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Resillience and robustness of
network systems required for
safe operations 1



networked dynamic systems

(Σ,Π,G)

Components of a networked system
I agents - dynamical systems that should

interact with eachother to achieve
some goal

I network - communication and sensing
infrastructure for sharing of
information

I controllers - computational nodes that
process information from the network
to make decisions for each agent
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networked dynamic systems

(Σ,Π,M)

Network Interconnection
I Network is encoded by a matrix
M ∈ Rn×m

I [M ]ij =

{
?, controller j access to agent i
0, otherwise
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networked dynamic systems

(Σ,Π,M)

Network Interconnection
I Network is encoded by a matrix
M ∈ Rn×m

I [M ]ij =

{
?, controller j access to agent i
0, otherwise

A Stability Result

The stability of the dynamic network
(Σ,Π,M) can be guaranteed for output-
strictly passive agent dynamics Σi and
passive controller dynamics Πe.
[Corollary of B&Z 2014]
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passivation by the network

I stability result requires a passivity property to hold

I what if this cannot be guaranteed?
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passivation by the network

I stability result requires a passivity property to hold
I what if this cannot be guaranteed?

I ρi is passivity index of each agent
◦ ρi = 0 : passive
◦ ρi > 0 : strictly output-passive
◦ ρi < 0 : output passive short

I R = diag(ρ1, . . . , ρn)

Lemma

Assume that ρi < 0 for at least one agent. If R + Mdiag(β)MT is
positive definite, then Σ̃ : ũ(t) 7→ ỹ(t), is output-strict passive with
respect to any steady-state input-output pair. Furthermore, there ex-
ists scalars βi, i = 1, . . . ,m such thatR+Mdiag(β)MT > 0 if and only
if xTRx > 0 for any x ∈ ker(MT ). 3



passivation by the network

I if MTM is full-rank, we can
always passivy the systems with
a constant network gain β

I stability of network is
guaranteed for any passive
controllers and correct gain β

A Question

For a given network matrixM , how many of its entries can be changed
to a 0 before MMT loses rank?
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rank of sparsity patterns

A sparsity pattern S(n,m) ⊂ Rn×m is
a vector subspace that admits a
basis containing only standard basis
basis matrices Eij

I E(S) = {(i, j) | S ∈
S(n,m) has [S]ij = ?}

I dim(S(n,m)) = |E(S)|

? 0 0

0 ? ?

0 0 0

 = ?E11 + ?E22 + ?E23

The rank of a sparsity pattern S(n,m), denoted rkS(n,m), is the max-
imal value of the ranks of matrices in S(n,m).
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rank resilience

I Given patterns S(n,m) and S ′(n,m), we write S(n,m) � S ′(n,m) if
E(S) ⊆ E(S ′)

Rank Resilience

Given positive integers n andm withm ≥ n, a sparsity pattern S(n,m)

is k-resilient, for 0 ≤ k ≤ |E(S)|, if the following hold:

i) All patterns S ′ � S with |E(S ′)| ≥ |E(S)| − k are of rank n
ii) There exists a S ′ � S with |E(S ′)| = |E(S)| − k − 1 whose rank is

less than n.

We say that S is strongly k-resilient if it contains a direct sum of (k+1),
but not (k + 2) patterns each of which is 0-resilient.

I rsl(S) denotes degree of resilience of S
I s− rsl(S) denotes degree of strong resilience
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rank resilience of sparsity patterns

P0: Given a sparsity pattern S(n,m), what is its degree of (strong)
resilience?

P1: Given a sparsity pattern S(n,m), what is the least number of
?-entries one should add to obtain a degree of (strong) resilience k?
This can be expressed as a solution to the following problem,

min |E(S ′)| s.t. S ′ � S with (s-)rsl(S ′) = k. (1)

P2: Given a sparsity pattern S , what is the largest degree of (strong)
resilience we can achieve by adding p ?-entries? This is equivalent to
the following problem,

max (s-)rsl(S ′) s.t. S ′ � S with |E(S ′)| = |E(S)|+ p. (2)

7



bipartite graphs and sparsity patterns

Every sparsity pattern can be associated with a bipartite graph

? ? 0 0 0

? ? 0 ? 0

0 ? ? ? 0

0 0 0 ? ?




