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introduction

• Multi-agent systems (MAS) consist of autonomous agents interacting to achieve a
common goal.

• Each agent operates based on local information and decision-making capabilities,
yet contributes to the global system behavior.

• MAS are characterized by decentralized control, scalability, and robustness to
individual agent failures.

• Typical applications of MAS include drone swarms, satellite constellations, robotic
fleets in manufacturing and logistics.
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introduction

• The security of MAS is vulnerable to cyber-physical attacks, especially through
network topology identification.

• If critical agents are identified, they become targets for attacks.
• This work explores identifying leader agents in networked dynamic systems under

a semi-autonomous consensus protocol.
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multi-agent systems

• We are dealing with dynamic agents, and we assume an integrator dynamics for
each agent,

ẋi = ui, i ∈ V,
where xi, ui ∈ R are the ith agent state and the corresponding input signal,
respectively.

• Each agent receives an input signal through information exchange with other agents
in the network.

Control 
Station
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graph theory

• A graph G = (V, E) is defined by a set of vertices and edges.
• The edge can be ordered or unordered.
• The graph can be directed or undirected.
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graph theory cont.

• The neighbours of vertex vi are denoted by N(vi)

• Degree of vertex vi is denoted by by d(i).

• Degree matrix


2 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 4

. Adjacency matrix


0 1 0 0 1

1 0 1 0 1

0 1 0 1 1

0 0 1 0 1

1 1 1 1 0


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graph theory cont.

• The induced subgraph is obtained by removing certain nodes along with their
incident edges.
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autonomous consensus protocol

• In the autonomous consensus protocol, agents aim to reach agreement via the
distributed protocol

ẋi =
∑
j∼i

(xj − xi), i ∈ V

• Under a connectivity assumption of the information exchange graph, the protocol
satisfies:

lim
t→∞

x(t) ∈ span{1n}
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autonomous consensus protocol cont.

• The autonomous consensus protocol can be written in a matrix form:

ẋ = −Lx

where L is the Laplacian matrix.

• Explicitly expression of the Laplacian matrix: [L(G)]ij =


d(i), i = j

−1, i ∼ j

0, otherwise
.

L =


3 −1 −1 0 −1

−1 2 −1 0 0

−1 −1 4 −1 −1

0 0 −1 2 −1

−1 0 −1 −1 3



Network Topology G(V , E)
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semi-autonomous consensus protocol

In the semi-autonomous consensus protocol, some agents, called leaders, receive an
external input:

ẋi =

{∑
j∼i(xj − xi) + (uex

i − xi), i ∈ Vℓ,∑
j∼i(xj − xi), i ∈ Vf .

Network Topology
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objective

Objective
Identify the leader agents in a semi-autonomous consensus network.

• underlying graph is unknown
• assume constant external inputs
• access to measurements of system state
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from eigenvectors to leaders: a distributed approach

We explore the connection between the Laplacian eigenvectors and leader positions:

• Distributed estimation of Laplacian eigenvectors from system trajectories.
• Identify relationship between eigenvectors of Laplacian with leader positions.
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Part 1: Relation Between Velocities and Fiedler Eigenvector
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fiedler eigenvector

ẋi =

{∑
j∼i(xj − xi) + (uex

i − xi), i ∈ Vℓ,∑
j∼i(xj − xi), i ∈ Vf .

• The semi-autonomous protocol can be written as:

ẋ = −LB(G)x+

[
I|Vℓ|

0|Vf |×|Vℓ|

]
uex
1

...
uex
|Vℓ|

 .

◦ LB(G) is called the grounded Laplacian
◦ the eigen-pair (λF , vF ) of LB(G) corresponding to the smallest eigenvalue of are

termed the Fiedler eigenvalue and eigenvector
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from semi-autonomous to autonomous

To link the Fiedler vector with node velocities, we transform the semi-autonomous
system into an autonomous-like structure:

• Introduce a state variable y representing external control inputs.
• Assume the external input remains constant, giving the dynamics:

ẏi = 0, yi(0) = uex
i .

