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Coordination in Multi-agent Systems

 Goldbeter, Bulletin of Mathematical Biology 2006

Aggregation of Dictyostelium
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Team-Players or Selfish?
Origins Space Missions

mission success depends on precise 
coordination and control of all 
agents in the system 

all agents acting to achieve a 
common team objective

min
xi

J(x1, . . . , xn)

optimization perspective
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Automated Transportation 
Networks
coordination of agents is only 
needed to safely complete their 
individual mission

all agents acting to minimize 
selfish objectives

Team-Players or Selfish?

Minority Report

optimization perspective

min
xi

n∑

i=1

Ji(xi)
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This Talk...

A Preference Agreement Problem

a team of selfish dynamical systems

coupled by a strict team constraint 

real-time requirements
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Σ5

Shrinking Horizon Preference 
Agreement Algorithm
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Problem Formulation

Simple Agent Dynamics:

xi(t+ 1) = xi(t) + ui(t)

Individual Goal of each agent:

Ji =
1

2

(

T−1
∑

t=t0

qi(xi(t+ 1)− ξi)
2 + riui(t)

2

)

Time

xi

M. Burger: Negotiations Between Dynamical Systems 3 / 16

Preliminaries

xi(t+ 1) = xi(t) + ui(t)

a collection of n agents
✴discrete time 
✴integrator dynamics

preference is captured by 
associated objective functions

✴quadratic objective 
✴different weights and desired  
state for each agent

Ji(t0, T, xi, ui) =
1

2

(
T−1∑

t=t0

qi(xi(t+ 1)− ξi)
2 + riui(t)

2

)

agents coupled by a terminal 
time agreement constraint

xi(T ) = · · · = xn(T )
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Preliminaries
agents can communicate 
over a network

✴fixed spanning tree

Σ1

Σ2

Σ3

Σ4

Σ5

G = (V, E)

E(G) ∈ Rn×n−1

node-edge incidence matrix

E(G) =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 −1
0 1 0 0
−1 −1 1 0
0 0 −1 1

⎤

⎥⎥⎥⎥⎦
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Preliminaries
agents can communicate 
over a network

✴fixed spanning tree

agents coupled by a terminal 
time agreement constraint

xi(T ) = · · · = xn(T )

E(G)Tx(T ) = 0
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An Optimal Control Problem

OCP (t0, T, x0) : min
x,u

n�

i=1

Ji(t0, T, xi, ui)

s.t. x(t + 1) = x(t) + u(t), x(t0) = x0

E(G)�x(T ) = 0.

the centralized approach

x(t) =

⎡

⎢⎣
x1(t)
...

xn(t)

⎤

⎥⎦can be reformulated as 
a quadratic program

Problem Formulation

Simple Agent Dynamics:

xi(t+ 1) = xi(t) + ui(t)

Individual Goal of each agent:

Ji =
1

2

(

T−1
∑

t=t0

qi(xi(t+ 1)− ξi)
2 + riui(t)

2

)

Time

xi

Centralized Perspective: Quadratic Program

OCP (t0, T, x0) : min
x,u

n
∑

i=1

Ji(t0, T, xi, ui)

s.t. x(t + 1) = x(t) + u(t), x(t0) = x0

E⊤x(T ) = 0.

M. Burger: Negotiations Between Dynamical Systems 3 / 16
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An Optimal Control Problem

OCP (t0, T, x0) : min
x,u

n�

i=1

Ji(t0, T, xi, ui)

s.t. x(t + 1) = x(t) + u(t), x(t0) = x0

E(G)�x(T ) = 0.

the centralized approach

min
x,u

1

2

✓⇥
xT uT

⇤  Q
R

� 
x
u

�
+

⇥
F (Q, ⇠)T 0

⇤  x
u

�◆

s.t. A


x
u

�
= b
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An Optimal Control Problem
recall:  Quadratic programs with only equality 
constraints have an analytic solution

min
x

1

2
xTQx+ cTx

s.t. Ax = b

QP:

1 Form the Lagrangian

L(x,�) = 1

2
xTQx+ cTx+ �T (Ax� b)

‘Lagrange’ multiplier

First-order optimality conditions2

rxL(x,�) = Qx+ c+AT� = 0

r�L(x,�) = Ax� b = 0
)


Q AT

A 0

� 
x
�

�
=


�c
b

�
a linear equation!
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An Optimal Control Problem
recall:  Quadratic programs with only equality 
constraints have an analytic solution

min
x

1

2
xTQx+ cTx

s.t. Ax = b

QP:

