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Networked Dynamic SystemsCooperative Control

All these examples represent networks of dynamical systems!

Common Theme: Control objectives are related to agreement!

3 / 27

networks of dynamical systems are one of 
the enabling technologies of the future
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Networked Dynamic Systems

⌃i

⌃1

⌃2⌃3

⌃j

⇧ij
⇧1j

⇧12
⇧2j⇧3j

dynamics

interaction 
protocol

topology 
(graph)

ẋi(t) = fi(xi(t), ui(t))

ui(t) = ⇧i(x(t),G)
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Networked Dynamic Systems

⌃i

⌃1

⌃2⌃3

⌃j

⇧ij
⇧1j

⇧12
⇧2j⇧3j

dynamics

interaction 
protocol

topology 
(graph)

ẋi(t) = fi(xi(t), ui(t))

ui(t) = ⇧i(x(t),G)

Analysis
- steady-state behavior 
- interplay between dynamics and graph 
- equilibrium configurations

Synthesis
- design of distributed protocols 
- design of “good” network structures 
- robust

can we reveal deep results describing the 
underlying behavior of these systems?
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in this talk…

  Network Optimization 
  optimal flow/optimal potential problems 
  monotone/cyclically monotone relations  
  and convex functions  

  Passivity-based Cooperative Control 
  equilibrium independent passivity 
  steady-state input/output maps 

Duality Theory for Cooperative Control
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Network Optimization

Network Flows and 
Monotropic Optimization

Shortest Path 
Problem

Max-Flow  
Problem

Minimum Cost Flow 
Problem

"...in fact, the great watershed 
in optimization isn't between 
linearity and nonlinearity, but 
convexity and nonconvexity." 

R. Tyrrell Rockafellar  
SIAM Review, 1993
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Network Definitions
A network (graph) is a mathematical 
structure used to model pairwise 
relations between objects.

Incidence Matrix

E(G)T1 = 0

Passivity-based Cooperative Control

An important model: Many networked systems can be modeled as
dynamics with diffusive couplings

χ̈i = fi(χ̇i) +
∑

k=(i,j)∈E

ψk(χj − χi), i ∈ V

Graph: G = (V,E) (undirected)

Incidence matrix: E ∈ R|V|×|E|

[E]ik =

⎧

⎨

⎩

+1 if i is positive end of k
−1 if i is negative end of k
0 otherwise

(arbitrary orientation)

L = EE⊤: Laplacian Matrix of G.

Σ1

Σ2

Σ3

Σ4

Σ5

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 3 / 28

G = (V,E)

E(G) = R|V|⇥|E|
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points ⌘, ⇠ 2 D, with ⌘ 6= ⇠, and for all � 2 [0, 1]

�(�⌘ + (1� �)⇠) < ��(⌘) + (1� �)�(⇠)� 1

2

�(1� �)↵k⌘ � ⇠k2.

The convex conjugate of a convex function �, denoted �

?, is defined as [22]:

�

?
(⇠) = sup

⌘2D
{⌘>⇠ � �(⌘)} = � inf

⌘2D
{�(⌘)� ⌘>⇠}. (1)

The definition of a convex conjugate implies that for all ⌘ and ⇠ it holds that �(⌘) + �

?
(⇠) � ⌘>⇠. A vector g is

said to be a subgradient of a function � at ⌘ if �(⌘0) � �(⌘) + g>(⌘0 � ⌘). The set of all subgradients of � at
⌘ is called the subdifferential of � at ⌘ and is denoted by @�(⌘). The multivalued mapping @� : ⌘ ! @�(⌘) is
called the subdifferential of �, see [22].

A special convex function we employ is the indicator function. Let C be a closed, convex set, the indicator
function is defined as

IC(⌘) =

⇢
0 if ⌘ 2 C
+1 if ⌘ /2 C.

We will also use the indicator function for points, e.g., I0(⌘) as the indicator function for ⌘ = 0.
Given a control system ẋ = f(x, u), with state x 2 Rp and input u 2 Rq , and a function S(x) mapping Rp to

R, the directional derivative of S is denoted by ˙S =

@S
@x f(x, u).

2 Network Optimization Theory
The objective of this paper is to study passivity-based cooperative control in the context of network optimization
theory [2]. A network is described by a graph G = (V,E), consisting of a finite set of nodes, V = {v1, . . . , v|V|}
and a finite set of edges, E = {e1, . . . , e|E|}, describing the incidence relation between pairs of nodes. Although
we consider G in the cooperative control problem as an undirected graph, we assign to each edge an arbitrary
orientation. The notation ek = (vi, vj) 2 E ⇢ V ⇥V indicates that vi is the initial node of edge ek and vj is the
terminal node. For simplicity, we will abbreviate this with k = (i, j), and write k 2 E and i, j 2 V.

The incidence matrix E 2 R|V|⇥|E| of the graph G with arbitrary orientation, is a {0,±1} matrix with the
rows and columns indexed by the nodes and edges of G such that [E]ik has value ‘+1’ if node i is the initial node
of edge k, ‘-1’ if it is the terminal node, and ‘0’ otherwise. This definition implies that for any graph, >E = 0,
where 2 R|V| is the vector of all ones. We refer to the circulation space of G as the null space N (E), and the
differential space of G as the range space R(E>

); see [2]. Additionally, we call N (E>
) the agreement space.

Note that N (E>
) ? R(E) and N (E) ? R(E>

).
We call a vector µ = [µ1, . . . ,µ|E|]

> 2 R|E| a flow of the network G. An element of this vector, µk, is the
flux of the edge k 2 E. The incidence matrix can be used to describe a type of conservation relationship between
the flow of the network along the edges and the net in-flow (or out-flow) at each node in the network, termed the
divergence of the network G. The net flux entering a node must be equal to the net flux leaving the node. The
divergence associated with the flow µ is denoted by the vector u = [u1, . . . , u|V|]

> 2 R|V| and can be represented
as1

u+ Eµ = 0. (2)

Borrowing from electrical circuit theory, we call the vector y 2 R|V| a potential of the network G. To any
edge k = (i, j), one can associate the potential difference as zk = yj �yi; we also call this the tension of the edge
k. The tension vector z = [z1, . . . , z|E|]

>, can be expressed as2

z = E>
y. (3)

Flows and tensions are related to potentials and divergences by the conversion formula µ>z = �y

>
u. Network

theory broadly connects elements of graph theory to a family of convex optimization problems. The beauty of this
theory is that it admits elegant and simple duality relations.

