

Fekete Points, Formation Control and the Balancing Problem $\overline{}$ #∥xi∥ − 1 \$ ∥xi∥ n $\frac{1}{\sqrt{2}}$

Daniel Zelazo

Faculty of Aerospace Engineering Technion - Israel Institute of Technology

in collaboration with **Jan Maximillian Montenbruck Frank Allgöwer** Institute for Systems Theory & Automatic Control University of Stuttgart **Yuyi Liu** Max Planck Institute for Biological Cybernetics

IEEE ICSEE 2016 Symposium on Control Theory & Power Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Control is one of the canonical problems in multi-agent and multi-robot coordination

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Formation Control Problem

Given a team of robots endowed with the ability to sense relative state information to neighboring robots, design a control for each robot using only *local information* that asymptotically stabilizes the team to a desired formation shape.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

formation control

The Formation Control Problem

Formation specified in global coordinates

y

 $(0,0)$

 (x_i, y_i)

x

Formation specified by inter-agent distances

Formation specified by inter-agent bearings

Rigidity Theory

a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 θ_i

formation control…another approach V Technion

IEEE ICSEE 2016 Symposium on Control Theory and Power Engineering

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

formation control…another approach M Technion

an example…

$$
M \subset \mathbb{R}^2 \text{ is unit circle in the plane} \qquad \max \quad \sum_{j>i} d(x_i, x_j)^2
$$
\n
$$
n = 3 \qquad \text{agents} \qquad \qquad s.t. \quad x_i \in M
$$
\n
$$
d(x_1, x_3) = \pi \qquad \qquad d(x_1, x_2) = 2\pi/3
$$
\n
$$
x_1 = x_2
$$
\n
$$
x_3 = -x_1
$$
\n
$$
\left(\begin{array}{c}\nx_1, x_2 & x_3 \\
\hline\nx_2 & x_1 \\
\hline\nx_3 & x_3\n\end{array}\right)
$$
\n
$$
x_1 = \begin{array}{c}\nx_2 \\
\hline\nx_3\n\end{array}
$$
\n
$$
x_2 = R\left(\frac{2\pi}{3}\right)x_1
$$
\n
$$
x_3 = R\left(\frac{2\pi}{3}\right)x_2
$$
\n
$$
\sum_{j>i} d(x_i, x_j)^2 = 2\pi^2 \qquad \sum_{j>i} d(x_i, x_j)^2 = 4\pi^2/3
$$

Faculty of Aerospace Engineering

IEEE ICSEE 2016 Symposium on Control Theory and Power Engineering הפקולטה להנדסת אוירונוטיקה וחלל Example 1. Let *M* be the unit circle in R² and consider the

formation control…another approach M Technion

$$
\max_{j>i} \sum_{j>i} d(x_i, x_j)^2
$$

s.t. $x_i \in M$

a modification…

would consider the positions of the

n = 3 points chose cost function that is "small" when agents are close to each other desirable, "balanced" (also, "splay"), configuration, however,

$$
\sum_{j>i} \ln d(x_i, x_j) = \ln \left(\prod_{j>i} d(x_i, x_j) \right)
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

configurations sufficing (2) and (3)-(4) are depicted left and

IEEE ICSEE 2016 Symposium on Control Theory and Power Engineering

distances of the individual system individual systems \mathcal{I}_1 and \mathcal{I}_2 and \mathcal{I}_3

problem has also been solved intrinsically [14], [15]. Mini-

formation control and Fekete points

Stabile Anordnungen von Elektronen im Atom

 $V_n = \prod$ $1 \le i \le j \le n$ $(x_j - x_i)^2$

הפקולטה להנדסת אוירונוטיקה וחלל Vandermode polynomial

Faculty of Aerospace Engineering

Schur (1918)

Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten

formation control and Fekete points

Fekete (1923) *Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten*

roots of Fekete polynomial G_K

Mathematical Problems for the Next Century¹

Smale (1998) *Problem 7: Distribution of Points on the 2-Sphere (Fekete points)*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

STEVE SMALE

formation control…another approach V Technion

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

IEEE ICSEE 2016 הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering asymptotic stability of Fekete points $\phi(x) = \sum_{i} W_{ij} \ln(d(x_i, x_j))$ *j>i* $\phi \,:\, M \to \mathbb{R}$ point ϵ ∥xi∥ \sim ϵ \sim $-$ 2 $1 \t2 \t3 \t4$ 10 9 8 7 $-$ −2 −1 0 1 2 2
2
2
2
2
2
2
2
2
2
2
 $\overline{}$ 4 *M* $x_i \in \mathbb{R}^d$ $3)(5$ 7 6 4 2 1 1 $\frac{1}{2}$ 2 3 4 5 $1⁶$ 2 $3 \sim 4$ 5 the submanifold $\overline{\bullet}$ 7 "information exchange" network $W_{ij} =$ $\int w_{ij}, \quad i \sim j$ 0*, o.w.* $\hat{r}_i \colon \mathbb{R}^d \to M$ smooth retraction onto

