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Coordination in Multi-agent Systems

- . -
Goldbeter, Bulletin of Mathematical Biology 2006

Aggregation of Dictyostelium
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Team-Players or Selfish?

Origins Space Missions

mission success depends on precise
coordination and control of all
agents in the system

all agents acting to achieve a
common team objective

optimization perspective

min J(z1,...,T,)
zi
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Team-Players or Selfish?

=X @ Automated Transportation
| w5 .,.“‘ : B S

* Networks

-

v coordination of agents is only
needed to safely complete their
individual mission

all agents acting to minimize
selfish objectives

optimization perspective
n
min » J;(z;)

X3 :
1=1
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This Talk...

A Preference Agreement Problem

a team of selfish dynamical systems
coupled by a strict team constraint

real-time requirements

Shrinking Horizon Preference
Agreement Algorithm
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Preliminaries

a collection of n agents

%Fliscrete time | CEZ(t 4+ 1) _ CBZ(t) + uz(t)

*integrator dynamics

preference is captured by
associated objective functions

*quadratic objective
xdifferent weights and desired
state for each agent

J; (thT wzauz — (Z QZ xz t"‘ €Z) +Tiui(t)2)

t=to
agents coupled by a terminal T\ — - T
. Al p(T) = - = (1)
time agreement constraint
4
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Preliminaries

agents can communicate

over a network

*fixed spanning tree

G=WV¢~E)

E(Q) c Ran—l

node-edge incidence matrix

1
0

EG)=1] 0
—1

0

0

1
—1

0
0
0
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Preliminaries

agents can communicate
over a network

*fixed spanning tree

agents coupled by a terminal
time agreement constraint
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An Optimal Control Problem

the centralized approach

S

OCP(tQ,T, $O) . min ZJ@ tO,T sz,uz)
1=1

T, U

s.t. r(t+ 1) =x(t) +u(t), z(ty) = xg
E(G)'x(T) = 0.

© - zi(t)

:\/ can be reformulated as  z(t)= |

o a quadratic program ESON
&=
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An Optimal Control Problem

the centralized approach

n

OCP(tg, T, zo) : min ZJZ'(??O,T, Ty Us)

T, U
1=1

L
s.t. A =b
u
e
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An Optimal Control Problem

recall: Quadratic programs with only equality
constraints have an analytic solution

1
QP: min §xTQ$ +clx
s.t. Axr =0

(1) Form the Lagrangian

1
L(x,\) = §xTQx +ctz+ N (Ax —b)

‘Lagrange” multiplier
(2) First-order optimality conditions a linear equation!
VaoLl(x,\) = QCI’J—I—C—I—AT)\: 0 Q AT . .
VaL(z,\) = Az — b =0 j[f“ OHA}:{’?}
A )
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An Optimal Control Problem

recall: Quadratic programs with only equality
constraints have an analytic solution

1
QP: min §xTQ$ +clx
s.t. Axr =0

(1) Form the Lagrangian

1
L(x,\) = §xTQx +ctz+ N (Ax —b)

‘Lagrange” multiplier
(2) First-order optimality conditions
VaoLl(z,\)=Qx+c+A"X=0
ot — —Q_l (AT)\ n C) optimal solution is parameterized

by the Lagrange multiplier
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An Optimal Control Problem

recall: Quadratic programs with only equality
constraints have an analytic solution

1

QP: min §xTQ$ +clx
s.t. Axr =0

(3) Form the ‘dual’ function
1

g(A) = min §£L‘TQ£IZ‘ +c'x + M (Az — b)
1
= g(\) = =N AQTTATA b A (c=0)

= o= -Q (AT A +¢)
(4) Solve the ‘dual problem’

max g(\)
o A
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An Optimal Control Problem

the centralized approach

S

OCP(tQ,T, CE()) . min ZJ?’ tO,T xz,uz)
1=1

(t+1) = z(t) + u(t), z(to) = o
E(G)'x(T) = 0.

S.1.

