

Coordination and Control of Multi-Robot Systems

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

EUROAVIA 2014

Control in Aerospace Systems

Aerospace Systems of the Future

NASA Prospecting Asteroid Mission http://attic.gsfc.nasa.gov/ants/pam.html

Networked Systems are the Future

Deep Space Interferometry

Transportation Networks

Power Distribution Networks - "smart grid"

The Internet

Control of Networked Systems

How do we control multi-agent systems?

centralized approach

decentralized/distributed approach

Control of Networked Systems

How do we control multi-agent systems?

dynamic systems and control theory

graph theory

Control of Networked Systems

How do we control multi-agent systems?

dynamic systems and control theory

graph theory

Graph Theory

Trees and Cycles

A *cycle* is a connected graph where each node has 2 neighbors

A *tree* is a connected graph containing no cycles

Graph Laplacian Matrix

$$L(\mathcal{G}) \begin{bmatrix} L(\mathcal{G}) \end{bmatrix}_{ii} = d_i \text{ \# of neighbors} \\ [L(\mathcal{G})]_{ij} = \begin{cases} 0 \text{ nodes } i \text{ and } j \text{ not neighbors} \\ -1 \text{ nodes } i \text{ and } j \text{ are neighbors} \end{cases} \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$

Graph Theory

Matrix-Tree Theorem

The number of trees in a graph is equal to the determinant of any sub-matrix of the graph Laplacian obtained by deleting one row and one column.

Formation Control Problem

Given a team of robots endowed with the ability to sense relative distance or direction information of neighboring robots, design a control for each robot using only *local information* that moves the team into a desired formation shape.

Assume the sensing graph is fixed

Each robot is modeled as a kinematic point mass in 2-D

Specify the *formation* by specifying the distances between neighbors

Control depends on distances and relative positions of neighbors

$$u_i = \sum_{j \sim i} f(d_{ij}, p_i - p_j)$$
(robot j is a neighbor of robot i)

Formation Control Law

$$\dot{p}_i = u_i$$

$$u_i = -\sum_{j \sim i} (\|p_i - p_j\|^2 - d_{ij}^2) (p_i - p_j)$$

The control tries to minimize the error between the *desired* robot distances and the *measured* robot distances

Will this always work?

Formation Control and Graph Rigidity

A *minimum* number of distance measurements are required to *uniquely* determine the desired formation!

Graph Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

Graph Rigidity Theory

Rigidity is a combinatorial theory for characterizing the "stiffness" or "flexibility" of structures formed by rigid bodies connected by flexible linkages or hinges.

NOT rigid!

There is a motion that preserves distances between nodes in the graph but the shape is *not* preserved!

A *rigid* graph can only *rotate* and *translate* to ensure all distances between all nodes are preserved (i.e., preserve the shape)!

Formation Control and Graph Rigidity

Theorem [Krick 2009]

If the sensing graph is infinitesimally rigid, then the system

$$\dot{p}_i = u_i$$

$$u_i = -\sum_{j \sim i} (\|p_i - p_j\|^2 - d_{ij}^2) (p_i - p_j)$$

(locally) asymptotically converges to the desired formation shape.

Rigidity Maintenance

Lateral view

Lateral view

Summary

- multi-robot control and coordination requires a blending of tools from control theory and graph theory
- formation control is an important problem in multiagent systems with many challenges
- many open problems exist
 - coordination in harsh environments (no common reference frame, i.e., GPS)
 - coordination with "cheap" sensing and no communication (i.e., cameras)
 - dynamic sensing and communication

Acknowledgements

Dr. Paolo Robuffo Giordano Dr. Antonio Franchi