1This condition is Kirchhoff’s Current Law.
2This condition is Kirchoff’s Voltage Law

3

conversion formula

Flow “conservation” laws

ui
µ1

µ2

µ3

u + E(G)µ = 0

“Cycle” laws

⇣1
⇣2

⇣3

⇣4⇣5

⇣ = ET (G)y
“flow networks” “potential networks”

Network Optimization

y1

y2 y3



 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

/4610

Network Optimization

Dual Optimization Problems 
defined over the “same” network

Cpot

i

(y
i

) := Cdiv,⇤
i

= � inf
ũi

�
Cdiv

i

(ũ
i

)� y
i

ũ
i

 

Optimal Flow Problem Optimal Potential Problem

Digression: (Static) Network Theory

Optimal Flow Problem

min

u,µ

|V|X

i=1

Cdiv
i (ui) +

|E|X

k=1

Cflux
k (µk)

s.t. u+ Eµ = 0.

ui: divergence (in/out-flow) at a
node

µk: flow on an edge

Optimal Potential Problem

min

y,z

|V|X

i=1

Cpot
i (yi) +

|E|X

k=1

Cten
k (zk),

s.t. z = E>y.

yi: potential at a node

⇣k: tension (potential di↵erence)
on an edge

Both problems are duals:

Cpot
i (yi) := Cdiv,?

i (y) = � inf

ũi

{Cdiv
i (ũi)� yiũi}

We found the same duality relation in cooperative control!

21 / 27
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flow on an edge

potential at a node

tension (potential difference) 
across an edge
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Network Optimization

S T

Max Flow-Min Cut Theorem
The maximum value of an S-T flow is equal to the minimum 
capacity over all s-t cuts.

Elegant illustration of 
Duality Theory 
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Networked Dynamic Systems

⌃i

⌃1

⌃2⌃3

⌃j

⇧ij
⇧1j

⇧12
⇧2j⇧3j
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...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

Networked Dynamic Systems
dynamics

interaction 
protocol

topology 
(graph)

topology 
(graph)
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...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

Diffusively Coupled Networks
dynamics

interaction 
protocol

topology 
(graph)

topology 
(graph)

E(G) E(G)T
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Diffusively Coupled Networks

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

Kumamoto Model

✓̇i = �k
X

i⇠j

sin(✓i � ✓j)

Traffic Dynamics Model

v̇i = i

0

@V 0
i � vi + V 1

i

X

i⇠j

tanh(pj � pi)

1

A

Neural Network

CV̇i = f(Vi, hi) +
P

i⇠j gij(Vj � Vi)

ḣi = g(Vi, hi)
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Duality and Cooperative Control

...

...

G G

⌃1

⌃2

⇧1

⇧2
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⌃n

E(G) E(G)T
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Optimal Potential Problem
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Plant: Dynamics on nodes

Controllers: Dynamics on edges

Passivity-based Cooperative Control

A canonical model for networked systems1:
(Throughout the talk we consider only SISO systems!)

Node Dynamics:

Σi : ẋi(t) = fi(xi(t), ui(t),wi)

yi(t) = hi(xi(t), ui(t),wi)

Relative Outputs: ζk = yi − yj

Edge Dynamics:

Πk : η̇k = ζk

µk = ψk(ηk)

Control Inputs: ui = −
∑|E|

k=1[E]ikµk

Σ1

Σ2

Σ3

Σ4

Σ5

1see, e.g., M. Arcak: Passivity as a Design Tool for Group Coordination, TAC, 2007
A. Van Der Schaft and B. Masche: Port-Hamiltonian Systems on Graphs, SJCON, 2013

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 4 / 28

Interconnection via graph incidence matrix

Control Objective
lim
t!1

⇣(t) = 0

The Output Agreement Problem

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

Plant

Controller

u(t) y(t)

µ(t) ⇣(t)

⇢
⇣(t) = E(G)T y(t)
u(t) = E(G)µ(t)

⇧k : ⌘̇k(t) = ⇣k(t)
µk(t) =  k(⌘k(t), ⇣k(t))
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If the networked system has a steady-state solution,                          
   , then the solution must satisfy

Lemma

u, y

u 2 R(E(G)), y 2 N (ET (G)) = span {1}

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)

Necessary Conditions for Output Agreement

u
y = �1

• controller must be  
able to generate the 
steady-state input

• output agreement 
means output of each 
agent is identical, i.e.,
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Passivity for Cooperative Control
a “classic” result…

• assume there exists constant signals u,y,µ, ⇣ s.t. u = �Eµ, , ⇣ = ETy

• each dynamic system is output strictly passive with respect to ui, yi
d

dt

Si(xi(t))  (yi(t)� yi)(ui(t)� ui)� ⇢ikyi(t)� yik2

• each controller is passive with respect to    ,  ii) each controller (8) is passive with respect to zk and µk, i.e., there exists a positive semi-definite storage
function Wk(⌘k(t)) such that

˙Wk  (µk(t)� µk)(⇣k(t)� zk).

Now, the basic convergence result follows directly.

Theorem 3.4 (Convergence of Passive Networks) Consider the dynamical network (6), (7), (8), (9) and suppose As-
sumption 3.3 holds, then the output variables y(t) converge to a constant steady-state value y, i.e., limt!1 y(t) !
y.

Proof: The passivity condition implies that

|V|X

i=1

˙Si  �
|V|X

i=1

⇢ikyi(t)� yik2 + (y(t)� y)

>
(u(t)� u)

= �
|V|X

i=1

⇢ikyi(t)� yik2 � (⇣(t)� z)>(µ(t)� µ)

 �
|V|X

i=1

⇢ikyi(t)� yik2 �
|E|X

k=1

˙Wk.

One can bring
P|E|

k=1
˙Wk to the left of the inequality and invoking Barbalat’s lemma [23] to conclude convergence,

i.e., limt!1 ky(t)� yk ! 0.
The appeal of this convergence result is that it decouples the dynamical systems layer and the network layer.

Only the input-output behavior must be shown to be passive to conclude convergence of the overall network.

3.3 Equilibrium Independent Passivity
A critical aspect of the previous result relates to the assumption on the existence of the constant signals u, y, µ, z
that satisfy Assumption 3.3. The equilibrium configuration depends on the properties of all systems in the network
and the desired passivity property cannot be verified locally. To overcome this issue, the concept of equilibrium
independent passivity was introduced in [19]. Equilibrium independent passivity requires a system to be passive
independent of the equilibrium point to which it is regulated.

