A PASSIVITY ANALYSIS FOR NONLINEAR CONSENSUS ON DIGRAPHS

2025 IAAC CONTROL CONFERENCE

Fengyu Yue and Daniel Zelazo

June 25, 2025

MULTI-AGENT NETWORKS

Applications:

- ► Formation flying
- ► Power grid
- Automated transportation networks...

MULTI-AGENT NETWORKS

Applications:

- ► Formation flying
- Power grid
- Automated transportation networks...
- Fundamental problem: Output consensus

MULTI-AGENT NETWORKS AND CONSENSUS

Multi-agent networks: A group of SISO agents Σ_i interact over a graph \mathcal{G} with SISO edge controllers Π_k :

$$\Sigma_{i}: \begin{cases} \dot{x}_{i} = f_{i}(x_{i}, u_{i}) \\ y_{i} = h_{i}(x_{i}, u_{i}) \end{cases}, i \in [1, n] \quad \Pi_{k}: \begin{cases} \dot{\eta}_{k} = \phi_{k}(\eta_{k}, \zeta_{k}) \\ \mu_{k} = \psi_{k}(\eta_{k}, \zeta_{k}) \end{cases}, k \in [1, m] \end{cases}$$

MULTI-AGENT NETWORKS AND CONSENSUS

Multi-agent networks: A group of SISO agents Σ_i interact over a graph \mathcal{G} with SISO edge controllers Π_k :

$$\Sigma_{i}: \begin{cases} \dot{x}_{i} = f_{i}(x_{i}, u_{i}) \\ y_{i} = h_{i}(x_{i}, u_{i}) \end{cases}, i \in [1, n] \quad \Pi_{k}: \begin{cases} \dot{\eta}_{k} = \phi_{k}(\eta_{k}, \zeta_{k}) \\ \mu_{k} = \psi_{k}(\eta_{k}, \zeta_{k}) \end{cases}, k \in [1, m] \end{cases}$$

Output consensus problem: Design distributed Π_k s, such that

$$\lim_{t \to \infty} (y_i(t) - y_j(t)) = 0, \ \forall i, j$$

$$\Rightarrow \lim_{t \to \infty} y(t) \in S$$

where $S = \operatorname{span}(1)$ denotes the agreement space.

Graph Topologies Matter!

Undirected Networks

 $\dot{x}(t) = -E_{\mathbb{G}}E_{\mathbb{G}}^{\top}x(t)$ y(t) = x(t)

Directed Networks $\dot{x}(t) = -B_o E_D^{\top} x(t)$ y(t) = x(t)

Graph Topologies Matter!

Undirected G $\lim_{t \to \infty} y(t) = \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^\top x(0)$ Average consensus

Graph Topologies Matter!

g(t)

3

Graph Topologies Matter!

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

Symmetric operator $E_{\mathbf{G}} \Pi E_{\mathbf{G}}^{\top}$

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbf{G}} \Pi E_{\mathbf{G}}^{\top}$
- ► Passivity Analysis √

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbf{G}} \Pi E_{\mathbf{G}}^{\top}$
- ► Passivity Analysis √

Passive $\Pi \quad \mu^{\top}(t)\zeta(t) \geq \dot{V}(\eta(t))$

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$
- ► Passivity Analysis √

Passive $\Pi \quad \mu^{\top}(t)\zeta(t) \ge \dot{V}(\eta(t))$ \Rightarrow Passive $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$ $q^{\top}(t)y(t) = \mu^{\top}(t)E_{\mathbb{G}}^{\top}y(t) = \mu^{\top}(t)\zeta(t)$

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$
- ► Passivity Analysis √

Passive $\Pi \quad \mu^{\top}(t)\zeta(t) \ge \dot{V}(\eta(t))$ \Rightarrow Passive $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$ $q^{\top}(t)y(t) = \mu^{\top}(t)E_{\mathbb{G}}^{\top}y(t) = \mu^{\top}(t)\zeta(t)$

- A decoupled analysis
- Convergence, stability

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$
- ► Passivity Analysis √

Passive $\Pi \quad \mu^{\top}(t)\zeta(t) \geq \dot{V}(\eta(t))$ $\Rightarrow \text{Passive } E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$