Our graph Ḡ is directed and consists of three groups: Vℓ,Vf ,Vu.
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from semi-autonomous to autonomous

• The system dynamics can be expressed as:[
ẋ

ẏ

]
= −L̄

[
x

y

]
= −

[
LB L̄12

0 0

][
x

y

]
,

where L̄ = L(Ḡ) is the directed graph Laplacian of Ḡ. The submatrices are given by:

LB = L(G) +

[
I|Vℓ| 0

0 0

]
, L̄12 =

[
I|Vℓ|

0

]
.
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eigenvalues and eigenvectors of L̄

Let {λi(L̄), vi(L̄)}, {λi(LB), vi(LB)} be the eigenvalues and corresponding eigenvectors
of L̄ and LB respectively. The eigenvalues arranged in ascending order. Then,

λi(L̄) =

{
0, i = 1, . . . ,m

λi−m(LB), i = m+ 1, · · · , n+m
.

and
vi(L̄) =

[
vi(LB)

T 0T
m

]T
, i = m+ 1, · · · ,m+ n.

Result
The Fiedler eigenvalue and eigenvector of LB is also the smallest non-zero eigenvalue
for L̄.
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grounded laplacian properties

Lemma
If G is connected, then the following properties hold for LB :

• The Fiedler Eigenvalue λF (smallest eigenvalue) of LB is positive and simple and
satisfies

0 < λF ≤ 1

• The upper bound of the Fiedler eigenvalue is attained iff all nodes in G are leaders.
• The Fiedler Eigenvector vF is unique (up to scaling) and is the only positive

eigenvector.
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relative tempo

• The relative tempo is the ratio of velocities of agents,

[τ̄(t)]i =
˙̄xi(t)

ẋref(t)

where ˙̄xref is the velocity of a specific agent chosen as a common divisor for all
others.

• The solution for ˙̄x = −L̄x̄ is given by:

x̄(t) = e−λ1(G)t(p̄1x̄0)p1 + e−λ2(G)t(p̄2x̄0)p2 + · · ·+ e−λn+m(G)t(p̄n+mx̄0)pn+m

where p̄i is the ith row of P−1, and pi is the ith column of P and L̄ = PΛP−1.
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relative tempo

[τ̄(t)]i =
˙̄xi(t)

ẋref(t)

• Substituting the solution derivative into the relative tempo expression yields

τi =
−λF (p

T
m+1x̄0)[vF ]ie

−λF t +
∑m+n

k=m+2 −λk(p
T
k x̄0)[vk]ie

−λkt

−λF (pTm+1x̄0)[vF ]refe−λF t +
∑m+n

k=m+2 −λk(pTk x̄0)[vk]refe−λkt
, i ∈ [1, . . . , n].

• For sufficient time T :

[τ̄(t)]i ≃ [vF ]i, t > T

H. Shao and M. Mesbahi, Degree of relative influence for consensus-type networks,
Portland, OR, USA, 2014, pp. 2676-2681.
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Part 2: Relation Between the Fiedler Eigenvector and Leader
Identification
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fiedler eigenvector and system trajectories

• The Fiedler vector components are associated with the graph structure.
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graph sequence with fiedler vector separation

We will examine a sequence of expanding graphs Gσ(i) with some structure constraints:

• The leaders set remains constant.
• The leader degree is constant.
• Leader nodes are not connected to each other.

Let Gσ(i)
f denote the graph obtained by removing all leader nodes and their incident

edges from Gσ(i). The additional property in the sequence is as follows:

• The minimum degree in Gσ(i)
f is strictly increasing (denoted as dF ).
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graph sequence with fiedler vector separation
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graph sequence with fiedler vector separation
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graph sequence with fiedler vector separation
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graph sequence with fiedler vector separation
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main results - fiedler vector convergence

Lemma
The Fidler vector of Gσ(i) converges to the following values:

lim
i→∞

[v
σ(i)
F ]j = [v̄F ]j where [v̄F ]j = lim

i→∞

1, j ∈ Vσ(i)
f

d(j)

d(j)+1−λ
σ(i)
F

, j ∈ Vℓ

where d(j) is the node degree and λF is the Fiedler eigenvalue.
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main results

Lemma Proof Sketch.

• Define the semi-normalized adjacency matrix as

Â = D̂−1
λF

A ∈ Rn×n,

where D̂λF
∈ Rn×n is given by

[D̂λF
]ii =

{
d(i) + 1− λF i ∈ Vℓ

d(i)− λF i ∈ VF

.

