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formation control

Formation Control is one of the canonical problems 
in multi-agent and multi-robot coordination
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formation control

The Formation Control Problem

Given a team of robots endowed with the ability to sense relative 
state information to neighboring robots, design a control for each 
robot using only local information that asymptotically stabilizes 
the team to a desired formation shape.
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formation control
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Formation specified 
in global coordinates

Formation specified 
by inter-agent distances

Formation specified 
by inter-agent bearings

The Formation Control Problem

� Rigidity Theory
a combinatorial theory for 
characterizing the “stiffness” 
or “flexibility” of structures 
formed by r ig id bodies 
c o n n e c t e d b y fl e x i b l e 
linkages or hinges.
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formation control…another approach
Circular formation
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formation shape is specified by a 
compactly embedded submanifold of the 
ambient Euclidean space

M ⇢ Rd

design a decentralized control that drives 
each agent to the desired submanifold, 
and a distributed control that arranges 
their configuration on the submanifold in 
a balanced fashion

max

P
j>i

d(xi, xj)
2

s.t. xi 2 M
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formation control…another approach

x3x1, x2

d (x1, x3) = ⇡

x1

x2

x3

d (x1, x2) = 2⇡/3

Fig. 1. Configurations on the circle satisfying (2) (left) and (3)-(4) (right).

Example 1. Let M be the unit circle in R2 and consider the
n = 3 points

x1 = x2, x3 = �x1, (2)

for which our function (1) attains the value 2⇡2. A more
desirable, “balanced” (also, “splay”), configuration, however,
would correspond to the positions

x2 =


cos (2⇡/3) � sin (2⇡/3)
sin (2⇡/3) cos (2⇡/3)

�
x1, (3)

x3 =


cos (2⇡/3) � sin (2⇡/3)
sin (2⇡/3) cos (2⇡/3)

�
x2, (4)

which yields the smaller value 4⇡2
/3 for (1). Two exemplary

configurations sufficing (2) and (3)-(4) are depicted left and
right in Fig. 1, respectively.

To compensate for the shortcomings of (1), let us seek for a
function which attains very small values as any two positions
x

i

and x

j

approach each other. To this end, consider
X
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which now tends to �1 as any pairwise distinct points x

i

,
x

j

approach each other. Yet, due to strict monotonicity of
the natural logarithm, we expect that the values attained for
configurations such as (3)-(4) are still large.

It turns out that the cost function (5) is not new to the
exact sciences. For the special case of M being the sphere,
its maximizers are today referred to as (elliptic) Fekete points.
Thomson asked for these points while studying electronically
charged particles, subject to Coulomb’s law, constrained to
the sphere [4]. This problem was then brought to mathematics
by Föppl [5] on advice of his advisor Hilbert. Later, Schur
[6] asked for polynomials with large discriminant and roots
in the unit interval or, similarly, for large values of the
Vandermonde polynomials with arguments in the unit interval,
leading Fekete [7] to ask the same question for these roots /
arguments constrained to arbitrary compact sets and eventually
giving these points their present name. More recently, Shub
and Smale [8] required Fekete points as initial conditions
for an algorithm computing zeros of (complex) homogeneous
polynomials, letting Smale define their (algorithmic, in the
sense of Blum-Cucker-Shub-Smale) computation as one of the
mathematical problems of our century [9].

Returning to our problem, we thus ask for our positions
x1, . . . , xn

to eventually attain such Fekete points, and if
possible, in a stable fashion. Although this point of view
on the formation control problem is, to our best knowledge,
novel, others have presented conceptually similar definitions

Fig. 2. Polytopes constituted by Fekete points on the sphere: edge-contracted
icosahedron for n = 11 (left), triangular bipyramid for n = 5 (middle), and
square antiprism for n = 8 (right).

