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source: https://www.greenprophet.com/2012/02/israel-lebanon-natural-gas-discovery/

Leviathan - 22 trillion cubic feet
Tamar — 10.8 trillion cubic feet
Tanin - 3 trillion cubic feet

Natural Gas could transform
Israel’s energy market!
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Natural Gas and the Smart Grid |} sz
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Natural gas is the ideal near-term
solution to bridge the gap
between traditional energy
generation and renewables
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Micro-Gas Turbines for CHP W deciiaie

* runs on natural gas

* high power-to-weight ratio

e small terrain footprint

* reliable (few moving parts)

* quiet

e agile and flexible — on-demand!

Electricity and Heating/Cooling Generation
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MGT Integration into the Grid | ¥ sanaiue

utility

Meet the consumer power demand
in an economically optimal way
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The Economic Dispatch Problem| M s

Economic Dispatch is a short-term scheduling for the output of a number of
electricity generation facilities required to meet system demand at the

lowest cost subject to operational constraints

min J(P, H)
st. P=Dp
H =Dy
operational constraints
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What is the cost of operating an MGT?
* relation of fuel consumption to heat
and power output
e start-up and shut-down costs
* time constants for power delivery

Electricity and Heat Tariffs
 how much does electricity cost
e electricity market for buying and
selling power

Consumer Needs
 what are the power and heat
demand profiles for consumers
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Recuperated Gas Turbine Cycle Diagram
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02-03: — flow pressure rises. _ ,
03— 031 : _ the temperature of 04 -05: the thermal energy is

converted into mechanical energy that is
provided to compressor and the electrical
power generator.

the flow is further increased in the recuperator
by energy recovering.
031-04: — energy addition.
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Recuperated MGT Simulation Model

Input:
ambient conditions, gas turbine data, component
performance maps

] (et * NASA DYNGEN algorithm
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(b) Electricity Output.
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Operational Constraints as discretized state-transition graph
7 7
— bbbk
— bl o)
R e

t—1 t+1 t+2 t+3

* system “state” is shaft speed and bypass valve
* arrows indicate allowable transitions to new

steady-states, and their time
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Operational Constraints as discretized state-transition graph

BP PR

—> @ ..._> @

t—1 t t+3 t+d ..

* system “state” is shaft speed and bypass valve
e arrows indicate allowable transitions to new
steady-states, and their time
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Operational Constraints as discretized state-transition graph

can be represented

by graphs

can be assigned to each
edge
* relates to fuel price
* maintenance cost
e utility commitment and
consumer demand
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subject to

(MGT Dynamics)  zgr(t+ cAT) = fGT(xGT(t)auGT( )

(Power Balance) Pgr(zor(t))+ (zir(t) — P(t))

(Heat Balance) Hgr(zar(t)) + (zip(t) — H(t)) =
zar(t) € {(pi(t), h(1)), i=1,.. 7j =1,...,v}

ng(t) Z 07 ng( ) > O 17 T

Optimization over a directed acyclic graph
Shortest Path Algorithm — complexity is linear in #nodes+edges
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Full Service Restaurant
commercial medium electricity tariff

511m?

Large Hotel
commercial tall electricity tariff US DOE 2004

11, 345m°

= Small Hotel
commercial medium electricity tariff

Residential Building
residential electricity tariff

neighborhood of 20 apartment buildings

Demand and Tariff Data
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In Summer and Spring, startup and shutdown

During winter, electricity is a byproduct costs are too high to operate the MGT.

of meeting the heat demand.
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Large Hotel
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‘ Demand = CHP commitment

Utility commitment ‘

Electricity Driven Operation

Optimal commitment requires
contributions from both MGT and Utilitiy

Power demand of the large hotel exceeds
the maximum capacity of the MGT.
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MGT operates at low power commitment
levels, while heat demand is supplied at a

competitive unit efficiency
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e Driven Operation

During off-peak hours in summer, the
MGT is operated to avoid additional
startup/shutdown costs
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‘ Demand CHP commitment Utility commitment ‘
Revenue Driven Operation Flexible Operations
In intermediate tariff hours, the MGT During off-peak hours, the MGT either
operates above the demand, selling operates electricity, heat, or maintenance
electricity back to the grid driven, depending on situation
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Electricity Driven: In case of the large hotel, when power and
heat demand exceed the MGT capability permanently.

Heat Driven: Small hotel and restaurant due to more
competitive energy generation with respect to the demand
profiles.

Maintenance Driven: In off-peak hours of the small hotel and
restaurant where utility prices are low to avoid cycle costs.

Revenue Driven: Operation in residential neighbourhood aims
to generate excess electricity that can be sold to the grid.
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Micro-Gas Turbines using natural gas is an
economically viable solution towards a
distributed power generation economy

Detailed modeling required to gain a better
understanding of the economic operational
modes of the MGT
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a dynamic real-time algorithm for integration
of the MGT into the smart-grid

operation of MGT “banks” for distributed
economic dispatch

Algo rithm

Utility
Demand

l\/Icro Gas Turbine 5
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