ON STRUCTURAL RANK AND NETWORK RESILIENCE

Daniel Zelazo in collaboration with Xudong Chen (University of Colorado - Boulder) M. Ali Belabbas (University of Illinois at Urbana-Champagne)

July 5, 2021 IAAC³ - Technion

OPEN MULTI-AGENT SYSTEMS

network of self-driving cars

smart-grid with EV integration

OPEN MULTI-AGENT SYSTEMS

network of self-driving cars

smart-grid with EV integration

OPEN MULTI-AGENT SYSTEMS

network of self-driving cars

 Σ_1 Σ_n Π_1 Π_m

smart-grid with EV integration

Resillience and robustness of network systems required for safe operations

Components of a networked system

- agents dynamical systems that should interact with eachother to achieve some goal
- network communication and sensing infrastructure for sharing of information
- controllers computational nodes that process information from the network to make decisions for each agent

Network Interconnection

 Network is encoded by a matrix $M \in \mathbb{R}^{n \times m}$

 $\blacktriangleright [M]_{ij} = \begin{cases} \star, & \text{controller } j \text{ access to agent } i \\ 0, & \text{otherwise} \end{cases}$

 (Σ, Π, M)

NETWORKED DYNAMIC SYSTEMS

Network Interconnection

Network is encoded by a matrix $M \in \mathbb{R}^{n \times m}$

 $\blacktriangleright [M]_{ij} = \begin{cases} \star, & \text{controller } j \text{ access to agent } i \\ 0, & \text{otherwise} \end{cases}$

A Stability Result

The stability of the dynamic network (Σ, Π, M) can be guaranteed for outputstrictly passive agent dynamics Σ_i and passive controller dynamics Π_e . [Corollary of B&Z 2014]

stability result requires a passivity property to hold

- stability result requires a passivity property to hold
- what if this cannot be guaranteed?

PASSIVATION BY THE NETWORK

- stability result requires a passivity property to hold
- what if this cannot be guaranteed?

- ρ_i is passivity index of each agent
 - $\rho_i = 0$: passive
 - $\circ \ \rho_i > 0$: strictly output-passive
 - $\rho_i < 0$: output passive short

•
$$R = \operatorname{diag}(\rho_1, \ldots, \rho_n)$$

Lemma

Assume that $\rho_i < 0$ for at least one agent. If $R + M \operatorname{diag}(\beta) M^T$ is positive definite, then $\tilde{\Sigma} : \tilde{u}(t) \mapsto \tilde{y}(t)$, is output-strict passive with respect to any steady-state input-output pair. Furthermore, there exists scalars β_i , $i = 1, \ldots, m$ such that $R + M \operatorname{diag}(\beta) M^T > 0$ if and only if $x^T Rx > 0$ for any $x \in \operatorname{ker}(M^T)$.

PASSIVATION BY THE NETWORK

- if M^TM is full-rank, we can always passivy the systems with a constant network gain β
- stability of network is guaranteed for any passive controllers and correct gain β

PASSIVATION BY THE NETWORK

- if M^TM is full-rank, we can always passivy the systems with a constant network gain β
- stability of network is guaranteed for any passive controllers and correct gain β

A Question

For a given network matrix M, how many of its entries can be changed to a 0 before MM^T loses rank?

A sparsity pattern $S(n,m) \subset \mathbb{R}^{n \times m}$ is a vector subspace that admits a basis containing only standard basis basis matrices E_{ij}

- ► $E(S) = \{(i, j) \mid S \in S(n, m) \text{ has } [S]_{ij} = \star\}$
- $\blacktriangleright \dim(\mathcal{S}(n,m)) = |E(\mathcal{S})|$

$$\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & 0 & 0 \end{bmatrix} = \star E_{11} + \star E_{22} + \star E_{23}$$

A sparsity pattern $S(n,m) \subset \mathbb{R}^{n \times m}$ is a vector subspace that admits a basis containing only standard basis basis matrices E_{ij}

►
$$E(S) = \{(i, j) \mid S \in S(n, m) \text{ has } [S]_{ij} = \star\}$$

$$\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & 0 & 0 \end{bmatrix} = \star E_{11} + \star E_{22} + \star E_{23}$$

 $\blacktriangleright \dim(\mathcal{S}(n,m)) = |E(\mathcal{S})|$

The rank of a sparsity pattern S(n, m), denoted $\operatorname{rk} S(n, m)$, is the maximal value of the ranks of matrices in S(n, m).

RANK RESILIENCE

• Given patterns S(n,m) and S'(n,m), we write $S(n,m) \succeq S'(n,m)$ if $E(S) \subseteq E(S')$

Rank Resilience

Given positive integers n and m with $m \ge n$, a sparsity pattern S(n,m) is *k*-resilient, for $0 \le k \le |E(S)|$, if the following hold:

- i) All patterns $S' \preceq S$ with $|E(S')| \ge |E(S)| k$ are of rank n
- ii) There exists a $S' \preceq S$ with |E(S')| = |E(S)| k 1 whose rank is less than n.

We say that S is strongly *k*-resilient if it contains a direct sum of (k+1), but not (k+2) patterns each of which is 0-resilient.