of desirable configurations. In sensor coverage, one steers sys-
tems to centroids of a Voronoi diagram through a continuous-
time version of Lloyd’s algorithm [10]. Formation shapes may
thereby be taken into account via specific density functions.
Circular formations can be stabilized by minimizing all an-
gular moments [11] or by zeroing their centroid [12], which
is in this context often referred to as balancing. Formations
whose shape is determined by a Jordan curve can be stabilized
by choosing the desired relative distances a priori [3]. If the
formation shape is a more general (homogeneous) manifold,
it may still be stabilized by maximizing the pairwise chordal
distances of the individual systems [13]. The dual consensus
problem has also been solved intrinsically [14], [15]. Mini-
mizing the deviation of relative distances among agents from
the lengths of the links in a rigid framework stabilizes the
formation defined by that framework [16]. The weaker notion
of infinitesimal rigidity proves to be sufficient for this purpose,
as well [17].

A significant distinction between [13] and [3] is that the for-
mer does not asymptotically drive the positions to the specified
manifold but expects that the positions are constrained to the
manifold for all times while the latter expects that the desired
relative distances d (x

i

, x

j

) are specified a priori (the former
does not assume to know these relative distances and the latter
does allow for the positions to move in the ambient space R2

of the chosen Jordan curve). In the present paper, we allow
for our positions x1, . . . , xn

to move in the ambient space
Rm of some compactly embedded smooth submanifold M

and impose no prespecification of desired relative distances.
Instead, we let the maximizers of (5), our Fekete points,
specify the desired configurations on M , a point of view which
is, to our knowledge, novel.

We thus introduce and study Fekete points as a natural
definition of evenly spaced formations. This is in contrast to
defining such an even spacing as a configuration with zero
centroid, all pairwise relative distances equal, or all polytopes
connecting nearby points being of the same type. For instance,
with M being the sphere in R3, n = 11 yields Fekete points
whose centroid is not at the origin (topologically equivalent to
an edge-contracted icosahedron, left in Fig. 2), n = 5 yields
Fekete points whose relative distances are not all the same
(topologically equivalent to a triangular bipyramid, middle in
Fig. 2), and n = 8 yields Fekete points connected by both
quadrilateral and triangular polygons (topologically equivalent
to a square antiprism, right in Fig. 2).

an example…

M ⇢ R2 is unit circle in the plane

n = 3 agents

max

P
j>i

d(xi, xj)
2

s.t. xi 2 M
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formation control…another approach
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Example 1. Let M be the unit circle in R2 and consider the
n = 3 points

x1 = x2, x3 = �x1, (2)

for which our function (1) attains the value 2⇡2. A more
desirable, “balanced” (also, “splay”), configuration, however,
would correspond to the positions

x2 =


cos (2⇡/3) � sin (2⇡/3)
sin (2⇡/3) cos (2⇡/3)

�
x1, (3)

x3 =


cos (2⇡/3) � sin (2⇡/3)
sin (2⇡/3) cos (2⇡/3)

�
x2, (4)

which yields the smaller value 4⇡2
/3 for (1). Two exemplary

configurations sufficing (2) and (3)-(4) are depicted left and
right in Fig. 1, respectively.
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function which attains very small values as any two positions
x

i

and x

j

approach each other. To this end, consider
X

j > i

ln (d (x
i

, x

j

)) = ln
⇣ Y

j > i

d (x
i

, x

j

)
⌘
, (5)

which now tends to �1 as any pairwise distinct points x

i

,
x

j

approach each other. Yet, due to strict monotonicity of
the natural logarithm, we expect that the values attained for
configurations such as (3)-(4) are still large.

It turns out that the cost function (5) is not new to the
exact sciences. For the special case of M being the sphere,
its maximizers are today referred to as (elliptic) Fekete points.
Thomson asked for these points while studying electronically
charged particles, subject to Coulomb’s law, constrained to
the sphere [4]. This problem was then brought to mathematics
by Föppl [5] on advice of his advisor Hilbert. Later, Schur
[6] asked for polynomials with large discriminant and roots
in the unit interval or, similarly, for large values of the
Vandermonde polynomials with arguments in the unit interval,
leading Fekete [7] to ask the same question for these roots /
arguments constrained to arbitrary compact sets and eventually
giving these points their present name. More recently, Shub
and Smale [8] required Fekete points as initial conditions
for an algorithm computing zeros of (complex) homogeneous
polynomials, letting Smale define their (algorithmic, in the
sense of Blum-Cucker-Shub-Smale) computation as one of the
mathematical problems of our century [9].

