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Networked Dynamic Systems
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networks of dynamical systems are one of
the enabling technologies of the future
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Networked Dynamic Systems

dynamics
2;(t) = fi(zi(t), ui(?))

topology Iinteraction
(graph) protocol
@ ui(t) = i(2(t), §)
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Networked Dynamic Systems

dynamics A n a I ys i S

@i(t) = fi(wi(t), ui(t))

- steady-state behavior
\ - interplay between dynamics and graph

- equilibrium configurations

topology inter:lctioln
(graph) protoco

@ S ui(t) = Wi (t), 9)
Synthesis

- design of distributed protocols
- design of “good” network structures
- robust

can we reveal deep results describing the
underlying behavior of these systems?
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in this talk...

B Network Optimization

¢ optimal flow/optimal

potential problems

¢ monotone/cyclically monotone relations

and convex functions

B Passivity-based Cooperative Control

¢ equilibrium indepenc

ent passivity

¢ steady-state input/out

out maps

Duality Theory for Cooperative Control
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Network Optimization

Component Availability Nodes (0, op2)

-
—_"
-

\ :05 cl‘) I
PcEFSG
‘\

(5. p1. ‘\ 10, Ayl (Q, 252 ~— Q<)
Source Node, . )' Source Node,
Component 17— . 0, en) Q_ @ C""‘""""‘” Network Flows and
o o ”\\ b.cd Monotropic Optimization
(St ) : \ (850 )
P o o N "...In fact, the great watershed
G @_ ’ (e Iventory Arcs in optimization isn't between
roducion e P linearity and nonlinearity, but
Demand Nodes Arc label denotes (fived cost, variable cost) for flow on the are COI?VGXIty and nonconvex’ty 1
R. Tyrrell Rockafellar
SIAM Review, 1993
Shortest Path Max-Flow Minimum Cost Flow
Problem Problem Problem

g TECHNION 55M NPVINIMK ADTINY NNYIPaN

Israel Institute

of Technology Faculty of Aerospace Engineering




Network Definitions

A network (graph) is a mathematical
structure used to model pairwise
relations between objects.

G =(V,E)

Incidence Matrix

E(g) — ]R|V|><|E| {+1 if 7 is positive end of &

—1 if 7 is negative end of k
E(Q)Tl =0 0  otherwise
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Network Optimization

Flow “conservation” laws “Cycle” laws
G2
25 C1 @R@@\@
u; »C>/,“3( @/
\
MA Cs /
u+ E(G)u =0 ¢=E"(G)y

“tlow networks” “potential networks”

conversion formula

u'g=—-y'u
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Network Optimization

Optimal Flow Problem Optimal Potential Problem
v E| V| E|
mip{l ZC’idw(uz‘) —|—ZC,flux(Hk) migl ZCfOt(yi) —I—ZC’}ien(Ck)
w i=1 k=1 Y i=1 k=1
st. u+ kEu=0. st. {=FE'y.
u;: divergence (in/out-flow) y:: potential at a node
at a node : o
| . tension (potential difference)
Wi: flow on an edge " across an edge

Dual Optimization Problems
defined over the “same” network

C@pot(yz_) = C;iiv,* = — lélf {Czdzv(ﬁz) — yZﬁz}
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Network Optimization

Max Flow-Min Cut Theorem

The maximum value of an S-T flow is equal to the minimum
capacity over all s-t cuts.

/
\

Elegant illustration of
Duality Theory

_—~
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Networked Dynamic Systems
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Networked Dynamic Systems

dynamics

@ )
e

O_
I - | = A
topology ﬁ\: =N topology
(graph) g G ) (graph)
(H1 )
- Pe )
N -,
interaction
protocol
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Diffusively Coupled Networks

dynamics

@ )
)

o

topology i T ) A topology
E(G E(G)"

(graph) | ( )J § (g)J (graph)

(H1 )

L e |

N -

interaction

protocol
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Diffusively Coupled Networks

Kumamoto Model

I— N i - l : N :
—L —— Traffic Dynamics Model
E(G) E(G)"
\— v, — v,
]‘ m ) Vi = Ky (VL-O —v; + V! Ztaﬂh@j - Pi))
) -
@ Neural Network
CV;, — f(Vza hz) =+ Zimj gij(‘/j o Vt&)
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Duality and Cooperative Control