1 Form the Lagrangian

L(x,�) = 1

2
xTQx+ cTx+ �T (Ax� b)

‘Lagrange’ multiplier

First-order optimality conditions2

rxL(x,�) = Qx+ c+AT� = 0

) x⇤ = �Q�1(AT�+ c)
optimal solution is parameterized 
by the Lagrange multiplier
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An Optimal Control Problem
recall:  Quadratic programs with only equality 
constraints have an analytic solution

min
x

1

2
xTQx+ cTx

s.t. Ax = b

QP:

Form the ‘dual’ function3

g(�) = min
x

1

2
xTQx+ cTx+ �T (Ax� b)

) x⇤ = �Q�1(AT�+ c)

) g(�) = �1

2
�TAQ�1AT�� bT� (c = 0)

4 Solve the ‘dual problem’

max
�

g(�)
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An Optimal Control Problem

OCP (t0, T, x0) : min
x,u

n�

i=1

Ji(t0, T, xi, ui)

s.t. x(t + 1) = x(t) + u(t), x(t0) = x0

E(G)�x(T ) = 0.

the centralized approach

Lagrange duality motivates an iterative 
algorithm to solve a quadratic program



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Freiburg University  
July 16, 2014,

A Distributed Algorithm

dual sub-gradient algorithm

L(x,u, µ) =
n�

i=1

Ji(t0, T,xi, ui) + µ�E(G)�x(T )

the (partial) Lagrangian

Multipliers are associated with 
the edges in the graph

separable form of the Lagrangian

� = E(G)µ

uniquely defined 
on “nodes” 

L(x,u, �) =
nX

i=1

Ji(t0, T,xi,ui) + �0x(T )

OCP (t0, T, x0) : min
x,u

n�

i=1

Ji(t0, T, xi, ui)

s.t. x(t + 1) = x(t) + u(t), x(t0) = x0

E(G)�x(T ) = 0.
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A Distributed Algorithm

L(x,u, µ) =
n�

i=1

Ji(t0, T,xi, ui) + µ�E(G)�x(T )

the (partial) Lagrangian

recall the first-order 
optimality conditions rµL(x,u, µ) = E(G)0x(T )

r�L(x,u, �) = x(T )(separable form)

the dual problem

max
µ

g(µ) A quadratic program!

can be solved using a 
gradient ascent!
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A Distributed Algorithm
dual sub-gradient algorithm

✴ multiplier updated by inter-agent communication 
✴ choice of step-size is non-trivial - required for convergence 
✴ asymptotically converges to the primal optimal solution

1 Solve local quadratic program QPi(k)

(x̂[k+1]
i , û[k+1]

i ) =arg min
x̂[k]
i ,û[k]

i

Ji(t0, T, x̂
[k]
i , û[k]

i ) + �̂[k]
i x̂[k]

i (T )

s.t. Dynamic Constraints

2 Update multipliers

�̂[k+1]
i = �̂[k]

i + ↵[k]L(G)x̂[k+1](T ) L(G) = E(G)E(G)T*
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Not good enough...

lim
k→∞

(x̂[k], û[k], γ̂[k]) = (x,u, E(G)µ)
OCP (t0, T, x0)

infinity is a long time!
∞ > T

✴assume T is a hard deadline 
✴agents do not want to wait around 
to compute their trajectories 
✴communication also takes time

A Distributed Optimization Algorithm

In our control setup:

run algorithm wait until completeness start moving!

Problem: Communication and computation takes real time!

TimeEnd of Alg.

xi

Significant disagreement at final time T !
M. Burger: Negotiations Between Dynamical Systems 5 / 0

“wait and solve” can lead to 
significant disagreement
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Real-Time Negotiations

Fact: Time passes during negotiation

Fact: Time horizon is shrinking!
Optimization problem changes at each iteration!

Idea: Communicate, compute and act!

Transmit & Receive

Update Algorithm State Update Physical State

Algorithm: Agents move in direction believed to be optimal.