Returning to our problem, we thus ask for our positions
x1, . . . , xn

to eventually attain such Fekete points, and if
possible, in a stable fashion. Although this point of view
on the formation control problem is, to our best knowledge,
novel, others have presented conceptually similar definitions
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of desirable configurations. In sensor coverage, one steers sys-
tems to centroids of a Voronoi diagram through a continuous-
time version of Lloyd’s algorithm [10]. Formation shapes may
thereby be taken into account via specific density functions.
Circular formations can be stabilized by minimizing all an-
gular moments [11] or by zeroing their centroid [12], which
is in this context often referred to as balancing. Formations
whose shape is determined by a Jordan curve can be stabilized
by choosing the desired relative distances a priori [3]. If the
formation shape is a more general (homogeneous) manifold,
it may still be stabilized by maximizing the pairwise chordal
distances of the individual systems [13]. The dual consensus
problem has also been solved intrinsically [14], [15]. Mini-
mizing the deviation of relative distances among agents from
the lengths of the links in a rigid framework stabilizes the
formation defined by that framework [16]. The weaker notion
of infinitesimal rigidity proves to be sufficient for this purpose,
as well [17].

A significant distinction between [13] and [3] is that the for-
mer does not asymptotically drive the positions to the specified
manifold but expects that the positions are constrained to the
manifold for all times while the latter expects that the desired
relative distances d (x

i

, x

j

) are specified a priori (the former
does not assume to know these relative distances and the latter
does allow for the positions to move in the ambient space R2

of the chosen Jordan curve). In the present paper, we allow
for our positions x1, . . . , xn

to move in the ambient space
Rm of some compactly embedded smooth submanifold M

and impose no prespecification of desired relative distances.
Instead, we let the maximizers of (5), our Fekete points,
specify the desired configurations on M , a point of view which
is, to our knowledge, novel.

We thus introduce and study Fekete points as a natural
definition of evenly spaced formations. This is in contrast to
defining such an even spacing as a configuration with zero
centroid, all pairwise relative distances equal, or all polytopes
connecting nearby points being of the same type. For instance,
with M being the sphere in R3, n = 11 yields Fekete points
whose centroid is not at the origin (topologically equivalent to
an edge-contracted icosahedron, left in Fig. 2), n = 5 yields
Fekete points whose relative distances are not all the same
(topologically equivalent to a triangular bipyramid, middle in
Fig. 2), and n = 8 yields Fekete points connected by both
quadrilateral and triangular polygons (topologically equivalent
to a square antiprism, right in Fig. 2).

max

P
j>i

d(xi, xj)
2

s.t. xi 2 M

a modification…

chose cost function that is “small” 
when agents are close to each other
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formation control and Fekete points

X
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A

Thomson Atomic Model 
(1904)

Föppl 
(1912)

Stabile Anordnungen von 
Elektronen im Atom

Vandermode polynomial

Schur 
(1918)

Über die Verteilung der Wurzeln bei 
gewissen algebraischen Gleichungen 

mit ganzzahligen Koeffizienten

Vn =
Y

1i<jn

(xj � xi)
2
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formation control and Fekete points

X

j>i

ln d(xi, xj) = ln
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@
Y

j>i

d(xi, xj)

1

A

Fekete 
(1923)

roots of Fekete polynomial

Über die Verteilung der Wurzeln bei 
gewissen algebraischen Gleichungen 

mit ganzzahligen Koeffizienten
Cost functions for formation control and Fekete points

Suggestion: maximize
∑

j > i

ln (d (xi , xj)) = ln
(

∏

j > i

d (xi , xj)
)

Smale, 1998, formulated open problems for the next century

Montenbruck – Research Overview 4 / 15

Smale 
(1998)

