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INTRODUCTION

+ Multi-agent systems (MAS) consist of autonomous agents interacting to achieve a
common goal.

+ Each agent operates based on local information and decision-making capabilities,
yet contributes to the global system behavior.

+ MAS are characterized by decentralized control, scalability, and robustness to
individual agent failures.

« Typical applications of MAS include drone swarms, satellite constellations, robotic
fleets in manufacturing and logistics.




INTRODUCTION

» The security of MAS is vulnerable to cyber-physical attacks, especially through
network topology identification.

- If critical agents are identified, they become targets for attacks.

« This work explores identifying leader agents in networked dynamic systems under
a semi-autonomous consensus protocol.



MULTI-AGENT SYSTEMS

+ We are dealing with dynamic agents, and we assume an integrator dynamics for
each agent,

I, = Ug, RS V,
where z;,u; € R are the ith agent state and the corresponding input signal,
respectively.

« Each agent receives an input signal through information exchange with other agents
in the network.
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GRAPH THEORY

- Agraph G = (V, &) is defined by a set of vertices and edges.
 The edge can be ordered or unordered.
+ The graph can be directed or undirected.

Undirected graph Directed graph



GRAPH THEORY CONT.

« The neighbours of vertex v; are denoted by N (v;)
- Degree of vertex v; is denoted by by d(i).

- Degree matrix . Adjacency matrix
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GRAPH THEORY CONT.

+ The induced subgraph is obtained by removing certain nodes along with their
incident edges.

A graph G An induced subgraph of G



AUTONOMOUS CONSENSUS PROTOCOL

+ In the autonomous consensus protocol, agents aim to reach agreement via the
distributed protocol
I.Z' = Z(I] — IZ'), 1eV
j~t
 Under a connectivity assumption of the information exchange graph, the protocol
satisfies:

tlinslo x(t) € span{l,,}
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AUTONOMOUS CONSENSUS PROTOCOL CONT.

+ The autonomous consensus protocol can be written in a matrix form:

T =—Lx
where L is the Laplacian matrix.
di), i=j
« Explicitly expression of the Laplacian matrix: [L(G)];; = —1, i~
0, otherwise

Network Topology G(V,€)



SEMI-AUTONOMOUS CONSENSUS PROTOCOL

In the semi-autonomous consensus protocol, some agents, called leaders, receive an
external input:

Bt e
€Xr; = .
ij‘(zj — ), 1€ Vy.
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OBJECTIVE

Objective

Identify the leader agents in a semi-autonomous consensus network.

« underlying graph is unknown
- assume constant external inputs
- access to measurements of system state
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FROM EIGENVECTORS TO LEADERS: A DISTRIBUTED APPROACH

We explore the connection between the Laplacian eigenvectors and leader positions:

« Distributed estimation of Laplacian eigenvectors from system trajectories.

« ldentify relationship between eigenvectors of Laplacian with leader positions.

Eigenvector Est.
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Part 1: Relation Between Velocities and Fiedler Eigenvector
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FIEDLER EIGENVECTOR

+ The semi-autonomous protocol can be written as:

Ty,
Opyy x[ve

ug®

T = —LB(g)$ +

exr
u
[Vel

o Lp(G) is called the grounded Laplacian
o the eigen-pair (Ar,vr) of Lg(G) corresponding to the smallest eigenvalue of are
termed the Fiedler eigenvalue and eigenvector

13



FROM SEMI-AUTONOMOUS TO AUTONOMOUS

To link the Fiedler vector with node velocities, we transform the semi-autonomous
system into an autonomous-like structure:

+ Introduce a state variable y representing external control inputs.
+ Assume the external input remains constant, giving the dynamics:

9i =0, wi(0) = ui"

Our graph G is directed and consists of three groups: V,, Vy, V...
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FROM SEMI-AUTONOMOUS TO AUTONOMOUS

+ The system dynamics can be expressed as:

-]t 5l

where L = L(G) is the directed graph Laplacian of G. The submatrices are given by:

I, 0] - I
Lp=L(@G)+ | |, L= [ '5’4'] :

0 0
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EIGENVALUES AND EIGENVECTORS OF L

Let {\;(L),v;(L)}, {\(Lp),v;(Lp)} be the eigenvalues and corresponding eigenvectors
of L and L respectively. The eigenvalues arranged in ascending order. Then,

(L) = 0, 1=1,...,m
' )\if’m(LB% Z=m—|—1,~n+m

and

_ T
’UZ'(L):{/Ui(LB)T OT] , i=m+1,-- m+n.

m

Result

The Fiedler eigenvalue and eigenvector of L is also the smallest non-zero eigenvalue
for L.



GROUNDED LAPLACIAN PROPERTIES

If G is connected, then the following properties hold for Lg:

The Fiedler Eigenvalue )\r (smallest eigenvalue) of L is positive and simple and
satisfies
0<A\p <1

The upper bound of the Fiedler eigenvalue is attained iff all nodes in G are leaders.