M. Burger: Negotiations Between Dynamical Systems 6 / 0

‘Real-Time’ Modification

lim
k→∞

(x̂[k], û[k], γ̂[k]) = (x,u, E(G)µ)
OCP (t0, T, x0)

✴at each time-step, agents move in a 
direction they consider optimal

Requirements

✴agents communicate at each time-
step to negotiate the terminal-state 
constraint

✴trajectories are updated to reflect 
progress in the negotiation process

agents are trying to estimate 
the multiplier value

A dynamic negotiation 
process!
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Shrinking Horizon Preference Agreement (SHPA) Algorithm

✴ optimization horizon is “shrinking” from “the left” 
✴choice of step-size is non-trivial

1 Solve local quadratic program QPi(k)

2 Propagate physical state and update multipliers

“Shrinking Horizon”

SIAM 7

See Algorithm 1 for a description.

Algorithm 1: Shrinking Horizon Preference Agreement Algorithm
Data: Initial conditions xi(0) = xi0 and µ(0) = µ0; t = 0.
begin
for t := 0 to T-1 do

γt = Eµ(t), T̃ = T − t
Each agent solves the sub-problemQPi(t):

min
x̂i(t),ûi(t)

Ji(t, T, x̂
t
i, û

t
i) + γt

i x̂
t
i(T ) s.t. x̂

t
i = T̃xi(t) +BT̃ û

t
i (3.1)

The physical state and multipliers are propagated forward using the solution
of QP i(t):

xi(t+ 1) = xi(t) + û
t
i(t), i = 1, . . . , n (3.2)

µ(t+ 1) = µ(t) + α(t)E′
x̂
t(T ) (3.3)

where α(t) satisfies some step-size rule.

At the discrete time instant t < T , each agent i solves an optimal control problem with
the finite horizon T̃ = T − t, using the given µ(t) for the estimated terminal constraint mul-
tiplier value. The optimal solution of QPi(t) is then used to propagate the actual physical
system state, xi(t), forward. The new state is then used as the initial condition for the sub-
sequent iteration. The key point here is that at each step of the algorithm, the agents are
physically moving along the optimal trajectory calculated for a given multiplier value.

The relation of the SHPA algorithm to the dual sub-gradient methods should be clear
from the update equation of the multiplier µ(t). The primary difference, as already men-
tioned, is that at each time step the physical state of the system is changing, and the cor-
responding sub-problem QPi(t) is also modified. In this way, the SHPA algorithm can be
interpreted as a dynamic negotiation protocol to determine the consensus value. The multi-
pliers γi(t) can then be considered as a kind of estimate by each agent of the preferences of
neighboring agents.

A main result of this work is that the trajectories produced by Algorithm 1 are equiv-
alent to the trajectories of a linear time-varying dynamical system. The following theorem
summarizes this result.

THEOREM 3.1. Algorithm 1 is equivalent to the linear dynamical system

[

x(t+ 1)
µ(t+ 1)

]

=

[

I − P (T̃ ) −R−1K(T̃ )E
α(t)E′K(T̃ ) I − α(t)E′Q−1P (T̃ )E

][

x(t)
µ(t)

]

+

[

P (T̃ )
E′(I − α(t)K(T̃ ))

]

ξ

(3.4)

with T̃ = T − t, Q = diag{q1, . . . , qn}, R = diag{r1, . . . , rn} the weights of the optimiza-
tion problem, and P (T̃ ) = diag{P1(T̃ ), . . . , Pn(T̃ )}, K(T̃ ) = diag{K1(T̃ ), . . . ,Kn(T̃ )}
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Ji(t, T, x̂
t
i, û
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t
i(t), i = 1, . . . , n (3.2)

µ(t+ 1) = µ(t) + α(t)E′
x̂
t(T ) (3.3)

where α(t) satisfies some step-size rule.

At the discrete time instant t < T , each agent i solves an optimal control problem with
the finite horizon T̃ = T − t, using the given µ(t) for the estimated terminal constraint mul-
tiplier value. The optimal solution of QPi(t) is then used to propagate the actual physical
system state, xi(t), forward. The new state is then used as the initial condition for the sub-
sequent iteration. The key point here is that at each step of the algorithm, the agents are
physically moving along the optimal trajectory calculated for a given multiplier value.

The relation of the SHPA algorithm to the dual sub-gradient methods should be clear
from the update equation of the multiplier µ(t). The primary difference, as already men-
tioned, is that at each time step the physical state of the system is changing, and the cor-
responding sub-problem QPi(t) is also modified. In this way, the SHPA algorithm can be
interpreted as a dynamic negotiation protocol to determine the consensus value. The multi-
pliers γi(t) can then be considered as a kind of estimate by each agent of the preferences of
neighboring agents.

A main result of this work is that the trajectories produced by Algorithm 1 are equiv-
alent to the trajectories of a linear time-varying dynamical system. The following theorem
summarizes this result.