Problem 7:  Distribution of Points on 
the 2-Sphere (Fekete points)
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formation control…another approach
Circular formation
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formation shape is specified by a 
compactly embedded submanifold of the 
ambient Euclidean space

M ⇢ Rd

design a decentralized control that drives 
each agent to the desired submanifold, 
and a distributed control that arranges 
their configuration on the submanifold in 
a balanced fashion

max ln

 
Q
j>i

d(xi, xj)

!

s.t. xi 2 M

Fekete Points
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asymptotic stability of Fekete points
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Fig. 11. The Moser spindle.
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Fig. 12. Numerical solution of (12) for the Moser spindle.

the pth polynomial only being symmetric with respect to per-
mutations not involving p. Having this formulation at hand, we
know that the angles for which x is at rest must be contained
in the intersection of the algebraic varieties containing the
zeros of these polynomials, i.e., we may now solve these
equations iteratively (by repeatedly intersecting these algebraic
varieties), here obtaining

↵12 = ↵34 = ↵45 = ↵67 = �2 (5 +
p
5 )⇡/11 (3 +

p
5 ) ,

↵13 = ↵24 = ↵46 = ↵57 = (3 +
p
5 )↵12/2,

↵17 = 2 (⇡ + ↵12 + ↵13) ,

↵23 = ↵56 = ↵13 � ↵12,

which is indeed a solution to E↵ = 0 as well as to (24).
Indeed, solving (12) numerically for some initial condition
with this choice of graph and plotting the numerical solutions
in Fig. 12 (with initial condition again indicated by blue circles
( ) and limiting point again marked with red circles ( )), this
computation is confirmed as the positions approach precisely
the configuration described by the above angles.

An option which we did not exploit yet is to influence
a formation by scaling the values of our nonzero weights
W

ij

. As our characterization E↵ = 0 reveals a rather explicit
connection of these weights and equilibria of (12), namely that
↵

ij

becomes
�
W

0
ij

/W

ij

�
↵

ij

as we change W

ij

to W

0
ij

, influ-
encing individual angles by adapting the associated weights
should be comparatively simple. In the following example,
we exploit this observation to adjust the shape of a formation
ad libitum.

Example 8. We exploit the possibility of adapting the weights

�2 �1 0 1 2

�2

�1

0

1

2

1

2

3 4

5

6

78

Fig. 13. Numerical solution of (12) for the cycle graph C8 but with W12 =
W34 = W56 = W78 = 1/4.

W

ij

so as to eventually attain a desired configuration. Al-
though we assumed that the weights may only be 0 or 1 for
most of this paper, we now turn our attention to the case where
we have nonidentical weights and discuss how solutions to
E↵ = 0 are affected. Let us consider 8 edges and suppose that
our goal was to let the positions of systems (1, 2), (3, 4), (5, 6),
and (7, 8) be pairwise close to each other but to still have these
pairs be evenly spaced on the circle. Recalling equation (22),
it becomes evident that we must scale columns 1, 4, 6, and
8 E with weights W12 = W34 = W56 = W78 ⌧ 1 in order
to achieve this goal. Let us choose these weights to be 1/4.
Solving (12) numerically for this choice of graph and plotting
the numerical solutions in Fig. 13 (with initial condition again
indicated by blue circles ( ) and limiting point again marked
with red circles ( )), we find that the positions of systems
(1, 2), (3, 4), (5, 6), and (7, 8) indeed move pairwise close to
each other, but with the pairs being evenly spaced, as desired.
In fact, evaluating E↵ = 0, we find that ↵23 = ↵45 = ↵67 =
↵81 = 4↵12 = 4↵34 = 4↵56 = 4↵78. The condition (24)
remains satisfied for B being a basis for the cycle space of
the unweighted graph.

In the light of Corollary 1, the observation from the fore-
going example can be expressed in a more general fashion.