Optimal Flow Problem
o 2 | A4 . 13 o
O _ @ l rﬂ}f 7;21 Ci (u;) + ]; Ciy (L)
. > st. u+{lu=0.
R -
E(G) EG)"
\_ _J - _J
I @ ) Optimal Potential Problem
@-.. ) V| E|
\ H,n} mm Z Cpot Yz 4+ Z Cten(gk
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The Output Agreement Problem

Plant: Dynamics on nodes Plant
St aa(t) = filw () us(t), wo) "o | o
yi(t) = hi(zi(t), ui(t), w;) @j
Controllers: Dynamics on edges E(G)"
Mg o k() = Ce(t) )
ue(®) = Dunet). (1) o
Interconnection via graph incidence matrix Controller
() = EG)Ty( c .
ontrol Objective
L) = powts '

g, 61 =0
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Necessary Conditions for Output Agreement

Lemma

If the networked system has a steady-state solution,
u, y, then the solution must satisty

ucR(EWG)),y e N(E'(G)) = span {1}

/El) )
: ut) 7E | y®)

e controller must be ) o e output agreement
able to generate the ) ’ means output of each
steady-state inputu | £(9) E(G)"| agent is identical, i.e.,

/H1 ) y — /B]'
p(t) | @ | ¢(E)
. | -,

l
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Passivity for Cooperative Control

a “classic” result...

» assume there exists constant signals u,y, u,¢ st. u=—Epu,,( =E'y

 each dynamic system is output strictly passive with respect to u;, y;
d
o Si(i(8)) < (wilt) = yi)(ua(t) = w) = pillyi(®) = yill

« each controller is passive with respect to Cg, L

d

ﬁwl«(ﬁk(t)) < (,uk(t) — Mk)(Ck(t) — Ck)

Theorem [Arcak 2007]
Suppose the above assumptions are satisfied. Then the
network output converges to the constant valuey; i.e,

lim y(t) =y



Passivity Shortcomings

Plant
w0 [Ye |
&
p(t) @@. _¢(®)
@
Controller

a critical assumption is the
existence of constant signals

:> equilibrium depends on all properties “globally”

:> can not be verified “locally”

_—~
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Equilibrium Independent Passivity

o o o
DEfI n Itl On [Hines et. al. Automatica 2011]

A control system

T = f(wau)

Yy = h($7 u)

is equilibrium independent passive (EIP) if
i) da set U and function k;(u) s.t. f(ky(u),u) =0Vuel

ii) the system is passive with respect to the equilibrium
input-output pair u, y = h(k.(u),u)




Equilibrium Independent Passivity

Lemma

If ¥ is EIP, then k,(u) is monotonically increasing.

Hines et. al. Automatica 2011]

Equilibrium input-output maps are monotone functions!
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Equilibrium Independent Passivity

Lemma

If ¥ is EIP, then k,(u) is monotonically increasing.

Hines et. al. Automatica 2011]

Equilibrium input-output maps are monotone functions!

but... the integrator is passive w.r.t. U = {0}
and any output ¥y € IR

storage function
pt) = u(t) S = @0 -y
x

t) :> Equilibrium input-output map is

not a function!

l
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Monotone Relations

Maximal Monotone Relations - complete non-decreasing curves in R?
V. V. V.

a relation is maximal monotone it it cannot be embedded
into a larger monotone relation

(¢) for arbitrary (u,y

)
. o
k, 1s maximal monotone < (i either (u,y) < (u)

it) for arbitrary (u,y
)
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Maximal EIP

Definition
The dynamical SISO system

m(t) — f(x(t)au(t)aw)
y(t) = h(z(t),u(t),w)

is mazimal equilibrium independent passive if there exists a maximal monotone
relation k, C R? such that for all (u,y) € k, there exists a positive semi-definite
storage function S(x(t)) satisfying

9 5@(t)) < (y(t) — y)(ult) — ).

dt
Furthermore, it is output-strictly maximal equilibrium independent passive if
additionally there is a constant p > 0 such that

d

- S(2(1) < (y(t) = y)(ult) = w) = plly(t) = y|*.