• Show that vF is an eigenvector with corresponding eigenvalue λ = 1.
• Show that

lim
i→∞

[Âσ(i)v̄
σ(i)
F ]j = [v̄F ]j
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main results

Lemma Proof Sketch.
Show that vF is an eigenvector with corresponding eigenvalue λ = 1:

• Starting with the relation between LB and D̂λF

LB = D̂λF
+ λF I −A.

• Subtract λF I from both sides and multiply both side by (D̂λF
)−1 from left to obtain

(D̂λF
)−1(LB − λF I) = (D̂λF

)−1(D̂λF
)− (D̂λF

)−1A.

• Rearranging above gives

(D̂λF
)−1A = I − (D̂λF

)−1(LB − λF I).
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main results

Lemma Proof Sketch.

(D̂λF
)−1A = I − (D̂λF

)−1(LB − λF I).

• Note that (D̂λF
)−1A = Â, giving

Â = I − (D̂λF
)−1(LB − λF I).

• By multiply both sides by vF we get:

ÂvF = vF − (D̂λF
)−1(LB − λF I)vF = vF − (D̂λF

)−1(λF vF − λF vF ) = vF .

Therefore, we have λ = 1 is an eigenvalue of Â with corresponding eigenvector vF .
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main results

Lemma Proof Sketch.
Show that

lim
i→∞

[Âσ(i)v̄
σ(i)
F ]j = [v̄F ]j

• Let’s looking at the multiplication of Âσ(i) and v̄
σ(i)
F :

[Âσ(i)v̄
σ(i)
F ]j =



(dσ(i)(j)− λσ(i))−1

 ∑
k∈Nσ(i)(j)∩Vσ(i)

F

dσ(i)(k)

dσ(i)(k)−λσ(i) +
∑

k∈Nσ(i)(j)∩Vℓ

dk

dk+1−λσ(i)



(dj + 1− λσ(i))−1 ∑
k∈Nσ(i)(j)

dσ(i)(k)

dσ(i)(k)−λσ(i)

where the first and second rows corresponding to the follower and leader nodes,
respectively. 28



main results

Theorem
Let G be graph where the nodes separated into two groups, leaders VG

ℓ and followers
VG
f .

If the following conditions are met:

i) G is connected;
ii) k /∈ N (j) for all k, j ∈ Vℓ (leader nodes are not connected to each other);

iii) dF is sufficient large;
iv) 1−maxj∈Vℓ

d(j)
d(j)+1−λF

> maxj,k∈Vℓ,j>k |[v̄Fs ]j − [v̄Fs ]k| where vFs = sort(vF ),

then
min
i∈Vf

[vF ]i −max
i∈Vℓ

[vF ]i > max
i,j∈Vℓ,i>j

|[vFs ]i − [vFs ]j |.
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main results

Theorem Proof Sketch.
Our graph is part of the series defined in the previously stated Lemma:

lim
i→∞

∥cσ(i)vσ(i)F − v̄
σ(i)

F ∥2 = 0,

where [v̄
σ(i)
F ]j =

1, j ∈ Vσ(i)
F

dj

dj+1−λ
σ(i)
F

, j ∈ Vσ(i)
ℓ

and cσ(i)∥vσ(i)F ∥ = ∥v̄
σ(i)

F ∥.

For sufficiently large dF , the error Si = maxj |cσ(i)[vσ(i)F ]j − [v̄
σ(i)

F ]j | satisfies:

Si <
1−maxj∈Vℓ

d(j)
d(j)+1−λF

−maxj∈Vℓ
mink∈Vℓ

| d(j)
d(j)+1−λF

− d(k)
d(k)+1−λF

|
4
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main results

Theorem Proof Sketch.