Corollary 2. Let all x

i

lie on the circle. Define ↵

ij

as
in (18). If the undirected, weighted graph associated to the
symmetric function (i, j) 7! W

ij

possesses an Eulerian cycle
(equivalently, if every vertex has even and positive degree),
then there is an equilibrium x of (12) such that all W

ij

/↵

ij

have the same absolute value.

Proof. The claim is proven alike Corollary 1: let c be an
Eulerian cycle, i.e., every entry of c is either 1 or �1 and
EW

�1
c = 0 for E being the weighted incidence matrix and

W being the diagonal matrix that has the weights W

ij

, with
lexicographically ordered indices (i, j), j > i, as its diagonal
entries (since EW

�1 is the unweighted incidence matrix).
Now Proposition 1 tells us that E↵ = 0 classifies all equilibria.
Thus ↵ = W

�1
c, and hence W↵ = c, defines an equlibrium

and thus the claim is proven.

“information exchange” 
network

Wij =

⇢
wij , i ⇠ j

0, o.w.

r : Rd ! M

smooth retraction onto 
the submanifold
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asymptotic stability of Fekete points

Theorem
The solutions of 

ẋ = (r(x)� x) + grad�(r(x))

asymptotically approach the maximizers of  �
in a stable fashion.

r(x)� x

a decentralized control that asymptotically 
stabilizes our formation shape 

grad�(r(x)) a distributed control that stabilizes the 
maximizers of potential function
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an example - the unit circle

�

Circular formation
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Bearing in mind that intersections of asymptotically sta-
ble invariant sets are asymptotically stable, we find that
r

�1 (X⇤) \ M

n = X

⇤ is an asymptotically stable set of
equilibria of (7). Its region of asymptotic stability is at least
the intersection of the two regions of asymptotic stability, that
is r

�1 (X), completing the proof.

In the proof, the preimages of r appeared frequently. In
particular, we were unable to extend the region of asymptotic
stability of our maximizers beyond tubular neighborhoods. On
a conceptual level, this agrees with the obstructions to global
stabilization of certain formations observed in [20].

If we only ask our tubular neighborhood to be a diffeo-
morphic image of NM

n ! Rmn, (x, v) 7! x + v, but not
necessarily a sublevel set of x 7! kv (x)k, then it will be
possible to also apply our control to positions x outside those
sublevel sets, but we would not be able to provide convergence
guarantees for solutions initialized with such positions.

IV. TUTORIAL EXAMPLES: THE CIRCLE AND THE SPHERE

Our control (7) is rather general but also quite abstract. It
is instructive to see how the involved expressions read for
particular manifolds. In this section, we compute the right-
hand side of (7) explicitly for the circle (embedded in the
plane) and for the sphere (embedded in R3).

Circular formations are among the most relevant formations
in the plane R2 and have been extensively studied, e.g., in [11],
[12]. One reason for the relevance of circular formations is that
they can be continuously deformed to other Jordan curves [3],
thus making methods which were initially developed for the
circle applicable to a broad range of planar formations. In the
following, we compute our control (7) for M being the (unit)
circle and for M being an ellipse, both embedded in the plane.

Example 2. Let M be the unit circle in R2. The retraction of
some point x

i

from the tubular neighborhood of the circle on
which 0 < kx

i

k < 2 is just the normalized vector

r (x
i

) =
1

kx
i

kxi

. (10)

Here, it is possible to retract any vector from the punctured
plane R2 \ {0} onto the circle, thus allowing us to also
apply our control to positions x

i

outside our tubular neighbor-
hood (though not having convergence guarantees for solutions
initialized with such positions). It remains to compute the
gradient of �. For this purpose, we employ the (Lie) group
isomorphism


cos (↵)
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�
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cos (↵) � sin (↵)
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�

from the circle onto the special orthogonal group SO (2).
This representation is quite convenient as tangent vectors
become skew-symmetric matrices which, in turn, become
tangent vectors of the circle again by multiplying them with
points on the circle (from the right). Specifically, geodesics on
SO (2) (and their velocity vectors) can through this reasoning
be employed to compute geodesics on the circle. Employing
the notation (x
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j

