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NETWORKED DYNAMIC SYSTEMS

Components of a networked system

» agents - dynamical systems that should
interact with eachother to achieve
some goal

» network - communication and sensing
infrastructure for sharing of
information

» controllers - computational nodes that
Control process information from the network
(2,11, G) to make decisions for each agent
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i
u(t pY t
O—ﬁ‘ J = Network Interconnection
[=] » Network is encoded by a matrix
‘M‘ ‘MT‘ M e R™™
I, %, controller j access to agent 4
K0 ﬂ £ > (Ml = {0, otherwise




NETWORKED DYNAMIC SYSTEMS

Network Interconnection

» Network is encoded by a matrix

3 M e Rnxm
O_uﬁ~ ﬂ . Y0 . (M — %, controller j access to agent ¢
lz_ Ml = 0, otherwise
‘ M ‘ ‘MT‘ A Stability Result
I, ( )
u® [ L@ The stability of the dynamic network
- (%, 11, M) can be guaranteed for output-
[ strictly passive agent dynamics ¥; and
(5,11, M) passive controller dynamics II,.
L [Corollary of B&Z 2014] )
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PASSIVATION BY THE NETWORK

» stability result requires a passivity property to hold
» what if this cannot be guaranteed?

s 5 ‘ > p; is passivity index of each agent

i w0 1m0 ) o pi = 0: passive

| [ o pi > 0: strictly output-passive
o p; < 0:output passive short
A .
> R =diag(p1,...,pn)

Assume that p; < 0 for at least one agent. If R + Mdiag(3)M7T is
positive definite, then ¥ : @(t) — §(t), is output-strict passive with
respect to any steady-state input-output pair. Furthermore, there ex-
ists scalars 3;, i = 1,...,m such that R+ Mdiag(8)M™T > 0if and only
if 27 Rx > 0 for any = € ker(M7T). 3
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PASSIVATION BY THE NETWORK

z . |
— M B PO » if M7 M is full-rank, we can
[=] always passivy the systems with
D a constant network gain 3
: . .
5 » stability of network is
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e guaranteed for any passive
) ”‘ 0 controllers and correct gain 8

A Question

For a given network matrix M, how many of its entries can be changed
to a 0 before M M7 loses rank?
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The rank of a sparsity pattern S(n,m), denoted rk S(n, m), is the max-
imal value of the ranks of matrices in S(n, m).




RANK RESILIENCE

» Given patterns S(n,m) and §’(n, m), we write S(n,m) = S'(n, m) if
E(S) C E(S)

Rank Resilience

Given positive integers n and m with m > n, a sparsity pattern S(n, m)
is i-resilient, for 0 < k < |E(S), if the following hold:

i) All patterns 8’ < S with |E(S’)| > |E(S)| — k are of rank n
ii) There exists a &' < S with |[E(S")| = |E(S)| — k — 1 whose rank is
less than n.

We say that Sis strongly L-resilientif it contains a direct sum of (k+1),
but not (k + 2) patterns each of which is 0-resilient.

» 1sl(S) denotes degree of resilience of S
» s —rsl(S) denotes degree of strong resilience



RANK RESILIENCE OF SPARSITY PATTERNS

Po: Given a sparsity pattern S(n,m), what is its degree of (strong)
resilience?

P1: Given a sparsity pattern S(n,m), what is the least number of
x-entries one should add to obtain a degree of (strong) resilience k?
This can be expressed as a solution to the following problem,

min |E(S")] s.t. 8’ = S with (s-)rsl(S') = k. (1)

P2: Given a sparsity pattern S, what is the largest degree of (strong)
resilience we can achieve by adding p x-entries? This is equivalent to
the following problem,

max (s-)rsl(S8’) s.t. 8’ = S with |E(S)| = |E(S)| + p. (2)



BIPARTITE GRAPHS AND SPARSITY PATTERNS

Every sparsity pattern can be associated with a bipartite graph
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» ifijth entry of S is a , then («;, 3;) is an edge
> G(n,m) = (V,,V3,E)

o ai,...,ay are left-nodes

o Bi,...,Bm are right-nodes



PERFECT MATCHINGS IN BIPARTITE GRAPHS

Perfect Matchings

If n =m, a perfect matching P in G(n,n) is a set of n edges such that
each node of G(n,n) is incident to exactly one of these n edges.