S

Lagrange duality motivates an iterative
algorithm to solve a quadratic program
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A Distributed Algorithm

OCP(ty, T, xzg) : min Z«]i(tOvTa T, Us)

s.t. Z(;+) z(t) + u(t), z(to) = o
dual sub-gradient algorithm PO =0
the (partial) Lagrangian N
Lx,u,p) = Y Ji(to, T,xi, w;) + ' E(G)x(T)

1=1 . . .
Multipliers are associated with

h in th h
separable form of the Lagrangian the edges in the grap

‘C(Xa U—aV) — Zji(t())T) Xiaui) V,X(T)

1=1 : :
uniquely defined
on “nodes”
— v =EG)p
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A Distributed Algorithm

the (partial) Lagrangian

‘C(Xv u, :u) — Z JZ (tOv T7 X7 ui) T M/E(g),X(T)

1=1

recall the first-order VML(X’ u, ,U) — E(g)/x(T)

optimality conditions

(separable form) V’YE(X7 u, ’y) — X(T)

the dual problem

max g(,u) A quadratic program!

V!
can be solved using a
gradient ascent!
s
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A Distributed Algorithm

dual sub-gradient algorithm

(1) Solve local quadratic program QP (k)

(ng—l-l]’ﬁ?[:k—i—l]) —arg [%nn[k] J;(t

A § B
A )

-
~
>
Q. —
=
rp
=
N—"
_|_
>
S R —
=
>
=
VR
~
N—"

X
s.t. Dynamic Constraints

(2) Update multipliers

* multiplier updated by inter-agent communication
* choice of step-size is non-trivial - required for convergence
* asymptotically converges to the primal optimal solution

L & 4

‘7 20M NPLINTIMK NDTIND NLNPON Freiburg University
u Faculty of Aerospace Engineering July 16, 2014,




Not good enough...

<<l

. ralkl alk] 2k _ _
lim (%%, 4%, 4%) = (%1, B(9)7)
OCP(to,T, 2130)
mfm'ty IS d /ong time! *assume T is a hard deadline
oo > T *agents do not want to wait around
to compute their trajectories
*communication also takes time
([
@
.—

“wait and solve” can lead to
significant disagreement
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‘Real-Time’ Modification

kli)IIC}O(f([k] ] ﬁ[k] , ’?[k]) — (i) ﬁ’ E(g)ﬁ) [ Transmit & Receive ]
OCP(to, T, ZCO)

Requirements

[ Update Algorithm State ] [ Update Physical State ]

*at each time-step, agents move in a
direction they consider optimal

*agents communicate at each time-
step to negotiate the terminal-state
constraint

agents are trying to estimate
the multiplier value

=

*trajectories are updated to reflect A dynamlc negotation
progress in the negotiation process process !
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“Shrinking Horizon”

Shrinking Horizon Preference Agreement (SHPA) Algorithm

fort :=0to7-1 do
vE=FEu(t), T =T —t
(1) Solve local quadratic program QPF;(k)
min J;(¢, T, K5, 0F) + ~/%(T)

CEi(t T 1) — X; () 1
u(t + 1) = u(t) + a(t) E'R(T)

* optimization horizon is “shrinking” from “the left”
*choice of step-size is non-trivial
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“Shrinking Horizon”

i?i(t)

¥ =0# EG)R

no penalty for ignoring
terminal constraint

2, (T),40) agentmoves directly
(@(T), %) towards preference

trajectory is the optimal
finite-time LQR control

—

DO

o

ﬂ_______
<

| | |

(l) | I
e
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“Shrinking Horizon”

i?i(t)

agent moves along optimal
trajectory from previous
time step

multiplier has been
o1 updated, forcing agent to
o adjust its planned trajectory

—

DO

o

Dﬂ_______
<

| | |

(l) | I
e
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“Shrinking Horizon”

i?i(t)

agent moves along optimal
trajectory from previous
time step

multiplier has been
updated, forcing agent to
adjust its planned trajectory

—
DO
o

e
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“Shrinking Horizon”
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“Shrinking Horizon”

i?i(t)

=EG)n ¢

agent moves along optimal
trajectory from previous
time step

multiplier has been
updated, forcing agent to
adjust its planned trajectory

o 1 2 3
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Does it Work?

Algorithm 1: Shrinking Horizon Preference Agreement Algorithm

Data: Initial conditions z;(0) = xj0 and p(0) = po; t = 0.

ot = 00T do *does this generate optimal trajectories?
t=Ep(t),T =T —t T .
Each agent solves the sub-problem QP (1) *do the multiplier estimates converge
min Ji(¢,T,%;, @}) + 7 X{(T) s.t. X; = Lpzi(t) + Bya; . . .
B0 to the optimal multipliers?