THEOREM 3.1. Algorithm 1 is equivalent to the linear dynamical system

[

x(t+ 1)
µ(t+ 1)

]

=

[

I − P (T̃ ) −R−1K(T̃ )E
α(t)E′K(T̃ ) I − α(t)E′Q−1P (T̃ )E

][

x(t)
µ(t)

]

+

[

P (T̃ )
E′(I − α(t)K(T̃ ))

]

ξ

(3.4)

with T̃ = T − t, Q = diag{q1, . . . , qn}, R = diag{r1, . . . , rn} the weights of the optimiza-
tion problem, and P (T̃ ) = diag{P1(T̃ ), . . . , Pn(T̃ )}, K(T̃ ) = diag{K1(T̃ ), . . . ,Kn(T̃ )}

SIAM 7

See Algorithm 1 for a description.

Algorithm 1: Shrinking Horizon Preference Agreement Algorithm
Data: Initial conditions xi(0) = xi0 and µ(0) = µ0; t = 0.
begin
for t := 0 to T-1 do

γt = Eµ(t), T̃ = T − t
Each agent solves the sub-problemQPi(t):

min
x̂i(t),ûi(t)
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t
i) + γt

i x̂
t
i(T ) s.t. x̂

t
i = T̃xi(t) +BT̃ û

t
i (3.1)

The physical state and multipliers are propagated forward using the solution
of QP i(t):

xi(t+ 1) = xi(t) + û
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sequent iteration. The key point here is that at each step of the algorithm, the agents are
physically moving along the optimal trajectory calculated for a given multiplier value.

The relation of the SHPA algorithm to the dual sub-gradient methods should be clear
from the update equation of the multiplier µ(t). The primary difference, as already men-
tioned, is that at each time step the physical state of the system is changing, and the cor-
responding sub-problem QPi(t) is also modified. In this way, the SHPA algorithm can be
interpreted as a dynamic negotiation protocol to determine the consensus value. The multi-
pliers γi(t) can then be considered as a kind of estimate by each agent of the preferences of
neighboring agents.

A main result of this work is that the trajectories produced by Algorithm 1 are equiv-
alent to the trajectories of a linear time-varying dynamical system. The following theorem
summarizes this result.

THEOREM 3.1. Algorithm 1 is equivalent to the linear dynamical system

[

x(t+ 1)
µ(t+ 1)

]

=

[

I − P (T̃ ) −R−1K(T̃ )E
α(t)E′K(T̃ ) I − α(t)E′Q−1P (T̃ )E

][

x(t)
µ(t)

]

+

[

P (T̃ )
E′(I − α(t)K(T̃ ))

]

ξ

(3.4)

with T̃ = T − t, Q = diag{q1, . . . , qn}, R = diag{r1, . . . , rn} the weights of the optimiza-
tion problem, and P (T̃ ) = diag{P1(T̃ ), . . . , Pn(T̃ )}, K(T̃ ) = diag{K1(T̃ ), . . . ,Kn(T̃ )}
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“Shrinking Horizon”

no penalty for ignoring 
terminal constraint

agent moves directly 
towards preference

trajectory is the optimal 
finite-time LQR control

γ̂0
i = 0 ̸= E(G)µ

t0 1

(xi(0), γ̂
0
i )
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“Shrinking Horizon”

agent moves along optimal 
trajectory from previous 
time step

multiplier has been 
updated, forcing agent to 
adjust its planned trajectory

t0 1

(xi(0), γ̂
0
i )

(xi(1), γ̂
1
i )

(xi(2), γ̂
1
i )

(xi(T ), γ̂
1
i )

γ̂1
i ̸= E(G)µ
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“Shrinking Horizon”

agent moves along optimal 
trajectory from previous 
time step

multiplier has been 
updated, forcing agent to 
adjust its planned trajectory

t0 1

(xi(0), γ̂
0
i )

(xi(1), γ̂
1
i )

(xi(2), γ̂
2
i )

(xi(T ), γ̂
2
i )

γ̂2
i ̸= E(G)µ
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“Shrinking Horizon”

· · ·
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“Shrinking Horizon”

agent moves along optimal 
trajectory from previous 
time step

multiplier has been 
updated, forcing agent to 
adjust its planned trajectory

t0 1

(xi(0), γ̂
0
i )

γ̂T−1
i = E(G)µ ?
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Does it Work?