Maximal EIP

output strictly maximal EIP

¥

TECHNION

O

u(t)

~

E(G)

_

I‘
f

~

_J

p(t)

maximal EIP

fD@, y(t)
E(G)"
@ <
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Necessary Conditions (revisited)

Lemma

If the networked system has a steady-state solution,
u, y, then the solution must satisfy

ucR(EG)),y € N(ET(G)) = span {1}

and
y € ky(u)

A “network feasibility problem”
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Monotone Relations and Convex Functions

Theorem rockateliar, conves Analysis] 4
The sub-differential for the closed proper
convex functions onR are the maximal
monotone relations fromR tolR . >

integral function of equilibrium i/o map

ky,i 1

8[(@(11@) — ky,i(ui) . \/

u .
proper, closed convex function
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Duality in Cooperative Control

/ =y ) * Suppose systems are
O_u( ) - @ y(t) output strictly maximal EIP
T . .En, * Equilibrium Input-Output
R (] Map
E(G) E9) k, C R xR
- _J - v
T l y € ky(u)
u € R(E(G)), y € N(E"(G)) = span {1}
uly =0

integral function of Equilibrium /O

Maps are Convex! () = ky.i ()

_—~
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Duality in Cooperative Control

Optimal Flow Problem Optimal Potential Problem
(OFP1) (OPP1)
M V|
min ;me) (= K(u)) min ;K;*(yi) (= K*(y))
st. u+ Eu=0. st. E'y=0.

K[ (yi) = SUP{ZYz'uz' — K;(u;)}
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Duality in Cooperative Control

Optimal Flow Problem Optimal Potential Problem
(OFP1) (OPP1)
V] V]
win ) Kilw) min 3 K7 ()
st. u+ Eu=0. st. E'y=0.
Theorem

Assume all the node dynamics are maximal EIP. If the networked
system has a steady-state solution u,y, then

1) u is an optimal solution of OFP1,

2) y is an optimal solution to OPP1,

3) SV Ky(w) + SV K (i) = 0

-~
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Duality in Cooperative Control

Optimal Flow Problem Optimal Potential Problem
(OFP1) (OPP1)
M M
win ) Kilw) min 3 K7 ()
st. u+ Eu=0. st. E'y=0.

0K;(u;) = ky s(u;) maximal (strongly) monotone relations

= OFP1 is feasible and strictly convex
= by strong duality, only one solution to OPP1 exists

= exactly one output agreement solution exists
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Duality in Cooperative Control

How do the controls generate the correct inputs?

Iy . me(t) = C(t)
pe(t) = Yr(ne(), Ce(t))
| I
E(G) EG)"
wt) @ | ¢
() FindneRE

st. u=—Ev¥(n)
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Duality in Cooperative Control

How do the controls generate the correct inputs?

Mg o k() = Gu(?)
pr(t) = Yr(nk(t), Ck(t)) assume strongly monotone
| .
E(G) E(G)"
wt) @ |, <)

Let P,(n) be such that V P, = .
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Duality in Cooperative Control

Optimal Potential Problem Optimal Flow Problem
(OPP2) (OFP2)
E| M E|
min Z P.(Mg) + Z U; v min Z Pl (1)
- i=1 S
st. n=E"v. s.t.u+ Eu =0,
Theorem

Assume all the node dynamics are maximal EIP. and the controller dynamics
are such that all output maps ;. are strongly monotone and define P such
that VP(nx) = ¥r(nk). Then the networked system has an output agreement
steady-state solution. Furthermore, let n be the state-state of the controller in
output agreement, then

1) n is an optimal solution of OPP2,

2) =1 (n) is an optimal solution to OFP2,

3) YL, Pr(ue) + 0L, Pelm) = T




The Closed Loop

V] v
min ZKz(uz) —— ZK:(}%),
u,u i—1 y 2

SRt st. E'y=0
Divergence u Potential y
— = il
| u=—bu c=Ely
M kz::l r%nvn Zpk(nk)_zuivi,
st.u+ Fu =0, Flow u Tension Tension C =1 . i=1

_—~
M TECHNION 55N NPLININMN NDTIND NNMPON

Israel Institute

of Technology Faculty of Aerospace Engineering



From SISO to MIMO - Cyclic Monotonicity

Definition
Consider R C R™ x R™. The relation R is Cyclicly Monotone
if for any N > 1 and any pairs (u;,y;) € R,t=1,..., N,

Zyz i —u;_1) > 0.