- $\blacktriangleright \ \mathrm{rsl}(\mathcal{S})$ denotes degree of resilience of \mathcal{S}
- $\blacktriangleright \ \mathrm{s-rsl}(\mathcal{S})$ denotes degree of strong resilience

- Po: Given a sparsity pattern S(n,m), what is its degree of (strong) resilience?
- P1: Given a sparsity pattern S(n, m), what is the least number of
 *-entries one should add to obtain a degree of (strong) resilience k?
 This can be expressed as a solution to the following problem,

$$\min |E(\mathcal{S}')| \text{ s.t. } \mathcal{S}' \succeq \mathcal{S} \text{ with } (s-) \operatorname{rsl}(\mathcal{S}') = k.$$
(1)

P2: Given a sparsity pattern S, what is the largest degree of (strong) resilience we can achieve by adding $p \star$ -entries? This is equivalent to the following problem,

$$\max (s-) \operatorname{rsl}(\mathcal{S}') \text{ s.t. } \mathcal{S}' \succeq \mathcal{S} \text{ with } |E(\mathcal{S}')| = |E(\mathcal{S})| + p.$$
(2)

BIPARTITE GRAPHS AND SPARSITY PATTERNS

Every sparsity pattern can be associated with a bipartite graph

• if *ij*th entry of S is a \star , then (α_i, β_j) is an edge

•
$$G(n,m) = (V_{\alpha}, V_{\beta}, E)$$

- $\circ \alpha_1, \ldots, \alpha_n$ are left-nodes
- β_1, \ldots, β_m are right-nodes

Perfect Matchings

If n = m, a perfect matching P in G(n, n) is a set of n edges such that each node of G(n, n) is incident to exactly one of these n edges.

Left- and Right-Perfect Matchings

A bipartite graph $G(n,m) = (V_{\alpha} \cup V_{\beta}, E)$, with $m \ge n$, admits a *left-perfect matching* if there exist n distinct right nodes $\beta_{i_1}, \ldots, \beta_{i_n}$ such that the subgraph G'(n,n) induced by $V_{\alpha} \cup \{\beta_{i_1}, \ldots, \beta_{i_n}\}$ has a perfect matching. Similarly, one can define *right-perfect matching* for the case $n \ge m$.

Lemma

- i) A sparsity pattern S(n, m) is of rank n if and only if its associated bipartite graph G(n, m) admits a left-perfect matching.
- ii) A bipartite graph G(n,m) is k-resilient if and only if for any subset $E' \subset E$ with |E'| = k, $G'(n,m) = (V_{\alpha} \cup V_{\beta}, E E')$ contains a left-perfect matching.
- iii) A bipartite graph G(n,m) is strongly k-resilient if and only if it has exactly (k + 1) disjoint left-perfect matchings.

ON k- AND STRONG k-RESILIENCE

- graph in (a) contains 3 distinct perfect matchings (b,c,d)
- there is no common edge in the perfect matchings
- ► since deg(α_i) = deg(β_i) = 2 for i = 1, 3, 4, the graph in (a) is 1-resilient
- since the pairwise intersections of the matchings is not empty, it is not strongly 1-resilient

equivalent to a corresponding max-flow problem

- add two new nodes to G(n,m) source s and sink t
- ▶ add edges $\{s\alpha_i, \beta_j t \mid 1 \le i \le n, 1 \le j \le m\}$
- ▶ assign capacities to each edge (ℓ to new edges, 1 to edges in G(n, m))
- ► F_{ℓ} are flows on $\bar{G}(n,m)$: for $f \in F_{\ell}$, $|f| = \sum_{\beta_j \in V_{\beta}} f(\beta_j t)$

equivalent to a corresponding max-flow problem

Definition

Given the digraph $\overline{G}(n,m)$ and a nonnegative integer ℓ , we say that a flow $f \in F_{\ell}$ on $\overline{G}(n,m)$ is saturated if $|f| = n\ell$. We denote by \overline{F}_{ℓ} the set of saturated flows on $\overline{G}(n,m)$.

equivalent to a corresponding max-flow problem

- saturated flows are always max flows
- saturated flows are always integer (inegrality theorem)
- ► Given a flow $f \in \overline{F}_{\ell}$ on \overline{G} , we define the subgraph of G(n, m) induced by the flow f as follows:

 $G_f(n,m) := (V_\alpha \cup V_\beta, E_f) \text{ with } E_f := \{(\alpha_i, \beta_j) \in E \mid f(\alpha_i \beta_j) \neq 0\}.$

equivalent to a corresponding max-flow problem

Theorem

- 1. If $\bar{F}_1 = \varnothing$, then there does not exist a left-perfect matching in G(n,m).
- 2. If $\overline{F}_1 \neq \emptyset$, then, the degree of strong resilience of G(n,m) is given by s-rsl $G(n,m) = \max \{\ell \ge 1 \mid \overline{F}_\ell \neq \emptyset\} - 1.$

EXAMPLE

G(4,5) is strongly 1-resilient

- shows saturated flows f_{ℓ} for $\ell = 1$ in (a) and $\ell = 2$ in (b)
- edges with non-zero values are in blue
- ► for $\ell = 2$, two disjoint left-perfect matchings are $\{(\alpha_1, \beta_1), (\alpha_2, \beta_4), (\alpha_3, \beta_2), (\alpha_4, \beta_5)\}$ and $\{(\alpha_1, \beta_2), (\alpha_2, \beta_1), (\alpha_3, \beta_3), (\alpha_4, \beta_4)\}$

- structural rank and rank resilience provides a new way to think of network robustness
- structural rank intimately related to perfect matchings in bipartite graphs
- max-flow algorithms provide constructive approach to determine rank resilient properties
- a contribution to the canon of structural control theory (controlability, stabilty)

ACKNOWLEDGEMENTS

Xudong Chen University of Colorado - Boulder

M. Ali Belabbas University of Illinois Urbana - Champaign