Definition 3.5 ([19]) The system (6) is said to be (output strictly) equilibrium independent passive if there exists
a set Ui ⇢ R and a continuous function kx,i(u), defined on Ui, such that i) for any constant signal ui 2 Ui the
constant signal xi = kx,i(ui) is an equilibrium point of (6), i.e., 0 = fi(xi, ui,wi), and ii) the system is passive
with respect to ui and yi = hi(kx,i(u), ui,wi); that is, for each ui 2 Ui there exists a storage function such
that the inequality (11) holds (with ⇢i � 0 for equilibrium independent passivity and ⇢i > 0 for output-strictly
equilibrium independent passivity).

The relevance of equilibrium independent passivity for the analysis of dynamical networks can be readily seen.
If the systems (6) and (8) are output-strictly equilibrium independent passive and equilibrium independent passive,
respectively, one has to verify only that an equilibrium trajectory exists in the respective sets to make the basic
convergence proof of Theorem 3.4 applicable. The exact equilibrium point need not be known.

One important implication of equilibrium independent passivity is that the equilibrium input-output map must
be monotone, and even co-coercive, if the system is output-strictly equilibrium independent passive, see [19].

3.4 Maximal Equilibrium Independent Passivity
While equilibrium independent passivity turns out to be an useful concept for network analysis, the given definition
excludes some important systems. Consider for example a simple integrator, i.e., ẋi(t) = ui(t), yi(t) = xi(t).
It is well known that the integrator is passive with respect to Ui = {0} and any output value yi 2 R.4 However,
the equilibrium input-output map is not a (single-valued) function such that the integrator is not equilibrium
independent passive, as defined in [19].

4Passivity with respect to an arbitrary output yi 2 R can be readily see with the storage function Si(xi(t)) =
1
2 (xi(t)� yi)2.

6

ii) each controller (8) is passive with respect to zk and µk, i.e., there exists a positive semi-definite storage
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|V|X

i=1

˙Si  �
|V|X

i=1

⇢ikyi(t)� yik2 + (y(t)� y)

>
(u(t)� u)

= �
|V|X

i=1

⇢ikyi(t)� yik2 � (⇣(t)� z)>(µ(t)� µ)

 �
|V|X

i=1

⇢ikyi(t)� yik2 �
|E|X

k=1

˙Wk.

One can bring
P|E|

k=1
˙Wk to the left of the inequality and invoking Barbalat’s lemma [23] to conclude convergence,

i.e., limt!1 ky(t)� yk ! 0.
The appeal of this convergence result is that it decouples the dynamical systems layer and the network layer.

Only the input-output behavior must be shown to be passive to conclude convergence of the overall network.

3.3 Equilibrium Independent Passivity
A critical aspect of the previous result relates to the assumption on the existence of the constant signals u, y, µ, z
that satisfy Assumption 3.3. The equilibrium configuration depends on the properties of all systems in the network
and the desired passivity property cannot be verified locally. To overcome this issue, the concept of equilibrium
independent passivity was introduced in [19]. Equilibrium independent passivity requires a system to be passive
independent of the equilibrium point to which it is regulated.

Definition 3.5 ([19]) The system (6) is said to be (output strictly) equilibrium independent passive if there exists
a set Ui ⇢ R and a continuous function kx,i(u), defined on Ui, such that i) for any constant signal ui 2 Ui the
constant signal xi = kx,i(ui) is an equilibrium point of (6), i.e., 0 = fi(xi, ui,wi), and ii) the system is passive
with respect to ui and yi = hi(kx,i(u), ui,wi); that is, for each ui 2 Ui there exists a storage function such
that the inequality (11) holds (with ⇢i � 0 for equilibrium independent passivity and ⇢i > 0 for output-strictly
equilibrium independent passivity).

The relevance of equilibrium independent passivity for the analysis of dynamical networks can be readily seen.
If the systems (6) and (8) are output-strictly equilibrium independent passive and equilibrium independent passive,
respectively, one has to verify only that an equilibrium trajectory exists in the respective sets to make the basic
convergence proof of Theorem 3.4 applicable. The exact equilibrium point need not be known.

One important implication of equilibrium independent passivity is that the equilibrium input-output map must
be monotone, and even co-coercive, if the system is output-strictly equilibrium independent passive, see [19].

3.4 Maximal Equilibrium Independent Passivity
While equilibrium independent passivity turns out to be an useful concept for network analysis, the given definition
excludes some important systems. Consider for example a simple integrator, i.e., ẋi(t) = ui(t), yi(t) = xi(t).
It is well known that the integrator is passive with respect to Ui = {0} and any output value yi 2 R.4 However,
the equilibrium input-output map is not a (single-valued) function such that the integrator is not equilibrium
independent passive, as defined in [19].

4Passivity with respect to an arbitrary output yi 2 R can be readily see with the storage function Si(xi(t)) =
1
2 (xi(t)� yi)2.

6

d

dt
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The appeal of this convergence result is that it decouples the dynamical systems layer and the network layer.

Only the input-output behavior must be shown to be passive to conclude convergence of the overall network.

3.3 Equilibrium Independent Passivity
A critical aspect of the previous result relates to the assumption on the existence of the constant signals u, y, µ, z
that satisfy Assumption 3.3. The equilibrium configuration depends on the properties of all systems in the network
and the desired passivity property cannot be verified locally. To overcome this issue, the concept of equilibrium
independent passivity was introduced in [19]. Equilibrium independent passivity requires a system to be passive
independent of the equilibrium point to which it is regulated.

Definition 3.5 ([19]) The system (6) is said to be (output strictly) equilibrium independent passive if there exists
a set Ui ⇢ R and a continuous function kx,i(u), defined on Ui, such that i) for any constant signal ui 2 Ui the
constant signal xi = kx,i(ui) is an equilibrium point of (6), i.e., 0 = fi(xi, ui,wi), and ii) the system is passive
with respect to ui and yi = hi(kx,i(u), ui,wi); that is, for each ui 2 Ui there exists a storage function such
that the inequality (11) holds (with ⇢i � 0 for equilibrium independent passivity and ⇢i > 0 for output-strictly
equilibrium independent passivity).

The relevance of equilibrium independent passivity for the analysis of dynamical networks can be readily seen.
If the systems (6) and (8) are output-strictly equilibrium independent passive and equilibrium independent passive,
respectively, one has to verify only that an equilibrium trajectory exists in the respective sets to make the basic
convergence proof of Theorem 3.4 applicable. The exact equilibrium point need not be known.