(a)

α1

α2

α3

α4

β1

β2

β3

β4

β5

(b)

I if ijth entry of S is a ?, then (αi, βj) is an edge
I G(n,m) = (Vα, Vβ , E)

◦ α1, . . . , αn are left-nodes
◦ β1, . . . , βm are right-nodes
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perfect matchings in bipartite graphs

Perfect Matchings

If n = m, a perfect matching P in G(n, n) is a set of n edges such that
each node of G(n, n) is incident to exactly one of these n edges.

α1

α2

α3

α4

β1

β2

β3

β4
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perfect matchings in bipartite graphs

Left- and Right-Perfect Matchings

A bipartite graph G(n,m) = (Vα ∪ Vβ , E), with m ≥ n, admits a left-
perfect matching if there exist n distinct right nodes βi1 , . . . , βin such
that the subgraph G′(n, n) induced by Vα ∪ {βi1 , . . . , βin} has a per-
fect matching. Similarly, one can define right-perfect matching for
the case n ≥ m.

α1

α2

α3

α4

β1

β2

β3

β4

β5
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rank resilience and perfect matchings

Lemma

i) A sparsity pattern S(n,m) is of rank n if and only if its associated
bipartite graph G(n,m) admits a left-perfect matching.

ii) A bipartite graph G(n,m) is k-resilient if and only if for any
subset E′ ⊂ E with |E′| = k, G′(n,m) = (Vα ∪ Vβ , E − E′)
contains a left-perfect matching.

iii) A bipartite graph G(n,m) is strongly k-resilient if and only if it
has exactly (k + 1) disjoint left-perfect matchings.
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on k- and strong k-resilience

I graph in (a) contains 3 distinct
perfect matchings (b,c,d)

I there is no common edge in the
perfect matchings

I since deg(αi) = deg(βi) = 2 for
i = 1, 3, 4, the graph in (a) is
1-resilient

I since the pairwise intersections
of the matchings is not empty, it
is not strongly 1-resilient
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how to determine the rank resilience (p0)

equivalent to a corresponding max-flow problem

I add two new nodes to G(n,m) - source s and sink t
I add edges {sαi, βjt | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
I assign capacities to each edge (` to new edges, 1 to edges in G(n,m))
I F` are flows on Ḡ(n,m): for f ∈ F`, |f | =

∑
βj∈Vβ f(βjt)
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how to determine the rank resilience (p0)

equivalent to a corresponding max-flow problem

Definition

Given the digraph Ḡ(n,m) and a nonnegative integer `, we say that a
flow f ∈ F` on Ḡ(n,m) is saturated if |f | = n`. We denote by F̄` the
set of saturated flows on Ḡ(n,m).
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how to determine the rank resilience (p0)

equivalent to a corresponding max-flow problem

I saturated flows are always max flows
I saturated flows are always integer (inegrality theorem)
I Given a flow f ∈ F̄` on Ḡ, we define the subgraph of G(n,m) induced

by the flow f as follows:

Gf (n,m) := (Vα ∪ Vβ , Ef ) with Ef := {(αi, βj) ∈ E | f(αiβj) 6= 0}.
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how to determine the rank resilience (p0)

equivalent to a corresponding max-flow problem

Theorem

1. If F̄1 = ∅, then there does not exist a left-perfect matching in
G(n,m).

2. If F̄1 6= ∅, then, the degree of strong resilience of G(n,m) is
given by

s-rslG(n,m) = max
{
` ≥ 1 | F̄` 6= ∅

}
− 1.
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example

G(4, 5) is strongly 1-resilient
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(d)

I shows saturated flows f` for ` = 1 in (a) and ` = 2 in (b)
I edges with non-zero values are in blue
I for ` = 2, two disjoint left-perfect matchings are
{(α1, β1), (α2, β4), (α3, β2), (α4, β5)} and
{(α1, β2), (α2, β1), (α3, β3), (α4, β4)} 13



concluding remarks

I structural rank and rank resilience provides a new way to think of
network robustness

I structural rank intimately related to perfect matchings in bipartite
graphs

I max-flow algorithms provide constructive approach to determine
rank resilient properties

I a contribution to the canon of structural control theory
(controlability, stabilty)
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