on structural rank and network resilience

Daniel Zelazo in collaboration with Xudong Chen (University of Colorado - Boulder) M. Ali Belabbas (University of Illinois at Urbana-Champagne)

July 5, 2021 $IABC³$ - Technion

open multi-agent systems

network of self-driving cars

smart-grid with EV integration

open multi-agent systems

network of self-driving cars

smart-grid with EV integration

open multi-agent systems

network of self-driving cars

 Σ_1 Σ_n Π_1 Π_m

smart-grid with EV integration

Resillience and robustness of network systems required for safe operations

Components of a networked system

- \triangleright agents dynamical systems that should interact with eachother to achieve some goal
- \triangleright network communication and sensing infrastructure for sharing of information
- \triangleright controllers computational nodes that process information from the network to make decisions for each agent

Network Interconnection

 \blacktriangleright $[M]_{ij} =$

 \triangleright Network is encoded by a matrix $M \in \mathbb{R}^{n \times m}$

> $\int \star$, controller *j* access to agent *i* 0, otherwise

 (Σ, Π, M)

networked dynamic systems

Network Interconnection

 \triangleright Network is encoded by a matrix

 $M \in \mathbb{R}^{n \times m}$

 $\int \star$, controller *j* access to agent *i*

0, otherwise

A Stability Result

 \blacktriangleright $[M]_{ij} =$

The stability of the dynamic network (Σ, Π, M) can be guaranteed for outputstrictly passive agent dynamics Σ_i and passive controller dynamics Π_e . [Corollary of B&Z 2014]

 \triangleright stability result requires a passivity property to hold

- \triangleright stability result requires a passivity property to hold
- \triangleright what if this cannot be guaranteed?

passivation by the network

- \triangleright stability result requires a passivity property to hold
- \triangleright what if this cannot be guaranteed?

- \blacktriangleright ρ_i is passivity index of each agent
	- $\rho_i = 0$: passive
	- $\rho_i > 0$: strictly output-passive
	- \circ ρ_i < 0 : output passive short

$$
\blacktriangleright R = \text{diag}(\rho_1, \ldots, \rho_n)
$$

Lemma

Assume that $\rho_i\ <\ 0$ for at least one agent. If $R\ +\ M\mathrm{diag}(\beta)M^T$ is positive definite, then $\Sigma : \tilde{u}(t) \mapsto \tilde{y}(t)$, is output-strict passive with respect to any steady-state input-output pair. Furthermore, there exists scalars $\beta_i,\,i=1,\ldots,m$ such that $R+M\mathrm{diag}(\beta)M^T>0$ if and only if $x^TRx>0$ for any $x\in\ker(M^T)$). $\qquad \qquad$ 3

passivation by the network

- \blacktriangleright if M^TM is full-rank, we can always passivy the systems with a constant network gain β
- \triangleright stability of network is guaranteed for any passive controllers and correct gain β

passivation by the network

- \blacktriangleright if M^TM is full-rank, we can always passivy the systems with a constant network gain β
- \triangleright stability of network is guaranteed for any passive controllers and correct gain β

A Question

For a given network matrix M , how many of its entries can be changed to a 0 before MM^T loses rank?

A sparsity pattern $\mathcal{S}(n,m) \subset \mathbb{R}^{n \times m}$ is a vector subspace that admits a basis containing only standard basis basis matrices E_{ij}

- \blacktriangleright $E(\mathcal{S}) = \{(i, j) | S \in$ $S(n, m)$ has $[S]_{ij} = \star\}$
- \blacktriangleright dim $(\mathcal{S}(n, m)) = |E(\mathcal{S})|$

$$
\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & 0 & 0 \end{bmatrix} = \star E_{11} + \star E_{22} + \star E_{23}
$$