a1 e e 31
a2 e cﬁ2
as e ° 33



PERFECT MATCHINGS IN BIPARTITE GRAPHS

Left- and Right-Perfect Matchings

A bipartite graph G(n,m) = (Vo U V3, E), with m > n, admits a left-
perfect matching if there exist n distinct right nodes ;,,. .., 3;, such
that the subgraph G’(n,n) induced by V,, U {8;,,..., 5, } has a per-
fect matching. Similarly, one can define right-perfect matching for
the case n > m.
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RANK RESILIENCE AND PERFECT MATCHINGS

i) A sparsity pattern S(n,m) is of rank n if and only if its associated
bipartite graph G(n,m) admits a left-perfect matching.

ii) A bipartite graph G(n,m) is k-resilient if and only if for any
subset E' ¢ E with |[E'| =k, G'(n,m) = (V, UV, E — E')
contains a left-perfect matching.

iii) A bipartite graph G(n,m) is strongly k-resilient if and only if it
has exactly (k + 1) disjoint left-perfect matchings.




ON k- AND STRONG k-RESILIENCE

» graph in (a) contains 3 distinct
erfect matchings (b,c,d
0 ﬂz 9 e . ﬂ2 p . g ( ) X
. , >< » there is no common edge in the
) B perfect matchings

a3 e

o

. [34 a7}

. 3 .
o > since deg(a;) = deg(;) = 2 for

i=1,3,4,the graphin (a)is
* B ! >< A 1-resilient
az . * B2 az . * B2 » since the pairwise intersections
. B3 of the matchings is not empty, it
. By is not strongly 1-resilient
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HOW TO DETERMINE THE RANK RESILIENCE (PO)

equivalent to a corresponding max-flow problem

B B

1
(l. 1/” 01 1 ;
2 ‘ 2 -
s . ¥ s .

add two new nodes to G(n,m) - source s and sink ¢

add edges {so;, Bt |1 <i<n,1<j<m}

assign capacities to each edge (¢ to new edges, 1 to edges in G(n,m))
Fy are flows on G(n,m): for f € Fy, |[f] =35 cy, f(Bjt)

vV v v v
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HOW TO DETERMINE THE RANK RESILIENCE (PO)

equivalent to a corresponding max-flow problem

Given the digraph G(n,m) and a nonnegative integer ¢, we say that a
flow f € F, on G(n,m) is saturated if | f| = nf. We denote by F, the
set of saturated flows on G(n,m).
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HOW TO DETERMINE THE RANK RESILIENCE (PO)

equivalent to a corresponding max-flow problem
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» saturated flows are always max flows
» saturated flows are always integer (inegrality theorem)
» Given a flow f € F, on G, we define the subgraph of G(n,m) induced
by the flow f as follows:
Gf(n,m) = (Va @] VB,Ef) Wlth Ef = {(Oéi,ﬂj) (S E ‘ f(alﬁj) # O}
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HOW TO DETERMINE THE RANK RESILIENCE (PO)

equivalent to a corresponding max-flow problem
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1. If F; = @, then there does not exist a left-perfect matching in
G(n,m).

2. If F| # @, then, the degree of strong resilience of G(n,m) is
given by

stslG(n,m) =max{{>1| F, # 2} — 1.




G(4,5) is strongly 1-resilient

» shows saturated flows f, for £ =1 in(a) and ¢ = 2 in (b)
» edges with non-zero values are in blue
» for ¢ = 2, two disjoint left-perfect matchings are

{(a1, B1), (@2, Ba), (a3, B2), (a4, B5) } and

{(a1, B2), (a2, B1), (a3, B3), (o, Ba) }
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CONCLUDING REMARKS

» structural rank and rank resilience provides a new way to think of
network robustness

» structural rank intimately related to perfect matchings in bipartite
graphs

» max-flow algorithms provide constructive approach to determine
rank resilient properties

v

a contribution to the canon of structural control theory
(controlability, stabilty)
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