DISTRIBUTED IDENTIFICATION OF LEADER AGENTS IN SEMI-AUTONOMOUS NETWORKS DANIEL ZELAZO, MARCO FABRIS & LIAT PELED

AUTONOMOUS NETWORK – INTRODUCTION

- SELF ORGANIZED
- DECENTRALIZE DISTRIBUTED
- **COOPERATIVE MISSION**

AUTONOMOUS NETWORK – FORMATION

- SELF ORGANIZED
- DECENTRALIZE DISTRIBUTED

- **COOPERATIVE MISSION**
- LEADERS
- V SHAPE FORMATION

GRAPH BASED – DEFINITION

Agents

E. Ste

Each agent modeled as simple kinematic point mass

Leader nodes can receive external input

Leader indicator function

$$x_i(t) \in \mathbb{R}^d, \ i \in \mathcal{V}$$

 $egin{aligned} u_\ell(t), \ \ell \in \mathcal{V}_\ell \ b_{i\ell} = egin{cases} 1, & i, \ell \in \mathcal{V}_\ell \ 0, & i
otin \mathcal{V}_\ell, \ell \in \mathcal{V}_\ell \end{aligned}$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

A (weighted) **graph** is a collection of vertices and weighted edges

 (\mathcal{V}_{ℓ})

A follower node

NETWORK CONSENSUS IN SAN

and an

CONSENSUS DYNAMIC -

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} w_{ij}(x_i(t) - x_j(t)) - \sum_{l \in \mathcal{V}_\ell} b_{il}(x_i(t) - u_l)$$

CONSENSUS CONDITION

$$\lim_{t \to \infty} \|x_i(t) - x_j(t)\| = 0, \ \forall (i,j) \in \mathcal{E}$$

FROM SAN TO FSN – PRINCIPLE

FIND THE FIRST EIGEN VECTOR

BUILD FSN NETWORK – FOLLOWING SLOWER NEIGHBOR

$L = EWE^{\top}$ weighted Laplacian matrix:

$$L_B = L + \operatorname{diag}(B\mathbf{1}_{n_L})$$

Section Section

KNOWN RESULTS ON FSN FROM DNS

RELATIVE TEMPO

RELATIVE RATIO OF FIRST EIGEN VECTOR

A TR

$$g_{ij}(t) = \|\dot{x}_i(t)\| / \|\dot{x}_j(t)\|$$
$$\tau_{ij} = \lim_{t \to \infty} g_{ij}(t)$$

$$v_1(L_B)_{ij} = v_1(L_B)_i / v_1(L_B)$$

$$\tau_{ij} = v_1(L_B)_{ij}$$

LEADER IDENTIFICATION – ALGORITHM

- GIVEN THE NORMAL VELOCITIES
- COMPUTE THE RELATIVE SPEED
- FIND THE GRAPH DIRECTIONS (FSN)

A. A.

 SEARCH IN THE GRAPH UNTIL THE LEADER IS FOUND (MINIMAL NODE) $\|\dot{x}_{i}\|, \|\dot{x}_{j}\|$ $g_{ij} = \|\dot{x}_{i}\| / \|\dot{x}_{j}\|$ $g_{ij} > 1$ $min\{v_{1}(L_{B})\}$

STATIC EXAMPLES

E. F.

and the

EXAMPLE 1 – ALL LEADERS ARE IDENTIFIED

ID Leaders		EntryVB1	Identified			
1	1	0.24438	4			
2	Θ	0.35616	Θ			
3	Θ	0.35616	Θ			
4	Θ	0.35616	Θ			
5	1	0.24438	1			
6	Θ	0.35616	Θ			
7	Θ	0.35616	Θ			
8	1	0.24438	3			
9	Θ	0.35616	Θ			
10	1	0.24438	2			

EXAMPLE 2 – PART OF THE LEADERS ARE IDENTIFIED

ID	Leaders	EntryVB1	Identified			
9 						
1	Θ	0.30289	Θ			
2	Θ	0.33414	Θ			
3	1	0.16947	2			
4	1	0.17292	Θ			
5	Θ	0.35449	Θ			
6	Θ	0.35915	Θ			
7	Θ	0.35177	Θ			
8	Θ	0.29855	Θ			
9	Θ	0.32755	Θ			
10	1	0.13937	Θ			
11	Θ	0.25642	Θ			
12	1	0.1292	1			
13	Θ	0.24757	Θ			

DYNAMIC EXAMPLES

E. F.

E at

SWARM BASED ON CONSENSUS NETWORK

E. C.

ASSOCIATION – PRINCIPLE

E St.

VELOCITY ESTIMATION – PRINCIPLE

GRAPH BUILDING – PRINCIPLE

FINDING LEADER – PRINCIPLE

	End	Nodes	Weight	Dir	ID	Leaders	EntryVB1
• ADIACENCY MATRIX E				—	-		
	1	4	1.0937	-1			
	1	6	2.1443	-1	1	1	0.1211
	1	8	1.4731	-1	2	0	0.44513
COMDITE THE RELATIVE	2	7	1	1	3	0	0.36417
GUMPUTE THE HELATIVE	3	5	1.3218	1	4	0	0.12635
	3	9	1.4112	1	5	0	0 32281
$J = x_i / x_i $	3	10	1.7112	1	6	0	0.12625
	4	6	1.9606	-1	0	0	0.12035
SEARGH INE MINIMAL	5	8	1.2831	1	7	0	0.42663
NORE IN THE CRADU	5	9	1.0676	1	8	0	0.22667
NUDE IN THE QUAP N	7	10	1.4601	-1	9	0	0.36417
$min\{v_1(L_B)\}$	9	10	1.2125	1	10	0	0.3904

E St.

LEADER IDENTIFICATION – OVERVIEW

AGENTS DETECTION

- TRACKING AND ASSOCIATION
- VELOCITY ESTIMATION
- BUILD GRAPH ADJACENCY
- LEADER IDENTIFICATION
 - GRAPH SEARCH FOR A MINIMAL NODE $\min\{v_1(L_B)\}$

- SAN SEMI AUTONOMOUS NETWORK LEADERS AND FOLLOWERS
- FSN NETWORK FOLLOWING THE SLOWER NEIGHBOR DIRECTED NETWORK

a at

- LEADER IDENTIFICATION
- STATIC NETWORK EXAMPLES

E. F.

LEADER IDENTIFICATION IN A DYNAMIC NETWORK

QUESTIONS?

10.10

-

E. F.