A sparsity pattern $\mathcal{S}(n,m) \subset \mathbb{R}^{n \times m}$ is a vector subspace that admits a basis containing only standard basis basis matrices E_{ij}

$$
\triangleright E(S) = \{(i, j) | S \in
$$

$$
\mathcal{S}(n, m) \text{ has } [S]_{ij} = \star\}
$$

$$
\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & 0 & 0 \end{bmatrix} = \star E_{11} + \star E_{22} + \star E_{23}
$$

 \blacktriangleright dim $(\mathcal{S}(n, m)) = |E(\mathcal{S})|$

The rank of a sparsity pattern $\mathcal{S}(n,m)$, denoted $rk \mathcal{S}(n,m)$, is the maximal value of the ranks of matrices in $\mathcal{S}(n,m)$.

rank resilience

 \blacktriangleright Given patterns $\mathcal{S}(n,m)$ and $\mathcal{S}'(n,m)$, we write $\mathcal{S}(n,m) \succeq \mathcal{S}'(n,m)$ if $E(S) \subseteq E(S')$

Rank Resilience

Given positive integers n and m with $m \ge n$, a sparsity pattern $\mathcal{S}(n,m)$ is k-resilient, for $0 \le k \le |E(S)|$, if the following hold:

- i) All patterns $\mathcal{S}' \preceq \mathcal{S}$ with $|E(\mathcal{S}')| \geq |E(\mathcal{S})| k$ are of rank n
- ii) There exists a $\mathcal{S}' \preceq \mathcal{S}$ with $|E(\mathcal{S}')| = |E(\mathcal{S})| k 1$ whose rank is less than n .

We say that S is strongly k-resilient if it contains a direct sum of $(k+1)$, but not $(k+2)$ patterns each of which is 0-resilient.

- \triangleright rsl(S) denotes degree of resilience of S
- \triangleright s rsl(S) denotes degree of strong resilience
- Po: Given a sparsity pattern $S(n, m)$, what is its degree of (strong) resilience?
- P1: Given a sparsity pattern $S(n, m)$, what is the least number of \star -entries one should add to obtain a degree of (strong) resilience k? This can be expressed as a solution to the following problem,

$$
\min |E(\mathcal{S}')| \text{ s.t. } \mathcal{S}' \succeq \mathcal{S} \text{ with } (\text{s-})\text{rsl}(\mathcal{S}') = k. \tag{1}
$$

P2: Given a sparsity pattern S, what is the largest degree of (strong) resilience we can achieve by adding $p \star$ -entries? This is equivalent to the following problem,

$$
\max(s\text{-}\mathrm{rsl}(\mathcal{S}') \text{ s.t. } \mathcal{S}' \succeq \mathcal{S} \text{ with } |E(\mathcal{S}')| = |E(\mathcal{S})| + p. \tag{2}
$$

bipartite graphs and sparsity patterns

Every sparsity pattern can be associated with a bipartite graph

 \blacktriangleright if ij th entry of $\mathcal S$ is a \star , then (α_i, β_j) is an edge

$$
\blacktriangleright G(n,m) = (V_{\alpha}, V_{\beta}, E)
$$

- \circ $\alpha_1, \ldots, \alpha_n$ are left-nodes
- \circ β_1, \ldots, β_m are right-nodes

Perfect Matchings

If $n = m$, a perfect matching P in $G(n, n)$ is a set of n edges such that each node of $G(n, n)$ is incident to exactly one of these n edges.

Left- and Right-Perfect Matchings

A bipartite graph $G(n, m) = (V_{\alpha} \cup V_{\beta}, E)$, with $m \geq n$, admits a *left*- $\mathsf{perfect}\text{ }matching$ if there exist n distinct right nodes $\beta_{i_1},\ldots,\beta_{i_n}$ such that the subgraph $G'(n,n)$ induced by $V_{\alpha}\cup\{\beta_{i_1},\ldots,\beta_{i_n}\}$ has a perfect matching. Similarly, one can define *right-perfect matching* for the case $n \geq m$.

