

Rigidity Theory for Multi-Robot Coordination

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

IAAC workshop on "Motion Control Methods in Robotics"

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Multi-Agent Systems are systems composed of multiple interacting dynamic units.

formation control & multi-robot coordination

energy management & the "smart-grid"

sensor networks

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Challenges in Multi-Robot Systems

<u>Sensing</u>

- GPS
- Relative Position
 Sensing
- Range Sensing
- Bearing Sensing

Ż

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Communication

- Internet
- Radio
- Sonar
- MANet

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

selection criteria depends on mission requirements, cost, environment...

Challenges in Multi-Robot Systems

Solutions to coordination problems in multi-robot systems are *highly* dependent on the sensing and communication mediums available!

selection criteria depends on mission requirements, cost, environment...

Are there *architectural features* of a multi-agent system that are independent of any particular mission or hardware capabilities?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

control architecture for a *single* quadrotor

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

what is the architecture for a *multi-robot* system?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

what is the architecture for a *multi-robot* system?

Connectivity

Ji and Egerstedt, 2007 Dimarogonas and Kyriakopoulos, 2008 Yang *et al.*, 2010 Robuffo Giordano *et al.*, 2013

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

is connectivity enough for higher-level objectives?

formation control

localization

http://www.commsys.isy.liu.se/en/research

Rigidity Theory provides the correct framework to address many multi-agent mission objectives

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

what is the architecture for a *multi-robot* system?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

Distance Rigidity

- maintain distance pairs
- rigid body rotations and translations

Bearing (Parallel) Rigidity

- maintain angles (shape)
- rigid body translations and dilations

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

ECC2014 Strasbourg, France

Infinitesimal Motions in SE(2)

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

SE(2) Rigidity

- maintain bearings in local frame
- rigid body rotations and translations + coordinated rotations

Rigidity Theory

a directed edge indicates availability of relative bearing measurement

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering stacked vector of entire framework

$$\chi_p = p(\mathcal{V}) \in \mathbb{R}^{2|\mathcal{V}|}$$
$$\chi_{\psi} = \psi(\mathcal{V}) \in \mathcal{S}^{1|\mathcal{V}|}$$

Rigidity Theory

A framework is **infinitesimally rigid** if all the infinitesimal motions are *trivial* (i.e., translations, rotations, scalings, coordinated rotations).

Distance Rigidity	Bearing Rigidity	SE(2) Rigidity
Rigidity Matrix	Bearing Rigidity Matrix	SE(2) Rigidity Matrix
$R(p)\xi = 0$	$R_{\parallel}(p)\xi = 0$	$\underbrace{\left[\begin{array}{cc} D_{\mathcal{G}}^{-1}(\chi_p)R_{\parallel}(\chi_p) & \overline{E}(\mathcal{G}) \end{array}\right]}_{\mathcal{B}_{\mathcal{G}}(\chi(\mathcal{V}))} \zeta = 0$
		$\sim g(\chi(r))$

Theorem

A framework is infinitesimally (distance, parallel) rigid if and only if the rank of the rigidity matrix is $2|\mathcal{V}|-3$

A framework is SE(2) infinitesimally rigid if and only if the rank of the rigidity matrix is $3|\mathcal{V}|-4$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Distance and Bearing Rigidity

Theorem

In the plane, a framework is infinitesimally rigid if and only if it is infinitesimally bearing rigid

- does not hold for higher dimensions

Theorem

Infinitesimal bearing rigidity implies global bearing rigidity.

- such a relationship does not hold in distance rigidity

Distance and Bearing Rigidity

non-infinitesimally bearing rigid

infinitesimally bearing rigid

[Zhao and Zelazo, TAC2015]

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The **formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent distances or bearings.

Gradient Dynamical Systems

$$\dot{p} = -\nabla F(p)$$

distance-based formation control

$$F(p) = \frac{1}{4} \sum_{ij \in \mathcal{E}} \left(\|p_i - p_j\|^2 - d_{ij}^2 \right)^2$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

IAAC workshop "Motion Control Methods in Robotics" Nov. 23, 2015 Herzliya

 d_{24}

The **formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent distances or bearings.