One important implication of equilibrium independent passivity is that the equilibrium input-output map must
be monotone, and even co-coercive, if the system is output-strictly equilibrium independent passive, see [19].

3.4 Maximal Equilibrium Independent Passivity
While equilibrium independent passivity turns out to be an useful concept for network analysis, the given definition
excludes some important systems. Consider for example a simple integrator, i.e., ẋi(t) = ui(t), yi(t) = xi(t).
It is well known that the integrator is passive with respect to Ui = {0} and any output value yi 2 R.4 However,
the equilibrium input-output map is not a (single-valued) function such that the integrator is not equilibrium
independent passive, as defined in [19].

4Passivity with respect to an arbitrary output yi 2 R can be readily see with the storage function Si(xi(t)) =
1
2 (xi(t)� yi)2.

6

Theorem
Suppose the above assumptions are satisfied.  Then the 
network output converges to the constant value  , i.e, y

lim
t!1

y(t) = y

[Arcak 2007]
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a critical assumption is the 
existence of constant signals u = �Eµ, ⇣ = ETy

equilibrium depends on all properties “globally”

can not be verified “locally”

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

Plant

Controller

u(t) y(t)

µ(t) ⇣(t)

Passivity Shortcomings 
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Definition

Equilibrium Independent Passivity

A control system

ẋ = f(x, u)

y = h(x, u)

is equilibrium independent passive (EIP) if

i) 9 a set U and function k

x

(u) s.t. f(k

x

(u), u) = 0 8 u 2 U

ii) the system is passive with respect to the equilibrium

input-output pair u, y = h(k

x

(u), u)

[Hines et. al. Automatica 2011]
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Lemma

Equilibrium Independent Passivity
[Hines et. al. Automatica 2011]

If ⌃ is EIP, then ky(u) is monotonically increasing.

Equilibrium input-output maps are monotone functions!
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Passivity-based Cooperative Control

Critique: Assumption that ky : U !→ R is a function is restrictive.

Example: Integrator dynamics

ẋ = u,

y = x

Equilibrium inputs: U = {0}

Passive w.r.t. u = 0 and any constant y:
S = 1

2 (x− y)2 ⇒ Ṡ = (y − y)(u − u).
u

y

Equilibrium input-output map is not a function!

⇒ Integrator is not EIP!

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 7 / 25

23

Lemma

Equilibrium Independent Passivity
[Hines et. al. Automatica 2011]

If ⌃ is EIP, then ky(u) is monotonically increasing.

Equilibrium input-output maps are monotone functions!

but…
Z

ẋ(t) = u(t)

y(t) = x(t)

the integrator is passive w.r.t. U = {0}
y 2and any output

S(x(t)) =
1

2
(x(t)� y)2

Equilibrium input-output map is 
not a function!

storage function
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Monotone RelationsPassivity-based Cooperative Control

Maximal monotone relations (Complete non-decreasing curves in R2)

u

y

u

y

u

y

A relation is said to be maximal monotone if it cannot be embedded
into a larger monotone relation. That is ky is a maximal monotone if
and only if
(i) For arbitrary (ui, yi) ∈ ky and (u′i, y

′
i) ∈ ky one has either

(ui, yi) ≤ (u′i, y
′
i), or (ui, yi) ≥ (u′i, y

′
i);

(ii) For arbitrary (ui, yi) /∈ ky there exists (u′i, y′i) ∈ ky such that
neither (ui, yi) ≤ (u′i, y

′
i) nor (ui, yi) ≥ (u′i, y

′
i).

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 8 / 25

Maximal Monotone Relations - complete non-decreasing curves in 

a relation is maximal monotone if it cannot be embedded 
into a larger monotone relation

2

ky is maximal monotone,

(i) for arbitrary (u, y) 2 ky and (u

0, y0) 2 ky
either (u, y)  (u

0, y0) or (u, y) � (u

0, y0)
(ii) for arbitrary (u, y) /2 ky 9 (u0, y0) 2 ky

s.t. neither (u, y)  (u

0, y0) nor (u, y) � (u

0, y0)
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Definition
The dynamical SISO system

ẋ(t) = f(x(t), u(t),w)

y(t) = h(x(t), u(t),w)

is maximal equilibrium independent passive if there exists a maximal monotone
relation ky ⇢ R2 such that for all (u, y) 2 ky there exists a positive semi-definite
storage function S(x(t)) satisfying

d

dt

S(x(t))  (y(t)� y)(u(t)� u).

Furthermore, it is output-strictly maximal equilibrium independent passive if
additionally there is a constant ⇢ > 0 such that

d

dt

S(x(t))  (y(t)� y)(u(t)� u)� ⇢ky(t)� yk2.

Maximal EIP
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Maximal EIP

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)

output strictly maximal EIP

maximal EIP
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Necessary Conditions (revisited)

If the networked system has a steady-state solution,                          
   , then the solution must satisfy

Lemma

u, y

u 2 R(E(G)), y 2 N (ET (G)) = span {1}

and
y 2 ky(u)

A “network feasibility problem”
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k
y

(u) = h(k
x

(u), u))

[Rockafellar, Convex Analysis]Theorem
The sub-differential for the closed proper 
convex functions on    are the maximal 
monotone relations from    to    . 

Duality in Cooperative Control

Maximal Passivity: equilibrium i/o map ky,i maximal monotone

Theorem: The subdifferential for the closed proper convex functions
on R are the maximal monotone relations from R to R.

R.T. Rockafellar: Convex Analysis

Integral function of equilibrium i/o relation Ki(ui) : R → R such that
∂Ki(ui) = ky,i(ui).

Maximal passivity Ki is proper, closed convex function.

u

ky,i

u

Ki

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 14 / 25

Duality in Cooperative Control

Maximal Passivity: equilibrium i/o map ky,i maximal monotone

Theorem: The subdifferential for the closed proper convex functions
on R are the maximal monotone relations from R to R.

R.T. Rockafellar: Convex Analysis

Integral function of equilibrium i/o relation Ki(ui) : R → R such that
∂Ki(ui) = ky,i(ui).

Maximal passivity Ki is proper, closed convex function.

u

ky,i

u

Ki

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 14 / 25

proper, closed convex function

integral function of equilibrium i/o map

Monotone Relations and Convex Functions
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Duality in Cooperative Control

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)

*  Suppose systems are  
output strictly maximal EIP

ky ⇢ R⇥ R

*  Equilibrium Input-Output  
    Map

y 2 ky(u)

u 2 R(E(G)), y 2 N (ET (G)) = span {1}

Duality in Cooperative Control

Maximal Passivity: equilibrium i/o map ky,i maximal monotone

Theorem: The subdifferential for the closed proper convex functions
on R are the maximal monotone relations from R to R.