 \displaystyle Symposium on Control Theory and Power Engineering

Theorem

The solutions of

$$
\dot{x} = (r(x) - x) + \text{grad }\phi(r(x))
$$

asymptotically approach the maximizers of ϕ in a stable fashion.

$$
r(x)-x
$$

a *decentralized control* that asymptotically stabilizes our formation shape

$$
\operatorname{grad}\phi(r(x))
$$

a *distributed control* that stabilizes the maximizers of potential function

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

an example - the unit circle $\frac{C \cdot 1 \cdot C \cdot C}{C \cdot C \cdot C}$ \bullet

¹ ⁰ ¹ ¹ Fig. 7. Numerical solution of (17) for the complete graph *K*5. an example - the unit circle

$$
\dot{x}_i = \left(\frac{1 - \|x_i\|}{\|x_i\|}\right) x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[\frac{x_i \cdot x_j}{x_j \cdot \Omega x_i} \cdot \frac{x_i \cdot \Omega x_j}{x_i \cdot x_j}\right]\right)\right)^{-1} x_i
$$

$$
O = \begin{bmatrix} 0 & 1 \end{bmatrix}
$$

$$
\Omega = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

IEEE ICSEE 2016 Symposium on Control Theory and Power Engineering Symposium on Control Theory and Power Figure ϵ) in position on going or since ϵ and the configuration ϵ should asymptotically hold (again inferred from the plot). 910 \log

an example - the unit circle 6

$$
\dot{x}_i = \left(\frac{1 - \|x_i\|}{\|x_i\|}\right) x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[x_i \cdot x_j \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$
\n
$$
\Omega = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

that removal of the edge between the vertices 1 and 4 would is eventy spaced contiguration does evenly spaced configuration correspond establish and positions. The contract position of all positions of all positions. Doing so, we are α to equilibrium?

4

הפקולטה להנדסת אוירונוטיקה וחלל Example 5. Let *M* be the unit circle in R² and consider *n* = **Faculty of Aerospace Engineering** \mathbb{N} systems coupled through the complete graph \mathbb{N}

IEEE ICSEE 2016 Symposium on Control Theory and Power Engineering ↵¹⁴ ⁼ *[±]*⇡*,* ↵¹⁵ ⁼ ²⇡ ⁶ *,* ↵¹⁶ ⁼ 2⇡ \mathbf{v} hold (again inferred from the plot).

an example - the unit circle 6

$$
\dot{x}_i = \left(\frac{1 - \|x_i\|}{\|x_i\|}\right) x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[x_i \cdot x_j \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$
\n
$$
\Omega = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

Ω = ! 0 1 [−]1 0 " whence the answer is negative. At the same time, one finds does evenly spaced configuration correspond $\frac{1}{2}$ $\frac{1}{2}$ 1, and similarly motion of $\frac{1}{2}$ to equilibrium? The equilibrium?

⁶ *,* ↵¹⁶ ⁼ 2⇡

4

directed angles:
$$
\alpha_{ij}\Omega = \log \left(\begin{bmatrix} x_i \cdot x_j & x_i \cdot \Omega x_j \\ x_j \cdot \Omega x_i & x_i \cdot x_j \end{bmatrix} \right)
$$

angles between $a_{12} = \frac{a_{12}}{6}, a_{13}$ red points $\alpha_{15} = \frac{2\pi}{\alpha_{16}}$

$$
\begin{array}{lll}\n\text{les between} & \alpha_{12} = -\frac{2\pi}{6}, \ \alpha_{13} = -\frac{2\pi}{3}, \ \alpha_{14} = \text{I} \\
\text{points} & \alpha_{15} = \frac{2\pi}{3}, \ \alpha_{16} = \frac{2\pi}{6} & -1\n\end{array}
$$

↵¹⁴ ⁼ *[±]*⇡*,* ↵¹⁵ ⁼ ²⇡

הפקולטה להנדסת אוירונוטיקה וחלל Example 5. Let *M* be the unit circle in R² and consider *n* = \mathbb{N} systems coupled through the complete graph \mathbb{N}

Faculty of Aerospace Engineering 120 Industry of Aerospace Engineering

Symposium on Control Theory and Power Engineering \mathbf{v} hold (again inferred from the plot).