The Fiedler Eigenvector v is unique (up to scaling) and is the only positive
eigenvector.



RELATIVE TEMPO

« The relative tempo is the ratio of velocities of agents,

Z;(t)
iref(t)

[r@)) =

where Zf is the velocity of a specific agent chosen as a common divisor for all
others.

+ The solution for z = — Lz is given by:

‘L(t) = ei)\l(g)t(pli'O)pl + eiAZ(g)t(in'O)pQ + -+ ei)\"er(g)t(pn—&-mi'o)pn—&-m

where p; is the ith row of P~ 1, and p; is the ith column of P and L = PAP~".



RELATIVE TEMPO

z;(t)
jjref(t)

[T(®)]: =

- Substituting the solution derivative into the relative tempo expression yields

A (P 1 Z0)[oplie 4+ S = Ak (P To) [vk]ie M

_)‘F(pﬁ-l,-la_“o)[UF]V'efp Art 4 ZZI+£+2 -(p{a_?o)[ k:]refe_/\kt’

T = ZG[L,TL]

 For sufficient time T

[ Tt)]; ~ [vrli, t>T ]

[d H.Shao and M. Mesbahi, Degree of relative influence for consensus-type networks,
Portland, OR, USA, 2014, pp. 2676-2681.

19



Part 2: Relation Between the Fiedler Eigenvector and Leader
Identification

20



FIEDLER EIGENVECTOR AND SYSTEM TRAJECTORIES

+ The Fiedler vector components are associated with the graph structure.
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GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

We will examine a sequence of expanding graphs G°() with some structure constraints:

« The leaders set remains constant.
 The leader degree is constant.

- Leader nodes are not connected to each other.

Let g;’“) denote the graph obtained by removing all leader nodes and their incident
edges from G°("). The additional property in the sequence is as follows:

« The minimum degree in (j}’(i) is strictly increasing (denoted as d.).

22



GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

dr=1
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GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

QZF=1 dF=2
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GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

QZF=1 dF=2 dF=3

23



GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

dp=1 dp=2 dp=3

X




MAIN RESULTS - FIEDLER VECTOR CONVERGENCE

The Fidler vector of G7(Y) converges to the following values:

. . i . . 1, je V}’(’L’)
ihj&[vF ]j = [UF]J where ['UF]j = 1131010 %
d(j)+1-257”

JEW

where d(j) is the node degree and Ay is the Fiedler eigenvalue.

Fiedler Vector Convergence




MAIN RESULTS

Lemma Proof Sketch.

+ Define the semi-normalized adjacency matrix as
A= D;I}A € R,
where D, € R"*" is given by

. d(i 1—A i€V
[Dapliic = (L.) * " L ‘.
d(i) — Ap 1€V

 Show that v is an eigenvector with corresponding eigenvalue \ = 1.

- Show that

igrilcmd(i)@?l)]j = [UF];

25



MAIN RESULTS

Lemma Proof Sketch.
Show that v is an eigenvector with corresponding eigenvalue \ = 1:

- Starting with the relation between Ly and Dy,
Lp = [))\F + Apl — A.

« Subtract Ax1 from both sides and multiply both side by (D5,.)~* from left to obtain

(Dap) " (Lp = ArI) = (Dx,) " (Day) — (Dap) 1A
 Rearranging above gives

(Dxp) *A=1—(Dy,) (L — Apl).

26



MAIN RESULTS

Lemma Proof Sketch.

(Dag) P A=1— (D) M (Lp — Ap).

- Note that (D, )14 = 4, giving

A=T1—(Dy,) (L —Apl).

+ By multiply both sides by v we get:

A”UF = Vg — (D)\F)il(LB — )\FI)’UF = Vg — (D)\F)il(AFUF — )\FUF) = VF.

Therefore, we have A = 1 is an eigenvalue of A with corresponding eigenvector vz.

27



MAIN RESULTS

Lemma Proof Sketch.

Show that

im [A7@52D1. = (5],
ZIEEO[A vl = [0F];

- Let's looking at the multiplication of A°() and v9(":

o (i) ( o(i)y—1 d° ) (k) d,
("D (G) = A7) Y Fomae® T X giiee®
[Ao'(i) 70'(2')} keNe () (j)ﬂV;<1) keNT ) (5)NVy,
Vp i =

; o(4)\—1 %@ (k)
(dj S 1—A ( )) Z dm(i)(k),)\w(i)
keN (@) (5)
where the first and second rows corresponding to the follower and leader nodes,

respectively. O .8



MAIN RESULTS

Let G be graph where the nodes separated into two groups, leaders V¢ and followers
g

Vi

If the following conditions are met:

G is connected;
k ¢ N(j) forall k,5 € V, (leader nodes are not connected to each other);
dr is sufficient large;

1 — maxjey, 7d(j)‘j’({)*/\F > max; xev,,j>k |[UF,]; — [Ur,]k| Where vp, = sort(vp),

then

minforl: —maxlorls > max  |lvr,i = [vrJsl-

29



MAIN RESULTS

Theorem Proof Sketch.
Our graph is part of the series defined in the previously stated Lemma:

lim ||c”(i)v;(i) = T);m 20,
1— 00
_o(i L, je v N o 0!
where (077, =4 4, T o and O = o)
dj+1-2%D° A

For sufficiently large d;, the error ' = max; [c”® [v2)], — [o7."],| satisfies:

[ | () Iy v | ag)  _ __d(k) |
JEVe A()+1—Ap JEVe EeVe ld+1—Ap ~ d(k)+1—Ap

St < 1

30



MAIN RESULTS

Theorem Proof Sketch.

1 —maxicy, 2L _ max:cy, min | d(y) —IC)) |
JEVE A 1A JEVe k€Ve laG+1=Xr ~ d(R)+1-Xrp

4

St <

Let's pick i*, d;(m = m which lead to the following value e < <.

We got:
). ol (i), (1) &
dj dk

= max min —
R F1— 2 dotl—Ar

| + €4 — 2¢

0 O 1,e @7 o) 4
= E%%}f{%l\gc e li — e lkl + €d €
> max min c”(i)|[v;(i>]j _ [v;(i)]

k
JEVe kEVy |
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LEADERS IDENTIFICATION ALGORITHM

Assuming existence of the result from the theorem, i.e.,

minforli —maxforli > max [fr]i = [vr]jl-

we use the following algorithm to identify the leaders

Step 1: Measure the agents velocities to an external constant input until steady
state.

Step 2: Calculate the relative tempo and compute the Fiedler vector.
Step 3: Sort the Fiedler vector vy, = sort(vr) where [vg,]; < [vF,]it1-
Step 4: Calculate the number of leaders n; with

n; = |Ve| = ar ma VE i1 — |1 e
1=[Vel=arg | max = {[vrli - [vr)s}

Step 5: The leaders are corresponding to the smallest n;, components in vp,. o



In this example, we demonstrate a 2D scenario. We consider a system with n = 10
agents, where {2,5,8} € V. Recall the protocol dynamics:

. {iji(xj 7$7)+(UEX7I1>/ 1€ VZ,
> jeil@i — i), i€ Vs,
The external input provided to the leaders is

T
u:{zm 35 48 44 16 45}

33



EXAMPLE CONT.

The grounded Laplacian and the Fiedler vector is given by:

3 0 -1 -1 0 -1 0 0 0 0 [0.37]
o 2 0 0 0 0 0 0 0 -1 018
-1 0 5 -1 0 -1 0 0 -1 -1 0.37
-1 0 -1 5 -1 0 -1 0 -1 0 0.35
o 0 0 -1 2 0 0 0 0 0 019
Lp= , Vp =
-1 0 -1 0 0 4 0 -1 -1 0 0.34
o 0 0 -1 0 0 2 0 0 -1 0.37
O 0 0 0 0 -1 0 2 0 0 0.19
O 0 -1 -1 0 -1 0 0 3 0 0.37
0 -1 -1 0 0 0 -1 0 0 3 10.32]

34



EXAMPLE CONT.

Next, we verify the conditions outlined in the Theorem:

- Leaders are not connected to each other.
+ Degree distribution condition.
* d is sufficient large.

Since all conditions are satisfied, the leaders can be identified using the suggested
algorithm.

35



EXAMPLE CONT.

I. Measure the velocities and calculate the relative tempo:

T
72[0.37 0.18 037 035 0.19 034 0.37 0.19 0.37 0.32]

We note that this is equal to the Fiedler vector vp.
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EXAMPLE CONT.

1. Identify Leaders

« Sort the Fiedler vector vy, = sort(vg) where [vg,|; < [vr,|it1:

T
UF5=[0.18 0.19 0.19 0.32 034 035 0.37 037 0.37 0.37

|ndex=[2 58 10 6 4 7 9 3 1|7
+ Calculate the number of leaders n; with

n; =V, =ar ma; VE liv1 — |vp i = 3.
p=Ve=arg | max o {vrlie = (oe s}

« The leaders correspond to the smallest n, components in vp_:
Vi ={2,5,8}

37



« Certain graph structures are more likely to be associated with separation in the
components of the Fiedler vector.

« Such graphs can facilitate leader identification through external observation in
scenarios with constant external input.

38



FUTURE WORK

+ Investigate scenarios involving non-constant external input signals.
+ Develop methods for identifying the complete network structure.

+ Explore additional graph topologies related to component separation in the Fiedler
vector.
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