R.T. Rockafellar: Convex Analysis

Integral function of equilibrium i/o relation Ki(ui) : R → R such that
∂Ki(ui) = ky,i(ui).

Maximal passivity Ki is proper, closed convex function.

u

ky,i

u

Ki

M. Bürger: Duality and Network Theory in Passivity-based Cooperative Control 14 / 25

integral function of Equilibrium I/O 
Maps are Convex!

uTy = 0
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Duality in Cooperative Control
Optimal Flow Problem 

(OFP1)
Optimal Potential Problem  

(OPP1)
Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that

9

Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that

9

K⇤
i (yi) = sup

ui

{yiui �Ki(ui)}

(= K⇤(y))(= K(u))
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Duality in Cooperative Control
Optimal Flow Problem 

(OFP1)
Optimal Potential Problem  

(OPP1)

Theorem

Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that
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Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that

9

Assume all the node dynamics are maximal EIP. If the networked
system has a steady-state solution u,y, then

1) u is an optimal solution of OFP1,

2) y is an optimal solution to OPP1,

3)
P|V|

i=1 Ki(ui) +
P|V|

i=1 K
?
i (yi) = 0
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Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that

9

Optimal Flow Problem: Consider the the following optimal flow problem

min

u,µ

|V|X

i=1

Ki(ui)

s.t. u+ Eµ = 0.

(OFP1)

This problem is of the form of an optimal flow problem (4). The cost on the divergences (in/out-flows) u 2 R|V|

are the integral functions of the equilibrium input-output relations, i.e., Cdiv
i = Ki, and the flows µ 2 R|E| on the

edges are not penalized, i.e., Cflux
k = 0.

Optimal Potential Problem: Dual to the optimal flow problem, we define the following optimal potential
problem

min

yi

|V|X

i=1

K?
i (yi),

s.t. E>
y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the integral functions of the equilibrium input-to-output
maps are the costs for the potential variables y 2 R|V| of the nodes, i.e., Cpot

i = K?
i . The constraint E>

y = 0

enforces a balancing of the potentials over the complete network. The problem can be written in the standard form
(5), by choosing Cten

k = I0, i.e., the indicator function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

P|V|
i=1 Ki(ui) and K

?
(y) :=

P|V|
i=1 K

?
i (yi).

The main result of this paper is that the the output agreement steady-states in a network of maximal equilibrium
independent passive systems admit an inverse optimality.

Theorem 4.3 (Inverse Optimality of Output Agreement) Suppose all node dynamics (6) are maximal equilibrium
independent passive. If the network (6), (7), (8), (9) has a steady-state solution u, y, then (i) u is an optimal
solution to (OFP1), (ii) y is an optimal solution to (OPP1), and (iii) in the steady-state (OFP1) and (OPP1) have
same value with negative sign, i.e.,

P|V|
i=1 Ki(ui) +

P|V|
i=1 K

?
i (yi) = 0.

Proof: It is sufficient to show that the conclusions hold if the equilibrium problem (16) has a solution. If
there is a solution u, y to (16), then u 2 R(E) \ U , while y 2 N (E>

) [ Y . Thus, both optimization problem
have a feasible solution and are finite. Consider now the Lagrangian function of (OFP1) with multiplier ˜y, i.e.,

L(u,µ, ˜y) =
|V|X

i=1

Ki(u)� ˜

y

>
u+

˜

y

>Eµ.

For u to be the a solution to (OFP1), it is necessary and sufficient that

˜

y 2 @K(u) (18)

for the optimal multiplier ˜y. Thus, since @K(u) = ky(u), the multiplier satisfies ˜

y 2 ky(u).
To conclude that u is an optimal solution, it remains to show that the equilibrium trajectory y is an optimal

multiplier, i.e., y =

˜

y. As y satisfies the equilibrium condition, it only remains to show that ˜y = N (E>
). Let

s(˜y) = infu,µ L(u,µ, ˜y). Now, if ỹ /2 N (E>
) then s(˜y) is unbounded below. For ˜

y 2 N (E>
) it follows that

s(ỹ) = �K

?
(

˜

y). Thus, the supremum problem is identical to (OPP1) with the negative objective function and
both problems will have the same solution. Now, if the network equilibrium problem has a solution, than there
must exists u and y satisfying the optimality conditions for the dual pair of optimization problems (OFP1) and
(OPP1). Finally, as the steady-state solution is an optimal to both problems (OFP1) and (OPP1), it must be a
saddle-point for the Lagrangian function, i.e., it must hold that

sup

y
inf

u,µ
L(u,µ,y) = inf

u,µ
sup

y
L(u,µ,y). (19)

Let now r(u,µ) = supy L(u,µ,y). It follows that r(u,µ) = K(u) if u + Eµ = 0 and r(u,µ) = +1
otherwise. Additionally, we have already seen that s(y) = infu,µ L(u,µ,y) is s(y) = �K

?
(y) if y 2 N (E>

)

and s(y) = �1 otherwise. For (19) to hold, the optimal solution u 2 R(E) and y 2 N (E>
) must be such that

9

Duality in Cooperative Control

Maximal Passivity: equilibrium i/o map ky,i maximal monotone

Theorem: The subdifferential for the closed proper convex functions
on R are the maximal monotone relations from R to R.

R.T. Rockafellar: Convex Analysis

Integral function of equilibrium i/o relation Ki(ui) : R → R such that
∂Ki(ui) = ky,i(ui).

Maximal passivity Ki is proper, closed convex function.

u

ky,i

u

Ki
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maximal (strongly) monotone relations

) OFP1 is feasible and strictly convex

) by strong duality, only one solution to OPP1 exists

) exactly one output agreement solution exists
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Theorem 4.3 (Inverse Optimality of Output Agreement). Suppose all
node dynamics (6) are maximal equilibrium independent passive. If
the network (6)–(9) has a steady-state solution u, y, then (i) u is an
optimal solution to (OFP1), (ii) y is an optimal solution to (OPP1),
and (iii) in the steady-state (OFP1) and (OPP1) have the same value
with negative sign, i.e.,

P|V|
i=1 Ki(ui) + P|V|

i=1 K
?
i (yi) = 0.