Si <
1−maxj∈Vℓ

d(j)
d(j)+1−λF

−maxj∈Vℓ
mink∈Vℓ

| d(j)
d(j)+1−λF

− d(k)
d(k)+1−λF

|
4

Let’s pick i∗, d
σ(i∗)
F = m which lead to the following value ϵ < ϵd

4 .
We got:

min
j∈VF

[cσ(i)v
σ(i)
F ]j −max

j∈Vℓ

[cσ(i)v
σ(i)
F ]j > 1−max

j∈Vℓ

dj
dj + 1− λF

− 2ϵ

= max
j∈Vℓ

min
k∈Vℓ

| dj
dj + 1− λF

− dk
dk + 1− λF

|+ ϵd − 2ϵ

> max
j∈Vℓ

min
k∈Vℓ

cσ(i)|[vσ(i)F ]j − [v
σ(i)
F ]k|+ ϵd − 4ϵ

> max
j∈Vℓ

min
k∈Vℓ

cσ(i)|[vσ(i)F ]j − [v
σ(i)
F ]k|
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leaders identification algorithm

Assuming existence of the result from the theorem, i.e.,

min
i∈Vf

[vF ]i −max
i∈Vℓ

[vF ]i > max
i,j∈Vℓ,i>j

|[vFs ]i − [vFs ]j |.

we use the following algorithm to identify the leaders
Algorithm

• Step 1: Measure the agents velocities to an external constant input until steady
state.

• Step 2: Calculate the relative tempo and compute the Fiedler vector.
• Step 3: Sort the Fiedler vector vFs

= sort(vF ) where [vFs
]i ≤ [vFs

]i+1.
• Step 4: Calculate the number of leaders nl with

nl = |Vℓ| = arg max
j∈{1,2,3,··· ,n−1}

{[vFs
]j+1 − [vFs

]j}.

• Step 5: The leaders are corresponding to the smallest nl components in vFs .
32



example

In this example, we demonstrate a 2D scenario. We consider a system with n = 10

agents, where {2, 5, 8} ∈ VL. Recall the protocol dynamics:

ẋi =

{∑
j∼i(xj − xi) + (uex

i − xi), i ∈ Vℓ,∑
j∼i(xj − xi), i ∈ Vf .

The external input provided to the leaders is

u =
[
40 35 48 44 16 45

]T
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example cont.

The grounded Laplacian and the Fiedler vector is given by:

LB =



3 0 −1 −1 0 −1 0 0 0 0

0 2 0 0 0 0 0 0 0 −1

−1 0 5 −1 0 −1 0 0 −1 −1

−1 0 −1 5 −1 0 −1 0 −1 0

0 0 0 −1 2 0 0 0 0 0

−1 0 −1 0 0 4 0 −1 −1 0

0 0 0 −1 0 0 2 0 0 −1

0 0 0 0 0 −1 0 2 0 0

0 0 −1 −1 0 −1 0 0 3 0

0 −1 −1 0 0 0 −1 0 0 3



, vF =



0.37

0.18
0.37

0.35

0.19
0.34

0.37

0.19
0.37

0.32


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example cont.

Next, we verify the conditions outlined in the Theorem:

• Leaders are not connected to each other.
• Degree distribution condition.
• dF is sufficient large.

Since all conditions are satisfied, the leaders can be identified using the suggested
algorithm.
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example cont.

I. Measure the velocities and calculate the relative tempo:

τ =
[
0.37 0.18 0.37 0.35 0.19 0.34 0.37 0.19 0.37 0.32

]T
We note that this is equal to the Fiedler vector vF .
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example cont.

II. Identify Leaders

• Sort the Fiedler vector vFs
= sort(vF ) where [vFs

]i ≤ [vFs
]i+1:

vFs =
[
0.18 0.19 0.19 0.32 0.34 0.35 0.37 0.37 0.37 0.37

]T
Index =

[
2 5 8 10 6 4 7 9 3 1

]
T

• Calculate the number of leaders nl with

nl = |Vℓ = arg max
j∈{1,2,3,··· ,n−1}

{[vFs
]j+1 − [vFs

]j} = 3.

• The leaders correspond to the smallest nl components in vFs
:

Vℓ = {2, 5, 8}
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conclusion

• Certain graph structures are more likely to be associated with separation in the
components of the Fiedler vector.

• Such graphs can facilitate leader identification through external observation in
scenarios with constant external input.
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future work

• Investigate scenarios involving non-constant external input signals.
• Develop methods for identifying the complete network structure.
• Explore additional graph topologies related to component separation in the Fiedler

vector.
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