 $\boldsymbol{g}^\top(t)\boldsymbol{y}(t) = \boldsymbol{\mu}^\top(t)\boldsymbol{E}_{\mathbb{G}}^\top\boldsymbol{y}(t) = \boldsymbol{\mu}^\top(t)\boldsymbol{\zeta}(t)$

- A decoupled analysis
- Convergence, stability

Directed $(\Sigma, \Pi, \mathcal{D})_{B_o}$

• Asymmetric operator $B_o \Pi E_D^{\top}$

Undirected $(\Sigma, \Pi, \mathbb{G})_E$

- **Symmetric operator** $E_{\mathbf{G}} \Pi E_{\mathbf{G}}^{\top}$
- \blacktriangleright Passivity Analysis \checkmark

Passive $\Pi \ \mu^{\top}(t)\zeta(t) \ge \dot{V}(\eta(t))$ \Rightarrow Passive $E_{\mathbb{G}}\Pi E_{\mathbb{G}}^{\top}$

 $\boldsymbol{g}^\top(t)\boldsymbol{y}(t) = \boldsymbol{\mu}^\top(t)\boldsymbol{E}_{\mathbb{G}}^\top\boldsymbol{y}(t) = \boldsymbol{\mu}^\top(t)\boldsymbol{\zeta}(t)$

- A decoupled analysis
- Convergence, stability

- Asymmetric operator $B_o \Pi E_D^{\top}$
- Passivity Analysis?

• General agents Σ , Linear controllers $\Pi = I : \mu = \zeta$

General agents Σ, Linear controllers Π = I : μ = ζ
Is the operator B_oIE^T_D passive?

- General agents Σ , Linear controllers $\Pi = I : \mu = \zeta$
- ▶ Is the operator $B_o I E_D^{\top}$ passive?
 - $\circ~$ **Balanced** \mathcal{D} : Passive

- General agents Σ , Linear controllers $\Pi = I : \mu = \zeta$
- ▶ Is the operator $B_o I E_D^{\top}$ passive?
 - $\circ \text{ Balanced } \mathcal{D} \text{: Passive } \overset{\text{passive } \Sigma}{\to} \text{ passivity analysis } \checkmark$

- General agents Σ , Linear controllers $\Pi = I : \mu = \zeta$
- ▶ Is the operator $B_o I E_D^{\top}$ passive?
 - $\circ \text{$ **Balanced** $} \mathcal{D} \text{: Passive } \overset{\text{passive } \Sigma}{\rightarrow} \text{ passivity analysis } \checkmark$
 - $\circ~$ General $\mathcal{D}:$ Not Passive

- General agents Σ , Linear controllers $\Pi = I : \mu = \zeta$
- ▶ Is the operator $B_o I E_D^{\top}$ passive?
 - $\circ \text{$ **Balanced** $} \mathcal{D} \text{: Passive } \overset{\text{passive } \Sigma}{\rightarrow} \text{ passivity analysis } \checkmark$
 - $\circ~$ General $\mathcal{D}:$ Not Passive
- For general controller dynamics II: the operator $B_o \Pi E_D^{\top}$ may not be passive.

CONTRIBUTION 1: A GENERAL APPROACH FOR DIRECTED COUPLING

- Loop decomposition of $(\Sigma, \Pi, D)_{B_o}$: $E_D = B_o + B_i$: equivalence
- First branch $(y \to z)$: $E_{\mathcal{D}} \Pi E_{\mathcal{D}}^{\top}$ is passive, given passive Π .
- Second branch $(y \rightarrow w)$: external input with directed information

CONTRIBUTION 1: A GENERAL APPROACH FOR DIRECTED COUPLING

- Loop decomposition of $(\Sigma, \Pi, D)_{B_o}$: $E_D = B_o + B_i$: equivalence
- First branch $(y \to z)$: $E_{\mathcal{D}} \Pi E_{\mathcal{D}}^{\top}$ is passive, given passive Π .
- Second branch $(y \rightarrow w)$: external input with directed information
- $\blacktriangleright (\Sigma, \Pi, \mathcal{D})_{B_o} \Leftrightarrow (\Sigma, \Pi, \mathcal{D}, w)$

• Output consensus: $\lim_{t\to\infty} y(t) \in \operatorname{span}(1) = S$ submanifold!

- Output consensus: $\lim_{t\to\infty} y(t) \in \operatorname{span}(1) = S$ submanifold!
- Converge to the agreement submanifold $S: \lim_{t\to\infty} \operatorname{Proj}_{S^{\perp}}(y(t)) = 0$

- Output consensus: $\lim_{t\to\infty} y(t) \in \operatorname{span}(1) = S$ submanifold!
- Converge to the agreement submanifold $S: \lim_{t\to\infty} \operatorname{Proj}_{S^{\perp}}(y(t)) = 0$
- Connection to Passivity?

- Output consensus: $\lim_{t\to\infty} y(t) \in \operatorname{span}(1) = S$ submanifold!
- Converge to the agreement submanifold $S: \lim_{t\to\infty} \operatorname{Proj}_{S^{\perp}}(y(t)) = 0$
- Connection to Passivity? Passivity relations^[1] (point-wise)

 $u(t)^{\top} \operatorname{Proj}_{S^{\perp}}(y(t)) \ge l ||u(t)||^{2} + e ||\operatorname{Proj}_{S^{\perp}}(y(t))||^{2}$ $z(t)^{\top} \operatorname{Proj}_{S^{\perp}}(y(t)) \ge l ||z(t)||^{2} + e ||\operatorname{Proj}_{S^{\perp}}(y(t))||^{2}$

CONTRIBUTION 2: PASSIVITY W.R.T. SUBMANIFOLD

 $\Lambda:\ \dot{x}(t)=f(x(t),u(t)), y(t)=h(x(t)), \quad f:(\mathbb{R}^n,\mathbb{R}^p)\to\mathbb{R}^n,\ h:\mathbb{R}^n\to\mathbb{R}^p$

Recall Classical Passivity

- Storage Function $V : \mathbb{R}^n \to \mathbb{R}$ (1) $V(x) \ge 0$; (2) V(0) = 0
- Passivity indices $\exists \delta, \varepsilon \geq 0$

Passive: $u^{\top}(t)y(t) \ge \dot{V}(x(t)) + \delta ||u(t)||_{2}^{2} + \varepsilon ||y(t)||_{2}^{2}, \forall t$

Recall Classical Passivity

- Storage Function $V : \mathbb{R}^n \to \mathbb{R}$ (1) $V(x) \ge 0$; (2) V(0) = 0
- Passivity indices $\exists \delta, \varepsilon \geq 0$

Passive: $u^{\top}(t)y(t) \ge \dot{V}(x(t)) + \delta ||u(t)||_{2}^{2} + \varepsilon ||y(t)||_{2}^{2}, \forall t$

Passivity w.r.t. Submanifold S ^[1]:

Recall Classical Passivity

- Storage Function $V : \mathbb{R}^n \to \mathbb{R}$ (1) $V(x) \ge 0$; (2) V(0) = 0
- Passivity indices $\exists \delta, \varepsilon \geq 0$

Passive: $u^{\top}(t)y(t) \ge \dot{V}(x(t)) + \delta ||u(t)||_{2}^{2} + \varepsilon ||y(t)||_{2}^{2}, \forall t$

Passivity w.r.t. Submanifold S ^[1]:

- ► Constrained Storage Function $Q : \mathbb{R}^n \to \mathbb{R}$ (1) $Q(x) \ge 0$; (2) $Q(x) = 0, \forall h(x) \in S$
- Passivity indices $\exists \delta, \varepsilon \geq 0$

Recall Classical Passivity

- Storage Function $V : \mathbb{R}^n \to \mathbb{R}$ (1) $V(x) \ge 0$; (2) V(0) = 0
- Passivity indices $\exists \delta, \varepsilon \geq 0$

Passive: $u^{\top}(t)y(t) \ge \dot{V}(x(t)) + \delta ||u(t)||_{2}^{2} + \varepsilon ||y(t)||_{2}^{2}, \forall t$

Passivity w.r.t. Submanifold S ^[1]:

- ► Constrained Storage Function $Q : \mathbb{R}^n \to \mathbb{R}$ (1) $Q(x) \ge 0$; (2) $Q(x) = 0, \forall h(x) \in S$
- Passivity indices $\exists \delta, \varepsilon \geq 0$

S-Passive: $u^{\top}(t) \operatorname{Proj}_{S^{\perp}}(y(t)) \geq \dot{Q}(x(t)) + \varepsilon \|\operatorname{Proj}_{S^{\perp}}(y(t))\|_{2}^{2} + \delta \|u(t)\|_{2}^{2}, \forall t$

 $(\Sigma^o, \Pi, \mathcal{D}, w)$

Under what passivity conditions on Σ and Π does the output of the system converge to the agreement submanifold *S*?

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i s are continuously differentiable and monotone passive
- 2. h_i s have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i s are continuously differentiable and monotone passive
- 2. h_i s have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$

y(t) Passivity of agents $\sum_{i=1}^{O} z_{i}$

•
$$u_i y_i \ge \dot{V}_i(x_i)$$
, $V_i(x_i) = \int_0^{x_i} h(\sigma) d\sigma$ ^[1]

[1] H.K. Khalil, "Nonlinear systems (3rd ed)", Upper Saddle River, NJ: Prentice hall, 2002.

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), y_i(t) = h_i(x_i(t)), i \in [1, n]$

Conditions

- **1.** h_i s are continuously differentiable and monotone passive
- **2.** h_i s have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$

 $\underline{y(t)}$ Passivity of agents Σ_i^o

•
$$u_i y_i \ge \dot{V}_i(x_i)$$
, $V_i(x_i) = \int_0^{x_i} h(\sigma) d\sigma$ ^[1]

$$\blacktriangleright M = \max(1, |1 - m|)$$

 $u^{\top} \operatorname{Proj}_{S^{\perp}}(y) \geq \dot{Q}(x) - \frac{M}{2} \|u\|_{2}^{2} - \frac{M}{2} \|\operatorname{Proj}_{S^{\perp}}(y)\|_{2}^{2}$

[1] H.K. Khalil, "Nonlinear systems (3rd ed)", Upper Saddle River, NJ: Prentice hall, 2002.

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$
- 3. Controllers Π_k are input-output passive

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$
- 3. Controllers Π_k are input-output passive

Passivity of controllers Π_k

 $\blacktriangleright \zeta_k \mu_k \ge \dot{W}_k(\eta_k) + \alpha_k \mu_k^2 + \gamma_k \zeta_k^2, \ \alpha_k, \gamma_k > 0$

•
$$\alpha_k \gamma_k < 1/4$$
, $\alpha = \min(\alpha_k)$, $\gamma = \min(\gamma_k)$

Directed networks $(\Sigma^o, \Pi, \mathcal{D}, w)$

Integrator-like agents Σ_i^o : $\dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Conditions

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m$
- 3. Controllers Π_k are input-output passive

Passivity of controllers Π_k

- $\blacktriangleright \zeta_k \mu_k \ge \dot{W}_k(\eta_k) + \alpha_k \mu_k^2 + \gamma_k \zeta_k^2, \ \alpha_k, \gamma_k > 0$
- $\blacktriangleright \ \alpha_k \gamma_k < 1/4, \alpha = \min(\alpha_k), \gamma = \min(\gamma_k)$

z(t) **Passivity** of $E_{\mathcal{D}} \Pi E_{\mathcal{D}}^{\top}$

► $z^{\top} \operatorname{Proj}_{S^{\perp}}(y) \ge \sum_{k=1}^{p} \dot{W}_{k} + \alpha \|\mu\|_{2}^{2} + \gamma \lambda_{2} \|\operatorname{Proj}_{S^{\perp}}(y)\|_{2}^{2}$ ► Passive $(z, \operatorname{Proj}_{S^{\perp}}(y))$ Directed networks($\Sigma^o, \Pi, \mathcal{D}, w$) Integrator-like agents $\Sigma_i^o : \dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Theorem

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m, \ M = \max(1, |1 m|)$
- 3. Controllers Π : $\zeta^{\top}\mu \geq \sum \dot{W}_k(\eta_k) + \alpha \|\mu\|_2^2 + \gamma \|\zeta\|_2^2, \ \alpha\gamma < \frac{1}{4}$

Directed networks($\Sigma^o, \Pi, \mathcal{D}, w$) Integrator-like agents $\Sigma_i^o : \dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Theorem

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m, \ M = \max(1, |1 m|)$
- 3. Controllers Π : $\zeta^{\top}\mu \geq \sum \dot{W}_k(\eta_k) + \alpha \|\mu\|_2^2 + \gamma \|\zeta\|_2^2, \ \alpha\gamma < \frac{1}{4}$

4.
$$\alpha \geq \max(D_o)\frac{M}{2}$$
 and $\gamma \lambda_2 > \frac{M}{2}$

where $\max(D_o)$ and λ_2 denote the maximal out-degree and the algebraic connectivity of graph \mathcal{D} .

Directed networks($\Sigma^o, \Pi, \mathcal{D}, w$) Integrator-like agents $\Sigma_i^o : \dot{x}_i(t) = u_i(t), \ y_i(t) = h_i(x_i(t)), \ i \in [1, n]$

Theorem

- **1.** h_i are continuously differentiable and monotone passive
- 2. h_i have bounded derivatives, i.e., $\frac{\partial h_i(x)}{\partial x} \leq m, \ M = \max(1, |1 m|)$
- 3. Controllers II: $\zeta^{\top} \mu \geq \sum \dot{W}_k(\eta_k) + \alpha \|\mu\|_2^2 + \gamma \|\zeta\|_2^2, \ \alpha \gamma < \frac{1}{4}$

4.
$$\alpha \geq \max(D_o)\frac{M}{2}$$
 and $\gamma \lambda_2 > \frac{M}{2}$

where $\max(D_o)$ and λ_2 denote the maximal out-degree and the algebraic connectivity of graph D.

Then, the network $(\Sigma^o, \Pi, \mathcal{D}, w)$ achieves output consensus.

CASE STUDY: A HETEROGENEOUS NETWORK SYSTEM

Systems

 $\Sigma^{o}: \dot{x}(t) = u(t), \ y(t) = [x_{1}(t), x_{2}(t), \tanh(x_{3}(t)), \tanh(x_{4}(t)), \frac{x_{5}(t)}{1 + |x_{5}(t)|}]^{\top}$

Parameters

- Constrained storage function: $Q(x) = \frac{1}{2}h^{\top}(x)(I \frac{1}{|\mathcal{V}|}\mathbb{1}\mathbb{1}^{\top})h(x)$
- Algebraic connectivity: $\lambda_2 = 3$
- Maximal out-degree: $\max(D_o) = 2$

13

CASE STUDY: A HETEROGENEOUS NETWORK SYSTEM

Systems

$$\begin{split} \Sigma^{o} &: \dot{x}(t) = u(t), \ y(t) = [x_{1}(t), x_{2}(t), \tanh(x_{3}(t)), \tanh(x_{4}(t)), \frac{x_{5}(t)}{1 + |x_{5}(t)|}]^{\top} \\ \Pi &: \mu(t) = 2\zeta(t) \end{split}$$

Parameters

- Constrained storage function: $Q(x) = \frac{1}{2}h^{\top}(x)(I \frac{1}{|\mathcal{V}|}\mathbb{1}\mathbb{1}^{\top})h(x)$
- Algebraic connectivity: $\lambda_2 = 3$
- Maximal out-degree: $\max(D_o) = 2$

CASE STUDY: A HETEROGENEOUS NETWORK SYSTEM

Systems

$$\begin{split} \Sigma^{o} &: \dot{x}(t) = u(t), \ y(t) = [x_{1}(t), x_{2}(t), \tanh(x_{3}(t)), \tanh(x_{4}(t)), \frac{x_{5}(t)}{1 + |x_{5}(t)|}]^{\top} \\ \Pi &: \mu(t) = 2\zeta(t) \end{split}$$

Parameters

- Constrained storage function: $Q(x) = \frac{1}{2}h^{\top}(x)(I \frac{1}{|\mathcal{V}|}\mathbb{1}\mathbb{1}^{\top})h(x)$
- Algebraic connectivity: $\lambda_2 = 3$
- Maximal out-degree: $\max(D_o) = 2$

A sufficient condition

Outputs of agents

Evolution of Q(x(t))

Contributions:

- A general approach that enables a passivity analysis for the network systems with directed coupling.
- Constrained storage functions, Passivity w.r.t. submanifolds.
- A passivity-based analysis for integrator-like agents that interact over digraphs.

Future work:

- complex dynamics, other passivity properties.
- ► A sufficient and necessary condition.

Thank-You!

TECHNION Israel Institute of Technology