Proof. It is sufficient to show that the conclusions hold if the
equilibrium problem (16) has a solution. If there is a solution u, y
to (16), then u 2 R(E) \ U, while y 2 N (E>) [ Y. Thus,
both optimization problems have a feasible solution and are finite.
Consider now the Lagrangian function of (OFP1) with multiplier ỹ,
i.e.,

L(u, µ, ỹ) =
|V|X

i=1

Ki(u) � ỹ>u + ỹ>Eµ.

For u to be a solution to (OFP1), it is necessary and sufficient that
ỹ 2 @K (u) for the optimalmultiplier ỹ. Thus, since @K (u) = ky(u),
the multiplier satisfies ỹ 2 ky(u).

To conclude that u is an optimal solution, it remains to show
that the steady-state equilibrium trajectory y is an optimal multi-
plier, i.e., y = ỹ. As y satisfies the equilibrium condition, it only re-
mains to show that ỹ = N (E>). Let s(ỹ) = infu,µ L(u, µ, ỹ). Now,
if ỹ 62 N (E>) then s(ỹ) is unbounded below. For ỹ 2 N (E>) it
follows that s(ỹ) = �K?(ỹ). Thus, the supremum problem is iden-
tical to (OPP1) with the negative objective function and both prob-
lems will have the same solution. Now, if the network equilibrium
problem has a solution, then there must exist u and y satisfying
the optimality conditions for the dual pair of optimization prob-
lems (OFP1) and (OPP1). Finally, as the steady-state solution is an
optimal to both problems (OFP1) and (OPP1), it must be a saddle-
point for the Lagrangian function, i.e., it must hold that

sup
y

inf
u,µ

L(u, µ, y) = inf
u,µ

sup
y

L(u, µ, y). (18)

Let now r(u, µ) = supy L(u, µ, y). It follows that r(u, µ) = K(u)
if u + Eµ = 0 and r(u, µ) = +1 otherwise. Additionally, we
have already seen that s(y) = infu,µ L(u, µ, y) is s(y) = �K?(y)
if y 2 N (E>) and s(y) = �1 otherwise. For (18) to hold, the
optimal solution u 2 R(E) and y 2 N (E>) must be such that
K (u) + K

?(y) = 0. As shown before, the steady-states of the dy-
namic network are optimal solutions to (OFP1) and (OPP1) and
must therefore satisfy the previous equality. ⇤

The connection between the agreement steady-state of the dynam-
ical network and the dual pair of network optimization problems
opens the way to use well-known tools form convex analysis for
investigating the properties of output agreement steady-states.

Corollary 4.4 (Existence). Suppose all node dynamics are maximal
equilibrium independent passive with Ui = R and Yi = R, then an
output agreement steady-state exists.

Proof. The dynamics of each node are assumed to be maximally
equilibrium independent passive. Therefore, one can associate
to each node the equilibrium input–output map ky,i, and from
Theorem 4.2 the closed proper convex functions Ki as well as the
dual pair of network optimization problems (OFP1) and (OPP1).
Since Ui = R and Yi = R, both optimization problems have
a finite feasible solution and strong duality holds. The optimal
primal–dual solution pair solves the equilibriumproblem (16), and
since ky,i is the equilibrium input–outputmap, it corresponds to an
output agreement steady state. ⇤

Corollary 4.5 (Uniqueness). Assume the dynamical systems (6) are
maximal equilibrium independent passive with a nonempty Ui.
Furthermore, assume the equilibrium input–output functions ky,i are

strongly monotone and satisfy lim`!1 |ky,i(u`)| ! 1 whenever
u1, u2, . . . is a sequence in Ui converging to a boundary point of Ui.
Then there exists at most one pair (u, y) that can be a steady-state
solution.
Proof. From the assumptions follow that Ki(ui) are differentiable
and essentially smooth convex functions (see Rockafellar, 1997,
p. 251). Thus, (OFP1) can have at most one solution. If such a
solution exists, then the dual problem also has a solution. ⇤

Corollary 4.6 (Agreement Value). Assume the same assumptions as
for Corollary 4.5 hold. If an output agreement steady state exists, the
agreement value � satisfies

|V|X

i=1

k�1
y,i (�) = 0. (19)

Proof. It follows from Theorem 26.1 in Rockafellar (1997) that
rK ?i (yi) = k�1

y,i (yi). Thus, after replacing y in (OPP1) with y = �1,
the optimality condition of (OPP1) corresponds exactly to (19). ⇤

4.2. The control level

It remains to investigate when the controller dynamics (8) can
realize an output agreement steady state. In particular, in the
steady-state configuration, the controller (8) must generate a sig-
nal µ that corresponds to the desired control input. Suppose a so-
lution u to (16) is known, then the controller must be such that
the following static network equilibrium feasibility problem has a
solution:

Find ⌘ 2 R(E>)

s.t. u = �E (⌘).
(20)

Lemma 4.7 (Necessary and Sufficient Condition). The network
(6)–(9) has a steady-state solution if and only if there exists a solution
to (16) and (20).
Proof. If the equilibrium problems have a solution u, y, ⌘, then
u, y, µ =  (⌘) and ⇣ = 0 are a steady-state solution to (6)–(9).
Any steady-state solution u, y, µ, ⇣ of (6)–(9) solves the two equi-
librium problems with µ =  (⌘). ⇤
Please note that the two equilibrium problems (16) and (20) are
not independent. However, if (16) has a unique solution, (20) has
no influence on the solution of (16).

As the required steady-state input u is in general not known
for the controller design, it seems appropriate to design the con-
troller such that (20) is feasible for any u 2 R(E). Again, it will
turn out that the feasibility of the network equilibrium problem
is intimately related to maximal monotonicity. In particular, we
show that (20) has a solution for all u 2 R(E) if  k are strongly
monotone functions.

Following this observation, we now assume that all  k are
strongly monotone functions. Then, one can associate to each edge
k 2 E a closed, proper strongly convex function Pk : R ! R such
that
rPk(!k) =  k(!k). (21)

Lemma 4.8. Suppose the functions  k are strongly monotone, then
the controller dynamics (8) are maximal equilibrium independent
passive.
Proof. The equilibrium input set for the controller dynamics is
solely ⇣k = 0. However, the dynamics (8) is passive with respect to
the input ⇣k = 0 and any output µk 2 R. To see this, consider the
storage function

Wk(⌘k(t), !k) = Pk(⌘k(t)) � Pk(!k) � rPk(!k)(⌘k(t) � !k),

⇧k : ⌘̇k(t) = ⇣k(t)
µk(t) =  k(⌘k(t), ⇣k(t))
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Back to the dynamical network
Σ1

Σ2
. . .