) 7! V
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Fig. 3. Cycle graph C10.
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Fig. 4. Numerical solution of (12) for the cycle graph C10.

wherein “·” denotes the scalar product and ⌦ is the infinites-
imal generator

⌦ :=


0 1

�1 0

�
(11)

of the Lie algebra so (2) and log : SO (2) ! so (2) is
the logarithmic map. Dividing by d (x

i

, x

j

) twice can be
efficiently realized by applying the identity ⌦�1 = �⌦ and
finally reveals that (8) reads
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for the present example. We now consider n = 10 sys-
tems coupled through the unweighted cycle graph C10, i.e.,
W

ij

= W

ji

= 1 for j = (i+ 1)mod 10 and W

ij

= W

ji

= 0
otherwise; the graph is depicted in Fig. 3. With this choice of
graph, we solved (12) numerically for some initial condition;
the numerical solutions are plotted in Fig. 4. The initial
condition is indicated by blue circles ( ) and the limiting point
is marked with red circles ( ). Although the initial conditions
where chosen outside our tubular neighborhood, we find that
the positions approach an evenly spaced configuration on the
circle, as desired.

The circle can be continuously deformed into any Jordan
curve, making the control from the foregoing example appli-
cable to a wide range of formations in the plane. For M being
an ellipse, the way in which our control must be adapted is
particularly simple, as we briefly describe in the next example.

“information exchange” 
network

⌦ =


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Fig. 8. Numerical solution of (12) for the complete graph K6.

also encounter difficulties when employing the complete graph
on the circle, as illustrated in our next example.

Example 5. Let M be the unit circle in R2 and consider n =
6 systems coupled through the complete graph K6. Solving
(12) numerically, one finds that oscillations occur that grow
stronger as the positions approach the circle. The numerical
solutions are plotted in Fig. 8 with initial condition indicated
by blue circles ( ) and the configuration for some large time
is marked with red circles ( ). The oscillations are magnified
for better visibility. This behavior is explained by verifying
whether the evenly spaced configuration is an equilibrium of
(12). In fact, introducing the notation

↵
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⌦ = log
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for the directed angle between two points x
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, x
j

on the circle
that are neighbors in the graph under consideration (i.e., for
which W

ij

6= 0), we figure that
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6
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, ↵14 = ±⇡, ↵15 =
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Fig. 9. Thomsen (“utility”) graph.

should asymptotically hold from Fig. 8. If one now asks
whether this configuration is indeed an equilibrium of (12),
then one finds that

1

↵12
+

1

↵13
+

1

↵14
+

1

↵15
+

1

↵16
6= 0 (19)

whence the answer is negative. At the same time, one finds
that removal of the edge between the vertices 1 and 4 would
indeed turn this point into an equilibrium of ẋ1, and similarly
we would have to remove the edges (2, 5) and (3, 6) in order to
establish an equilibrium for all positions. Doing so, we arrive
at a 4-regular graph (with 6 vertices) and solving (12) again
for this graph, we find that the oscillations observed before
no longer occur. One is thus tempted to think that regular
graphs are suited best for our evenly spaced configurations on
the circle, particular when recalling that circulant graphs play
a crucial role in [21] for stabilization of circular formations.
However, consider the Thomsen (“utility”) graph depicted in
Fig. 9, which is 3-regular (and also complete bipartite). Solv-
ing (12) numerically for this graph and plotting the numerical
solutions in Fig. 10 (initial condition again indicated by blue
circles ( ) and configuration for some large time marked with
red circles ( )), we find that the positions do not come to rest.
Instead, the positions enter a periodic orbit on the circle whilst
being evenly spaced thereon. Let us try to explain this as we
did above. To this end, first notice that

↵14 = ±⇡, ↵15 =
2⇡

6
, ↵16 = �2⇡

6
(20)

should asymptotically hold (again inferred from the plot).
But as the reciprocals thereof do not sum up to zero, this
configuration, again, does not constitute an equilibrium of
(12). We would have to delete the edges (1, 4), (2, 5), and
(3, 6) to let this happen. If we removed these edges, we again
arrived at the cycle graph C6, for which the points indeed come
to rest at an evenly distributed configuration (as we saw for
n = 10 in Example 2). In conclusion, we find that k-regular
graphs, with k an even positive number, are suited well for
evenly spaced circular formations. These graphs are precisely
the regular graphs possessing Eulerian cycles.