✴does this generate optimal trajectories? 
✴do the multiplier estimates converge 
to the optimal multipliers? 
✴if not, how good is it? what analysis 
tools are suitable for this problem?

Theorem:  The shrinking horizon preference 
agreement algorithm is equivalent to a time-
varying linear dynamical system.



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Freiburg University  
July 16, 2014,

LTV Systems
discrete-time linear dynamical systems

x(t+ 1) = Ax(t) +Bu(t) x(0) = x0

x(t) = Atx(0) +At�1Bu(0) +At�2Bu(1) + · · ·+Bu(t� 1)

Theorem:  The discrete-time linear dynamical system is 
asymptotically stable if and only if all the eigenvalues 
of the state matrix satisfy |�i(A)| < 1
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Definition:  The discrete-time autonomous linear time-
varying dynamical system is said to be uniformly 
decreasing if  

for each time t and independent of the initial condition. 

kx(t+ 1)k < kx(t)k

LTV Systems
Linear Time-Varying (LTV) dynamical system

x(t+ 1) = A(t)x(t)

a useful notion for finite-time problems
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Linear System Representation

�
x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�
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Linear System Representation
�

x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�

proof:

not here...too messy! but look here...

• analytic solutions of QP 
• Sherman-Morrison-Woodbury-Schur formula 
• derivation of recursions 
• Kalman Filter
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Linear System Representation
�

x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�

Pi(T̃ + 1) =
1+

ri
qi

Pi(T̃ )

1+
ri
qi

+
ri
qi

Pi(T̃ )
, Pi(1) =

qi

ri + qi

Ki(T̃ + 1) = ri
qi

Ki(T̃ )

1+
ri
qi

+
ri
qi

Pi(T̃ )
, Ki(1) =

ri

ri + qi
.

Pi(T̃ ) is the finite-time LQR gain!

✴can be computed off-line 
✴independent of graph, 
number of agents, step-
size, etc...
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Linear System Representation
�

x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�

I − α(t)E(G)′Q−1P (T̃ )E(G)

acts like a weighted 
consensus algorithm!*

LQR gains also used in 
the negotiation process

* the consensus protocol is a distributed averaging scheme ẋ = �L(G)x
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Linear System Representation
�

x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�

α(t) is the only design parameter

linear systems theory is the 
correct tool to analyze 
performance of SHPA

choice of step-size now akin 
to a stabilization problem
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Performance of SHPA Algorithm
�

x(t + 1)
µ(t + 1)

�
=

�
I � P (T̃ ) �R�1K(T̃ )E(G)

�(t)E(G)�K(T̃ ) I � �(t)E(G)�Q�1P (T̃ )E(G)

� �
x(t)
µ(t)

�
+

�
P (T̃ )

E(G)�
�
I � �(t)K(T̃ )

�
�

�

t0 1

(xi(0), γ̂
0
i )

Two important error signals

✴predicted disagreement

e(t) = E(G)′x̂t(T )

✴multiplier error

ϵ(t) = µ(t)− µ t



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Freiburg University  
July 16, 2014,

Performance of SHPA Algorithm

Corollary:  The optimal multipliers associated with 
the problem OCP(t,T,x(t)) evolves according to a 
time-varying linear dynamical system

µ t =
(
E(G)′Q−1P (T̃ )E(G)

)−1
E(G)′

[
K(T̃ )(x(t)− ξ) + ξ

]

lim
t→T

∥µ(t)− µt∥ → 0
want this...

analyze multiplier error dynamics

ϵ(t) = µ(t)− µ t
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Performance of SHPA Algorithm
Theorem:  The multiplier error dynamics evolves 
according to a time-varying linear dynamical 
system.

ϵ(t+ 1) =
(
(E(G)′Q−1P (T̃ − 1)E(G))−1 − α(t)I

)
E(G)′Q−1P (T̃ )E(G)ϵ(t)

Lemma:  There exists a step-size rule such that the 
multiplier error dynamics is uniformly decreasing if 
and only if the following LMI condition is feasible

−I ≤ L1/2
t L−1

t+1L
1/2
t − α(t)Lt ≤ I

Lt = E(G)′Q−1P (T̃ )E(G)
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Performance of SHPA Algorithm

Lt = E(G)′Q−1P (T̃ )E(G)

−I ≤ L1/2
t L−1

t+1L
1/2
t − α(t)Lt ≤ I

insight gained by considering a 
simplified problem set-up

Q = qI R = rI

all agents have the same state and 
control weight (but different preferences)