Σ|V|

E E⊤

∫

∫

. . .
∫

ψ1

ψ2

. . .
ψ|E|

System Output y(t)

Relative
Output ζ(t)

Controller
Output µ(t)

-

System Input u(t)

Consider now the control level!

Let Pk(η) be such that ∇Pk = ψk.
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⇧k : ⌘̇k(t) = ⇣k(t)
µk(t) =  k(⌘k(t), ⇣k(t)) assume strongly monotone
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Theorem

As the required steady-state input u is in general not known for the controller design, it seems appropriate to
design the controller such that (21) is feasible for any u 2 R(E). Again, it will turn out that the feasibility of the
network equilibrium problem is intimately related to maximal monotonicity. In particular, we show that (21) has
a solution for all u 2 R(E) if  k are strongly monotone functions.

Following this observation, we now assume that all  k are strongly monotone functions. Then, one can
associate to each edge k 2 E a closed, proper strongly convex function Pk : R ! R such that

rPk(hk) =  k(hk). (22)

Lemma 4.9 Suppose the functions  k are strongly monotone, than the controller dynamics (8) is maximal equi-
librium independent passive.

Proof: The equilibrium input set for the controller dynamics is solely ⇣k = 0. However, the dynamics (8) is
passive with respect to the input ⇣k = 0 and any output µk 2 R. To see this, consider the storage function

Wk(⌘k(t),hk) = Pk(⌘k(t))� Pk(hk)�rPk(hk)(⌘k(t)� hk),

where hk is such that µk = rPk(hk). From strict convexity of Pk follows directly that Wk is a positive definite
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s.t. h = E>
v.

(OPP2)
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where P ?
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Assume all the node dynamics are maximal EIP. and the controller dynamics
are such that all output maps  k are strongly monotone and define Pk such
that rPk(⌘k) =  k(⌘k). Then the networked system has an output agreement
steady-state solution. Furthermore, let ⌘ be the state-state of the controller in
output agreement, then

1) ⌘ is an optimal solution of OPP2,

2) µ =  (⌘) is an optimal solution to OFP2,

3)
P|E|

k=1 P
?
k (µk) +

P|E|
k=1 Pk(⌘k) = µT ⌘
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Duality in Cooperative Control

The Big Picture

Divergence u Potential y

Flow µ Tension η Tension ζ

u = −Eµ

y = ∂K(u)

ζ = E⊤y

µ = ∇P(η)
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The Closed Loop
...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)
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From SISO to MIMO - Cyclic Monotonicity

Definition
Consider R ⇢ Rn ⇥ Rn

. The relation R is Cyclicly Monotone

if for any N � 1 and any pairs (ui, yi) 2 R, i = 1, . . . , N ,

NX

i=1

yTi (ui � ui�1) � 0.

[Rockafellar, 1966]Theorem
A relation R ⇢ Rn ⇥ Rn

is cyclicly monotone

if and only if it is contained in the subgradient

of a convex function  : Rn ! R.
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An Example - Vehicle Platooning
Example: Platooning Vehicles

Platooning Vehicles: Prediction and Control

Platooning Vehicles
(Helbing et al., Rev. of Modern Physics, 2001)
Velocity model ṗi = vi:

v̇i = κi[Vi(∇p)− vi]

Drivers adjustment:

Vi(∇p) = V 0
i +V 1

i

∑

i∈N (i)

tanh(pj−pi)
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Microscopic Traffic Model 
[Helbing et al., 2001]

Networks of Dynamical Systems

Illustrative Example: Platooning Vehicles

Microscopic tra�c model
(Helbing et al., Rev. of Modern Physics, 2001)

ṗi = vi

v̇i = i[V
0
i + Vi(rp)� vi]

Velocity adjustment:

Vi(rp) = V 1
i

X

i2N (i)

tanh(pj � pi)

Each vehicle/driver has a “preferred” velocity V 0
i (“disturbance”).

Velocity is adjusted based on the distance to the neighboring vehicles.

Control objective: Agreement on common travel velocity.

4 / 27

Velocity adjustment (control)

Networks of Dynamical Systems
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An Example - Vehicle Platooning
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Platooning Vehicles: Prediction and Control

Platooning Vehicles
(Helbing et al., Rev. of Modern Physics, 2001)
Velocity model ṗi = vi:
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Extensions to Clustering Analysis

What if the agreement steady state does not exist?

Microscopic tra�c model

ṗi = vi

v̇i = i[V
0
i + Vi(rp)� vi]

Velocity adjustment:

Vi(rp) = V 1
i

X

i2N (i)

tanh(pj � pi)

�2 �1.5 �1 �0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ

P
? (
µ
)

�10 �8 �6 �4 �2 0 2 4 6 8 10
�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

⌘

µ

�3�2.5�2�1.5�1�0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

⌘
P
(⌘
)

Solution to the network optimization problems does not exist for all V 0
i !
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Velocity adjustment (control)

Networks of Dynamical Systems
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output coupling function is monotone, but not strongly monotone!



 הפקולתה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

/4640

An Example - Vehicle Platooning
Network Optimization approach  
can still be used!

Passivity-based Cooperative Control

A canonical model for networked systems1:
(Throughout the talk we consider only SISO systems!)

Node Dynamics:

Σi : ẋi(t) = fi(xi(t), ui(t),wi)

yi(t) = hi(xi(t), ui(t),wi)

Relative Outputs: ζ = E⊤y

Edge Dynamics:

Πk : η̇k = ζk

µk = ψk(ηk)

Control Inputs: u = −Eµ

Σ1

Σ2

. . .
Σ|V|

E E⊤

∫

∫

. . .
∫

ψ1

ψ2

. . .
ψ|E|

System Output y(t)

Relative
Output ζ(t)

Controller
Output µ(t)

-

System Input u(t)

Feedback loop
I/O analysis.

1see, e.g., M. Arcak: Passivity as a Design Tool for Group Coordination, TAC, 2007
A. Van Der Schaft and B. Masche: Port-Hamiltonian Systems on Graphs, SJCON, 2013
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Optimal Flow Problem 
(OFP1)

Optimal Potential Problem  
(OPP1)

Extensions to Clustering Analysis

We can still analyze this behavior with our tools.