The previous example provided some insight into the the
role of graph theory for equilibria of (12). Next, we generalize
these observations. To this end, we adopt the notation (18).
Equating the right hand side of (12) with zero, we arrive at

1

62

4

53

an example - the unit circle
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also encounter difficulties when employing the complete graph
on the circle, as illustrated in our next example.

Example 5. Let M be the unit circle in R2 and consider n =
6 systems coupled through the complete graph K6. Solving
(12) numerically, one finds that oscillations occur that grow
stronger as the positions approach the circle. The numerical
solutions are plotted in Fig. 8 with initial condition indicated
by blue circles ( ) and the configuration for some large time
is marked with red circles ( ). The oscillations are magnified
for better visibility. This behavior is explained by verifying
whether the evenly spaced configuration is an equilibrium of
(12). In fact, introducing the notation
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should asymptotically hold from Fig. 8. If one now asks
whether this configuration is indeed an equilibrium of (12),
then one finds that

1

↵12
+

1

↵13
+

1

↵14
+

1

↵15
+

1

↵16
6= 0 (19)

whence the answer is negative. At the same time, one finds
that removal of the edge between the vertices 1 and 4 would
indeed turn this point into an equilibrium of ẋ1, and similarly
we would have to remove the edges (2, 5) and (3, 6) in order to
establish an equilibrium for all positions. Doing so, we arrive
at a 4-regular graph (with 6 vertices) and solving (12) again
for this graph, we find that the oscillations observed before
no longer occur. One is thus tempted to think that regular
graphs are suited best for our evenly spaced configurations on
the circle, particular when recalling that circulant graphs play
a crucial role in [21] for stabilization of circular formations.
However, consider the Thomsen (“utility”) graph depicted in
Fig. 9, which is 3-regular (and also complete bipartite). Solv-
ing (12) numerically for this graph and plotting the numerical
solutions in Fig. 10 (initial condition again indicated by blue
circles ( ) and configuration for some large time marked with
red circles ( )), we find that the positions do not come to rest.
Instead, the positions enter a periodic orbit on the circle whilst
being evenly spaced thereon. Let us try to explain this as we
did above. To this end, first notice that

↵14 = ±⇡, ↵15 =
2⇡

6
, ↵16 = �2⇡

6
(20)

should asymptotically hold (again inferred from the plot).
But as the reciprocals thereof do not sum up to zero, this
configuration, again, does not constitute an equilibrium of
(12). We would have to delete the edges (1, 4), (2, 5), and
(3, 6) to let this happen. If we removed these edges, we again
arrived at the cycle graph C6, for which the points indeed come
to rest at an evenly distributed configuration (as we saw for
n = 10 in Example 2). In conclusion, we find that k-regular
graphs, with k an even positive number, are suited well for
evenly spaced circular formations. These graphs are precisely
the regular graphs possessing Eulerian cycles.

The previous example provided some insight into the the
role of graph theory for equilibria of (12). Next, we generalize
these observations. To this end, we adopt the notation (18).
Equating the right hand side of (12) with zero, we arrive at

does evenly spaced configuration correspond 
to equilibrium?

an example - the unit circle
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ẋi =

(

∥xi∥ − 1

∥xi∥

)

xi +
n

∑

j=1

Wij

∥xi∥

(

log

(

1

∥xi∥∥xj∥

[

xi · xj xi · Ωxj
xj · Ωxi xi · xj

]))−1

xi

directed angles:

αijΩ = log
([

xi ·xj xi ·Ωxj
xj ·Ωxi xi ·xj

])

angles between red points:

α12 = −
2π

6
, α13 = −

2π

3
, α14 = ±π,

α15 =
2π

3
, α16 =

2π

6
sum of reciprocals:
1

α12
+

1

α13
+

1

α14
+

1

α15
+

1

α16
̸= 0

−2 −1 0 1 2

−2

−1

0

1

2

1

2

3 4

5

6

Montenbruck – Research Overview 8 / 15
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also encounter difficulties when employing the complete graph
on the circle, as illustrated in our next example.