IEEE ICS

 $\neq 0$

 -2

Montenbruck – Research Overview 8 / 15

 $\overline{\mathsf{C}}$

1

 $\frac{1}{2}$

 $\overline{}$

an example - the unit circle

$$
\dot{x}_i = \left(\frac{1 - ||x_i||}{||x_i||}\right) x_i + \sum_{j=1}^n \frac{W_{ij}}{||x_i||} \left(\log\left(\frac{1}{||x_i|| ||x_j||} \left[x_i \cdot \Omega x_i \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$
\n
$$
\Omega = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

does evenly spaced configuration correspone to equilibrium? α experise

directed angles:
$$
\alpha_{ij}\Omega = \log \left(\begin{bmatrix} x_i \cdot x_j & x_i \cdot \Omega \\ x_j \cdot \Omega x_i & x_i \cdot \Omega \end{bmatrix} \right)
$$

angles between red points

1

$$
\alpha_{12}=-\frac{2\pi}{6},\,\alpha_{13}=-\frac{2\pi}{3},\,\alpha_{14}:
$$
\n
$$
\alpha_{15}=\frac{2\pi}{3},\,\alpha_{16}=\frac{2\pi}{6}
$$

sum of reciprocals

הפקולטה להנדסת אוירונוטיקה וחלל

Faculty of Aerospace Engineering

Symposium on Control Theory and Power Engineering

IEEE ICS

̸= 0

 -2

Montenbruck – Research Overview 8 / 15

−1

 $\overline{\mathsf{C}}$

1

 $\frac{1}{2}$

 \mathbf{U}_{\parallel}

graph-theoretic characterization of equilibria M Technion

$$
\dot{x}_i = \left(\frac{1-\|x_i\|}{\|x_i\|}\right)x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[x_i \cdot \Omega x_i \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$

equilibrium must satisfy:

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

graph-theoretic characterization of equilibria $\sum_{\text{Isonel has three different roots}}$

$$
\dot{x}_i = \left(\frac{1-\|x_i\|}{\|x_i\|}\right)x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[x_i \cdot \Omega x_i \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$

equivalently…

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

IEEE ICSEE 2016

Symposium on Control Theory and Power Engineering

graph-theoretic characterization of equilibria \sum Technion

$$
\dot{x}_i = \left(\frac{1 - \|x_i\|}{\|x_i\|}\right) x_i + \sum_{j=1}^n \frac{W_{ij}}{\|x_i\|} \left(\log\left(\frac{1}{\|x_i\|\|x_j\|}\left[x_i \cdot \Omega x_i \quad x_i \cdot x_j\right]\right)\right)^{-1} x_i
$$

equivalently…

Faculty of Aerospace Engineering

Symposium on Control Theory and Power Engineering

graph-theoretic characterization of equilibria $\overline{\mathbf{M}}$

Corollary

The solutions of

$$
\dot{x} = (r(x) - x) + \text{grad }\phi(r(x))
$$

for M the unit circle, asymptotically converges to a balanced formation if and only if the graph possesses an Eulerian cycle (iff every vertex has even degree)

An *Eulerian Cycle* is a walk on a graph beginning and ending at the same node that traverses each edge only once.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A Distributed Controller for Formation Balancing and Maneuvering of Multirotor UAVs

Yuyi Liu, Jan Maximilian Montenbruck, Daniel Zelazo, Frank Allgöwer

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

- Fekete points leads to a novel approach for formation control
- decentralized and distributed implementation
- *•* graph-theoretic interpretations
- extensions:
	- *-* balancing on special Euclidean group
	- *-* time-varying information exchange network
	- *-* formation tracking

Acknowledgements

Jan Maximillian Montenbruck Frank Allgöwer

Institute for Systems Theory & Automatic Control University of Stuttgart

Yuyi Liu

Max Planck Institute for Biological Cybernetics

für biologische Kybernetik

German-Israel

JM Montenbruck, D Zelazo, and F Allgöwer, "*Fekete points, formation control, and the balancing problem*," IEEE Transactions on Automatic Control, 2016 (*to appear).*

JM Montenbruck, D Zelazo, and F Allgöwer, "*Retraction balancing and formation control*," 53rd Conference on Decision and Control, Osaka, Japan, 2015.

Y Liu, JM Montenbruck, D Zelazo, F Allgöwer, "*A distributed controller for formation balancing and maneuvering of multirotor UAVs*," International Conference on Robotics and Automation, Singapore, 2017 (*under review*).

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