Reformulate the network optimization problems on the plant level:

min

ui,µk

|V|X

i=1

Ki(ui) min

yi,⇣k

|V|X

i=1

K?
i (yi) +

|E|X

k=1

|⇣k|

s.t. u = Eµ s.t. z = E>y

kµk1  1
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An Example - Vehicle Platooning
Optimal Flow Problem 

(OFP1)
Optimal Potential Problem  

(OPP1)

Extensions to Clustering Analysis
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Additional objective functions:

µk

�

?
k

hk

�k

Interpretations:

Constraints on the “flow capacity” induce clustering!

Regularization of `1-type induces clustering!
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additional objective functions corresponding 
 to “flow capacity” constraints
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An Example - Vehicle Platooning

Extensions to Clustering Analysis
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Example: Platooning Vehicles

Platooning Vehicles: Prediction and Control

Platooning Vehicles
(Helbing et al., Rev. of Modern Physics, 2001)
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by studying the solutions of the static 
network optimization problems
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Towards a Synthesis Procedure

Generalized Optimal Potential Problem  
(OPP1)

2058 M. Bürger et al. / Automatica 50 (2014) 2051–2061

(a) Signals of the closed-loop dynamical system. (b) Variables of the network theoretic framework.

Fig. 2. The block diagram of the closed loop system (a) and the abstracted illustration of the network variables (b).

Table 1
Relation between variables involved in the dynamical system and their static counterparts.

Dynamic signal Network variable Relation Cost function Optimization problem

y(t) System output y Potential y = ky(u) K ?i (yi) (OPP1)
⇣(t) Relative output ⇣ Tension ⇣ = E>y I0(zk) (OPP1)
u(t) System input u Divergence u = ky

�1(y) Ki(ui) (OFP1)
µ(t) Controller output µ Flow u + Eµ = 0 P?k (µk) (OFP2)
v(t) – v Potential ⌘ = E>v ukvk (OPP2)
⌘(t) Controller state ⌘ Tension µ =  (⌘) Pk(!k) (OPP2)

the dynamic variables of the closed-loop system and the static net-
work variables in Fig. 2. A summary of all variables involved in the
output agreement problem together with their static counterparts
is provided in Table 1. For the sake of completeness, we include
also the dynamic variable v(t), which corresponds to the potential
variables v of (OPP2) and can be defined as ⌘(t) = Ev(t).

5. A general dynamic network analysis framework

The full potential of the established duality framework can be
seen if more general networks of maximal equilibrium indepen-
dent passive systems are considered. We will generalize the pre-
vious results now for controllers (8) that are arbitrary maximal
equilibrium independent passive systems. In particular,we assume
now that the controllers (8) are replaced by dynamical systems of
the form
⇧k : ⌘̇k = �k(⌘k, ⇣k)

µk =  k(⌘k, ⇣k), k 2 E. (22)

Assumption 5.1. The controllers (22) aremaximal equilibrium in-
dependent passive with input set Zk, output set Mk, and maximal
monotone input–output relation gk ⇢ R2.

To each of the dynamics (22) one can associate now a closed,
proper, convex function �k : R ! R such that
@�k = gk . (23)
Now, the formalism developed in the previous section can be
generalized as the asymptotic behavior of the network (6), (7),
(22), (9) and can be related to the following pair of dual network
optimization problems.
Generalized optimal flow problem: Consider the following optimal
flow problem

min
u,µ

|V|X

i=1

Ki(ui) +
|E|X

k=1

� ?
k (µk)

s.t. u + Eµ = 0,

(GOFP)

where � ?
k denotes the convex conjugate of �k. This is a generalized

version of (OFP1). Still the divergence u are associated to the
cost functions defined by the integral of the nodes input–output

relations. However, now the cost function � ?
k is associated to the

flow variables µk.
Generalized optimal potential problem:Dual to the generalized opti-
mal flowproblem,we also define the generalized optimal potential
problem as

min
y,⇣

|V|X

i=1

K ?i (yi) +
|E|X

k=1

�k(⇣k)

s.t. ⇣ = E>y.

(GOPP)

In contrast to (OPP1), this problem does not necessarily force the
potential differences, i.e., the tensions, to be zero, but penalizes
them with the general cost functions �k.

The general network optimization problems (GOFP) and (GOPP)
are related to the asymptotic behavior of the network of maximal
equilibrium independent passive systems.

Theorem 5.2 (Generalized Network Convergence Theorem). Con-
sider the dynamical network (6), (7), (22) and (9). Assume all node
dynamics (6) are output strictly maximal equilibrium independent
passive and all controller dynamics (22) are maximal equilibrium
independent passive, and the two network optimization problems
(GOFP), (GOPP) have a feasible solution. Then there exists constant
vectors u, µ solving (GOFP), and y, ⇣ solving (GOPP), such that
limt!1 u(t) ! u, limt!1 µ(t) ! µ, limt!1 y(t) ! y, and
limt!1 ⇣(t) ! ⇣.

Proof. First, we show that if the two network optimization
problems have a feasible solution, this solution represents an
equilibrium for the dynamical network. Consider again the
Lagrangian function of (GOFP) with Lagrange multiplier ỹ, i.e.,

L(u, µ, ỹ) =
|V|X

i=1

Ki(ui) +
|E|X

k=1

� ?
k (µk) + ỹ>

(�u � Eµ).

Define now ⇣̃ = E>ỹ. If (GOFP) has an optimal solution, this
solution satisfies the optimality conditions

@Ki(u) � ỹ 2 0, @0?(µ) � ⇣̃ 2 0

u + Eµ = 0, ⇣̃ = E>ỹ,
(24)

Design controllers to achieved a desired 
output agreement state. 

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)

1. Find a convex function � such that the desired output agreement state,
y⇤ satisfies ⇣⇤ = ET y⇤ and minimizes the GOPP.

2. Find Maximal EIP systems whose steady-state input-output maps are the
subdi↵erentials of the functions �i.
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Flow µ Tension η Tension ζ

u = −Eµ

y = ∂K(u)

ζ = E⊤y

µ = ∇P(η)
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• maximal EIP systems 
• connection to dual network optimization problems 
• maximal EIP implies agreement solution is inverse optimal 
• duality relation exists for cooperative control problems!

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)
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• further extensions to MIMO systems 
• controller synthesis 
• “Duality” as a systems property 

...

...

G G

⌃1

⌃2

⇧1

⇧2

⇧m

⌃n

E(G) E(G)T

u(t) y(t)

µ(t) ⇣(t)
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