

Economic Dispatch and Unit Commitment of a Single Micro-Gas Turbine under CHP Operation

Johannes F. Rist

Technical University of Munich

Miguel F. Diaz

Instituto Superior Tecnico

Michael Palman , **Daniel Zelazo**, Beni Cukurel Technion

EU electricity generation trends

(taken from "EU Energy, Transmission, and GHG Emissions: Trends to 2050 - Reference Scenario 2013"

IACAS

The Future Energy Landscape

Increasing integration Into the grid!

...intermittent and not on demand!

IACAS

The Future Energy Landscape

environmental concerns

finite resource

IACAS

The Future Energy Landscape

Natural Gas is clean, cheap, and safe!

Energy Independence in Israel

source: https://www.greenprophet.com/2012/02/israel-lebanon-natural-gas-discovery/

Leviathan - 22 trillion cubic feet Tamar – 10.8 trillion cubic feet Tanin - 3 trillion cubic feet

Natural Gas could transform Israel's energy market!

Natural Gas and the Smart Grid

Natural gas is the *ideal* near-term solution to bridge the gap between traditional energy generation and renewables

Micro-Gas Turbines for CHP

- runs on natural gas
- high power-to-weight ratio
- small terrain footprint
- reliable (few moving parts)
- quiet
- agile and flexible on-demand!

Electricity and Heating/Cooling Generation

MGT Integration into the Grid

utility

Meet the consumer power demand in an economically optimal way

IACAS

The Economic Dispatch Problem

Economic Dispatch is a short-term scheduling for the output of a number of electricity generation facilities required to **meet system demand** at the **lowest cost** subject to **operational constraints**

$$\begin{array}{ll} \min & J(P,H) & $\$$ \\ s.t. & P = D_P & \\ & H = D_H & \\ & \text{operational constraints} \end{array} \\ O_P & \text{Electricity Demand} \\ O_H & \text{Heat Demand} \end{array}$$

IACAS

The Economic Dispatch Problem

What is the cost of operating an MGT?

- relation of fuel consumption to heat and power output
- start-up and shut-down costs
- time constants for power delivery

Electricity and Heat Tariffs

- how much does electricity cost
- electricity market for buying and selling power

Consumer Needs

 what are the power and heat demand profiles for consumers

IACAS

MGT Modeling

Recuperated Gas Turbine Cycle Diagram

02 - 03: Compressor – flow pressure rises. 03 - 031: Recuperator – the temperature of the flow is further increased in the recuperator by energy recovering. 031 - 04: Combustor – energy addition.

04 – 05 : Turbine – the thermal energy is converted into mechanical energy that is provided to compressor and the electrical power generator.

MGT Modeling

Recuperated MGT Simulation Model

IACAS

MGT Modeling

IACAS

Towards an Optimization Model

Operational Constraints as discretized state-transition graph

- system "state" is shaft speed and bypass valve
- arrows indicate allowable transitions to new steady-states, and their time

Towards on Ontimization Model

ized state-transition graph

- system "state" is shaft speed and bypass valve
- arrows indicate allowable transitions to new steady-states, and their time

Towards an Optimization Model

Operational Constraints as (

 $\begin{array}{c} \underbrace{\mathsf{MGT}}_{(x_{i},t_{i})} \underbrace{\mathsf{Ngraphs}}_{i} \underbrace{\mathsf{Corr}}_{i} \underbrace{\mathsf{Corr}}_{i}$

- maintenance cost
- utility commitment and consumer demand

Towards an Optimization Model

$$J(x_{GT}, u_{GT}, x_{UT}^P, x_{UT}^H)$$

subject to

(MGT Dynamics)

 $\min_{\substack{x_{GT}, u_{GT}, x_{UT}^P, x_{UT}^H}}$

(Power Balance)

(Heat Balance)

$$\begin{aligned} x_{GT}(t + c\Delta T) &= f_{GT}(x_{GT}(t), u_{GT}(t)), \\ P_{GT}(x_{GT}(t)) + (x_{UT}^{P}(t) - P(t)) &= 0, \\ H_{GT}(x_{GT}(t)) + (x_{UT}^{H}(t) - H(t)) &= 0, \\ x_{GT}(t) &\in \{(p_i(t), h_j(t)), i = 1, \dots, \mathbf{s}, j = 1, \dots, \mathbf{v}\} \\ x_{UT}^{P}(t) &\geq 0, \ x_{UT}^{H}(t) \geq 0, \ t = 1, \dots, T. \end{aligned}$$

Optimization over a *directed acyclic graph*

Shortest Path Algorithm – complexity is linear in #nodes+edges

Case Studies

Full Service Restaurant commercial medium electricity tariff $511m^2$

Large Hotel commercial tall electricity tariff $11,345m^2$

Demand and Tariff Data US DOE 2004

Small Hotel

commercial medium electricity tariff $4,013 m^2 \,$

Residential Building

residential electricity tariff neighborhood of 20 apartment buildings

Case Studies

IACAS

Full Service Restaraunt

Heat Driven Operation

During winter, electricity is a byproduct of meeting the heat demand.

Maintenance Driven Operation

In Summer and Spring, startup and shutdown costs are too high to operate the MGT.

IACAS

Large Hotel

Electricity Driven Operation

Power demand of the large hotel exceeds the maximum capacity of the MGT.

Optimal commitment requires contributions from both MGT and Utilitiy

16.03.17

25

Small Hotel

Heat Driven Operation

Waintenance Driven Operation

MGT operates at low power commitment levels, while heat demand is supplied at a competitive unit efficiency During off-peak hours in summer, the MGT is operated to avoid additional startup/shutdown costs

Residential Community

Heat

Power

Revenue Driven Operation

In intermediate tariff hours, the MGT operates above the demand, selling electricity back to the grid

Flexible Operations

During off-peak hours, the MGT either operates **electricity**, **heat**, **or maintenance** driven, depending on situation

Electricity Driven: In case of the large hotel, when power and heat demand exceed the MGT capability permanently.

Heat Driven: Small hotel and restaurant due to more competitive energy generation with respect to the demand profiles.

Maintenance Driven: In off-peak hours of the small hotel and restaurant where utility prices are low to avoid cycle costs.

Revenue Driven: Operation in residential neighbourhood aims to generate excess electricity that can be sold to the grid.

Conclusions

Micro-Gas Turbines using natural gas is an economically viable solution towards a distributed power generation economy

Detailed modeling required to gain a better understanding of the economic operational modes of the MGT

a dynamic real-time algorithm for integration of the MGT into the smart-grid

operation of MGT "banks" for distributed economic dispatch

Acknowledgements

Johannes F. Rist Technical University of Munich Miguel F. Diaz Instituto Superior Tecnico

Michael Palman, Daniel Zelazo, Beni Cukurel Technion

Economic Dispatch and Unit Commitment of a Single Micro-Gas Turbine under CHP Operation, Applied Energy (under review).

Questions?