The physical state and multipliers are propagated forward using the solution . . . .

of QP 1) *if not, how good is it? what analysis
ri(t+1) =z;(t) +0j(t), i=1,...,n / . .
(e +1) = () + @O BGYR (M) tools are suitable for this problem?

| where a(t) satisfies some step-size rule.

Theorem: The shrinking horizon preference
agreement algorithm is equivalent to a time-
varying linear dynamical system.
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LTV Systems

discrete-time linear dynamical systems

r(t+ 1) = Ax(t) + Bu(t) xz(0) = zq

z(t) = A'z(0) + A" ' Bu(0) + A" *Bu(1) +--- + Bu(t — 1)

Theorem: The discrete-time linear dynamical system is
asymptotically stable if and only if all the eigenvalues
of the state matrix satisfy |\;(A)| < 1
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LTV Systems

Linear Time-Varying (LTV) dynamical system
r(t+ 1) = A(t)x(t)

Definition: The discrete-time autonomous linear time-
varying dynamical system is said to be uniformly
decreasing if

lz(t + D < [l=@)]]

for each time t and independent of the initial condition.

a useful notion for finite-time problems
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Linear System Representation

Algorithm 1: Shrinking Horizon Preference Agreement Algorithm

Data: Initial conditions z;(0) = zj0 and p£(0) = po; t = 0.
begin
fort :=0toT-1 do
Y =Eupt), T=T-—t
Each agent solves the sub-problem QP;(t):
x.-(lz,I)l.itlxl.-(z)Ji(t’T’ X}, 0f) +7x{(T) st X = Lypzi(t) + Bpaj
The physical state and multipliers are propagated forward using the solution
of QP;(t):
ri(t+1) =z;(t) +0i(t), i=1,...,n
p(t +1) = p(t) + a(t) E(G)'XY(T)

| where aft) satisfies some step-size ryle.

}:{ I—P(/T) ) —R™YK(T)E(G) } { z(t) } N

£2(9) (I -aWK@)) S
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Linear System Representation

{x(t—Ll)}:{ I-P(T) —R'K(T)E (9)
plt +1) o(BEG)R(T) I—at)EG)Q 'P(T)E(9)
P(T)
B@) (T- (@) |
proof:
not here...too messy! but look here...

» analytic solutions of QP

» Sherman-Morrison-Woodbury-Schur formula
e derivation of recursions

 Kalman Filter
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Linear System Representation

{x(t—Ll)}:{ I — P(T) ~R'K(T ) (~) ]{aj(t)}Jr
p(t + 1) o(BEG)R(T) I—at)EG)Q 'P(TEG) | [ wd)
P(T)
/ . T 5
B@) (I - a(t)K(T))
~ 1+ P (T) di
P(T+1) =—u ' Pi(1) =
Z( ) l'qz qui(T)7 Z( ) TZ_I_QZ
~ T T
K(T+1) =zt Ki(1) = ——.
(T + 1) i 14+ L+ 5L Pi(T') (1) T + q;
*can be computed off-line
P;(T) is the finite-time LQR gain! *independent of graph,
¢ &AM 1 umber of agents, step-
— size, etc...
V 20M NPLINTIMK NDTIND NLNPON Freiburg University
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Linear System Representation

{x(t—Ll)}:[ I—P(T)~ —~R'K(T)E (9) }{x(t)}Jr
plt +1) o(BEG)K(T) I =at)EG)Q P(T)EG) | | #O)
_ P(T)
B@) (T- (@) |
acts like a weighted
o consensus algorithm!*
I —a(t)E(G) Q™ P(T)E(G)
LQR gains also used in
the negotiation process
* the consensus protocol is a distributed averaging scheme & = —L(G)x
20M NPLINTIMK NDTIND NLNPON Freiburg University
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Linear System Representation

B() (1~ a(t)K(T)) _ S

O{(t) is the only design parameter

choice of step-size now akin
to a stabilization problem

linear systems theory is the
correct tool to analyze
performance of SHPA
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Performance of SHPA Algorithm

[ I —P(T) ) _R—lK(T)E(g) ] [ ]+
a(t)E(G)K(T) I—a(t)E(G)Q'P(T)E(G) (1)
P(T)

By (I-alnx(@) |

Two important error signals

*multiplier error ¢ ]

*predicted disagreement

e(t) = E(G)'%(T)
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Performance of SHPA Algorithm

Corollary: The optimal multipliers associated with
the problem OCP(t, T x(t)) evolves according to a
time-varying linear dynamical system

it = (BG)QP(EW9))
want this...
: —t
lim le(t) = 7 {| — 0

analyze multiplier error dynamics

e(t) = p(t) — '
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Performance of SHPA Algorithm

Theorem: The multiplier error dynamics evolves
according to a time-varying linear dynamical
system.