Corollary:  There exists a step-size rule such that the 
multiplier error dynamics is uniformly decreasing if 
and only if 

λmax(E(G)′E(G))
λmin(E(G)′E(G)) < 3 + 2

((q
r

)2
+ 3

q

r

)
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Performance of SHPA Algorithm

Theorem:  The predicted disagreement evolves 
according to a time-varying linear dynamical 
system.

e(t+ 1) =
(
I − α(t)E(G)′Q−1P (T̃ − 1)E(G)

)
e(t)

want this...

lim
t→T

∥e(t)∥ → 0
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Performance of SHPA Algorithm

Corollary:  The predicted disagreement is 
uniformly decreasing if and only if

e(t+ 1) =
(
I − α(t)E(G)′Q−1P (T̃ − 1)E(G)

)
e(t)

0 < α(t) < 2λ−1
max(E(G)′Q−1P (T̃ − 1)E(G))

Corollary:  The predicted disagreement is 
uniformly decreasing if and only if

Q = qI R = rI

0 < α(t) < 2
q

P (T − 1)λmax(E(G)′E(G))
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Performance of SHPA Algorithm
an interesting observation...

−I ≤ L1/2
t L−1

t+1L
1/2
t − α(t)Lt ≤ I 0 < α(t) < 2λ−1

max(E(G)′Q−1P (T̃ − 1)E(G))

ϵ(t) e(t)
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−2000
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−1000

−500

0
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ep
s

step-sizes exist that guarantee disagreement 
uniformly decreases, but not the multiplier error
in this case, disagreement error can not be made 
arbitrarily small in finite time!
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2.8603 2.8603 2.8603 2.8603 2.8603 2.8603 2.8603 2.8603 2.8603 2.8603

1.0233

1.0233

1.0233

1.0233

1.0233

1.0233

1.0233

Simulation Examples
SHPA with time-varying preference

T = 150

α(t) = α = 10



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Freiburg University  
July 16, 2014,

1.4 1.45 1.5 1.55 1.6 1.65 1.7

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

Simulation Examples
SHPA with time-varying preference

α(t) = α = 10
T = 15
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Simulation Examples
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random graph
star graph
path graph

∆ =
L(x, u, µ)
L(x,u, µ)

Optimality Gap
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Switching Communication
agents can communicate 
over a network

✴switching communication

Σ1

Σ2

Σ3

Σ4

Σ5

Σ1

Σ2

Σ3

Σ4

Σ5

Σ1

Σ2

Σ3

Σ4

Σ5

Σ1

Σ2

Σ3

Σ4

Σ5

Σ1

Σ2

Σ3

Σ4

Σ5

Σ1

Σ2

Σ3

Σ4

Σ5

t = t0 t0 + 1 t0 + 2

t0 + 3 · · · · · ·

σ : {0, 1, . . .} → G
switching signal

Gσ(t) = (V, Eσ(k))
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Switching Communication Graphs

Switching Communication Graphs:

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

t

x
(t
)

Edge probability: p = 0.1

M. Burger: Negotiations Between Dynamical Systems 14 / 16

Switching Communication

interesting results 
- simulations using a random graph 

model to generate switching signal

“similar” analytic results 
• uniformly jointly connected graphs
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Switching Communication Graphs

Switching Communication Graphs:

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

t

x
(t
)

Edge probability: p = 0.01 (not enough communication)

M. Burger: Negotiations Between Dynamical Systems 14 / 16

Switching Communication

interesting results 
- simulations using a random graph 

model to generate switching signal

“similar” analytic results 
• uniformly jointly connected graphs
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Switching Communication

interesting results 
- simulations using a random graph 

model to generate switching signal

“similar” analytic results 
• uniformly jointly connected graphs

Switching Communication Graphs

Switching Communication Graphs:

0 5 10 15 20
−25

−20

−15
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−5

0
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20

t

x
(t
)

Edge probability: p = 0.15

More communication can make performance worse!

M. Burger: Negotiations Between Dynamical Systems 14 / 16

more communication 
can lead to instability!
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Concluding Remarks

SHPA algorithm is an attempt to understand the 
complexities of real-time distributed optimization problems

✴interplay between dynamic systems and 
distributed optimization 
✴step-size, graph structure, preferences 
✴simple set-up, non-trivial results

limitless extensions...
✴state-dependent graphs, random graphs 
✴more sophisticated dynamics 
✴saddle-point problems and multi-agent 
systems 
✴and more...
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