Theorem [Rockafellar, 1966]

A relation R C R™ x R" is cyclicly monotone
if and only if it is contained in the subgradient
of a convex function ¥ : R"® — R.




An Example - Vehicle Platooning

Microscopic Traffic Model

[Helbing et al., 2001]

Di = Vs

0i = wi[Vi' + Vi(Vp) — vi]
Velocity adjustment (control)

Vi(Vp)=V;' ) tanh(p; — pi)

1€N(7)

Velocity

Velocity
Velocity

Time

55M NPLINIMN NDTIND NNMIPaAN w

Time Time
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An Example - Vehicle Platooning

Microscopic Traffic Model

[Helbing et al., 2001]

Di = Vs

0i = wi[Vi' + Vi(Vp) — vi]
Velocity adjustment (control)

Vi(Vp)=V;' ) tanh(p; — p;)
1EN(7)

output coupling function is monotone, but not strongly monotone!

2 w w w w w 2
18+ . 150
167 ] eenensarsnparsrssessnnnnnnnnnnsgy
1.4+
> 1.2¢ | 0.5
Q“ 0.8 2 —051 |
0.6} \ / | S L N N N N
0.2} | —1.5¢ |
0 1 ; 1 L 1 ; 1 _2 1 1 1 1 1 1 1 1 1 0 1 1 1 \“ 1 I 1 '.\ 1 1 1
-2 —-15 -1 =05 0 0.5 1 1.5 2 -10 -8 -6 4 -2 0 2 4 6 8 10 —3—2.5—2—-15-1-050 05 1 15 2 25 3

H n n

Israel Institute

of Technology Faculty of Aerospace Engineering
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An Example - Vehicle Platooning

NetWOrk Optlmlzatlon approach System Input u(t) illz_ System Output y(t)
can still be used! T ’ -
E ET
o ]
(2>} j il j
Controller ) ~.__| Relative
Output () Yiel /| Output ¢(t)
Optimal Flow Problem Optimal Potential Problem
(OFPT) (OPPT)
A M E
min » K;(u;) min S K7 () + 3 G|
U; L = Yi7<k
1=1 i=1 k=1
s.t. u= E st.(=FE'y
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An Example - Vehicle Platooning

Optimal Flow Problem Optimal Potential Problem
(OFP1) (OPP1)
V|
M [E|
min » | Ki(u:) min Y K (yi) + ) []
Uz, U i—1 YiCk *
1=1 k=1
s.t. u = Eu st.{=FE'y
I1floe <1
rs . Ty .

; o
additional objective functions corresponding
to “flow capacity” constraints

_—~
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An Example - Vehicle Platooning

Velocity
Velocity

Velocity

Time

Time Time

clustering phenomena can be explained
by studying the solutions of the static

network optimization problems
M [ E|

min ZKZ(uz) min K; (yi ‘|‘Z|Ck

Y’L7Ck )
=1

st.(=FE'y
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Towards a Synthesis Procedure

LUt e | v)
Design controllers to achieved a desired E?]
E(9) E(9)
output agreement state. o
pt) @ | ()
Generalized Optimal Potential Problem I
(OPP1)
v E|
min Y K*(y) 4+ Y Tk(G)
Ve o k=1
s.t. £ = ETy.

1. Find a convex function I' such that the desired output agreement state,
y* satisfies (* = ETy* and minimizes the GOPP.

2. Find Maximal EIP systems whose steady-state input-output maps are the
subdifferentials of the functions I';.

\°F TECHNION 5511 APINIIN NDTIND NANPOHN

ol ochutngy Faculty of Aerospace Engineering




Summary

Passivity based cooperative control

(=) y = 0K(u)
Q&» @ y(t) Divergence u Potential y
=
E(G) g@ u=—Eu c=ETy
(1)
pt) |~ @ ¢(1) | |
Flow u Tension Tension C
() u=VPn)

» maximal EIP systems

» connection to dual network optimization problems

» maximal EIP implies agreement solution is inverse optimal
» duality relation exists for cooperative control problems!
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Outlook

Passivity based cooperative control

(=) y = 0K(u)
Q&» @ y(t) Divergence u Potential y
=
E(G) @@ u=—Eu c=ETy
(1)
pt) |~ @ ¢(1) | |
Flow u Tension Tension C
() u=VPn)

» further extensions to MIMO systems
» controller synthesis
* “Duality” as a systems property
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