» Modifying algorithm to be robust for the general
case where not all agents observe the target.
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