Lemma

- i) A sparsity pattern $S(n, m)$ is of rank n if and only if its associated bipartite graph $G(n, m)$ admits a left-perfect matching.
- ii) A bipartite graph $G(n, m)$ is k-resilient if and only if for *any* subset $E' \subset E$ with $|E'| = k$, $G'(n, m) = (V_\alpha \cup V_\beta, E - E')$ contains a left-perfect matching.
- iii) A bipartite graph $G(n, m)$ is strongly k-resilient if and only if it has exactly $(k + 1)$ *disjoint* left-perfect matchings.

- \triangleright graph in (a) contains 3 distinct perfect matchings (b,c,d)
- \blacktriangleright there is no common edge in the perfect matchings
- \blacktriangleright since $\deg(\alpha_i) = \deg(\beta_i) = 2$ for $i = 1, 3, 4$, the graph in (a) is 1-resilient
- \triangleright since the pairwise intersections of the matchings is not empty, it is not strongly 1-resilient

equivalent to a corresponding max-flow problem

- \triangleright add two new nodes to $G(n, m)$ source s and sink t
- \blacktriangleright add edges $\{s\alpha_i,\beta_jt \mid 1 \leq i \leq n, 1 \leq j \leq m\}$
- **E** assign capacities to each edge (ℓ to new edges, 1 to edges in $G(n, m)$)
- \blacktriangleright F_{ℓ} are flows on $\bar{G}(n, m)$: for $f \in F_{\ell}$, $|f| = \sum_{\beta_j \in V_{\beta}} f(\beta_j t)$

equivalent to a corresponding max-flow problem

Definition

Given the digraph $\bar{G}(n, m)$ and a nonnegative integer ℓ , we say that a flow $f \in F_\ell$ on $\bar{G}(n,m)$ is saturated if $|f|=n\ell.$ We denote by \bar{F}_ℓ the set of saturated flows on $\bar{G}(n, m)$.

equivalent to a corresponding max-flow problem

- \triangleright saturated flows are always max flows
- \triangleright saturated flows are always integer (inegrality theorem)
- $\blacktriangleright\,$ Given a flow $f\in\bar{F}_\ell$ on \bar{G} , we define the subgraph of $G(n,m)$ induced *by the flow* f as follows:

 $G_f(n,m) := (V_\alpha \cup V_\beta, E_f)$ with $E_f := \{(\alpha_i, \beta_j) \in E \mid f(\alpha_i \beta_j) \neq 0\}.$

equivalent to a corresponding max-flow problem

Theorem

- 1. If $\bar{F}_1=\varnothing$, then there does not exist a left-perfect matching in $G(n, m)$.
- 2. If $\bar{F}_1\neq\varnothing$, then, the degree of strong resilience of $G(n,m)$ is given by

s-rsl $G(n, m) = \max \{ \ell \geq 1 \mid \overline{F}_{\ell} \neq \emptyset \} - 1.$

example

$G(4, 5)$ is strongly 1-resilient

- ightharpoonup shows saturated flows f_ℓ for $\ell = 1$ in (a) and $\ell = 2$ in (b)
- \blacktriangleright edges with non-zero values are in blue
- \triangleright for $\ell = 2$, two disjoint left-perfect matchings are $\{(\alpha_1, \beta_1), (\alpha_2, \beta_4), (\alpha_3, \beta_2), (\alpha_4, \beta_5)\}\$ and $\{(\alpha_1,\beta_2),(\alpha_2,\beta_1),(\alpha_3,\beta_3),(\alpha_4,\beta_4)\}\$
- \triangleright structural rank and rank resilience provides a new way to think of network robustness
- \triangleright structural rank intimately related to perfect matchings in bipartite graphs
- \triangleright max-flow algorithms provide constructive approach to determine rank resilient properties
- \triangleright a contribution to the canon of structural control theory (controlability, stabilty)

acknowledgements

Xudong Chen University of Colorado - Boulder

M. Ali Belabbas University of Illinois Urbana - Champaign