(t+1) = ((B@)Q'P(T ~1)E(@)) ™" — a()] ) EG) Q™" P(1)E(G)e(t)

Lemma: There exists a step-size rule such that the
multiplier error dynamics is uniformly decreasing if
and only if the following LMI condition is feasible

I <L/L7N L —a(t)L, <1

L= E(G) Q™ P(T)E(G)
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Performance of SHPA Algorithm

—I<LPL LD — ()L < 1

t+1
L = E(G) Q™ P(T)E(G)
insight gained by considering a Q=ql R=rl

simplified problem set-up

all agents have the same state and
control weight (but different preferences)

Corollary: There exists a step-size rule such that the
multiplier error dynamics is uniformly decreasing if

and only if
Amax(E(G) E 2
EOEO) 5 n (1) 4a)
Amin (£(G) E(G)) r r
D5M NPLINIMX NDTIND NLMPaAN Freiburg University
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Performance of SHPA Algorithm

Theorem: The predicted disagreement evolves
according to a time-varying linear dynamical
system.

e(t +1) = (1 — a()E(G) Q™ P(T — 1)E(g)) e(t)

want this...

lim [le(t)]| - 0
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Performance of SHPA Algorithm

e(t +1) = (1 — a()E(G) Q™ P(T — 1)E(g)) e(t)

Corollary: The predicted disagreement is
uniformly decreasing if and only if

0 < aft) < 2251 (B(G)Q'P(T —1)E(G))

Q=ql R=rl

Corollary: The predicted disagreement is
uniformly decreasing if and only if

q
0 <at) < ZP(T — DA maz (E(G) E(G))

<<l
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Performance of SHPA Algorithm

an interesting observation...
I <LPL7L L —a(t)L, < T

1000 T T T | |
500 B \
or o —

-500 /
1000 |

00000

e(t)

0 5 10 15 20

stefhis zes exdis Agaeeumminéerod isagreememimade
arbfoemly sfealéasenbiettmoethe multiplier error

30

-6

|
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Simulation Examples

SHPA with time-varying preference

T = 150
a(t) =a =10

3333333

3333333
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Simulation Examples

SHPA with time-varying preference

|
]
]
|
]
|
]
]
|
|
|
]
]
-
]
|
]
- -
|
]
]
]
]
]
| 7
P
]
|
]
]
]
]
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Simulation Examples

Optimality Gap

A Ll

L(X, 1, i)

1.6

-l-random graph
151 -@-star graph -
-»-path graph

1.4 : =

1.3 —

1.2 —

11— I

0.9 | | | | |
0
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Switching Communication

agents can communicate

to + 1
over a network o
</
=
*switching communication o
=)

<<l

oc:40,1,...} = G

switching signal

Got)y = (Vs &)
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Switching Communication

“similar” analytic results
* uniformly jointly connected graphs

20

interesting results | \\\

I \\
= simulations using a random graph " \\\(\ —
model to generate switching signal 5r \l\i‘/,;

Edge probability: p = 0.1
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Switching Communication

“similar” analytic results
* uniformly jointly connected graphs

20 . T

interesting results

“ \
10

= simulations using a random graph

model to generate switching signal 51 NEorZ—

Edge probability: p = 0.01 (not enough communication)
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Switching Communication

“similar” analytic results

* uniformly jointly connected graphs

20
interesting results 15}
= simulations using a random graph
model to generate switching signal 5F
3
_5F

more communication |
can lead to instability! -

|
|
é 1IO 1|5 0

Edge probability: p = 0.15
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Concluding Remarks

SHPA algorithm is an attempt to understand the
complexities of real-time distributed optimization problems

*interplay between dynamic systems and
distributed optimization

xstep-size, graph structure, preferences
*simple set-up, non-trivial results

limitless extensions...

*state-dependent graphs, random graphs
*more sophisticated dynamics
*saddle-point problems and multi-agent
systems

*and more...
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