Example 5. Let M be the unit circle in R2 and consider n =
6 systems coupled through the complete graph K6. Solving
(12) numerically, one finds that oscillations occur that grow
stronger as the positions approach the circle. The numerical
solutions are plotted in Fig. 8 with initial condition indicated
by blue circles ( ) and the configuration for some large time
is marked with red circles ( ). The oscillations are magnified
for better visibility. This behavior is explained by verifying
whether the evenly spaced configuration is an equilibrium of
(12). In fact, introducing the notation
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should asymptotically hold from Fig. 8. If one now asks
whether this configuration is indeed an equilibrium of (12),
then one finds that
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whence the answer is negative. At the same time, one finds
that removal of the edge between the vertices 1 and 4 would
indeed turn this point into an equilibrium of ẋ1, and similarly
we would have to remove the edges (2, 5) and (3, 6) in order to
establish an equilibrium for all positions. Doing so, we arrive
at a 4-regular graph (with 6 vertices) and solving (12) again
for this graph, we find that the oscillations observed before
no longer occur. One is thus tempted to think that regular
graphs are suited best for our evenly spaced configurations on
the circle, particular when recalling that circulant graphs play
a crucial role in [21] for stabilization of circular formations.
However, consider the Thomsen (“utility”) graph depicted in
Fig. 9, which is 3-regular (and also complete bipartite). Solv-
ing (12) numerically for this graph and plotting the numerical
solutions in Fig. 10 (initial condition again indicated by blue
circles ( ) and configuration for some large time marked with
red circles ( )), we find that the positions do not come to rest.
Instead, the positions enter a periodic orbit on the circle whilst
being evenly spaced thereon. Let us try to explain this as we
did above. To this end, first notice that

↵14 = ±⇡, ↵15 =
2⇡

6
, ↵16 = �2⇡

6
(20)

should asymptotically hold (again inferred from the plot).
But as the reciprocals thereof do not sum up to zero, this
configuration, again, does not constitute an equilibrium of
(12). We would have to delete the edges (1, 4), (2, 5), and
(3, 6) to let this happen. If we removed these edges, we again
arrived at the cycle graph C6, for which the points indeed come
to rest at an evenly distributed configuration (as we saw for
n = 10 in Example 2). In conclusion, we find that k-regular
graphs, with k an even positive number, are suited well for
evenly spaced circular formations. These graphs are precisely
the regular graphs possessing Eulerian cycles.

The previous example provided some insight into the the
role of graph theory for equilibria of (12). Next, we generalize
these observations. To this end, we adopt the notation (18).
Equating the right hand side of (12) with zero, we arrive at

does evenly spaced configuration correspond 
to equilibrium?
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graph-theoretic characterization of equilibria

equilibrium must satisfy:
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graph-theoretic characterization of equilibria

equivalently…
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null-space characterizes 
cycles in the graph
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graph-theoretic characterization of equilibria
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Corollary
The solutions of 

ẋ = (r(x)� x) + grad�(r(x))

for M the unit circle, asymptotically converges 
to a balanced formation if and only if the graph 
possesses an Eulerian cycle (iff every vertex has 
even degree)

c1

c2

c3 c4v4

v1

v2 v3

v5

v6

An Eulerian Cycle is a walk on a graph 
beginning and ending at the same node that 
traverses each edge only once.

graph-theoretic characterization of equilibria
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implementation
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Conclusions

• Fekete points leads to a novel approach for 
formation  control 

• decentralized and distributed 
implementation 

• graph-theoretic interpretations 
• extensions: 

- balancing on special Euclidean group 
- time-varying information exchange network 
- formation tracking
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