Gradient Dynamical Systems

$$\dot{p} = -\nabla F(p)$$

distance-based formation control

$$\dot{p} = -R(p)^T (R(p) - d^2)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The **formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent distances or bearings.

Distance Rigidity

distance formation control

$$\dot{p}_i = \sum_{j \sim i} \left(\|p_i - p_j\|^2 - d_{ij}^2 \right) \left(p_j - p_i \right)$$

- control requires distances and relative positions
- distance-only control requires estimation of relative positions

Bearing Rigidity

bearing formation control

$$\dot{p}_i = -\sum_{j \sim i} \frac{1}{\|p_i - p_j\|} \left(I_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{\|p_i - p_j\|^2} \right) g_{ij}^*$$

- control requires bearings and distances

[Krick2007, Anderson2008, Dimarogonas2008, Dörfler2010]

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering [Zhao and Zelazo, TAC2015]

A Bearing-Only Formation Controller

bearing formation control

$$\dot{p}_i = -\sum_{j \sim i} \frac{1}{\|p_i - p_j\|} \left(I_2 - \frac{(p_j - p_i)(p_j - p_i)^T}{\|p_i - p_j\|^2} \right) g_{ij}^*$$

- requires distance measurements
- orthogonal projection operator

a bearing-only approach

$$\dot{p}_i(t) = -\sum_{j\sim i} P_{g_{ij}(t)} g_{ij}^*$$

stability analysis depends on the **rigidity** of the formation!

- almost-global stability exponential stability
- centroid and scale invariance
- works for arbitrary dimension
- collision avoidance

[Zhao and Zelazo, TAC2015]

Formation Control: Bearing-Constrained Formations

formation stabilization," IEEE Transactions on Automatic Control, 2015

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The **formation control** problem is to design a (distributed) control law that drives the agents to a desired spatial configuration determined by interagent distances or bearings.

SE(2) Bearing Rigidity

$$\begin{bmatrix} \dot{p}_i \\ \dot{\psi}_i \end{bmatrix} = \begin{bmatrix} -\sum_{(i,j)\in\mathcal{E}} \frac{P_{r_{ij}}}{\|p_i - p_j\|} r_{ij}^d + \sum_{\substack{(j,i)\in\mathcal{E} \\ -\sum_{(i,j)\in\mathcal{E}}}} \frac{T(\psi_j - \psi_i)}{\|p_i - p_j\|} r_{ji}^d \\ -\sum_{(i,j)\in\mathcal{E}} (r_{ij}^{\perp})^T r_{ij}^d \end{bmatrix}$$

- requires communication
- requires relative orientation

a scale-free SE(2) bearing approach

$$\begin{vmatrix} \dot{p} \\ \dot{\psi} \end{vmatrix} = \hat{\mathcal{B}}_{\mathcal{G}}(\chi)^T \mathbf{b}_{\mathcal{G}}^d$$

[Zelazo, Franchi, Robuffo-Giordano, CDC2015 Schiano, Franchi, Zelazo, Robuffo-Giordano, ICRA2016]

what is the architecture for a *multi-robot* system?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Maintenance

Theorem

A framework is infinitesimally (distance, parallel) rigid if and only if the *rigidity eigenvalue* is strictly positive.

 $\mathcal{R} = R(p)^T R(p) \quad \mathcal{N}(\mathcal{R}) = \{\text{trivial infinitesimal motions}\}$

Rigidity Maintenance

Design a control law to minimize a scalar potential function related to the rigidity eigenvalue

$$\xi_i = -\frac{\partial V_\lambda}{\partial \lambda_4} \left(\frac{\partial \lambda_4}{\partial p_i} \right)$$

IAAC workshop "Motion Control Methods in Robotics" Nov. 23, 2015 Herzliya

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Maintenance

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Rigidity Maintenance

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Conclusions and Outlook

- coordination methods for multi-agent systems depend on sensing and communication mediums
- *rigidity theory* is a powerful framework for handling high-level multi-agent objectives under different sensing and communication constraints
- *rigidity maintenance* is an important "inner-loop" for multi-robot systems

Acknowledgements

UCRIVERSITY OF CALIFORNIA

Dr. Shiyu Zhao

Dr. Paolo Robuffo Giordano

Dr. Antonio Franchi

Questions?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering