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Multi-agent networks: A group of SISO agents 3; interact over a graph §
with SISO edge controllers I1,:

5, {a:t = fy:(.rum)’i €[n] T : {ﬁk = &k (MK, C)
pure = Vi (1 i)

Jk € [1,m]
yi = hi(xq, u;)

)

Output consensus problem: °r
Design distributed II;s, such that

A (yi(t) = y;(t)) = 0, Vi, j

@tlgrolo y(t) e S

where 5 = span(1) denotes the
agreement space.
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CONTRIBUTION 1: PASSIVITY ANALYSIS FOR (X, 11, D)5,

H ¢

> General agents 3, Linear controllers T =17 : = ¢
» |s the operator 13,/ passive?

passive

o Balanced D: Passive "2~ passivity analysis v/
o General D: Not Passive
» For general controller dynamics 11: the operator B,IIE;, may not be
passive.

[1] F-Y. Yue and D. Zelazo, “A passivity analysis for nonlinear consensus on balanced digraphs,” ECC2025. 5
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OUTPUT CONSENSUS AND CONVERGENCE TO A SUBMANIFOLD

w(t) = Bipu(t) + _ u(t) 5 y(t) y(t)
0] J
Ep EJ
p(t) ¢(t)

> Output consensus: tli}m y(t) € span(l) =S submanifold!

> Converge to the agreement submanifold S: lim; .. Projq. (y(t)) =0
» Connection to Passivity?
Passivity relations!! (point-wise)

u(t)" Projg. (y(t) = Uu(t)||* + e]| Projg. (y(t))|I?
(1) Projg. (y(t) > Uz(@)lI* + el Projg. (y(¢))[I?

[1]). M. Montenbruck, M. Arcak, and F. Allgéwer, “An input-output framework for submanifold stabilization,” IEEE TAC, 2017.
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» Constrained Storage Function Q : R* — R

(1) Q(x) > 0; (2) Q(x) = 0,Vh(x) € S
> Passivity indices 34, > 0
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w(t) = Bu(t) + _ uf yt s Integrator-like agents:
®
i(l) = u(t),
ﬁ s {080
yi(t) = hi(zi(1)),
(20,11, D, w)

Under what passivity conditions on ¥ and II does the output of the
system converge to the agreement submanifold 5?
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Conditions
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u(t)
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[ . . L
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S-Passivity of &
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[1] H.K. Khalil, "Nonlinear systems (3rd ed)”, Upper Saddle River, NJ: Prentice hall, 2002.
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CONTRIBUTION 3: A PASSIVITY-BASED ANALYSIS

Directed networks(3°, 11, D, w)
Integrator-like agents 3¢ : i;(t) = w;(t), yi(t) = hi(z;(¢)), i € [1,n]

h; are continuously differentiable and monotone passive
h; have bounded derivatives, i.e., 2% < M = max(1, |1 —m])
Controllers IT: ¢ T pu > 3> Wi (mx) + Ozllqu + WHCH% ay < g
o> maX(Do)% and y\; > %
where max(D,) and A\, denote the maximal out-degree and the algebraic
connectivity of graph D.

Then, the network (3°, 1, D, w) achieves
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CASE STUDY: A HETEROGENEOUS NETWORK SYSTEM

» Systems

Yo . Qﬁ(t) — u(t)7 y(t) = [ml(t), 352(15),tanh(x3(t)),tanh(w4(t))7 1131(:(1)\]—'—

» Parameters
o Constrained storage function: Q(z) = 3h" (z)(I — [5;11")h(x)
o Algebraic connectivity: \» = 3
o Maximal out-degree: max(D,) = 2

time time

Outputs of agents Evolution of Q(z(t)) 5
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CASE STUDY: A HETEROGENEOUS NETWORK SYSTEM

» Systems
Y0 i(t) = u(t), y(t) = [z1(t), z2(t), tanh(x3(¢)), tanh(z4(t)), 1+I|:;:$5t()t)‘]T
I () = 2 (1)
» Parameters
o Constrained storage function: Q(z) = 3h" (z)(I — [5;11")h(x)
o Algebraic connectivity: \» = 3
o Maximal out-degree: max(D,) = 2
> Asufficient condition

time time

Outputs of agents Evolution of Q(xz(t)) 5



CONCLUDING REMARKS

Contributions:

> A general approach that enables a passivity analysis for the network
systems with directed coupling.
»> Constrained storage functions, Passivity w.r.t. submanifolds.
> A passivity-based analysis for integrator-like agents that interact over
digraphs.
Future work:

» complex dynamics, other passivity properties.
> Asufficient and necessary condition.
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